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Abstract

Let (V,Ω) be a symplectic vector space and let φ : M → V be a symplectic im-
mersion. We show that φ(M) ⊂ V is (locally) an extrinsic symplectic symmetric space
(e.s.s.s.) in the sense of [CGRS] if and only if the second fundamental form of φ is
parallel.

Furthermore, we show that any symmetric space which admits an immersion as an
e.s.s.s. also admits a full such immersion, i.e., such that φ(M) is not contained in a
proper affine subspace of V , and this immersion is unique up to affine equivalence.

Moreover, we show that any extrinsic symplectic immersion of M factors through to
the full one by a symplectic reduction of the ambient space. In particular, this shows
that the full immersion is characterized by having an ambient space V of minimal
dimension.

1 Introduction

Ever since their introduction by É. Cartan ([C]), symmetric spaces have been studied in-
tensely from various viewpoints. In [F2], D. Ferus introduced the notion of an extrinsic
symmetric space which is a Riemannian symmetric space admitting an embedding into an
Euclidean vector space such that the geodesic reflection at each p ∈ M is the restriction
of the reflection in the normal plane of M in p. In fact, Ferus gave a classification of all
Riemannian extrinsic symmetric spaces, showing that most Riemannian symmetric spaces
admit such an embedding. Combining this with his results from [F1], he showed that a
submanifold of Euclidean space is locally extrinsically symmetric if and only if its shape
operator is parallel.

Evidently, the concept of extrinsic symmetric spaces may be generalized to other classes
as well. See [Ka, Ki] for results on extrinsic pseudo-Riemannian symmetric spaces and [GS]
for extrinsic CR-symmetric spaces. In both cases, many examples of such embeddings are
given, but a classification appears to be out of reach.

∗Both authors were supported by the Schwerpunktprogramm Differentialgeometrie of the Deutsche
Forschungsgemeinschaft. The second author thanks the Max-Planck-Institut für Mathematik in den Natur-
wissenschaften in Leipzig, Germany, for its hospitality.
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In [CGRS], extrinsic symplectic symmetric spaces (e.s.s.s.) were considered for the first
time, and their basic algebraic and geometric properties were described. However, in contrast
to the aforementioned cases, only few types of e.s.s.s. are known, all of which have a 3-step
nilpotent transvection group.

In this article, we further investigate e.s.s.s. In fact, we slightly generalize this notion to
extrinsic symplectic immersions by which we mean an immersion φ : M → V of a symmetric
space M into the symplectic vector space (V, Ω) such that φ∗(Ω) is non-degenerate and such
that for all p ∈ M

φ ◦ sp = σTp ◦ φ,

where sp : M → M is the symmetric reflection at p, and σTp : V → V is the reflection in the
affine normal space of Tp := dφ(TpM). If φ is an embedding, then φ(M) ⊂ V is an e.s.s.s.
While we do not know of any example of an extrinsic symplectic immersion which is not an
embedding, we nevertheless use this notion as it allows us to state our results more elegantly.
As a first result, we obtain in analogy to the aforementioned result from [F1]:

Theorem A Let (V, Ω) be a symplectic vector space and let φ : M → V be a symplectic
immersion, i.e., such that φ∗(Ω) is non-degenerate.

Then the shape operator of φ is parallel if and only if there is an extrinsic symplectic
immersion φ̂ : M̂ → V of a symmetric space M̂ and a local diffeomorphism ε : M → M̂
such that φ = φ̂ ◦ ε.

In contrast to the Riemannian case, e.s.s.s. which are intrinsically equivalent do not need
to be extrinsically equivalent. For instance, a symplectic vector space, regarded as a flat
symmetric space, can be embedded non-affinely into a higher-dimensional vector space as an
e.s.s.s. ([CGRS]). It is precisely this non-uniqueness which we want to illuminate.

An extrinsic symplectic immersion φ : M → V is called full if there is no proper affine
subspace of V containing φ(M).

Theorem B Let M be a symmetric space admitting an extrinsic symplectic immersion. Then
M also admits a full extrinsic symplectic immersion which is unique up to affine equivalence.

We point out that Theorem B reveals a feature of e.s.s.s. which is not valid for pseudo-
Riemannian extrinsic symmetric spaces. Indeed, there are full extrinsic pseudo-Riemannian
symmetric spaces which are intrinsically equivalent but with ambient spaces of different
dimensions; see e.g. examples 7.3 and 7.4 in [Ka].

Consider an extrinsic symplectic immersion φ : M → V on the symplectic space (V, Ω),
and let V ′ ⊂ V be the smallest affine subspace containing φ(M). Assuming that 0 ∈ φ(M)
we may assume that V ′ is a linear. Let (V0, Ω0) be the symplectic reduction of V ′, i.e.,
V0 := V ′/N where N ⊂ V ′ is the null space of Ω|V ′ , and π∗(Ω0) = Ω|V ′ for the canonical
projection π : V ′ → V0.
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Theorem C Let φ : M → V be an extrinsic symplectic immersion with 0 ∈ φ(M), let V ′ ⊂
V , V0 = V ′/N and π : V ′ → V0 be as in the preceding paragraph. Then φ0 := π ◦φ : M → V0

is the full extrinsic symplectic immersion.

As an immediate consequence of Theorem C we get

Corollary D An extrinsic symplectic immersion φ : M → V is full if and only if the ambient
space V is of smallest possible dimension.

This paper is structured as follows. After setting up our notation in section 2, we define
in section 3 the notion of an extrinsic symplectic immersion and discuss their relation to
extrinsic symplectic morphisms of Lie algebras. In section 4, we prove Theorem A and
finally, section 5 is devoted to the proofs of the remaining statements.

2 Preliminaries

2.1 Symmetric spaces

We recall some basic facts on symmetric spaces which can be found e.g. in [H].
Let G be a connected Lie group with Lie algebra g, and let σ : G → G be an involution,

i.e., a Lie group homomorphism satisfying σ2 = Id. Then Fix(σ) := {g ∈ G | σ(g) = g} is
a closed subgroup of G with Lie algebra k = {x ∈ g | dσ(x) = x}. Let K ⊂ G be a closed
σ-invariant subgroup with Lie algebra k (i.e., the identity component of K coincides with
that of Fix(σ)). Then the coset space M := G/K is a manifold. Since σ : G → G is an
involution, so is dσ : g → g, hence we may decompose

g = k⊕ p, (1)

where dσ|k = Id and dσ|p = −Id, and hence we get for the Lie brackets

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (2)

Conversely, given a direct sum decomposition g = k⊕p satisfying (2), then the map dσ|k = Id
and dσ|p = −Id is a Lie algebra homomorphism, hence it is the differential of an involuton
σ : G → G, if G is the simply connected Lie group with Lie algebra g and hence gives rise
to a symmetric space M = G/K as described above.

By definition of K, σ induces an involution s0 : M → M by s0(gK) := σ(g)K. For
p = gK ∈ M , we define the symmetry at p sp : M → M by sp := Lg ◦ s0 ◦ Lg−1 , where
Lg : M → M denotes the canonical left action by g ∈ G. Then one easily verifies the
well-definedness of sp as well as the following properties:

1. s2
p = IdM , and p is an isolated fixed point of sp for all p ∈ M .

2. sp ◦ sq ◦ sp = ssp(q) for all p, q ∈ M .
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It is known that the group Ĝ := 〈sp | p ∈ M〉 ⊂ Diff(M) can be presented by {sp | p ∈ M}
subject to these relations. Moreover, the identity component of Ĝ is known to be a Lie group,
called the transvection group of M , and its Lie algebra is [p, p]⊕ p C g.

A manifold with smooth maps sp for all p ∈ M satisfying these relations is called a
symmetric space. Thus, we have described above how a connected Lie group G with an
involution σ : G → G induces the structure of a symmetric space on M := G/K for a closed
σ-invariant subgroup K ⊂ G with Lie algebra k.

This process can be reverted. Namely, if M is a symmetric space, let G be the (connected
component of the) transvection group, and for a fixed p0 ∈ M define the involution

σ := Adsp0
: G → G,

which is a well defined involution as σ(sp) = ssp0 (p) ∈ Ĝ for all p. Since p0 is an isolated
fixed point of sp0 , it follows that K := Stab(p0) ⊂ G is indeed a σ-invariant Lie subgroup
with Lie algebra k from (1) and hence fits the above description. Observe that if we assume
M = G/K to be simply connected, then K is connected and hence K = Fix(σ)0.

2.2 The curvature of symplectic symmetric spaces

A symmetric pair g = k⊕ p is called symplectic, if there is an adk-invariant symplectic form
ω on p. Likewise, a symplectic space M is called symplectic, if there is a symplectic form on
M which is invariant under all symmetries and hence under the transvection group.

It is elementary to show that the correspondence between simply connected symplectic
symmetric spaces and symplectic symmetric pairs described in section 2.1 is a bijection.
Our task shall be to investigate the curvature of a symplectic symmetric space and to give a
criterion when such a symplectic symmetric space admits an extrinsic symplectic immersion.

If g = k⊕ p is a symplectic symmetric pair, then (adk)|p yields a homomorphism ad : k →
sp(p, ω), and its curvature is defined as the map (cf. [H, IV Thm. 4.2])

R : Λ2p −→ sp(p, ω), R(x, y) := −ad[x,y]|p.

The Jacobi identity of g is equivalent to the adk-invariance of R and R satisfying the first
Bianchi identity, i.e., R being contained in the space of formal curvatures of sp(p, ω)

K(sp(p, ω)) = {R ∈ Λ2p∗ ⊗ sp(p, ω) | R(x, y)z + R(y, z)x + R(z, x)y = 0 for all x, y, z ∈ p}.

Thus, there is a one-to-one correspondence between transvective symplectic symmetric pairs
and elements R ∈ K(sp(p, ω)) such that adkR = 0 for all k = R(x, y) ∈ sp(p, ω).

As a representation space of sp(p, ω), K(sp(p, ω)) is isomorphic to Λ2(sp(p, ω)) with an
explicit isomorphism given by ([CGRS, Lemma 1.8])

RA1∧A2(x, y) :=
1

2
((A1x) ◦ (A2y)− (A1y) ◦ (A2x)) ∈ S2(p) ∼= sp(p, ω), (3)

where the identification S2(p) ∼= sp(p, ω) is given by

(x ◦ y) · z := ω(x, z)y + ω(y, z)x.
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Observe that our isomorphism differs from the one given in ([CGRS, Lemma 1.8]) by a factor
1
2
, but this will be convenient later on in Lemma 5.2.

Thus, we can find an element

R =
∑
i,j

aijAi ∧ Aj ∈ Λ2sp(p, ω), (4)

where (aij) is a non-degenerate skew-symmetric matrix and Ai ∈ sp(p, ω) such that

−ad[x,y] = R(x, y) :=
∑
i,j

aijRAi∧Aj
(x, y)

=
1

2

∑
i,j

aij((Aix) ◦ (Ajy)− (Ajy) ◦ (Aix))

=
∑
i,j

aij(Aix) ◦ (Ajy)

for all x, y ∈ p. We may write (4) also as

R =
∑

i

Ai ∧ Ai, where Ai :=
∑

j

aijAj.

The (adk)|p-equivariance of R is equivalent to

0 = adkR = 2
∑
i,j

aij[adk, Ai] ∧ Aj = 2
∑

i

[adk, Ai] ∧ Ai

for all k ∈ k, which implies

Proposition 2.1 Let k ⊂ sp(p, ω) and let R ∈ Λ2sp(p, ω) ∼= K(sp(p, ω)) be given as in
(4). Then g := k⊕ p becomes a Lie algebra and hence a symmetric pair whose curvature is
represented by R if and only if there are κij = κji ∈ k∗ such that

[adk, Ai] =
∑

j

κij(k)Aj for κij = κji ∈ k∗. (5)

3 Extrinsic symplectic immersions

In this section, we shall generalize the notion of an extrinsic symplectic symmetric space from
[CGRS] to extrinsic symplectic immersions. We begin by introducing some notation.

We define ASp(V, Ω) = Sp(V, Ω)nV to be the group of affine symplectic transformations
of V and let

Lin : ASp(V, Ω) −→ Sp(V, Ω)

be the canonical projection ASp(V ) → ASp(V, Ω)/V ∼= Sp(V, Ω) which is thus a homomor-
phism.
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Definition 3.1 Let (V, Ω) be a symplectic vector space, and let (W, p) be a pair of a subspace
W ⊂ V such that Ω|W is non-degenerate, and a point p ∈ V . The reflection in (W, p) is the
involution σ(W,p) ∈ ASp(V, Ω) given by

σ(W,p)(p) = p, Lin(σW,p)|W = −IdW , and Lin(σW,p)|W⊥ = IdW⊥ .

Here, ⊥ refers to the orthogonal complement w.r.t. Ω.

Note that the definition of the reflections implies that for all g ∈ ASp(V, Ω) we have

Adg(σ(W,p)) = σ(Lin(g)·W,g·p). (6)

Definition 3.2 Let M be a symmetric space and (V, Ω) a symplectic vector space. An
extrinsic symplectic immersion of M is an immersion φ : M → V such that for all p ∈ M
we have

1. φ is a symplectic immersion, i.e., φ∗(Ω) is non-degenerate or, equivalently, the restric-
tion of Ω to Tp := dφp(TpM) is non-degenerate,

2. φ ◦ sp = σ(Tp,φ(p)) ◦ φ.

We define Np := (Tp)
⊥ to be the Ω-orthogonal complement, so that we have the decomposi-

tions V = Tp ⊕Np for all p ∈ M .

Thus, there is a well defined homomorphism

ıφ : G −→ ASp(V, Ω), ıφ(sp) := σ(Tp,φ(p)), (7)

where G is the transvection group of M , since this definition respects the relations for sp.
Then evidently, we have the relation

ıφ(g) · φ(p) = φ(g · p) for all g ∈ G and p ∈ M. (8)

It follows that

Lin(ıφ(g))(Tp) = d(ıφ(g) ◦ φ)(TpM)

= d(φ ◦ Lg)(TpM) by (8)

= dφ(Tg·pM) = Tg·p,

where Lg : M → M denotes the action of g ∈ G on M . That is, (8) implies

Lin(ıφ(g))(Tp) = Tg·p and Lin(ıφ(g))(Np) = Ng·p for all g ∈ G and p ∈ M. (9)

Let us now write M = G/K which induces the Lie algebra decomposition (1), and suppose
that φ : M → (V, Ω) is an extrinsic symplectic immersion with φ(p0) = 0 for p0 := eK ∈ M .
Then by (8) the diagram

G

pr

��

ıφ// ASp(V, Ω)

π0

��
M

φ // V

(10)
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commutes, where pr : G → M = G/K and π0 : ASp(V, Ω) → ASp(V, Ω)/Sp(V, Ω) ∼= V are
the canonical projections, i.e., π0(g) = g · 0 for all g ∈ ASp(V, Ω). Moreover, we consider the
Ω-orthogonal decomposition

V = W1 ⊕W2, (11)

where W1 := Tp0 = dφ(Tp0M) is a non-degenerate subspace by hypothesis. Let σ0 := σ(W1,0),
so that σ0 = ıφ(sp0) and hence by (7)

ıφ ◦ σ = ıφ ◦ Adsp0
= Adσ0 ◦ ıφ, (12)

whose derivative reads
dıφ ◦ dσ = Adσ0 ◦ dıφ, (13)

where dσ : g → g is the involution with eigenspaces k and p. If we decompose dıφ = Λ + τ :
g → asp(V, Ω) = sp(V, Ω)⊕ V , then (13) is equivalent to

Λ ◦ dσ = Adσ0 ◦ Λ and τ ◦ dσ = σ0 ◦ τ. (14)

Since Adσ0 : Sp(V, Ω) → Sp(V, Ω) is an involution with differential Adσ0 : sp(V, Ω) →
sp(V, Ω), we get the corresponding symmetric space decomposition

sp(V, Ω) = k̃⊕ p̃, where
k̃ = {x ∈ sp(V, Ω) | xWi ⊂ Wi} and
p̃ = {x ∈ sp(V, Ω) | xWi ⊂ Wi+1}, taking i mod 2.

(15)

Definition 3.3 Let g = k⊕ p be a symmetric pair and (V, Ω) a symplectic vector space. We
call a Lie algebra homomorphism

dı : g −→ asp(V, Ω), dı(x) := Λ(x) + τ(x) ∈ sp(V, Ω)⊕ V

an extrinsic symplectic morphism of g if there is a symplectic orthogonal decomposition
V = W1 ⊕W2 such that

1. k = ker(τ) and τ : p → W1 is a linear isomorphism,

2. We have Λ◦dσ = Adσ0◦Λ for the involution dσ : g → g and Adσ0 : sp(V, Ω) → sp(V, Ω),
or, equivalently, with the splitting from (15)

Λ(k) ⊂ k̃ and Λ(p) ⊂ p̃.

Remark. The reader who is familiar with [CGRS] will note that dı = Λ + τ is an extrinsic
symplectic morphism of g if and only if Λ satisfies the conditions in [CGRS, Lemma 1.5]
when identifying p ∼= W1 by the isomorphism τ .

We now wish to describe how the notions of the extrinsic symplectic immersion of a
symmetric space M and extrinsic symplectic morphisms of a symmetric pair are related.
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Theorem 3.4 (cf. [CGRS, Lemmas 1.5 and 1.7])

1. Let M = G/K be a symmetric space and let g = k⊕ p be the corresponding symmetric
pair. Let φ : M → (V, Ω) be an extrinsic symplectic immersion of M with φ(eK) = 0,
and let ıφ : G → ASp(V, Ω) be the Lie group homomorphism from (7).

Then dıφ : g → asp(V, Ω) is an extrinsic symplectic morphism of the symmetric pair
g = k⊕ p.

2. Conversely, let g = k⊕p be a symmetric pair and let dı : g → asp(V, Ω) be an extrinsic
symplectic morphism.

Then there is a symmetric space M = G/K corresponding to this symmetric pair and
an injective extrinsic symmetric immersion φ : M → (V, Ω) such that dı = dıφ.

Proof. Let φ : M → V be an extrinsic symplectic immersion of M with φ(p0) = 0 where
p0 = eK ∈ G/K = M , let W1 := Tp0 = dφ(Tp0M) and consider the splitting (11).

Since (10) commutes, it follows that τ = d(π0 ◦ ıφ)e = d(φ ◦ pr)e, and since φ is an
immersion, we have ker(τ) = ker(dpre) = k. Moreover, since pr : G → M is a submersion,
it follows that Im(τ) = d(π0 ◦ ıφ)(g) = dφ(Tp0M) = W1, showing the first property in
definition 3.3. The second follows immediately from (14).

To show the second statement, let g = k⊕p and G be the simply connected Lie group with
Lie algebra g, let σ : G → G be the involution with differential dσ and ı : G → ASp(V, Ω)
the homomorphism with differential dı : g → asp(V, Ω). By Definition 3.3, it follows that
(14) holds as τ(k) = 0 and τ(p) = W1. Since this is equivalent to (13), integration yields
that ı satisfies (12).

We let K := ı−1(Sp(V, Ω)) ⊂ G which is closed and has k as its Lie algebra since x ∈ k

iff d(π0 ◦ ı)(x) = 0. Moreover, for k ∈ K we have by (12) ı(σ(k)) = Adσ0ı(k) ∈ Sp(V, Ω),
since Adσ0 leaves Sp(V, Ω) invariant. Therefore, K ⊂ G is a closed σ-invariant subgroup
with Lie algebra k, hence M := G/K is a symmetric space corresponding to the symmetric
pair g = k⊕ p.

There is an induced map φ : M → ASp(V, Ω)/Sp(V, Ω) = V for which (10) commutes
with ıφ := ı, and φ is an injective immersion. The commutativity of (10) implies that
φ(gK) = (φ ◦ pr)(g) = π0(ıφ(g)) = ıφ(g) · 0 = ıφ(g) · φ(eK) for all g ∈ G, so that (8) holds,
which was shown to imply (9). Therefore, TgK = Linı(g)(TeK) = Linı(g)(W1), and since Ω|W1

is non-degenerate, Ω|Tp is non-degenerate for all p ∈ M , i.e., φ : M → V is a symplectic
immersion.

For g, h ∈ G and p := gK and q := hK ∈ M = G/K we have

φ(sp(q)) = φ(gσ(g−1h)K) = (ıφ(gσ(g−1h)))(0) by (10)

= ıφ(g) · ıφ(σ(g−1h))(0) = ıφ(g) · Adσ0(ıφ(g
−1h))(0) by (12)

= ıφ(g) · σ0 · ıφ(g)−1 · ıφ(h)(0) as σ0(0) = 0

= Adıφ(g)(σ(TeK ,0)) · φ(q) by (10)

= σ(Lin(ıφ(g))·TeK ,ıφ(g)(0)) · φ(q) by (6)

= σ(Tp,φ(p)) · φ(q) by (9),
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and hence,
φ ◦ sp = σ(Tp,φ(p)) ◦ φ

for all p ∈ M which is the second property for φ being a symplectic immersion of M .

Note that if ι : (V1, Ω1) → (V2, Ω2) is a symplectic isomorphism and φ : M → V1 is an
extrinsic symplectic immersion with associated homomorphism ıφ : G → ASp(V, Ω), then
ıι◦φ = Adι ◦ ıφ. Thus, from Theorem 3.4 we immediately obtain

Corollary 3.5 Let M = G/K be a simply connected symmetric space with corresponding
Lie algebra decomposition g = k ⊕ p. Then there is a one-to-one correspondence between
affine equivalence classes of extrinsic symplectic immersions φ : M → (V, Ω) and conjugacy
classes of extrinsic symplectic morphisms dı : g → asp(V, Ω).

If g = k⊕ p is a symmetric pair admitting an extrinsic symplectic morphism dı = Λ + τ :
g → asp(V, Ω), then evidently, τ ∗(Ω) is an adk-invariant symplectic form on p. Thus, for the
splitting of the Lie algebra g from (1) we can describe the curvature R : Λ2p → k as in (4).
In this language, the results from [CGRS] yield the following.

Proposition 3.6 ([CGRS]) Let g = k ⊕ p be a symplectic symmetric pair with the adk-
invariant symplectic form ω ∈ Λ2p∗, let R =

∑
i,j aijAi ∧ Aj ∈ Λ2sp(p, ω) be its curvature

and let κij = κji ∈ k∗ be as in (5). Then g admits an extrinsic symplectic morphism if and
only if

κij(R(x, y)) = ω((AiAj + AjAi)x, y) for all x, y ∈ p and all i, j

4 Parallelity of the second fundamental form

Let φ : M → (V, Ω) be a symplectic immersion of a manifold M into a symplectic vector
space, i.e., φ∗(Ω) is non-degenerate. Since Tp := dφ(TpM) ⊂ V is a non-degenerate subspace,
we obtain the Ω-orthogonal splitting V = Tp⊕Np for all p ∈ M . Thus, we have the pullback
vector bundles

T := {(p, v) ∈ M × V | v ∈ Tp} and N := {(p, v) ∈ M × V | v ∈ Np}.

Evidently, T = TM is the tangent bundle of M as φ is an immersion, and N → M is called
the normal bundle of φ. For the direct sum of these vector bundles, we have

M × V = T ⊕N . (16)

The canonical flat connection ∇̊ on V induces connections on TM and N by the definitions

∇T
XY := (∇̊XY )T and ∇N

X ξ := (∇̊Xξ)N ,

where the subscripts refer to the components of the vector bundle splitting (16). Moreover,
the second fundamental form and the shape operator of φ are defined as

α(X, Y ) := (∇̊XY )N and AξX := (∇̊Xξ)T , (17)
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which are related by the identity

Ω(α(X, Y ), ξ) = Ω(AξX, Y ). (18)

Since α is symmetric, it follows that Aξ ∈ sp(Tp, Ω).

Proof of Theorem A. If φ : M → V is an extrinsic symplectic immersion, then sp : M → M
can be extended to bundle maps sp : TM → TM and sp : N → N in a canonical way, and
these maps preserve the connections ∇T and ∇N . Therefore, for all X, Y, Z ∈ Tp we have

sp((∇Xα)(Y, Z)) = (∇sp(X)α)(spY, spZ) = (∇−Xα)(−Y,−Z) = −(∇Xα)(Y, Z).

On the other hand, sp((∇Xα)(Y, Z)) = (∇Xα)(Y, Z) as (∇Xα)(Y, Z) ∈ Np, so that

(∇Xα)(Y, Z) = 0 and hence, α is parallel. This evidently also holds if M → M̂ → V
is the composition of a local diffeomorphism and an extrinsic symplectic immersion.

Conversely, let φ : M → (V, Ω) be a symplectic immersion such that α is parallel. Fix
p0 ∈ M and assume w.l.o.g. that φ(p0) = 0. We consider the Ω-orthogonal decomposition
V = W1 ⊕W2 with W1 := dφp0(Tp0M). As in [F1], we define the map

Λ : W1 −→ sp(V, Ω), Λ(x)(y + ξ) = Aξx + α(x, y),

where x, y ∈ W1 and ξ ∈ W2. By (18) and the symmetry of α, we have indeed Λ(x) ∈
sp(V, Ω), and in fact, Λ(x) ∈ p̃ with the splitting sp(V, Ω) = k̃ ⊕ p̃ from (15). Now we can
apply verbatim the proof in [F1] of the corresponding statement for Riemannian immersions
to the present case to see that

1. g := {R(x, y) | x, y ∈ W1} ⊕ {Λ(x) | x ∈ W1} =: k ⊕ p ⊂ k̃ ⊕ p̃ ⊂ sp(V, Ω) is a Lie
subalgebra and hence a symmetric pair,

2. The map dı : g → asp(V, Ω) given by dı(k) := k for k ∈ k and dı(x) := Λ(x) + x for
x ∈ p is an extrinsic symplectic morphism.

By Theorem 3.4, there is an injective extrinsic symplectic immersion

φ̂ : M̂ −→ V

of a symmetric space M̂ with dıφ̂ = dı, and φ̂(p̂0) = 0 = φ(p0) and dφ̂(Tp0M̂) = W1 =

dφ(Tp0M) for some p̂0 ∈ M̂ . Therefore, the second fundamental form of φ and φ̂ at 0 ∈ V
coincide, and since both have parallel second fundamental form, it follows that their second
fundamental forms coincide and hence, φ(M) ⊂ φ̂(M̂). As φ̂ is injective, it follows that

φ = φ̂ ◦ ε for some map ε : M → M̂ , and clearly, ε is a local diffeomorphism.
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5 Full extrinsic symplectic immersions

Suppose that dı = Λ + τ : g → asp(V, Ω) is an extrinsic symplectic morphism, and let
V = W1 ⊕ W2 be the Ω-orthogonal decomposition with W1 = τ(p), and we let ω := τ ∗(Ω)
be the symplectic form on p induced by this morphism. We define the map

A : W2 −→ sp(p, ω), τ(A(ξ)(x)) := Λ(x)ξ ∈ W1. (19)

Indeed, A(ξ) ∈ sp(p, ω) as

ω(A(ξ)x, y)− ω(A(ξ)y, x) = (τ ∗Ω)(τ−1Λ(x)ξ, y)− (τ ∗Ω)(τ−1Λ(y)ξ, x)

= Ω(Λ(x)ξ, τ(y))− Ω(Λ(y)ξ, τ(x))

= Ω(Λ(x)τ(y)− Λ(y)τ(x), ξ) = 0,

since sp(V, Ω) 3 [Λ(x) + τ(x), Λ(y) + τ(y)] = [Λ(x), Λ(y)] + (Λ(x)τ(y) − Λ(y)τ(x)), so that
Λ(x)τ(y)− Λ(y)τ(x) = 0 for all x, y ∈ p.

Lemma 5.1 The map A : W2 → sp(p, ω) from (19) is k-equivariant; i.e., for all k ∈ k and
ξ ∈ W2, the following identity holds:

A(Λ(k)ξ) = [k,A(ξ)].

Proof. This follows from the following calculation for x ∈ p, k ∈ k and ξ ∈ W2:

τ(A(Λ(k)ξ)(x)) = Λ(x)Λ(k)ξ = Λ(k)Λ(x)ξ − [Λ(k), Λ(x)]ξ

= Λ(k)τ(A(ξ)x)− Λ(k x)ξ = τ(k A(ξ)x)− τ(A(ξ)k x)

= τ([k,A(ξ)](x)).

Lemma 5.2 (cf. [CGRS, (1.26)]) Let dı : g → asp(V, Ω) be an extrinsic symplectic mor-
phism, let V = W1 ⊕W2 and A : W2 → sp(p, ω) be as above. Let Λ2A : Λ2W2 → Λ2sp(p, ω)
be the canonical extension. Then the curvature R of g = k⊕ p is represented by

R = (Λ2A)(Ω|W2)
−1 ∈ Λ2(sp(p, ω))

with the identification from (3) and where (Ω|W2)
−1 ∈ Λ2W2 is the inverse of Ω|W2 ∈ Λ2W ∗

2 .
That is, if {ei} is a basis of W2 such that Ωij := Ω(ei, ej) has the inverse matrix Ωij, and if
Ai := A(ei), then

R =
∑
i,j

ΩijRAi∧Aj
.

Once again, observe that in our convention the identification Λ2(sp(V, Ω) ∼= K(sp(V, ω)
differs from that in ([CGRS]) by a factor 1

2
.
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Definition 5.3 Let g = k ⊕ p be a symplectic symmetric pair, and let R ∈ Λ2(sp(p, ω)) be
the element representing the curvature of this space. Then

srk(g, k) := rk(R)

is called the symplectic curvature rank. Here, we consider the rank of R regarded as a
2-form.

Note that because of Lemma 5.2 we have dim W2 ≥ srk(g, k), and hence dim V ≥ dim p+
srk(g, k) for any extrinsic symplectic morphism.

Let V ′ ⊂ V be a linear subspace. We define the Lie group

Stab(V ′) := {g ∈ ASp(V, Ω) | g · V ′ ⊂ V ′},

whose Lie algebra is given as

stab(V ′) := {A + v ∈ asp(V, Ω) = sp(V, Ω)⊕ V | v ∈ V ′ and A · V ′ ⊂ V ′}.

We call an extrinsic symplectic immersion φ : M → V full if there is no proper affine
subspace V ′ ( V such that φ(M) ⊂ V ′. Likewise, we call an extrinsic symplectic morphism
dı : g → asp(V, Ω) full, if there is no proper linear subspace V ′ ( V such that dı(g) ⊂
stab(V ′) ⊂ asp(V, Ω). Evidently, φ is full if and only if dıφ is.

Proposition 5.4 Let g = k ⊕ p be a symmetric pair, V = W1 ⊕ W2 a symplectic vector
space, and let dı = Λ+ τ : g → asp(V, Ω) be an extrinsic symplectic morphism. Consider the
map A : W2 → sp(p, ω) from (19). Then the following are equivalent.

1. dı is full.

2. dim(W2) = srk(g, k), i.e., dim V = dim p + srk(g, k).

3. A is injective.

4. W2 = span{Λ(x)τ(y) | x, y ∈ p}.

Proof. Since Λ2A(Ω|W2)
−1 = R by Lemma 5.2, it follows that rk(A) ≥ rk(R) = srk(g, k).

Thus, if dim W2 = srk(g, k), then A must be injective.
Conversely, if A is injective, then rk(Λ2A(Ω|W2)

−1) = dim W2 since Ω|W2 is non-degener-
ate. Thus, dim W2 = rk(R) = srk(g, k) by Lemma 5.2, which shows that the second and
third statement are equivalent.

Let W ′
2 := span{Λ(x)τ(y) | x, y ∈ p} ⊂ W2. Then ξ ∈ (W ′

2)
⊥ if and only if 0 =

Ω(ξ, Λ(x)τ(y)) = −Ω(Λ(x)ξ, τ(y)) = −Ω(τ(A(ξ)x), τ(y)) = −ω(A(ξ)x, y) for all x, y ∈ p,
using the definition of A in (19), which implies that (W ′

2)
⊥ = ker(A), and this shows the

equivalence of the third and fourth statement.
Let V ′ ⊂ V be such that dı(g) ⊂ stab(V ′) ⊂ asp(V, Ω). Since τ(p) = W1, it follows

that W1 ⊂ V ′. Thus, [dı(x), τ(y)] = Λ(x)τ(y) ∈ V ′ for all x, y ∈ p, i.e., W1 ⊕ W ′
2 ⊂ V ′. If
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W ′
2 = W2, then we must have V ′ = V which shows that the fourth statement implies the

first.
On the other hand, W1 ⊕W ′

2 is invariant under Λ(x) for all x ∈ p by definition, and W ′
2

is invariant under Λ(k) for k ∈ k, since

Λ(k)(Λ(x)τ(y)) = [Λ(k), Λ(x)]τ(y) + Λ(x)Λ(k)τ(y) = Λ(k x)τ(y) + Λ(x)τ(k y) ∈ W ′
2.

Thus, dı(g) ⊂ stab(W1 ⊕W ′
2), so that the first statement implies the fourth.

Proposition 5.5 Let g = k⊕ p be a symmetric pair with two full extrinsic symplectic mor-
phisms dıi = Λi + τi : g → asp(Vi, Ωi) such that τ ∗1 (Ω1) = τ ∗2 (Ω2). Then dı1 and dı2 are
affinely equivalent, i.e., there is a linear symplectic isomorphism ι : (V1, Ω1) → (V2, Ω2) such
that dı2 = Adι ◦ dı1.

Proof. Consider the Ωi-orthogonal decompositions Vi = W i
1 ⊕W i

2 where τi : p → W i
1 is an

isomorphism for i = 1, 2. Then Ai : W i
2 → sp(p, ω) is injective for i = 1, 2 by Proposition 5.4

and moreover, the images Ai(W
i
2) ⊂ sp(p, ω) coincide by Lemma 5.2. Thus, we may define

the linear isomorphisms

ι1 := τ2 ◦ τ−1
1 : W 1

1 −→ W 2
1 , and ι2 : A−1

2 ◦ A1 : W 1
2 −→ W 2

2 .

By our hypothesis, τ ∗i (Ωi) = ω. Moreover, by Lemma 5.2 (A−1
i )∗(Ω−1

i ) = R ∈ Λ2(sp(V, ω).
Thus, (ιi)

∗(Ω2|W 2
i
) = Ω1|W 1

i
for i = 1, 2, i.e.,

ι := ι1 ⊕ ι2 : (V1, Ω1) −→ (V2, Ω2)

is a symplectic isomorphism. Since τ2 = ι1 ◦ τ1 and A1 = A2 ◦ ι2, we have for x, y ∈ p and
ξ ∈ W 2

2

Ω2(ιΛ1(x)ι−1ξ, τ2(y)) = (ι∗Ω2)(Λ1(x)ι−1
2 ξ, ι−1

1 τ2(y))

= Ω1(τ1(A1(ι
−1
2 (ξ))x), τ1(y))

= (τ ∗1 Ω1)(A2(ξ)x, y) = (τ ∗2 Ω2)(A2(ξ)x, y)

= Ω2(τ2(A2(ξ)x), τ2(y))

= Ω2(Λ2(x)ξ, τ2(y)),

and since ιΛ1(x)ι−1(W 2
i ) ⊂ W 2

i+1 and Λ2(x)(W 2
i ) ⊂ W 2

i+1 taking indices mod 2, it follows
that ιΛ1(x)ι−1 = Λ2(x) for all x ∈ p. Similarly, we have for k ∈ k and x, y ∈ p

Ω2(ιΛ1(k)ι−1τ2(x), τ2(y)) = (ι∗Ω2)(Λ1(k)ι−1
1 τ2(x), ι−1

1 τ2(y))

= Ω1(Λ1(k)τ1(x), τ1(y))

= Ω1(τ1(k x), τ1(y))

= (τ ∗1 Ω1)(k x, y) = (τ ∗2 Ω2)(k x, y)

= Ω2(τ2(k x), τ2(y))

= Ω2(Λ2(k)τ2(x), τ2(y)),
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and since ιΛ1(k)ι−1(W 2
1 ) ⊂ W 2

1 and Λ2(k)(W 2
1 ) ⊂ W 2

1 , it follows that ιΛ1(k)ι−1|W 2
1

= Λ2|W 2
1
.

Finally, for k ∈ k and ξ ∈ W 2
2 we have by Lemma 5.1

ιΛ1(k)ι−1ξ = ι2Λ1(k)ι−1
2 ξ

= A−1
2 A1(Λ1(k)(ι−1

2 (ξ))

= A−1
2 [k,A1(ι

−1
2 (ξ))]

= A−1
2 [k,A2(ξ)]

= A−1
2 A2(Λ2(k)(ξ)) = Λ2(k)(ξ),

so that ιΛ1(k)ι−1|W 2
2

= Λ2|W 2
2
, which completes showing that

Λ2 = Adι ◦ Λ1 and τ2 = ι ◦ τ1,

and therefore, dı2 = Adι ◦ dı1.

Proof of Theorem C. Let φ : M → V be an extrinsic symplectic immersion with 0 ∈ φ(M),
let V ′ ⊂ V be the smallest subspace containing φ(M), and let N ⊂ V ′ be the nullspace of
Ω|V ′ . Then V0 := V ′/N has an induced symplectic structure Ω0 such that π∗(Ω0) = Ω|V ′ ,
where π : V ′ → V0 is the canonical projection.

Since Tp ⊂ V ′ for all p ∈ M and Ω|Tp is non-degenerate, it follows that N ⊂ T⊥
p and

hence, N ∩ Tp = 0 for all p ∈ M . Thus, φ0 := π ◦ φ : M → V0 is an immersion, and Ω0|T 0
p

is

non-degenerate, where T 0
p = dφ0(TpM) = π(Tp). Moreover, for the reflections we have

π ◦ σ(Tp,φ(p)) = σ(T 0
p ,φ0(p)) ◦ π

for all p, whence σ(T 0
p ,φ0(p))◦φ0 = σ(T 0

p ,φ0(p))◦π◦φ = π◦σ(Tp,φ(p))◦φ = π◦φ◦sp = φ0◦sp, using
that φ is an extrinsic symplectic immersion. Thus, φ0 : M → V0 is an extrinsic symplectic
immersion as well.

If φ0(M) ⊂ V ′
0 ⊂ V0, then φ(M) ⊂ π−1(V ′

0) ⊂ V ′. Since we chose V ′ ⊂ V to be the
smallest subspace containing φ(M), it follows that V ′

0 = V0, and this implies that φ0 : M →
V0 is full.

Theorem B from the introduction now follows immediately from combining Theorem C
with Proposition 5.5, and Corollary D is an immediate consequence of Theorem C.
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