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Abstract: We investigate operators Lηu = ∇ · (aη∇u) and solutions uη of
Lηuη = 0 to various boundary conditions. The coefficients aη are assumed to
have a real part with changing sign and a small, non-negative imaginary part.
We investigate a ring geometry with radii 1 and R in two space dimensions
and use Fourier expansions in polar coordinates to analyze the qualitative
behavior of solutions when boundary conditions on a small inclusion Bε(x0)
are imposed. Our result is that uη depends qualitatively on the position of
the inclusion. If |x0| is larger than the cloaking radius R∗ := R3/2, then uη

behaves as if no ring were present. If, instead, |x0| is smaller than R∗, then
the small inclusion is invisible in the limit η → 0.

1 Introduction

Cloaking is a name for an invisibility effect produced by a suitable device. The
essential feature of such a cloaking device is that it is itself invisible, and that any
object inside the device or in its vicinity is also nearly invisible. In order to quantify
the term invisibility, a process of measurement is defined. This can be done in
the framework of geometrical optics [15] or of partial differential equations, Maxwell
equations [8], wave and Helmholtz equations, or electrostatic equations in the context
of impedance tomography [12]. In such a setting, the cloaking device and the cloaked
object can be described by coefficients in the equation. The cloaking device is usually
given by coefficients with extreme values, large or small, or by negative coefficients
in some part of the domain. In this sense, many ideas for cloaking can be considered
as realizable only since the invention of negative index metamaterials [22], for which
mathematical justifications can be found for instance in [7, 3, 13, 4].

At least three different approaches to cloaking are currently under investigation.
In an approach based on complex analysis [15] one constructs an optical index field
which has the property that no light rays enter a certain region, but all light rays
are straight lines at infinity. This can be achieved by a rather explicit construction
of holomorphic mappings. This approach seems to be merely applicable in the two
dimensional case.
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2 Cloaking by anomalous localized resonance

In other approaches, one considers a specific differential equation on a subset
Ω ⊂ Rn for n = 2 or n = 3, and studies variable coefficients in Ω. A cloak is then
defined by a fixed choice of coefficients. In the change of variables method [12] the
construction exploits that, in a reference domain with constant coefficients, a small
subset with changed coefficients has only a small effect in measurements. After a
change of variables, the small subset is a large subset in the physical domain and the
new coefficients have extreme values. The result is that any object that is placed in
the large subset in the physical domain, is almost invisible.

A third approach is connected with the concept of anomalous localized resonance.
The setting looks similar to the one used in the change of variables method in that a
differential equation for measurements is chosen and a variable coefficient on a phys-
ical domain defines the cloak. However, here the invisibility issue is directly linked
to the fact the device has an index with changes of sign. The cloaking devices are
mostly given by simple geometric objects. In [16], a ring BR(0) \B1(0) is considered
such that the coefficient has the opposite sign in the ring and in the outside. It is
observed that a second object placed in the vicinity of BR(0), e.g. given as a further
perturbation of the coefficients, is nearly invisible for measurements.

Different measurement processes can be considered. A standard possibility is to
define a large set Q that contains all the structures, and to analyze the effect of
different boundary data as in electrical impedance tomography (EIT), cp. [14]. In
this spirit, one may define that a measurement consists in providing the Dirichlet-
to-Neumann map on ∂Q for the given coefficients in Q. Even though this map does
not determine the coefficients (see, e.g. [10]), one may define cloaking as the fact
that certain perturbations of the coefficients do not lead to relevant changes of the
Dirichlet-to-Neumann map [9].

The effect of anomalous localized resonance. The phenomenon relies on the
fact that an elliptic partial differential equation with a sign-changing coefficient can
exhibit localization effects [16, 17, 20]. One observes that there exist functions which
are localized around the given structure and nevertheless homogeneous solutions ex-
cept for a small error. Numerical tests [5] confirm this effect which is very much in
contrast to standard elliptic equation without a sign-change, where the maximum
principle inhibits solutions to have maxima inside the medium. Our interpretation of
the cloaking process is the following. The exterior measurement results in an answer
of the small object. But the information that is sent out by the small object results
only in a resonance of the cloaking device and is not radiated to outer boundaries or
to infinity.

One would like to study the problem ∇ · (a∇u) = 0 with index a = 1 outside the
ring a = −1 inside the ring. This problem can not be treated by standard methods,
for elaborate approaches we refer to [1, 2, 6]. Another approach is to consider the
case of a positive dissipation coefficient η and to study the limit η → 0, which might
be considered also a low viscosity limit [16]. We follow this approach and consider an
coefficient which is perturbed in the complex plane as given in (1.1). For finite η > 0
this regularized problem can be solved by the Lax-Milgram theorem. Our aim is to
characterize aη-harmonic functions uη for various boundary conditions in the limit
η → 0.
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Our main theorems describe the invisibility effect in this geometry, related to the
cloaking radius R∗ = R3/2. In our first theorem, we study a small dipole radiator at a
position x0 ∈ R2, modelled by a boundary condition on ∂Bε(x0). To these boundary
data, we construct the bounded aη-harmonic extension vη. Our aim is to analyze
the qualitative behavior of vη. Our result is that the behavior of vη is very different
depending on whether x0 is a point inside the ball BR∗(0) or not. If x0 is outside the
cloaking zone, the solution vη looks like a dipole field (without the ring). Instead, if
x0 is inside the cloaking zone, the solution vη is concentrated in the vicinity of the
cloak and the far-field vanishes. To make this statement precise we adopt ideas of [5]
and introduce the number Mη

q as a measure for the field strength at a distance q.
Theorem 2, presented in Section 5, regards a passive inclusion Bε(x0) with coeffi-

cient a = ∞. In this case, we study the Dirichlet-to-Neumann map on the large ball
Bq(0). The invisibility effect is made precise with a number N η

q (f). This number
measures, for Dirichlet data f on ∂Bq(0), how much the solution for the perturbed
medium differs from the solution of the uniform medium. It turns out that the small
inclusion is visible in the case |x0| > R∗, but invisible in the opposite case.

It is crucial in our results that the radius ε = ε(η) vanishes together with the
dissipation coefficient η, and, moreover, we need the two convergences with controlled
rates. This is not only essential for our proofs, but it reflects also a physical fact.
The localized resonance appears with an angular wave number of order | log(η)|, and
the inclusion must be small compared to the corresponding wavelength at distance
R∗.

1.1 Geometry and main result

We consider the two-dimensional case, x ∈ R2, and the ring Σ := BR(0) \B1(0) with
inner radius 1 and outer radius R > 1. The coefficients have a positive real part
outside Σ and a negative real part in Σ. With a fixed direction i0 ∈ C, |i0| = 1 and
Im i0 > 0 (e.g. i0 = i) we set

aη(x) :=

{

−1 + i0η for x ∈ Σ

+1 for x ∈ R2 \ Σ.
(1.1)

Here, η > 0 is a small quantity that measures losses inside the medium and we will
study the limit η → 0. The geometry is sketched in Figure 1.

We study in two-dimensions the family of operators Lηu := ∇ · (aη∇u) and are
interested in Lη-harmonic functions u : U ⊂ R2 → C, i.e. in solutions of

Lηu = ∇ · (aη∇u) = 0. (1.2)

We ask whether the coefficient aη can produce a cloaking phenomenon. To this
end we consider an object positioned at x0 ∈ R2 outside the negative index ring and
specialize to the case that the object is a small ball Bε(x0). We will state and prove a
mathematical theorem that makes precise the observations of [16, 17, 20] on cloaking
by localized resonance. We show that the cloaking radius R∗ = R3/2 > R satisfies,
in appropriate limits, the following: If x0 is not contained in the ball BR∗(0), then
a measurement of the whole assembly yields results as if no ring were present. If,
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Figure 1: Sketch of the geometry. In the black ring the permeability has a negative
real part and a small imaginary part.

instead, x0 is contained in BR∗(0), then a measurement of the whole assembly does
neither detect the ring nor the inclusion Bε(x0).

Theorem 1 (Cloaking of a radiator). Let Lη as in (1.1), (1.2) and R∗ := R3/2 >
R > 1. Let x0 ∈ R2 be a point with |x0| > R and let q > R2 be an observation
radius. We study Lη-harmonic bounded functions vη on R2 \ B̄ε(x0) which satisfy the
boundary condition vη(x0 +εeiϑ) = ε−1eiϑ on ∂Bε(x0). As a measure for the visibility
of the dipole inclusion we use

Mη
q :=

(

∫

∂Bq(0)

|∂nv
η|2

)1/2

and denote by M∗
q > 0 the corresponding number for solutions of ∆v∗ = 0 to the

same boundary conditions. We consider sequences η ց 0 and ε ց 0 that satisfy
(3.12). Then the following holds.

1. if |x0| > R∗, then Mη
q → M∗

q for η → 0

2. if |x0| < R∗, then Mη
q → 0 for η → 0.

1.2 Methods and Discussion

We have chosen to use the setting of [16] and [5] with an elementary static equation.
The measurement procedure follows [5] and consists in evaluating the strength of the
field on a large sphere; we evaluate either the norm of Neumann boundary values
in Mη

q or the difference between the perturbed and the neutral Neumann boundary
values in N η

q . Our findings on the invisibility of small objects Bε(x0) in Theorems 1
and 2 match the numerical results of [5]. With reference to Figure 2 of that work,
where (δ, r0) is used instead of (η, ε), we must emphasize that in our results η and ε
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must tend simultaneously to zero. In that sense, the “conjectured limit as δ → 0” [5]
cannot be justified by our work.

We emphasize that in our model (with index 1 outside the cloak) it is essential
that the coefficient takes exactly the value −1 in the cloak. Indeed, with a value
−κ in the cloak, κ 6= 1, the effect of anomalous resonance disappears as observed in
Subsection 2.1. This is consistent with the results in [1, 2, 6] (see also the references
therein), where well posedness of a diffraction problem is shown under the condition
that |κ − 1| is large enough.

While the setting of the problem and the measurement quantities are certainly
well suited and quite general, our methods are very restrictive. We exploit here the
special spherical geometry in two dimensions in order to expand solutions in terms of
spherical harmonics. The proofs of our theorems are based on interaction coefficients
that allow to expand spherical harmonics to center 0 into spherical harmonics to
center x0. The calculation of such interaction coefficients is based on the use of
complex variables and holomorphic functions. It is desirable to extend the results to
more general geometries and to understand better the underlying spectral problem
in appropriate function spaces. To our knowledge, this is still an open problem.

We mention that in the time dependent problem with parabolic scaling, a negative
diffusion index has a quite different effect than in elliptic or in hyperbolic problems.
In the two standard approaches to backward diffusion, the region with a negative
index remains immobile in the evolution, see [11].

Outline of this paper. Section 2 is devoted to the study of Lη-harmonic func-
tions on R2. These functions can be calculated explicitely in terms of their Fourier
expansion. In Section 3 we investigate the interaction of the negative index ring
with the small spherical inclusion with the help of interaction coefficients Gl,k and
Hk,l which allow to expand every Lη-harmonic function into spherical harmonics on
∂Bε(x0). We calculate precise estimates for these coefficients and construct solutions
to various boundary value problems with the help of iteration maps. Section 4 is
devoted to the proof of Theorem 1, the two parts are shown in Propositions 4.1 and
4.2. In Section 5, Theorem 2 is shown by similar methods.

2 Properties of the negative-index ring

2.1 Homogeneous solutions

Following Milton [17], we study solutions of (piece-wise) elliptic problems in a radial
geometry in R2, the points are x ∈ R2. With the angle variable θ we write x =
(r cos(θ), r sin(θ)). We want to develop solutions u : R2 → C in spherical harmonics.
For fixed k ∈ N∗ solutions uη of Lηuη = 0 can be found with the ansatz

uη(x) = U(r)eikθ, (2.1)

for U : (0,∞) → C. The functions r±keikθ together with their complex conjugates are
harmonic. Demanding the boundedness in x = 0 and normalizing to a unit monomial
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around 0 we make the following ansatz with complex numbers a, b, α, β ∈ C,

Uk(r) =











rk for r ≤ 1,

ark + br−k for 1 < r ≤ R,

αrk + βr−k for R < r.

(2.2)

It is elementary to determine relations between the numbers a, b, α, β, such that
Lηuη = 0. For the following we denote the constant value of aη on Σ by A := Aη :=
−1+ i0η ∈ C. The continuity condition for uη and aη∂ru

η in r = 1 and r = R reduces
to

1 = a + b, 1 = Aa − Ab

aRk + bR−k = αRk + βR−k

aARk − bAR−k = αRk − βR−k.

These relations allow to express the coefficients of the fundamental solution Uk ex-
plicitely,

a =
A + 1

2A
b =

A − 1

2A

α =
1

4
R−k

[

(1 + A)2

A
Rk −

(1 − A)2

A
R−k

]

β =
1

4
Rk

[

1 − A2

A
Rk −

1 − A2

A
R−k

]

We emphasize that these coefficients depend on k and on η. The most important
number in our analysis will be the following ratio which we call the localization index.

P η
k := P (η, k; R, i0) :=

β

α
∈ C, (2.3)

where β and α are such that uη from (2.1), (2.2) solves Lηuη = 0. We have derived
the solution uη with the angular dependence eikθ for k > 0. A solution for k < 0 is
given by the same formulas with k replaced by |k| (in particular in (2.2)), and we
have P η

−k = P η
k for all k ∈ Z. The localization index satisfies

P η
k = R2|k|

(1 − A2
η)(R

|k| − R−|k|)

(1 + Aη)2R|k| − (1 − Aη)2R−|k|
≈ R2|k| 2i0η

i20η
2 − 4R−2|k|

. (2.4)

With this expression for P η
k we can already see why the cloaking radius R∗ = R3/2

will become important. To find out whether αrk or βr−k is dominant in (2.2), we
consider the number P η

k /r2|k|,

P η
k

r2|k|
=

(

R∗

r

)2|k|
(2i0η − i20η

2)(1 − R−2|k|)

i20η
2R|k| − (2 − i0η)2R−|k|

. (2.5)

The limiting behavior for η → 0 is

max
k

|P η
k |

r2|k|
→ 0 if r > R∗, (2.6)

max
k

|P η
k |

r2|k|
→ ∞ if r < R∗. (2.7)
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To see (2.6) it suffices to realize that the function η/(η2Rk + R−k) is maximal (in
η > 0) for η = R−k and to insert this value. For (2.7) we choose any sequence kn → ∞
and insert ηn = R−kn.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

r

U

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12

r

U

Figure 2: Real and imaginary part of Uk (dark and bright line) for R = 2 and cloaking
radius R∗ ≈ 2.8. Left: A = −1 + 0.05i, k = 3. In this case, P η

k ≈ 2 − 102i. Right:
A = −1 + i2−7, k = 8, such that P η

k ≈ 0.25 − 8.4 · 106i.

Anomalous localized resonance is related to the fact that P η
k can become very

large as described by (2.7), which provides the dominance of the β-term over the
α-term for r < R∗. Loosely speaking, the Lη-harmonic function “looks almost like”
r−k. It therefore has similarity to a localized homogeneous solution.

We can see from (2.4) that the denominator can become small in the limit η → 0
only if Aη → −1. This reflects the fact that for other limiting values than −1 no
cloaking effect appears. This is consistent with [1], where it is shown that L0 on
a bounded open subset with Dirichlet boundary conditions has a compact resolvent
provided that the coefficient is not −1.

2.2 The Dirichlet-to-Neumann maps

The above localization index P η
k can also be translated into a Dirichlet-to-Neumann

operator. We consider, for arbitrary fixed r > R, the boundary Γ := ∂Br(0) and the
map

N r,η : H1/2(Γ, C) → H−1/2(Γ, C), uη 7→ ∂nu
η|Γ , (2.8)

where uη solves Lηuη = 0 in Br(0) and n(x) = x/|x| is the exterior normal to Br(0).
We emphasize that in this section only the ring Σ is studied and that the geometry
is radially symmetric.

Since (eikθ)k∈Z is a basis of L2(Γ, C) and H±1/2(Γ, C), it suffices to calculate the
Dirichlet-to-Neumann map for these basis functions. Since the solution keeps the θ-
dependence of the boundary values, we can describe N r,η with its Fourier components

N r,η = (N r,η
k )k∈Z, N r,η(eikθ) = N r,η

k · eikθ.
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The solution to boundary values eikθ on ∂Br(0) is given by uη as in (2.1), (2.2), and
it has, in a neighborhood of ∂Br(0), the form uη = c (αr|k| + βr−|k|)eikθ. Therefore

N r,η
k =

∂ru
η

uη

∣

∣

∣

∣

∂Br(0)

=
|k|

r

1 − P η
k r−2|k|

1 + P η
k r−2|k|

. (2.9)

We will compare the operator N r,η of the ring geometry with the corresponding opera-
tor N r,∗ for vacuum. Since the solution without the ring is r|k| eikθ, the corresponding
coefficient is

N r,∗
k =

|k|

r
. (2.10)

For negative k ∈ Z the harmonic solutions are given by the same formulas with k
replaced by |k|, hence N r,η

−k = N r,η
k just as N r,∗

−k = N r,∗
k , and formulas (2.9) and (2.10)

remain valid. From (2.9) we see once more why the number P η
k r−2|k| is of importance.

Indeed, relations (2.6) and (2.7) imply the following result.

Lemma 2.1. For the critical radius R∗ := R3/2, the Dirichlet-to-Neumann maps
have the the following properties for η → 0. For every r > R and fixed k ∈ Z holds

N r,η
k → N r,∗

k . (2.11)

In the case r > R∗ the convergence is uniform in k and, moreover, there holds

‖N r,η − N r,∗‖L(H1/2,H−1/2) → 0. (2.12)

In the case R < r < R∗, for η → 0, there exists kη → ∞ with

N r,η
kη

N r,∗
kη

→ −1. (2.13)

Proof. The explicit formula for P η
k in (2.4) implies immediately that P η

k → 0 for fixed
k and η → 0. This implies relation (2.11). Relation (2.12) is a consequence of (2.6).
The uniform convergence of N r,η

k follows because (2.6) holds with an exponential rate
in k. Finally, (2.13) follows from (2.7).

We read (2.12) as an invisibility result for the ring. The response of the ring
to measurements from the boundary ∂Br(0) is identical to that of the empty ball
Br(0), at least if the observation radius is large enough, r > R∗. The sign change of
(2.13) will be the basis for the cloaking effect. The boundary condition ∂nu = −N r,∗u
corresponds to solutions that are singular in 0 and bounded at infinity.

Corrector coefficients. As an abbreviation we furthermore introduce the differ-
ences

Jη
k := N r,∗

k − N r,η
k =

|k|

r

2P η
k r−2|k|

1 + P η
k r−2|k|

, (2.14)

Iη
k := N r,∗

k + N r,η
k =

|k|

r

2

1 + P η
k r−2|k|

, (2.15)
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where the second equality in each line is valid for k > 0. The number Jη
k ∈ C is a

measure of how different the properties of the ring are to the properties of vacuum.
Instead, a small index Iη

k relates to an almost inverted sign and indicates a cloaking
effect. In the calculations below there will appear the ratio between the two values,
the relevant number turns out to be once more

Jη
k

Iη
k

=
P η

k

r2|k|
. (2.16)

The two coefficients will Jη
k and Iη

k will appear later on as follows. When con-
sidering a generic function Wk(ρ, θ) = (ρ/r)|k|eikθ for k ∈ Z, which is harmonic on
Br(0), it satisfies on ∂Br(0) the condition

(∂ρ − N r,η)Wk = (N r,∗
k − N r,η

k )Wk = Jη
k Wk.

Similarly, when dealing with a the function Uk(ρ, θ) = (ρ/r)−|k|eikθ for k ∈ Z, which
is harmonic on R2 \ Br(0), we can exploit that it satisfies on ∂Br(0)

(∂ρ − N r,η)Uk = (−N r,∗
k − N r,η

k )Uk = −Iη
k Uk.

3 Interaction of the ring with an inclusion

We are interested in the effect of a small object in the vicinity of the resonant ring.
We fix a point x0 ∈ R2 with |x0| > R. Furthermore, let ε > 0 be a radius with
ε < |x0| − R. We are interested in the following boundary value problem for vη.

∇ · (aη∇vη) = 0 in R
2 \ Bε(x0), (3.1)

vη(x) = g

(

x − x0

ε

)

for x ∈ ∂Bε(x0), (3.2)

vη bounded, (3.3)

where the boundary data g : ∂B1(0) → C are given. We recall that, since aη is not
real, the solution vη will also be complex valued.

With the aim of analyzing the interaction of the two disks BR(0) and Bε(x0) we use
the complex notation additionally for the independent variables. We identify C = R2

by identifying a point x = (x1, x2) ∈ R2 with the complex number z = x1 + ix2.
When we think of this identification we will write z and z0 instead of x and x0. We
will assume that the imaginary part of the point z0 vanishes in order to simplify the
calculations below. This assumption means that x0 = (|x0|, 0) ∈ R × {0}, which is
no restriction of generality since it can be acchieved by the choice of coordinates.

General boundary data g of (3.2) are expressed by its Fourier series. To do so, we
denote the angle of x−x0 with the real axes by ϑ ∈ [0, 2π) such that z−z0 = |z−z0|eiϑ.
We expand g with coefficients gl ∈ C, l ∈ Z, as

g(eiϑ) =
∑

l∈Z

gle
ilϑ with squared norm ‖g‖2 =

∑

l∈Z

|gl|
2. (3.4)
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We are particularly interested in the boundary values g = gD corresponding to the
coefficients g1 = 1 and gl = 0 for l 6= 1, i.e.

gD(eiϑ) = eiϑ , such that vη(z) =
z − z0

ε
for z ∈ ∂Bε(z0).

We will refer to these special data as dipole boundary values.

We use the abbreviations N = {0, 1, 2, ...}, N∗ = {1, 2, ...}, and N∗∗ = {2, 3, ...}.

3.1 Interaction coefficients

Our aim is to derive a relation between the harmonic functions Uk : C \ BR(0) → C

and Vl : C \ Bε(z0) → C, k, l > 0,

Uk(z) =
( z

R

)−k

, Vl(z) =

(

z − z0

ε

)−l

.

We develop Uk in terms of V̄l = eilϑ on ∂Bε(z0), and we develop V̄l in terms of
Uk = e−ikθ on ∂BR(0). We can define the corresponding operators that map boundary
conditions on one sphere to the values of the harmonic extension on another sphere,
G(V̄l|∂Bε(z0)) := V̄l|∂BR(0) and H(Uk|∂BR(0)) := Uk|∂Bε(z0). In Fourier coordinates with
the two basis el = eilϑ and ek = e−ikθ the operators read

G : L2(∂Bε(z0)) → L2(∂BR(0)), G(eilϑ) =
∑

k∈Z

Gl,ke
−ikθ,

H : L2(∂BR(0)) → L2(∂Bε(z0)), H(e−ikθ) =
∑

l∈Z

Hk,le
ilϑ.

We can identify the operators also with the corresponding operators on spaces of
sequences, l2(Z) ∋ el 7→ G(el) = (Gl,k)k ∈ l2(Z) and l2(Z) ∋ ek 7→ H(ek) = (Hk,l)l ∈
l2(Z).

Our aim is to evaluate the coefficients Gl,k and Hk,l explicitely for k, l ≥ 0. We
start our calculation with a Taylor-expansion around z0 ∈ C (or the Neumann series)

1

z
=

∞
∑

j=0

(−1)j

(

1

z0

)j+1

(z − z0)
j.

Differentiating k − 1-times in C gives

(−1)k−1 (k − 1)!

(

1

z

)k

=
∞
∑

j=k−1

(−1)j

(

1

z0

)j+1
j!

(j − k + 1)!
(z − z0)

j−k+1.

Setting j = k − 1 + l we find

(

1

z

)k

=
∞
∑

l=0

(−1)l

(

1

z0

)k+l
(k + l − 1)!

l!(k − 1)!
(z − z0)

l,
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which we may also write as

(

R

z

)k

=
∞
∑

l=0

(−1)l

(

R

z0

)k (
ε

z0

)l(
k + l − 1

l

)(

z − z0

ε

)l

. (3.5)

We note that on ∂Bε(z0) holds ((z − z0)/ε)
l = eilϑ = V̄l. Therefore (3.5) yields

Uk =
∞
∑

l=0

Hk,lV̄l on ∂Bε(z0), Hk,l = (−1)l

(

k + l − 1
l

)(

R

z0

)k (
ε

z0

)l

, (3.6)

and, similarly,

V̄l =

∞
∑

k=0

Gl,kUk on ∂BR(0), Gl,k = (−1)l

(

k + l − 1
k

)(

R

z0

)k (
ε

z0

)l

, (3.7)

for k, l ≥ 0. Here, the coefficients Gl,k can be easily obtained from (3.5). We use the
formula with z = z0 − z′, ε = R′ and R = ε′. In the prime coordinates, the function
Vk appears on the left and the functions Ul appear on the right. We exchange k and
l and take the complex conjugate, exploiting the assumption z0 ∈ R. We find that
Gl,k = (−1)k+lHk,l. Furthermore, again for k, l > 0, the above representation provides
Gl,−k = G−l,k = H−k,l = Hk,−l = 0, the complex conjugate of the representation yields
H−k,−l = Hk,l and Gl,k = G−l,−k.

Our analysis of boundary value problems is based on careful estimates for the
interaction coefficients Gl,k and Hk,l. An immediate estimate for diagonal sums is
given by the binomial formula,

n
∑

l=1

|Hn−l+1,l| =
R

z0

n
∑

l=1

(

n
l

)(

R

z0

)n−l(
ε

z0

)l

≤
R

z0

(

R + ε

z0

)n

.

In particular, for R + ε < z0, all coefficients are bounded in absolute value by 1, and
summable over both indices.

3.2 Approximate resonant dipole radiator

We will always assume z0 ∈ R and abbreviate x0 = (s, 0) ∈ R2 or z0 = s ∈ C.
Furthermore, we assume R + ε < s, which means that B̄ε(z0) ∩ BR(0) = ∅. The aim
of this section is the construction of a solution to (3.1)–(3.3). We will not succeed
immediately to construct a solution to dipole boundary data g = gD along ∂Bε(x0),
but we will satisfy this condition in an approximate way. To be precise, we use
the basis V̄l⌊∂Bε(x0) = eilϑ of L2(∂Bε(x0)) and demand that the projection of the
boundary values onto Ceiϑ should be eiϑ = V̄1 on ∂Bε(z0). We construct our solution
with the building blocks Uk, k ∈ N∗, and V̄1.

Definition 3.1. We introduce the number λd ∈ C given by

λd :=

[

1 +
∞
∑

k=0

P η
k

s2k
k
(ε

s

)2
]−1

, (3.8)
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and set coefficients ak ∈ C to be

ak := −λd
P η

k

Rksk

ε

s
∀k ∈ N. (3.9)

With these numbers, we define the special solution wη : R2 \ (B̄R(0) ∪ B̄ε(x0)) → C,

wη(x) := λdV̄1(x) +

∞
∑

k=0

ak Uk(x). (3.10)

With the same letter wη we refer to the Lη-harmonic extension wη : R2\ B̄ε(x0) → C.
This extension exists by the subsequent lemma.

Lemma 3.2 (Approximate dipole field). The function wη of Definition 3.1 can be
extended to a solution wη : R2 \ B̄ε(x0) → C of problem (3.1)–(3.3).

The function wη satisfies on ∂Bε(x0) the boundary condition wη =
∑∞

l=0 blV̄l with
b1 = 1. The coefficient bl for l 6= 1 is given by

bl = −λd

∞
∑

k=0

P η
k

Rksk

ε

s
Hk,l . (3.11)

Remark. Without the ring BR(0)\B1(0) of negative index, the solution with dipole
boundary data V̄1 is wη = V̄1. Therefore, if the ring introduces only a small perturba-
tion of solutions, one might expect λd ≈ 1, which is indeed the case for s = |x0| > R∗.
On the other hand, for s = |x0| < R∗, expression (3.8) my define a small coefficient
λd ≈ 0. In this case, despite the dipole boundary values V̄1, the solution does not
behave like the dipole solution V̄1.

Proof. Step 1. The coefficients ak. The function wη can be extended to an Lη-
harmonic function if and only if it satisfies the boundary condition (∂r −NR,η)wη = 0
on ∂BR(0). This is the case if and only if

0 = (NR,∗ − NR,η)λdV̄1 + (−NR,∗ − NR,η)
∞
∑

k=0

ak Uk

= (NR,∗ − NR,η)
∞
∑

k=0

λdG1,kUk − (NR,∗ + NR,η)
∞
∑

k=0

ak Uk

=

∞
∑

k=0

λdJ
η
k G1,kUk −

∞
∑

k=0

Iη
kak Uk.

Inserting Jη
k /Iη

k = P η
k R−2k of (2.16) and G1,k = −(ε/s)(R/s)k, by comparing coeffi-

cients, we find

−λdP
η
k R−2k(ε/s)(R/s)k = ak

and thus (3.9).
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Step 2. The coefficient λd. We now demand that the dipole moment on ∂Bε(x0)
is one. Using Hk,1 = −k(ε/s)(R/s)k we find

1 = λd +
∞
∑

k=0

ak Hk,1 = λd

[

1 +
∞
∑

k=0

P η
k

Rksk
k
(ε

s

)2
(

R

s

)k
]

,

and hence (3.8).

Step 3. Relation (3.11). The boundary values wη have, on the boundary ∂Bε(x0),
the expansion

wη = λdV̄1 +
∞
∑

k=0

akUk = λdV̄1 − λd

∞
∑

k=1

P η
k

Rksk

ε

s
Uk

= λdV̄1 − λd

∞
∑

l=0

∞
∑

k=0

P η
k

Rksk

ε

s
Hk,lV̄l .

Comparing the coefficients provides relation (3.11).

3.3 Solutions for general boundary values

We have not yet solved problem (3.1)–(3.3) for general boundary data g. In the
main result of this subsection, Lemma 3.4, we will solve the problem for boundary
data which have a vanishing dipole moment. Subsequently, we will use this result to
correct the boundary data of the special solution wη of Definition 3.1 to dipole data
gD.

We will construct bounded solution sequences under an assumption on the size
of ε. We fix a sequence η = ηn → 0 with the corresponding critical coefficients
k = kn and a sequence ε = εn → 0. We have to assume that εn and ηn vanish
in an appropriate relation to each other. From now on, we will always assume the
following.

Assumption 3.3. We assume that the geometry is fixed by numbers 1 < R < s < R∗

and that sequences η = ηn ց 0 and ε = εn ց 0 are given. We assume that there
holds for some number δ > 0 and the sequence k = kn = [− log(ηn)/ log(R)]

kε2

(

R3

s2

)k

→ ∞, k2ε3

(

R3

s2
+ δ

)k

→ 0. (3.12)

The first convergence of (3.12) requires that ε is not too small and guarantees,
in particular, the convergence λd → 0. Instead, the second property requires that ε
is small enough. It implies that the boundary values of the special solution wη are
close to V̄1; this follows from expression (3.11) where the factors (R/s)k and ε2 are
contained in the coefficient Hk,l for l ≥ 2.

In order to show that our results can be applied in concrete situations, we present
an explicit case. We consider b > 1, δ > 0 and N ∋ n → ∞, and the sequences

η = ηn = R−n, ε = εn = b−n, kn = n, with

b such that b2 < (R3/s2) < (R3/s2 + δ) < b3.
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Regarding the above smallness assumptions on ε we calculate in this setting

knε2
n

(

R3

s2

)kn

∼ nb−2n

(

R3

s2

)n

→ ∞,

k2
nε3

n

(

R3

s2
+ δ

)kn

∼ n2b−3n

(

R3

s2
+ δ

)n

→ 0.

We can now state and prove the existence result with uniform bounds for the
small-inclusion boundary value problem.

Lemma 3.4. Let Assumption 3.3 hold. Let boundary data g ∈ L2(S1) be given by
the expansion g =

∑∞
l=2 gle

ilϑ with complex numbers gl, in particular with a vanishing
dipole moment. Then there exists a solution vη of (3.1)–(3.3). More precisely, the
solution can be expressed as

vη = V η
f + Uη

f + ληwη + µη. (3.13)

Here, wη is the special solution of Definition 3.1 and λη, µη are complex numbers with
|λη| ≤ C0‖g‖. The functions V η

f and Uη
f are given by coefficients (f η

l )l ∈ l2(N∗∗, C)
with ‖(f η

l )l‖ ≤ C0‖g‖ as

V η
f =

∞
∑

l=2

f η
l V̄l, Uη

f (x) =

∞
∑

k=0

[

∞
∑

l=2

f η
l

P η
k

R2k
Gl,k

]

Uk(x) . (3.14)

The number C0 is independent of η and g.
The coefficients bl of (3.11) provide an expansion of the special function wη of

Lemma 3.2. They satisfy b1 = 1 and

lim
η→0

∞
∑

l=2

|bη
l |

2 = 0. (3.15)

Proof. In the proof, we suppress the superscript η in f η
l , V η

f , and Uη
f . The result is

shown with an iteration map. Banach’s fixed point theorem will provide the existence
result together with the structure properties and the estimates. The idea for the iter-
ation is as follows. We start from a guess for the coefficients fl. A first approximation
of the solution is the function Vf . But this function does not satisfy the boundary
condition on ∂BR(0) imposed by the negative index ring. We introduce the function
Uf , harmonic outside B̄R(0) such that Vf + Uf satisfy the boundary condition on
∂BR(0). In order to treat the error on ∂Bε(x0), we subtract an appropriate constant
and an appropriate multiple of wη. The remainder, g − Uf − λwη − µ is taken as a
new guess for f .

Step 1. Construction of the iteration map. We investigate an iteration on the
space

X =

{

f ∈ L2(∂Bε(x0)) : f =
∞
∑

l=2

fle
ilϑ, fl ∈ C

}

,

T : X → X, f 7→ fnew.

(3.16)
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In order to define the iteration we start from f ∈ X with Fourier multipliers fl ∈ C,

f(x) =
∞
∑

l=2

fle
ilϑ =

∞
∑

l=2

flV̄l(x),

and consider the harmonic extension on R2 \ Bε(x0),

Vf (x) :=

∞
∑

l=2

flV̄l(x).

The field Vf does not respect the boundary condition ∂r − NR,η = 0 along ∂BR(0).
We correct this by a function

Uf (x) =

∞
∑

k=0

ckUk(x),

which is possible if ck ∈ C is chosen such that, on ∂BR(0),

0
!
= (∂r − NR,η)(Vf + Uf) = (NR,∗ − NR,η)

∞
∑

l=2

flV̄l + (−NR,∗ − NR,η)

∞
∑

k=0

ckUk

=

∞
∑

k=0

∞
∑

l=2

fl(N
R,∗ − NR,η)Gl,kUk +

∞
∑

k=0

ck(−NR,∗ − NR,η)Uk

=
∞
∑

k=0

∞
∑

l=2

flJ
η
k Gl,kUk −

∞
∑

k=0

ckI
η
kUk.

This can be achieved with the choice

ck =

∞
∑

l=2

flJ
η
k Gl,k/I

η
k =

∞
∑

l=2

fl
P η

k

R2k
Gl,k

for all k ≥ 0. We now set f̃ := g − Uf , given by

f̃ =
∞
∑

j=0

[

gj −
∑

l≥2,k≥0

flGl,k
P η

k

R2k
Hk,j

]

V̄j , (3.17)

where we set g0 = g1 = 0. Since constant function and dipole contribution (V̄0 and V̄1)
appear in f̃ , we do not necessarily have f̃ ∈ X. We post-process this by projecting
onto the subspace X. With appropriate λη, µη ∈ C we finally set

fnew := T (f) := f̃ − ληwη − µη, (3.18)

where wη the special approximate dipole solution of Definition 3.1. The factor λη is
chosen to generate a vanishing dipole moment of fnew, the factor µ in order to have
a vanishing average. We must choose

λη = −
∑

l≥2,k≥0

flGl,k
P η

k

R2k
Hk,1. (3.19)
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Let us assume that f ∈ X is a fixed point of T , i.e.

f = T (f) = f̃ − ληwη − µη = g − Uf − ληwη − µη. (3.20)

This implies that the function vη = Vf + Uf + ληwη + µη of (3.13) satisfies the
boundary condition vη = g on ∂Bε(x0) and the boundary condition on ∂BR(0), since
both Vf + Uf and wη do. The explicit formula of (3.14) follows from the expression
for ck. The estimates for (fl)l, λ

η, µη follow from the fact that the fixed point is found
in a ball with radius comparable to the norm of g.

Step 2. Reducing the proof to three estimates. Our aim is to treat T : X → X
with a Banach fixed point argument. Interpreting G, H , I and J as operators, in
light of (3.17) we must analyze the operator

H ◦ (J ◦ I−1) ◦ G : l2(N∗∗) → l2(N), (3.21)

and show that its norm is less than 1. Regarding this operator we note that H and
G are bounded, but J ◦ I−1 behaves like P η

k /R2k ∼ Rk in the critical k. On the other
hand, we have an estimate of the type |Hk,.|, |G.,k| ≤ ((R+ε)/s)k together with some
ε-factors. Assumption (3.12) will be sufficient to find a small bound for the operator.

We claim that the following relations hold in the limit n → ∞.

(

∑

k

(

R

s

)k |P η
k |

R2k

ε

s
|Hk,l|

)

l∈N∗∗

is small in l2(N∗∗), (3.22)

(

∑

k

|Gl,k|
|P η

k |

R2k
|Hk,1|

)

l∈N∗∗

is small in l2(N∗∗), (3.23)

(

∑

k

|Gl,k|
|P η

k |

R2k
|Hk,j|

)

j,l∈N∗∗

is small in l2(N∗∗) → l2(N∗∗). (3.24)

The contractivity of T : X → X, defined in (3.17) and (3.18), is shown once we
have verified the following: smallness of the operator H ◦ J ◦ I−1 ◦ G, boundedness
of the special function wη as in (3.15), and the smallness ‖λη‖ ≤ c‖f‖l2 for a small
factor c. The smallness of the operator is a consequences of (3.24). The required
boundedness of wη is a consequence of (3.22) by (3.11) and the boundedness of λd.
The smallness of λη is a consequence of (3.23) by relation (3.19).

Relation (3.15) was part of the above argument and a consequence of (3.22). For
the proof of the lemma, it remains to verify (3.22)–(3.24).

An observation on uniform boundedness. We claim that for some numbers C ∈ R

and δ0 > 0 there holds

(

j

K

)K

δj ≤ C and
(2j)K

K!
δj+K ≤ C, (3.25)

independent of 0 < δ ≤ δ0 and j, K ∈ N∗.
Verification of (3.25). For the first expression, the boundedness is obtained by

regarding j, K ∈ [1,∞) and to find the maximal value of the corresponding function.
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We differentiate with respect to j and set the derivative to 0,

0 =
∂

∂j

(

jK

KK
δj

)

=
jK−1δj

KK
(K + j log(δ)) .

For δ < 1/e we find the maximum for j ≤ K and the value of the function is
(j/K)Kδj ≤ 1.

The boundedness of the second expression follows from Stirlings formula which
implies K! ≥ cKKe−K for some constant c > 0. Imposing smallness of δ and using
the boundedness of the first expression gives

(2j)K

K!
δj+K ≤

1

c
2K jKδj

KK
eKδK ≤

C

c
(2e)KδK ,

which is bounded for δ < 1/(2e). Claim (3.25) is shown.

Step 3. Conditions (3.22) and (3.23). We verify (3.23) with a direct calculation.

Aj :=
∑

k∈N

|Gj,k||P
η
k |R

−2k|Hk,1|

=
∑

k∈N

(

j + k − 1
k

)(

R

s

)k
(ε

s

)j |P η
k |

R2k
k

(

R

s

)k
ε

s

=
∑

k∈N

|P η
k |

s2k

(ε

s

)j+1

j

(

j + k − 1
j

)

.

We denote by K the critical index k, setting K = ⌊− log(η)/ log(R)⌋, the largest
integer below the expression in brackets. Accordingly, we decompose the sum over k
into two parts and write Aj = A≤K

j + A>K
j . In the calculation of A≤K

j we will use

|P η
k | ≤ CηR4k, while for A>K

j we use |P η
k | ≤ CR2k/η.

Distinguishing additionally two cases for j we calculate first for 2 ≤ j ≤ 2K,
using η ≤ R−K ,

A≤K
j ≤ C

∑

k≤K

η

(

R4

s2

)k
(ε

s

)j+1

j

(

k + j − 1
j

)

≤
∑

k≤K

η

(

R4

s2

)k
(ε

s

)j+1

(3K)j ≤ C(R, s) η

(

R4

s2

)K

ε3K2

(

3Kε

s

)j−2

≤ C(R, s)

[

ε3K2

(

R3

s2

)K
]

(1/2)j−2 .

Assumption (3.12) yields, for large n, the smallness of the squared bracket and
3Kε/s ≤ 1/2, which makes, for j ≥ 2, the above a sequence with small l2(N∗∗)-
norm.

For j > 2K we modify the estimate of the binomial coefficient. We exploit (3.25)
of step 2 in the inequality marked by (2) below. We assume now j > 2K and K ≥ 4
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such that we can use j +1 > 1
2
(j +2K +2) ≥ 3+ 1

2
(j +K) and hence j +K < 2(j−2)

in inequality marked by (1),

A≤K
j ≤ C

∑

k≤K

η

(

R4

s2

)k
(ε

s

)j+1

j

(

k + j − 1
k − 1

)

≤ C
∑

k≤K

R−K

(

R4

s2

)k
(ε

s

)j+1 K (K + j)K

K!

≤ C(R, s) R−K

(

R4

s2

)K
(ε

s

)3

K
(2j)K

K!

(

√

ε/s
)2(j−2)

(1)

≤ C(R, s)

(

R3

s2

)K

ε3K(1/2)j
(

(ε/s)1/4
)j+K (2j)K

K!

(2)

≤ C(R, s)

[

ε3K2

(

R3

s2

)K
]

(1/2)j−2

for all n large enough such that (ε/s)1/4 ≤ min{1/2, δ0} with δ0 > 0 as for (3.25).
We obtain the same estimate for A≤K

j as for the smaller indices j.

For A>K
j we exploit the estimate 1/η ≤ CRK and calculate for arbitrary j ≥ 2,

using the binomial expansion of powers and C depending on R and s,

A>K
j ≤ C

∑

k>K

1

η

(

R

s

)2k
(ε

s

)j+1

j

(

j + k − 1
j

)

= C
∑

k>K

1

η

(ε

s

)3
(

R

s

)2k
(ε

s

)j−2 k(k + 1)

j − 1

(

j + k − 1
j − 2

)

≤ Cε3
∑

k>K

k(k + 1)

η

[

(R/s)2 + (ε/s)
]k+j−1

≤ Cε3K2 1

η

[

(R/s)2 + (ε/s)
]K+j−1

≤ Cε3K2RK
[

(R/s)2 + (ε/s)
]K+j

≤ Cε3K2
[

(R3/s2) + (Rε/s)
]K [

(R2/s2) + (ε/s)
]j

which is, by assumption (3.12), of the desired type: a small multiple of a geometric
series.

Concerning (3.22) we only have to compare with the previous calculation. With
Al as defined in the beginning of Step 3 we find

∑

k

(

R

s

)k |P η
k |

R2k

ε

s
|Hk,l| =

∑

k

|P η
k |

s2k

(ε

s

)l+1
(

k + l − 1
l

)

≤ Al.

In particular, summability and smallness follows from that of Aj .

Step 4. Condition (3.24). It remains to check whether

(Ajm)j,m≥2 =

(

∑

k

|Gj,k||P
η
k |R

−2k|Hk,m|

)

j,m≥2

(3.26)
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defines a small map l2(N∗∗) → l2(N∗∗). The coefficients can be estimated by

Ajm =
∑

k∈N

|Gj,k||P
η
k |R

−2k|Hk,m|

=
∑

k∈N

(

j + k − 1
k

)(

R

s

)k
(ε

s

)j |P η
k |

R2k

(

m + k − 1
m

) (

R

s

)k
(ε

s

)m

=
∑

k∈N

|P η
k |

s2k

(ε

s

)j+m
(

j + k − 1
j

)(

m + k − 1
k

)

.

We will verify that, for some Θ ∈ (0, 1) and arbitrarily small q > 0 there holds, for
all η sufficiently small,

Ajm ≤ qΘj+m. (3.27)

This provides the smallness of the map Ajm in lp-spaces.
We follow the lines of Step 3 and start with the k ≤ K = ⌊− log(η)/ log(R)⌋. For

j, m ≤ 2K we estimate

A≤K
jm =

∑

k≤K

|P η
k |

s2k

(ε

s

)j+m
(

j + k − 1
j

)(

m + k − 1
k

)

≤ Cη
R4K

s2K

(ε

s

)j+m

(3K)j(3K)m−1

≤ C

(

R3

s2

)K

K2ε3

(

3Kε

s

)j+m−3

.

Using (3.12) and εK → 0, we find the estimate (3.27). For j, m > 2K and K > 3 we
calculate

A≤K
jm ≤ η

R4K

s2K

(ε

s

)j+m

K2 (2j)K

K!

(2m)K

K!

≤ C
R3K

s2K
K2ε3((ε/s)1/4)j+m−3 (2j)K

K!
((ε/s)1/4)j+K (2m)K

K!
((ε/s)1/4)m+K .

Boundedness (3.25) of Step 2 yields an estimate of the form (3.27) for large n. The
remaining cases j ≤ 2K < m and m ≤ 2K < j are treated with analogous calcu-
lations, using for the smaller index the first estimate and for the larger index the
second.

We finally consider k > K and calculate

A>K
jm =

∑

k>K

|P η
k |

s2k

(ε

s

)j+m
(

j + k − 1
j

)(

m + k − 1
k

)

≤ C
1

η

∑

k>K

R2k

s2k
ε3
(ε

s

)j+m−3 k

j

(

j + k − 1
j − 1

)

k + 1

m − 1

(

m + k − 1
m − 2

)

≤ CRKε3
∑

k>K

k2

[

R

s
+

ε

s

]j+k−1 [
R

s
+

ε

s

]m+k−1

≤ Cε3K2RK

[

R

s
+

ε

s

]2K

(R/s + ε/s)j+m.

This is of the desired form (3.27) and provides the smallness of the operator A.
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Remark 3.5. We are interested in solutions to dipole boundary data gD on the inclu-
sion Bε(x0). An approximate solution to these boundary data is the special function
wη. In order to solve exactly, we correct the error with an application of Lemma 3.4
to g = wη − eiϑ − b0. By (3.15), these boundary data vanish in the limit η → 0.
Therefore, the corresponding solutions, given by coefficients f η

l and λη, also vanish
in the limit η → 0. We conclude that the solution to exact dipole data reads

vη = wη + V η
f + Uη

f + ληwη + µη (3.28)

with f η
l → 0 in l2(N∗∗) and λη → 0 in C for η → 0.

4 Quantitative analysis of the dipole radiator

With the last section we have shown that dipole boundary data on ∂Bε(x0) admit
Lη-harmonic extensions. We keep the above situation and consider x0 ∈ R2 with
s = |x0| > R, and a radius ε > 0 with R + ε < s. We study the following boundary
value problem for vη.

∇ · (aη∇vη) = 0 in R
2 \ Bε(x0), (4.1)

vη =
eiϑ

ε
for x = x0 + εeiϑ ∈ ∂Bε(x0), (4.2)

vη bounded. (4.3)

Under assumption (3.12) this system has a solution by Lemma 3.4 and Remark 3.5.
The only difference to Remark 3.5 is that we multiplied the solution by ε−1 in order
to be in the situation of Theorem 1. The scaling is chosen such that the limit of the
subsequent number Mη

q can be non-trivial.
As a measure for the strength of the far-field we use, for fixed q > |x0|, the number

Mη
q :=

(

∫

∂Bq(0)

|∂nvη|2

)1/2

. (4.4)

To have a comparison, we first calculate this quantity in the situation without
resonant ring. We denote the solution for a ≡ 1 by v∗, i.e.

∆v∗ = 0 in R
2 \ Bε(x0),

v∗ =
eiϑ

ε
for x = x0 + εeiϑ ∈ ∂Bε(x0),

v∗ bounded.

The function v∗ can be calculated explicitely as a dipole field with ξ = e1 + i e2,

v∗(x) = ξ · ∇ log(|x − x0|) =
ξ · (x − x0)

|x − x0|2
. (4.5)

This function is clearly bounded at infinity, harmonic, and satisfies the right boundary
conditions. With fixed q > R∗ we therefore find, independent of ε > 0,

M∗
q :=

(

∫

∂Bq(0)

|∂nv
∗|2

)1/2

=

(

∫

∂Bq(0)

∣

∣

∣

∣

∂n
ξ · (x − x0)

|x − x0|2

∣

∣

∣

∣

2
)1/2

> 0 .



G. Bouchitté and B. Schweizer 21

The following proposition is our first result on cloaking and proves the statement
on cloaking of Theorem 1.

Proposition 4.1 (Radiation from inside the cloaking radius). Let aη and Lη with
1 < R < R∗ be as above, x0 ∈ BR∗(0) \ B̄R(0) such that s = |x0| < R∗, and ε > 0
with R < s − ε < s + ε < R∗. Let vη solve (4.1)–(4.3) and Mη

q be as in (4.4) with
q > R2. Let η ց 0 and ε = ε(η) ց 0 satisfy (3.12). Then

lim
η→0

Mη
q = 0.

Proof. Lemma 3.4 and Remark 3.5 provide a solution ṽη of Lηṽη = 0 with ṽη = eiϑ

on ∂Bε(x0). The function of the proposition is then given as vη = ε−1ṽη. By Remark
3.5 we have to analyze, with λd of (3.8) and ak of (3.9),

vη =
1

ε
ṽη =

1

ε

(

wη + V η
f + Uη

f + ληwη + µη
)

=
1

ε
λdV̄1 +

1

ε

∑

k

akUk +
1

ε
V η

f +
1

ε
Uη

f +
1

ε
ληwη +

1

ε
µη

=: F η
1 + F η

2 + F η
3 + F η

4 + F η
5 + F η

6 .

We will show that the functions F η
j , j = 1, 2, ..., 5, satisfy
∥

∥F η
j

∥

∥

L2(∂Bq(0))
→ 0, (4.6)

using that the above functions are given by small coefficients (fl)l ∈ l2(N∗∗), fl = f η
l ,

and λη ∈ C. The constant function F η
6 does not contribute to Mη

q , hence (4.6) finishes
the proof of the proposition.

(a) The function F η
1 = 1

ε
λdV̄1. We only have to recall that V1(z) = ε/(z − z0).

This function and its derivatives are of order ε on ∂Bq(0) and claim (4.6) for j = 1
follows, since λd → 0 by assumption (3.12).

(b) The function F η
2 = 1

ε

∑

k akUk. The explicit formula for ak in (3.9) provides

1

ε
|ak| = |λd|

|P η
k |

Rksk

1

s
≤ |λd|

R2k

sk
.

Together with the estimate of the derivative of Uk,

‖∂nUk‖L2(∂Bq(0)) ≤ Ck

(

R

q

)k

, (4.7)

exploiting q > R2 and λd → 0, we find

‖F η
2 ‖

2
L2(∂Bq(0)) ≤ C

∑

k

|λd|
2R4k

s2k
k2R2k

q2k
≤ C|λd|

2,

and thus (4.6) for j = 2.

(c) The function F η
3 = 1

ε
V η

f = 1
ε

∑

l=2 flV̄l. As in the analysis of V̄1 in (a) it
suffices to note that

‖∂nVl‖L2(∂Bq(0)) ≤ Cεl.
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(d) The function F η
4 = 1

ε
Uη

f . We here analyze the function

1

ε
Uf =

1

ε

∑

k

ckUk with ck =
∑

l≥2

fl
P η

k

R2k
Gl,k

for l2(N)-small coefficients (fl)l. We start by recalling that (4.7) provides us some
smallness of Uk at radius q. It allows to calculate
∥

∥

∥

∥

1

ε
∂nUf

∥

∥

∥

∥

2

L2(∂Bq(0)

=
1

ε2

∑

k

|ck|
2‖∂nUk‖

2
L2(∂Bq(0))

≤
C

ε2

∑

k

(

∑

l≥2

|fl|R
k|Gl,k|

)2

k2

(

R

q

)2k

= C
∑

k

(

∑

l≥2

|fl|
|Gl,k|

ε

)2

k2

(

R2

q

)2k

.

We exploit the direct estimate

1

ε
|Gl,k| ≤

1

s

(

R

s
+

ε

s

)k+l−1

from the binomial formula, which shows the summability in both indices. It implies

∥

∥

∥

∥

1

ε
∂nUf

∥

∥

∥

∥

2

L2(∂Bq(0)

≤ C‖(fl)l‖
2
l2 → 0,

which concludes the calculation for Uf .

(e) The function F η
5 = 1

ε
ληwη. The function wη/ε was analyzed in (a) and (b),

the factor λη is small.
We have shown (4.6). With this, the proof of the proposition is complete.

Proposition 4.2 (Radiation from outside the cloaking radius). Let Lη with 1 < R <
R∗ be as above, x0 ∈ R2 \ B̄R∗(0), and ε0 > 0 with R∗ < |x0| − ε0 < |x0| + ε0 < q.
Then, for every sufficiently small η > 0 there exists a solution vη of (4.1)–(4.3). Let
v∗ be the limiting solution given by (4.5) and η = ηn ց 0 and ε0 ≥ ε = ε(ηn) → ε1

be arbitrary convergent sequences. Then, with Mη
q defined by (4.4), there holds

vη → v∗ uniformly on compact subsets of R
2 \ (B̄R(0) ∪ B̄ε1

(x0)) and

Mη
q → M∗

q for η → 0.

Proof. We fix a radius r with R∗ < r < |x0| − ε. The statements will be derived as
consequences of the convergence N r,η − N r,∗ → 0 as expressed in (2.12). We exploit
that a function with boundary condition on ∂Br(0) given by N r,η can be extended
to an Lη-harmonic function.

Step 1. Existence of vη. We consider the problem on a bounded domain Bρ(0) \
B̄r(0) with a large radius ρ. The solution vη for fixed η > 0 and fixed inclusion radius
ε = ε(η) can be constructed as follows. We consider Q := Bρ(0) \ (B̄ε(x0) ∪ B̄r(0)),
and emphasize that Q depends on ε(η). We search for vη

ρ ∈ Xd such that

∫

Q

∇vη
ρ · ∇ϕ̄ +

∫

∂Br(0)

N r,ηvη
ρ ϕ̄ = 0 ∀ϕ ∈ X
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for the (affine) linear spaces

Xd =

{

f ∈ H1(Q) : f = 0 on ∂Bρ(0), f(x0 + εeiϑ) =
1

ε
eiϑ on ∂Bε(x0)

}

,

X =
{

f ∈ H1(Q) : f = 0 on ∂Bρ(0), f = 0 on ∂Bε(x0)
}

.

The bilinear form satisfies, by Poincaré’s inequality,
∫

Q

∇vη
ρ · ∇v̄η

ρ +

∫

∂Br(0)

N r,ηvη
ρ v̄η

ρ

=

∫

Q

∇vη
ρ · ∇v̄η

ρ +

∫

∂Br(0)

N r,∗vη
ρ v̄η

ρ +

∫

∂Br(0)

(N r,η − N r,∗)vη
ρ v̄η

ρ

≥ c(Q)‖vη
ρ‖

2
H1(Q) − h(η)‖vη

ρ‖
2
H1(Q)

with h(η) ց 0 for η → 0, where c(Q) depends on ρ, but is independent of η despite
the η-dependence of Q. Hence the form is coercive for small η > 0. The Lax-Milgram
Theorem provides a solution vη

ρ for every ρ > r.
We now want to perform the limit ρ → ∞. To this end we have to perform

Poincaré estimates on fixed bounded domains and consider for j ∈ N the restrictions
Qj := (Q∩Bj(0))\Bε1+1/j(x0) and always assume that η is sufficiently small to have
Qj ⊂ Q. We subtract suitable constants from vη

ρ in order to have a vanishing average
on ∂Br(0). With this modification, the operator N r,∗ is strictly positive and allows a
Poincaré estimate with cj > 0,

cj‖v
η
ρ‖

2
H1(Qj)

≤

∫

Q

∇vη
ρ · ∇v̄η

ρ +

∫

∂Br(0)

N r,∗vη
ρ v̄η

ρ .

This implies for the solutions an estimate of this norm, depending on j, but indepen-
dent of ρ > ρ0. By a diagonal (sub-)sequence argument with ρ → ∞ and j → ∞, we
find a solution vη for the problem on the unbounded domain.

Step 2. Comparison with v∗. We define v∗
η,ρ ∈ Xd as the solution of

∫

Q

∇v∗
η,ρ · ∇ϕ̄ +

∫

∂Br(0)

N r,∗v∗
η,ρ ϕ̄ = 0 ∀ϕ ∈ X

and will exploit that the solution is an approximation of the singular limit solution v∗.
Taking the difference of the two variational problems and choosing ϕ = vη

ρ −v∗
η,ρ ∈ X

we find
∫

Q

|∇(vη
ρ − v∗

η,ρ)|
2 +

∫

∂Br(0)

N r,∗(vη
ρ − v∗

η,ρ)(v̄
η
ρ − v̄∗

η,ρ)

= −

∫

∂Br(0)

(N r,η − N r,∗)vη
ρ (v̄η

ρ − v̄∗
η,ρ) ≤ h(η)‖vη

ρ‖H1(Qj)‖v
η
ρ − v∗

η,ρ‖H1(Qj)

with h(η) ց 0 for η → 0. We conclude vη
ρ − v∗

η,ρ → 0 in H1(Qj) with bounds that
depend on j but are independent of ρ. We therefore conclude also vη − v∗ → 0 in
H1

loc(R
2 \ (B̄r(0)∪ B̄ε1

(x0))). Since both functions vη and v∗ are harmonic outside the
ring, locally, the strong L2 convergence implies uniform convergence of the functions
and of the derivatives on ∂Bq(0). This concludes the proof.



24 Cloaking by anomalous localized resonance

5 Invisibility of an inclusion

In this section we transfer our results to a different experimental set-up. We are
interested in the possibility to detect an inclusion with a static measurement. We
assume now that the inclusion is passive: it is given by a variation of the coefficient
a in the ball Bε(x0). Similar to a tomography measurement, we prescibe a potential
uη on the boundary ∂Bq. The solution to the partial differential equation uη is
evaluated on the boundary, more precisely, the normal derivative ∂nuη is evaluated
on ∂Bq . In short, we want to examine how much the inclusion in Bε(x0) changes the
Dirichlet-to-Neumann map of ∂Bq.

5.1 Model for the static measurement

The geometric set-up is as before, with radii R, ε, q > 0 satisfying ε → 0 and q > R2

and with a point x0 ∈ R2 with R < s = |x0| < q. In contrast to the last section
the inclusion is not radiating; the non-trivial solution uη is a result of nonvanishing
boundary data f ∈ L2(∂Bq(0)). We decide to study

∇ · (aη∇uη) = 0 in Bq(0) \ Bε(x0),

uη = α on ∂Bε(x0),

uη = f on ∂Bq(0),

where α ∈ R is selected such that
∫

∂Bε(x0)

∂nuη = 0.

Physical background. The above equations model an inclusion with high con-
ductivity. Indeed, when we want to investigate a large but finite conductivity κ > 1,
we study the equations

∇ · (aη
κ∇uη

κ) = 0 in Bq(0),

uη
κ = f on ∂Bq(0),

where we set aη
κ = κ in Bε(x0) and aη

κ = aη on Bq(0) \ Bε(x0). It is straightforward
to verify that, in the limit κ → ∞, the solutions uη

κ converge weakly to solutions
uη in H1(Bq(0) \ Bε(x0)). This follows by the boundedness of uη

κ in this space, the
uniqueness of solutions uη, and the uniform estimate for

∫

Bε(x0)
κ|∇uη

κ|
2. The flux

condition that determines α is satisfied for all harmonic functions on Bε(x0) and
hence for uη

κ. This carries over to the limit function. We emphasize that, in these
arguments, the small positive numbers ε and η are kept fixed.

We investigate the limit problem of κ = ∞ in order to have less parameters.

5.2 Cloaking effect

Following in spirit the work of Bruno and Lintner, we study the following number as a
measure for a cloaking effect. We denote by u∗ the harmonic function with boundary
values f . The function u∗ is the comparison solution to a ≡ 1, i.e. the solution when
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no ring and no inclusion is present. As a measure of how much the true solution
differs (in our measurement) from the comparision solution, we introduce

N η
q (f) :=

(

∫

∂Bq(0)

|∂nu
η − ∂nu

∗|2

)1/2

.

We can interpret a small value of N η
q (f) as cloaking, since in this case the measure-

ment with data f produces a result that is very close to a measurement without ring
and without inclusion.

Theorem 2 (Invisibility of a small conductor). Let the geometry be as in Theorem 1
with numbers q > |x0| > R, q > R2, and let the sequences ε = εn and η = ηn satisfy
ηn/ε

2
n → 0. Then, for f ∈ H1/2(∂Bq(0)), the following holds.

1. In the case |x0| > R∗ we find

N η
q (f)

ε2
→ c(f) for η → 0,

with c(f) > 0 for all functions f with ∇u∗(x0) 6= 0.

2. In the case |x0| < R∗ we find, if εn has the scaling properties (3.12),

N η
q (f)

ε2
→ 0 for η → 0.

Remark concerning the assumption ηn/ε2
n → 0. We recall our example of se-

quences ηn and εn satisfying (3.12). We considered ηn = R−n and εn = b−n with
b2 < R3/s2. Since R3/s2 < R we then demand on b that b2 < R and hence ηn/ε

2
n → 0

is satisfied.

Proof. Step 1: A second comparison function. We already introduced the reference
function u∗ without ring and without inclusion, solving ∆u∗ = 0 on Bq(0) with
u∗ = f on ∂Bq(0). Additionally, we use the function uη

◦ with the ring, but without
the inclusion, solving

Lηuη
◦ = 0 in Bq(0),

uη
◦ = f on ∂Bq(0).

In order to conclude the theorem from results on uη − uη
◦, we claim on uη

◦ that

1

ε4

∫

∂Bq(0)

|∂nu
η
◦ − ∂nu∗|2 → 0. (5.1)

Relation (5.1) is a consequence of our analysis of Dirichlet-to-Neumann maps and of
the assumption ηn/ε

2
n → 0. Indeed, we can calculate with the Neumann operators

N q,η and N q,∗, and expanding f as f =
∑

k fke
ikθ,

1

ε4

∫

∂Bq(0)

|∂nu
η
◦ − ∂nu

∗|2 =
1

ε4

∫

∂Bq(0)

|N q,η(f) − N q,∗(f)|2

= C
1

ε4

∑

k

|N q,η
k − N q,∗

k |2 |fk|
2 = C

1

ε4

∑

k

|Jη
k |

2 |fk|
2,
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where Jη
k of (2.14) is evaluated with radius r = q > R∗. Using (2.4) and (2.6) for P η

k

shows

1

ε2
|Jη

k | ≤ C
1

ε2
|k| |P η

k | q
−2|k| ≤ C

1

ε2
|k|R4|k| ηq−2|k| ≤ C

η

ε2

(

|k|(R4/q2)|k|
)

≤ C
η

ε2
.

This quotient vanishes in the limit n → ∞, and we conclude (5.1).

Step 2: A conductor outside the cloaking radius. In this step we assume |x0| > R∗.
Our aim is to show that the function wη := uη − uη

◦ gives a non-trivial contribution
to N η

q /ε2, even in the limit n → ∞.
We exploit that the function wη is Lη-harmonic and satisfies homogeneous bound-

ary conditions on ∂Bq(0). It solves

∇ · (aη∇wη) = 0 in Bq(0) \ Bε(x0),

wη = g on ∂Bε(x0),

wη = 0 on ∂Bq(0),

with

g = (uη − uη
◦)|∂Bε(x0) = α − uη

◦

= (α − uη
◦(x0)) −∇uη

◦(x0) · (x − x0) −
1

2
D2uη

◦(x0)(x − x0) · (x − x0) − . . .

The functions uη
◦ converge uniformly on compact sets outside B̄R(0) to u∗ as a con-

sequence of (2.6); we refer to the above calculation and note that now the factor
1/ε2 is not included. As a consequence, in the generic case that ∇u∗(x0) 6= 0, also
∇uη

◦(x0) → ∇u∗(x0) 6= 0. We investigate this case in the following.
The potential wη coincides approximately with a dipole field. Regarding the

scaling we note that wη/ε2 can be compared with (a complex multiple of) the solution
vη of (4.2). Similar to the proof of Proposition 4.2 one can show that N η

q /ε2 has a
non-trivial limit. This is done by comparing the field wη/ε2 with standard non-trivial
dipole field as v∗ of (4.5). We omit the details of this calculation which is analogous
to the proof of Proposition 4.2, but without the limit q → ∞.

Step 3: A conductor inside the cloaking radius. In this case we decompose wη as
wη = wη

1 + wη
2 + wη

3 + wη
4 . We define the functions wη

j as the Lη-harmonic functions
with the following boundary conditions: on ∂Bε(x0), the Dirichlet conditions wη

1 =
α−uη

◦(x0), wη
2 = −∇uη

◦(x0) · (x−x0), wη
3 = g−wη

1 −wη
2 , and wη

4 = 0. We impose that
the function wη

j is bounded on R2 \ Bε(x0) for j = 1, 2, 3. The function wη
4 corrects

the exterior boundary condition, wη
4 = −wη

1 − wη
2 − wη

3 on ∂Bq(0). With this choice,
the function wη

1 + wη
2 + wη

3 + wη
4 satisfies the same equations as wη. By uniqueness,

the decomposition of wη = wη
1 + wη

2 + wη
3 + wη

4 is satisfied. To complete the proof, it
remains to study the single solutions wη

j .
(a) The function wη

1 is constant and does not contribute to the Neumann data on
∂Bq(0).

(b) The function 1
ε2 w

η
2 was studied in Proposition 4.1 with the result that 1

ε2 w
η
2

tends to 0 uniformly on compact subsets. By compactness, the η-dependence of the
factor ∇uη

◦(x0) poses no problem in the application of Proposition 4.1.
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(c) The function 1
ε2 w

η
3 has bounded Dirichlet data on Bε(x0) with vanishing dipole

moment. Such Lη-harmonic functions were studied in Lemma 3.4. The solution is
given in (3.13), (3.14) with l2-bounded coefficients fl. The contributions of Vf and
Uf are small on the large radius q > R2. This is shown with the same calculation as
in parts (a-c) in the proof of Proposition 4.1.

(d) By points (a)-(c), the function 1
ε2 w

η
4 has small Dirichlet values on ∂Bq(0).

Since it is Lη-harmonic and q > R∗ is outside the cloaking radius, we conclude that
1
ε2 w

η
4 → 0 as the other three functions.
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[3] G. Bouchitté, C. Bourel, and D. Felbacq. Homogenization of the 3d maxwell sys-
tem near resonances and artificial magnetism. Comptes Rendus Mathematique,
347(9-10):571 – 576, 2009.
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