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Bodipy-FL 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-propionic acid 
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CAL medullary carcinoma of the thyroid (calcitonin-related) 
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CF carboxyfluorescein 

chol cholesterol 
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DOPE 1,2-dioleyl-sn-glycero-3-phosphoethanolamine 

DOPG 1,2-dioleyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

DPPC 1,2-dipalmitoyl-sn-gylcero-3-phosphatidylcholine 

DSC differential scanning calorimetry 

FHSA Finnish hereditary systemic amyloidosis 

FT-IR Fourier-transformed Infra-Red  

GUVs giant unilamellar vesicles 

HEPES 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid 

HHP high hydrostatic pressure 

HRA haemodialysis-related amyloidosis 

IAPP islet amyloid polypeptide 

ILA injection-localized amyloidosis 

INS-1E 
insulinoma pancreatic islet  β-cell line of rat origin, clone derived from the INS-1 rat 

islet cell line 

ITO Indium-Tin oxide 
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LUVs large unilamellar vesicles  

MLVs multilamellar vesicles 

MVLs multivesicular liposomes 

NNSA hereditary non-neuropathic systemic amyloidosis 

PD Parkinson’s disease 

PE phosphatidyl ethanol amine 

PEG poly(ethylene glycol) 

PC phosphatidyl choline 

PrP prion protein 

PS  phosphatidyl serine 

PSA primary systemic amyloidosis 

Rhodamine-DHPE 
N-(Lissamine-Rhodamine B sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine, triethylammonium salt 

RIN-m5F 
insulinoma pancreatic islet  β-cell line, clone derived from the RIN-m rat islet cell 

line 

rpm revolutions per minute 

SAA1 secondary systemic amyloidosis 

SANS small angle neutron scattering 

SAXS small angle X-ray scattering 

SUVs small unilamellar vesicles  

t time 

T2DM type II diabetes mellitus 

ThT thioflavin T 

Tm (gel- to liquid-) phase transition temperature 

TTR transthyretin 

ULVs unilamellar vesicles 

UV-VIS ultraviolet-visible 

wt % weight percentage 
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1. Introduction 

1.1. Amyloidogenic proteins and peptides 

1.1.1. The problem of protein folding vs. protein aggregation and associated conformational 

diseases  

Currently, several proteins and peptides are known to be associated with so-called 

“conformational” or “amyloidogenic” diseases, e.g. type 2 diabetes mellitus (T2DM); Alzheimer’s 

disease, Parkinson’s disease, and Creutzfeld-Jakobs disease. In such degenerative human 

conditions, proteins, which share no common primary structure similarities, form amyloid fibrils-

fibrillar polypeptide aggregates (1), which are stable against the action of proteases. Unlike 

ordinary protein fibrils, amyloid fibrils possess a conserved structural motif encompassing β-sheets 

within a β-cross arrangement. The size of the fibrils is generally in the range of several tens of 

nanometers (2, 3). Around 30 such nonhomologous polypeptide sequences are currently known, 

but the basic ability to adopt such a structure is a more general feature, also for other polypeptides 

(4). It is considered that amyloid fibrils arise primarly from an intrinsic property of the chiral 

polypeptide main chain that is often suppressed in nature by unfavourable physicochemical 

conditions, side-chain arrangements, and evolutionary adaptations (5, 6). Generally, amyloid is 

regarded as a nonnative quaternary structure that forms in response to a defect in the normal 

folding or clearance pathways (3). 

It has been speculated that, based on environmental conditions, any protein or peptide could 

be influenced to form fibrils. Nevertheless, even if this holds true for non-native conditions in 

vitro, conditions under which proteins can form fibrils (e.g. insulin, pH 2, 60º C (7-9) , it is to be 

kept in mind that cellular systems keep a balance between protein synthesis and degradation with 

the help of molecular chaperones and the proteasome, and the quality-control mechanisms in the 

cell prevent deposition of partially folded, misfolded, or degraded protein (10). When the balance 

between protein synthesis and protein degradation is disturbed, pathological conditions can appear 

in the form of amyloid deposits, which can be found in different organs, such as the brain, liver, 

spleen and pancreas (11, 12). 

Some of the essential amyloids and associated diseases are listed in Table 1. 
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Nr. Amyloid Protein/polypeptide Associated diseases 

1 APP Aβ peptides, τ protein Alzheimer’s disease 

2 PrPSc prion protein spongiform encephalopathies 

3 PD α-synuclein Parkinson’s disease 

4 IAPP islet amyloid polypeptide (amylin) type 2 diabetes mellitus (T2DM) 

5 HRA β2 –microglobulin haemodialysis-related amyloidosis 

6 PSA Ig light chains primary systemic amyloidosis 

7 SAA1 serum amyloid A secondary systemic amyloidosis 

8 ATTR transthyretin senile systemic amyloidosis 

9 HG huntingtin Huntington’s disease 

10 CAA cystatin C hereditary cerebral amyloid angiopathy 

11 FHSA gelsolin (71 residues) Finnish hereditary systemic amyloidosis 

12 ILA insulin injection-localized amyloidosis  

13 CAL calcitonin medullary carcinoma of the thyroid 

14 ANF atrial natriuretic factor  atrial amyloidosis 

15 NNSA lysozyme hereditary  non-neuropathic systemic 

amyloidosis 

16 HRA fibrinogen α-A chain hereditary renal amyloidosis 

 

Table 1 The major amyloidogenic proteins and their associated diseases. The peptide of interest for this project, IAPP, 
and T2DM, the associated disease, are marked in bolded characters. 

 

In the up-dated protein folding/misfolding energy landscape, a multitude of possible 

folding and partially folded intermediate states are suggeseted, as spikes; the native state is shown 

to be stabilized mainly via intramolecular contacts, corresponding to one energy minimum, thus 

representing a kinetically stable state, whereas the amyloidogenic form is stabilized through 

intermolecular contacts, possibly corresponding to several global energy minima, representing 

thermodynamically stable states in the aggregation funnel (13).  
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The nature of the early and intermediate aggregation species (early oligomers), their 

polyporphism and corresponding cytotoxicity, as well as the triggering factors of fibril formation 

in vivo, the effects of membranes, as well as strategies against protein aggregation and fibril 

formation, are currently challenging debate topics in amyloid-related research. 

 

Figure 1 A schematic energy landscape for protein folding and aggregation. The surface shows the multitude of 
conformations funneling towards the native state via intramolecular contacts, or towards the formation of amyloid 
fibrils via intermolecular contacts (13).  
 

Two basic models are generally used to interpret the sigmoidal profile of fibrillogenesis 

kinetics, i.e. the nucleation-dependent polymerization (NDP) (14) and diffusion-limited 

aggregation (DLA) (15). 

In the NDP model, two main steps are involved: the initial slow nucleation or the lag phase and 

the subsequent fast elongation or growth. Nucleation involves monomer association into a critical 

oligomeric nucleus, which represents the highest energy state and thus the thermodynamically 

unfavourable species along the polymerization pathway. Once a critical nucleus size is reached, further 

elongation via attachment of additional monomers becomes energetically more favourable, resulting in 
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exponential fibril growth. The nucleus formation or the lag phase is the rate-limiting step, followed by 

an exponential decrease in monomer concentration, and substantial increase of the reaction rate upon the 

addition of preformed fibrils (seeding effect) (16, 17). 

  

Figure 2 Experimentally observable formation of an aggregate for a nucleation dependent process, above its critical 

concentration (17). 

The DLA model was proposed originally for the Aβ peptide (15), hypothesizing that 

peptide monomers spontaneously convert into octamers, which then stack into fibrils, further fibril 

elongation occurring thereafter through diffusion-limited end-to-end association of the shorter 

fibrils. The model allows the time-dependence of fibril length, but is not so accurate in postulating 

the complete conversion of monomers to oligomers. Other mechanisms are known as template 

assembly (TA), monomer-directed conversion (MDC) and nucleated conformational conversion 

(NCC) (18).  

1.1.2. The importance of lipid membranes for amyloid fibril formation 

Amyloid isolated from patients has been shown to have a high lipid content (19, 20). The 

multi-step process of protein fibrillization can be modulated by lipid-protein interactions, and 

experimental data indicate a membrane influence on both the amyloid fibril assembly and on the 

toxicity of pre-fibrillar aggregates. The process can be termed “membrane-mediated protein 

fibrillization” (21). Amyloid proteins and peptides have been also shown to possess the ability to 
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interact with lipids in vitro (22, 23). The structural transformation of the polypeptide chain into a 

partially folding conformation upon interaction with lipid membranes may lead to an increase in 

the local concentration of a protein upon membrane binding, followed by aggregation-favouring 

orientation of the bound protein and variation in the depth of bilayer penetration, thus affecting the 

nucleation propensity of the membrane associated protein.  

Disease Protein or peptide determinant Membrane system 

Parkinson’s disease, Lewy body 

variant of Alzeihmer’s disease, 

multiple system atrophy 

α-synuclein 

 

PA/PG, PG/PC, PS/PC, PG/PE 

vesicles, planar PC/PS bilayers, PC, 

PA, PS, PI vesicles, brain membrane 

fractions, synaptosomal membranes 

Alzheimer’s disease Aβ peptide Total membrane lipid bilayers, 

PC/PG vesicles, PC/ganglioside 

vesicles, PA, PS, PI, PIP, PIP2, CL, 

PC, PE, SM, Chol, DG, 

gangliosides, sonicated lipid 

suspensions 

T2DM islet amyloid polypeptide PG/PC vesicles, rat insulinoma 

tumour cells 

Alzheimer’s disease tau PS vesicles 

spongiform encephalopathies prion protein PG, PC, PG/Chol/SM vesicles 

familial polyneuropathy, 

systemic amyloidosis 

transthyretin PC/PS, PG/PS vesicles 

systemic amyloidosis lysozyme PC/PS, PG/PS vesicles 

thyroid carcinoma calcitonin PC/Chol, PC/PS, PC/ganglioside 

vesicles 

 

Table 2 In vitro studies regarding interactions of membrane with amyloidogenic proteins and peptides which might be 

relevant for fibril formation in vivo (21). 

One hypothesis suggests that the toxicity of lipid-induced pre-fibrillar aggregates might 

have presented a very strong negative selection pressure in the evolution of amino acid sequences 

(24). Amyloid formation has been reported to induce membrane permeabilization resulting from 
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alterations in the bilayer structure and/or uptake of lipids into the forming fiber (25). Another 

hypothesis regarding the bioactivity of amyloid structures, called the channel hypothesis, relates 

this bioactivity with the perforation of biological lipid membranes through pore structures 

containing the amyloid species (26). However, whether the interaction between amyloidogenic 

proteins/peptides and membranes occurs mainly through a barrel-stave or a carpet, detergent-like 

mechanism, is still a largely debated topic, far from being entirely understood, as no unitary view 

exists so far regarding a universally valid mechanism. An overview of in vitro studies regarding 

the involvement of membranes in fibril formation by amyloidogenic proteins and peptides is 

illustrated in Table 2. 

Interestingly, the comparison of different types of human amyloidoses showed a conserved 

lipid pattern consisting mainly of hydrophobic lipids, such as cholesterol, and small amounts of 

more polar lipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (19). Raft 

lipids have been found in several types of amyloidoses (20). Moreover, amyloid deposits are 

enriched in lyso-PC, free fatty acids, and ceramides (CEs), which normally do not occur in 

biological membranes, but rather accumulate specifically in tissue degradation processes and 

necrosis (19). Although such degrading processes manifest only small effects on the main 

membrane lipids, such as sphingomyelin (SM) and cholesterol, it is reasonable to assume that, due 

to the CE and lyso-PC content, that they might represent an additional factor involved in the 

clinical deposition of amyloid.  

It has become apparent in recent years that amyloid fibril formation is strongly promoted at 

hydrophobic interfaces (27), affecting both the rate and the extent of unfolding and aggregation. 

Proteins adsorbed onto different lipid surfaces have been reported to show faster unfolding kinetics 

than those in the bulk and the β-sheet content and growth kinetics differed at the interface 

compared to the bulk (28). It is reasonable to assume that lipid bilayers provide a generic 

environment where protein molecules adopt conformations and orientations promoting their 

assembly into protofibrillar and fibrillar structures. Furthermore, cellular membranes are thought to 

be the direct target mediating amyloid-induced cell death (25).  
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1.1.3. Islet Amyloid Polypeptide (IAPP) and type II diabetes (T2DM) 

Islet amyloid polypeptide (IAPP) or amylin is the main component of human islet amyloid 

deposits found post-mortem in 95% patients suffering of T2DM; it is a 37 amino-acid residue 

pancreatic hormone synthesized in the form of proIAPP and processed in secretary granules along 

with insulin, stimulating glycogen breakdown in skeletal muscle and liver, acting as insulin 

antagonist under normal conditions. Additionally, IAPP is involved in the regulation of satiety 

with respect to food intake, and in maintenance processes of bone, renal proximal tubular and islet  

β-cells (29-34). Under pathological conditions, it represents the cytotoxic constituent of amyloid 

deposits found in the islets of Langerhans in 95% cases of patients with non-insulin-dependent 

T2DM (35, 36). Extracellular accumulation of this peptide results in damage to insulin-producting 

β-cell membranes and cell death (37). The amino-acid sequence of IAPP is highly conserved 

between species, with a few variations, only, mostly occurring in the 20-29 region, which displays 

marked species divergence (38). 

 

Figure 3  β-serpentine model fold for human IAPP (39). The model has three  β-strands. Charged residues are circled. 
The first 11 residues, which contain a disulfide-bonded loop that would be incompatible with extending the serpentine 
on this side, are shown by a thin line. Accordingly, the first 11 residues are not considered to be part of the serpentine 
core. 
 

The first stages of IAPP amyloid formation in vivo remain so far largely unclear. Autopsy 

studies of human pancreas have indicated that the deposition of islet amyloid is always an 

extracellular event, while studies on human islet transplanted into nude mice (40) and in islet of 

human IAPP transgenic mice (41) have indicated that the early stages of islet amyloid formation 

may take place intracellularly. One hypothesis is that the intracellular aggregates of proIAPP act as 
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a nucleus to which mature IAPP can associate, leading to increased extracellular amyloid 

deposition (42). 

1.1.3.1. The fibrillation of IAPP vs. IAPP fragments  

It has been suggested that the initial stages of IAPP fibril formation are driven by the 

increase in the level of solvent exposure of hydrophobic patches (43) and that the IAPP 

aggregation process has two distinct phases, a lateral growth of oligomers and a longitudinal 

growth into mature fibrils (43-46).  

The structural changes behind the fibrillation process are still poorly understood, however. 

Since the three-dimensional structure of IAPP is not yet exactly known, experimental studies on 

fragments of this peptide can provide further insights into the mechanism of aggregation. Several 

studies indicate that amino acid residues 20-29 make up the main amyloidogenic region (47), with 

a particular emphasis on the penta- and hexapeptide sequences IAPP 23-27 (FGAIL) and IAPP 22-

27 (NFGAIL), respectively, as minimal peptide sequences required for aggregation (48). IAPP has 

not only one but several amyloidogenic cores that are interacting to form an organized aggregate 

structure and hydrophobic interactions may drive the initial stage of the aggregation process. 

According to the literature, aggregation of the C-terminal domain of IAPP (amino acid residues 

20-29 and 30-37) (49) is thought to be most likely driven by hydrophobic interactions (50).  

Experimental studies, showing aggregation into ordered fibrillar structures of fragments 8-

20 and 8-37 (47, 50), have been reported as well. Within these larger sequences, fragments IAPP 

15-19 (FLHVS) (see also Appendix, figure A) and IAPP 14-18 (NFVHL) and the possible 

importance of aromatic residues (and thus π-π interactions) for amyloid fibril formation were also 

discussed (48, 51), while the N-terminal region of residues 1-19 is considered essential for the 

interaction with membranes (52-54).  

Region 1-13, however, has been reported not to form fibrils, while IAPP 8-20 was found 

capabable of self-assembly in vitro (49). To complement these studies, we decided to investigate 

the aggregation of C-terminally amidated synthetic human IAPP 1-19 N-amidated and human 

IAPP 1-29, both containing a disulfide bridge between Cys 2 and Cys 7, in comparison with the 

full-length peptide. The C-terminal amidation is essential for a more realistic comparison with the 
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physiologically active peptide hormone, in which this modification seems to play an essential role 

in its hormonal function in vivo (34).  

1.1.3.2. The effect of membranes on IAPP fibril formation 

There is clear evidence that IAPP-lipid interactions might play an important role in the 

pathogenesis of T2DM, by accelerating the formation of amyloid fibrils and toxic oligomers and 

triggering the permeabilization of lipid membranes (37, 55-57). It was suggested that these two are 

separate processes, i.e., membrane disruption can occur independent of amyloid formation (58). 

There are recent indications that the fibrillogenic property of membrane-bound IAPP is largely 

determined by the chemical nature of membrane lipids. Polar and electrostatic interactions can be 

stabilized through head groups of the phospholipid, whereas hydrophobic interactions can occur in 

the lipid chain region. For instance, it has been demonstrated that IAPP aggregation is enhanced in 

the presence of membranes containing anionic lipids such as phosphatidylglycerol (PG) or 

phosphatidylserine (PS), and a mechanism of interaction has been proposed (25, 26, 35, 37, 52, 53, 

56, 59, 60).  

In the presence of vesicles composed of zwitterionic (PC) and anionic (PG) phospholipids 

mixtures (see also Appendix, Figure B), IAPP aggregation was demonstrated to exhibit a 

sigmoidal profile, with an initial lag phase of relatively slow fiber nucleation and a rapid 

elongation phase, during which the remainder of the soluble peptide is converted into fibers (37). It 

has been suggested that IAPP inserts into lipid mono- and bilayers via the positively charged N-

terminus as a monomer in vitro, possibly representing an essential first step required to induce 

IAPP-induced membrane damage in type II diabetes in vivo (53). At a surface charge 

corresponding to 70% mol PG, the rate of fibrillogenesis is maximal, and the rate of fiber 

formation is limited by the self-assembly of peptide at the lipid-water interface. CD and 

fluorescence spectroscopy studies have revealed also that negatively charged PS vesicles induce 

significant acceleration of formation of IAPP aggregates (60). 

An opposite effect on the kinetics and extent of IAPP aggregation has been only recently 

shown for membranes including cholesterol (61). However, information on the interaction of IAPP 

with heterogeneous membranes such as lipid raft containing membranes is missing until now, even 

though there is evidence that raft lipids may be common components of human extracellular 
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amyloid fibrils (19). Moreover, the fibril formation and membrane interaction of amyloid beta 

(Aβ), another amyloidogenic peptide, which is known to be associated with Alzheimer′s disease, 

has already been shown to be modulated by cholesterol (62-65). Additionally, it was suggested that 

lipid raft domains, which are enriched in cholesterol and sphingolipids, initiate and promote the 

pathophysiology of Alzheimer′s disease by serving as a platform for generation, aggregation, or 

degradation of Aβ (66, 67). Since IAPP and Aβ display an amino-acid similarity in their 

presumably ordered region and a secondary structure similarity in their fibrillar states (68), it is 

tempting to speculate that lipid rafts could also be involved in the pathogenesis of IAPP. 

1.1.3.3. IAPP cytotoxicity - mechanism and inhibition 

Although it is not clear how IAPP forms amyloid deposits, the mechanism underlying its 

toxicity is assumed to include as first step the interaction of IAPP with the membranes of the 

producing islet pancreatic β-cells.  

Studies have suggested that, at cytotoxic concentrations, amylin forms voltage-dependent, 

relatively non-selective, ion-permeable channels in planar phospholipid bilayer membranes, and 

that the formation of the channel is highly dependent on lipid membrane composition, ionic 

strength and membrane potential (26). One view is that protofibrillar IAPP permeabilizes synthetic 

vesicles by a pore-like mechanism (26). The formation of IAPP amyloid pore is temporally 

correlated to the formation of early IAPP oligomers and its dispappearance to the appearance of 

amyloid fibrils. The pore theory would correlate to the pathogenicity of the amyloid pores that 

were hypothesized to play a key role in Alzheimer’s disease and Parkinson’s disease (69). 

Nonetheless, studies on the nature of IAPP cytotoxic species and strategies of its inhibition are not 

conclusive, and no unitary view exists so far. However, it is generally believed that the prefibrillar 

oligomeric (protofibrillar) IAPP is cytotoxic, thus the “intermediate-sized toxic amyloid particles” 

(56), and not the mature fibrils (70). Therefore, the understanding of the nature of the cytotoxic 

species involved in amyloid formation in T2DM and the mechanism of such toxic effects are 

obviously of interest, and require further investigations. 

Additionally, preventing IAPP amyloid fibril formation is a rational approach in the 

direction of drug discovery for T2DM. It has been difficult to rationally design drugs due to the 

lack of structural information about the prefibrillar and fibrillar states of IAPP and of 
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amyloidogenic peptides in general. Despite the limited knowledge about the structure of the 

amyloid fibrils screening of inhibitors, in particular, small-molecule inhibitors, might prove 

promising. Many small molecules are capable of crossing the blood–brain barrier, being stable in 

biological fluids and avoiding (retarding) the immunological response, respectively. Amyloid 

fibrils share overall basic features at a molecular level, like cross β-sheet-rich hydrogen-bonded 

fibrils. Hence, corresponding studies on other amyloids, e.g. Aβ and τ, the Alzheimer peptides, 

might help us explore strategies for inhibition of IAPP amyloid formation. Based on this 

assumption it has been recently shown that rhodanine-based small-molecule inhibitors, which are 

active against τ-fibril formation (71) are also effective against IAPP amyloid fibril formation (72). 

Heparin-induced τ-filament assembly can also be inhibited by different classes of compounds like 

phenothiazines, porphyrins and polyphenols, and, interestingly, these compounds also inhibited Aβ 

(1–40) fibril formation (73). In another approach, based on peptide inhibitors, small fragments of 

the peptide have been methylated to prevent IAPP fibril formation, but crossing of the lipid 

membrane by these peptides remains a challenge. A group of compounds, called polyphenols, with 

more than one aromatic phenolic rings has emerged as inhibitors of Aβ, α-synuclein, and prion 

amyloids (74). In a recent study, a polyphenol, (-)-epigallochatechin gallate (EGCG), has been 

shown to divert aggregation-prone proteins like A β and α-synuclein into an off-pathway, and thus 

to prevent fibril formation (75, 76). Another phenolic compound from grapes, resveratrol, has been 

shown to be effective against Aβ (25–35) aggregation (77), leading to a reduction in secretion and 

cellular levels of Aβ (78). In fact, IAPP shares amino acid sequence similarity with Aβ in the 

presumably ordered region and shows a similar secondary structure in the fibrillar state (68).  

 
Figure 4 The structure of the red wine compound resveratrol (trans-3,5,4’-trihydroxystilbene). 

Thus, we were interested in investigating the potential inhibitory effect of resveratrol 

(trans-3, 5, 4’-trihydroxystilbene, Figure 4), the afore-mentioned polyphenol found in significant 

amounts (130–220 µM) in red wine, on IAPP fibril formation. 
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1.2. Biological and model lipid membranes 

1.2.1 Lipids in biological membranes-general considerations 

Biological membranes function as the origin of most vital functions within living cells (79). 

Lipids are a fundamental part of all cellular membranes; most membranes containing around 40% 

lipids, the internal mithocondrial membrane around 20% lipids, and the myelinic membranes even 

up to 70% lipids. Genomic results indicate that more than 30% of the genome codes for proteins 

embedded in membranes (80). However, in the post-genomic area, biological membranes still 

represent molecular assemblies of extreme complexity, whose structure and function cannot be 

determined from the genome alone. Although they have been so far studied within disciplines such 

as physiology, pharmacology, molecular biology, and nutritional sciences, the progress in the 

fundamental understanding of biological membranes has not been so far as impressive as 

compared to the one achieved in protein and DNA-related studies (80). 

The simple “fluid mosaic” model of cell membranes (81) has been recently re-evaluated by 

the postulation of the existence of the so-called “lipid rafts”, of rather small dimensions, in the low 

nanometer range, defined as membrane microdomains, encountered in cell membranes which are 

rich in cholesterol and glycosphingolipids (82). Such raft domains could be essential for many 

different types of signalling processes, e.g. in endocytic events (83), intracellular trafficking (84), 

Ras-protein signalling (85) etc. The observation that the raft composition depends heavily on the 

method used to obtain it suggests that rafts are highly dynamic moving targets (86). The role of 

lipid compositional complexity has been acknowledged by the raft hypothesis; however, the 

physical basis behind membrane lateral organisation in biological systems, including the potential 

correlations with various membrane functions, still remains obscure (87). In this context, lipid-

protein interactions are of considerable interest as a molecular basis for the structure of biological 

membranes. 

Due to the different lipid compositions of the two opposing leaflets of the bilayer, the 

plasma membrane is asymmetrical. This may play a key role in keeping certain membrane proteins 

in the appropriate conformation. All membrane proteins are associated with the lipid bilayer in a 

highly asymmetrical fashion, a feature crucial to their function (88). Lipid-protein interactions 



 22

appear to be essential for a wide variety of cellular processes, such as signal transduction, 

intracellular transport, enzyme catalysis, energy conversion in the cell, antimicrobial defence, and 

control of membrane fusion (21). Lipid bilayers can affect protein structure and dynamics via both 

specific and non-specific interactions. The membrane can exert its control through various 

parameters, such as its phase state, bilayer curvature and elasticity, surface charge, degree of 

hydration, the chemical nature of the lipids, the extent of acyl chain unsaturation, conformation 

and dynamics of lipid head-groups and acyl chains, and protein-lipid selectivity based on the 

hydrophobic matching at the protein-lipid interface (89-91). 

Figure 5 The 

heterogeneous structure of biological membranes, consisting of variable disordered and ordered lipid domains (“rafts”) 

and embedded peptides and proteins. 

1.2.2. Model lipid membranes 

Artificial membranes can be used as model biomembranes. Model lipid membranes can be 

either planar (mono- and bilayers) or spherical (liposomes).  

 Liposomes can be most easily defined as microscopic spheres consisting of one or more 

lipid bilayers (usually phospholipids) arranged concentrically around a central aqueous core. They 

were first described over 35 years ago (92) and their potential as models for biological membranes 

and systems for drug delivery has soon been recognized (93). 

As model closed membrane systems they have proven useful in studying functional roles of 

lipids, providing the tool to study lipid mobility, lipid phase behaviour and membrane 
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permeability. Being prepared from natural components, they are bio-absorbable, non-toxic, and 

non-immunogenic, which made them suitable as drug carriers. Based on the preparation methods, 

liposomes of various degrees of lamellarity and size can be produced, as follows: MLVs 

(multilamellar vesicles, 10 nm- 5 µm), ULVs (unilamellar vesicles), SUVs (small unilamellar 

vesicles, 25-90 nm), LUVs (large unilamellar vesicles >100 nm), GUVs (giant unilamellar 

vesicles, 5-100 µm) (92).  

Liposome solutions can be used to explore physical properties of membranes (lateral 

structure and dynamics) by a broad range of experimental procedures, e.g. SAXS, SANS, DSC, 

NMR, FT-IR spectroscopy, fluorescence spectroscopy, fluorescence microscopy etc. During the 

last decade, several fluorescence microscopy techniques have been used to study the lateral 

structure of membranes using GUVs (see also chapter 2.3.2) as model system (87). 

1.2.3. Classes of lipid molecules 

There are three main classes of lipid molecules in the plasma membrane: phospholipids, 

sphingolipids and sterols, which will be briefly and thus non-exhaustively discussed here. 

 Phospholipids mainly consist of phosphatidyl cholines (PCs), phophatidylethanolamines 

(PEs) and phosphatidylserines (PSs). PC, also known as lecithin, constitutes the most encountered 

lipid class in biological membranes. Such molecules are amphipathic, containing a glycerol bridge 

which links a pair of hydrophobic acyl chains with the hydrophilic polar head-group (see Figure 4 

for details). Unfavourable interactions between the bulk aqueous phase and the long hydrocarbon 

fatty acid chains are completely eliminated when the sheets fold on themselves to form closed 

sealed vesicles. PC presents a pronounced tendency to form bilayers sheets rather than micellar 

structures, unlike other amphipathic molecules (detergents, lysolecithin). This is due to the overall 

tubular shape provided by the double acid fatty chain, thus making the molecules more suitable for 

aggregation in planar sheets compared with detergents with a polar head and single chain (92). PCs 

can be derived from both natural and synthetic sources. Natural sources are egg yolk, soya bean, 

bovine heart and spinal cord. They represent the major phospholipid component of many cell 

membranes, they are chemically inert and posses an overall neutral charge; hence, they are used as 

principal phospholipid in liposomes for a wide range of applications. Lecithin from natural sources 
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is in fact a mixture of PCs, each with chains of different length and varying degrees of un-

saturation (see Figure 6), which significantly affect the fluidity of the membrane. The main gel-to-

fluid transition temperature (Tm) increases with the degree of saturation and the number of carbon 

atoms (chain length).  

Sphingolipids (Figure 7) are based on ceramide and have either a phosphocholine head 

group (sphingomyelin) or one of a range of carbohydrate structures (glycosphingolipids). They 

display a highly asymmetrical distribution, being present in all animal cell plasma membranes in 

the outer membrane leaflet; their sugar groups being exposed on the outer surface of the cell. 

Sphingolipids contain long, largely saturated acyl chains, which leads to a tight packing and a 

much higher melting temperature than normally encountered for phospholipids.  

 
 

 
Figure 6 Structures of DPPC (top) and DOPC (bottom). 

 

 
Figure 7 Structure of the predominant species present in brain SM. 

 

Cholesterol (Figure 8), the main form of sterols found in vertebrates, can considerably 

influence membrane fluidity. Cholesterol by itself does not form bilayers structures, but it can be 

incorporated into phospholipid membranes at very high concentrations, up to 1:1 or even 2:1 molar 
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ratios of cholesterol to PC. In natural membranes, the molar ratio varies depending on the 

anatomical and cellular location (92). Being an amphipathic molecule, cholesterol inserts into the 

membrane with its hydroxyl group oriented towards the aqueous surface, and the aliphatic chain 

aligned parallel to the acyl chains in the centre of the bilayers. 
 

 
Figure 8 Structure of cholesterol, the predominant sterol in vertebrates. 

  

1.2.4. Lipid phases and microdomains 

Phase behaviour determines liposomal properties such as permeability, fusion, and protein 

binding. At different temperatures, PC membranes exist in different phases, and transitions from 

one phase to the other can be detected by physical techniques, e.g. microcalorimetry or FT-IR 

spectroscopy, as the temperature is increased (or decreased) (94). The phase transition 

temperature is the temperature at which the membrane passes from a tightly ordered “gel” or 

“solid” phase (Lβ′), to a liquid-crystal fluid-like phase (Lα), as illustrated in figure 4. It is also 

referred to as Tm or main transition temperature and it depends on the hydrocarbon chain length 

and the degree of saturation. The solid phase is not thought to be of physiological relevance (95, 

96). At low temperatures, fatty acids form all-trans straight chains. As the temperature increases, 

they tend to adopt gauche conformations; this tends to expand the area occupied by the chains, and 

thus the membrane, while the overall length of the hydrocarbon chains is reduced, therefore the 

bilayers thickness as well. The transition from the gel phase to the liquid - crystalline phase does 

not occur in a single step for pure PCs, but involves two transitions; a pre-transition takes place a 

few degrees below the main transition, e.g. for DPPC 16:0 the Tm is 41 ºC and the pre-transition 

occurs at 38 ºC, and changes in head-group orientation are believed to occur at that temperature. In 
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the temperature range between the two transitions, the membrane adopts a ruffled appearance, 

whereby it is transformed from a planar to an undulating surface with a long, regular periodicity 

(92). At increased temperatures the freedom of movement of individual molecules increases.  

 Experimentally detectable regions of different compositions and states are termed “phases” 

in the macroscopic range, whereas on the micro- and nanoscopic scale they are better described as 

“domains” (i.e. in cell biology) (82). Particularly, the presence of cholesterol in a system can 

change the phase behaviour drastically. At low concentrations, it does not prefer one of the lipid 

phases to the other. However, at higher concentrations (≥ 25%) cholesterol induces chain order in 

the liquid phase and breaks the crystallinity of the solid phase. This results in the formation of a 

new phase: the liquid-ordered phase, which is a liquid with respect to the translational degrees of 

freedom (lateral diffusion), but rigid with respect to the acyl chain order (97). For lipid/cholesterol 

mixtures, the gel phase is denoted by so, “s” standing for solid in two dimensions and “o” for 

ordered chains; the liquid-crystalline phase is known as ld, “l” representing the two-dimensional 

liquid and “d” the disordered chains; the liquid - ordered phase is denoted by lo (Figure 7). The lo 

manifests highly increased mechanical strength over the ld phase (98), the van der Waals 

interactions for the ordered chains in the lipid molecule being stronger in the latter case. This 

property, combined with the increased bilayer thickness, drastically reduces membrane 

permeability (99).  

 

 

 

 

 

 

Figure 7 Membrane phases of the lipids of the plasma membranes. The gel phase melts above Tm to form a fluid phase 
(liquid-disordered (ld), or “liquid-crystalline”). The presence of cholesterol (hatched ovals) forms an intermediate 

phase between gel and ld, termed liquid-ordered (lo).  

Studies carried out on bilayers containing different cholesterol concentrations, indicated 

that the lo and ld states could be relevant to the question of biologically relevant lipid 

gel liquid - disordered (ld) liquid - ordered (lo) 
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microdomains. The cholesterol-rich lo and cholesterol-poor ld phases coexist within a single 

bilayer. Generally, lipids that contain exclusively saturated acyl chains promote the formation of 

the lo phase because of their capacity to pack more readily against cholesterol. This feature is more 

dominant in sphingolipids due to their ability to form intermolecular hydrogen bonds (100, 101). 

The affinity of cholesterol varies significantly with the polar headgroup and backbone structure of 

the lipid molecule, generally decreasing in the order SM>PS>PC>PE. This more favourable 

interaction between SMs compared to PC would seem to favour the formation of segregated 

cholesterol-depleted ld and cholesterol-enriched lo domains in bilayers composed of SM/PC/Chol, 

and thus provide support for the lipid raft hypothesis (102-104). A bilayer composed of SM is 4.6 

nm thick; hence, rafts should protrude from the non-raft background by ~ 1 nm. For PCs, the 

affinity of cholesterol decreases markedly with an increase in the degree of unsaturation of the 

lipid chains, thus making the affinity of cholesterol higher for e.g. DPPC (16:0, Tm = 41 ºC) than 

for DOPC (16:1, Tm = -20 ºC). 

Micron-scale coexisting liquid domains can be observed in vesicle membranes in vitro with 

at least three components: a high Tm lipid (saturated), a low Tm lipid (unsaturated), and cholesterol, 

respectively, over a wide range of compositions and temperatures below a miscibility transition 

temperature Tmix. Diagrams of various lipid systems present different miscibility transition 

temperatures, i.e. shifts in transition temperatures, e.g. to higher temperatures in membranes 

containing saturated SM lipids compared to saturated PC lipids of comparable chain length, and to 

lower temperatures when the low Tm lipid component has a higher chain melting temperature, 

respectively. Membranes with higher Tm lipids and cholesterol contain more lo phase and have a 

high Tmix, while membranes with lower Tm lipids contain more ld phase and have a low Tmix. For 

many ternary lipid systems, 1:1:1 mixtures lie close to the steeply varying edge of the miscibility 

phase boundary (102-104). A useful system for biophysical investigations is the intensively studies 

model raft mixture DOPC: DPPC: cholesterol. DPPC and DOPC share the same phospholipid 

headgroup, thus allowing focusing on the role of the hydrocarbon tails. Additionally, experiments 

suggest that saturated PC (like DPPC) and SM lipids behave similarly in mixtures with DOPC. 

Although POPC is more biologically relevant than DOPC, its asymmetry could make 

interpretation of results more difficult. Moreover, immiscible liquid phases were observed in 
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vesicles over a wide range of lipid compositions when DOPC was used. It is thus tempting to 

speculate that results for the DOPC/DPPC/cholesterol system are applicable as biologically 

relevant mixtures. 

 
Figure 9 Typical phase diagram for a model raft system, composed of a high Tm lipid, a low Tm lipid and cholesterol, 

respectively (left), and the miscibility phase boundaries of the ternary lipid mixture DOPC: DPPC: cholesterol (right); 

(•) compositions where a miscibility transition is observed, (◦) only one liquid phase is present down to 10 °C, 

(coloured surface) extrapolated fit of measured Tmix values (102). 

 

The graphical representation of the coexistence of phases is called phase diagram The 

phase diagram for a typical raft system and the membrane immiscibility region for DOPC: DPPC: 

cholesterol are illustrated in figure 9 (102-104). 

1.3. Cellular models for T2DM research 

INS-1E cells represent a stable and reliable β-cell model, aspect of major importance for 

diabetes research. The laboratory of Pierre Maechler established in the early 90s the insulin-

secreting line INS-1 from a radiation rat-induced insulinoma (105), from which clonal INS-1 E 

cells were further isolated based on both their insulin content and secretory response to glucose. 

This represented at that time a compelling research need, since previous rat origin models showed 

poor resembles to primary cultures, e. g. RINm5F cells do not respond to glucose in the 

physiological concentration range (106), and BRIN-BD11 cells are poorly differentiated, 

exhibiting low insulin content and only a weak secretory response to glucose (107). On the other 

hand, the new clonal β-cell line INS-1E, derived from the parental INS-1 cells, displays a more 

suitable insulin content and an adequate proliferation rate (107).  
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1.4. Aim of the project 

Our goal is to understand the aggregation of IAPP in the absence and presence of various 

lipid interfaces, to investigate the nature of the cytotoxic IAPP species and to develop strategies 

against fibril formation and associated toxicity.  

First, we investigated the fibril formation of IAPP and IAPP fragments, with respect to the 

kinetics of fibril formation, polymorphism, aggregation-prone regions, stability to high hydrostatic 

pressure, and the role of hydrophobic and electrostatic interactions in the self-association process. 

Additionally, we seeked to provide further insight into the mechanism of IAPP aggregation 

in the presence of membranes, not only the largely studied negatively charged homogenous lipid 

systems, but in the presence of model raft heterogeneous membranes as well, since extracellular 

amyloid fibril deposits seem to form by a common cellular mechanism involving lipid rafts. The 

use of GUVs as model biomembranes combined with advanced fluorescence microscopy 

techniques is a relatively new approach, which allows the direct microscopic visualization of 

domains and of their topology on the µm scale, the local and morphological changes on the 

membranes of different compositions on single vesicles after the addition of peptide, and the 

corresponding peptide morphologies involved, respectively.  

Extending the membrane studies to cellular models, we were interested in determining 

which species are the most cytotoxic-monomers, early or late oligomers, protofibrillar or fibrillar 

states. For this purpose, isolating, characterizing and testing different oligomeric species is 

required, in a time- and concentration-dependent manner. Moreover, developing potential 

therapeutic strategies against IAPP fibril formation and cytotoxicity in vivo is obviously of major 

concern in the treatment of T2DM. Not only should inhibitors be designed to inhibit IAPP fibril 

formation in vitro, but they should display low toxicity and efficient inhibition in the presence of 

cellular membranes as well. A WST-1 assay can be used for such cytotoxicity tests, combined with 

confocal/two-photon excitation imaging in order to elucidate the interaction mechanism. 

Understanding IAPP fibril formation under various conditions, the effect of raft model 

membranes, along with cytotoxicity-related aspects (major cytotoxic species, inhibitor design) will 

provide significant contributions in T2DM research for the future. 
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2. Materials and methods 

2.1. Materials and preparation protocol for peptide samples  

Chemicals  

Bodipy-DHPE Molecular Probes Invitrogen 

CaCl2 Sigma 

Chloroform Fisher Scientific 

Cholesterol Sigma 

Congo Red Sigma 

DOPC Avanti Polar Lipids 

DOPG Avanti Polar Lipids 

DMSO Applichem 

DPPC (Dipalmitoylphosphatidylcholine) Avanti Polar Lipids 

DSPC (Distearoylphosphatidylcholine) Avanti Polar Lipids 

Fetal Calf Serum (FCS) Brunschwig 

Glucose  Sigma 

HEPES Applichem 

HFIP Riedel-de-Häen 

IAPP Calbiochem 

IAPP 1-19 PSL 

IAPP 1-29 PSL 

IAPP-(1-37)-K-Bodipy-FL PSL 

INS-1E cells Gift from Pierre Maechler, Geneva 

Inzidur Ecolab 

2-Mercaptoethanol Applichem 

MgCl2 Sigma 

Natrium acetate Sigma 

Na2HPO4 Sigma 

NaH2PO4 Sigma 

NaHCO3 Applichem 
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Natrium pyruvate Applichem 

PBS (phosphate buffer saline) VWR 

Penicillin/Streptomycin 10000 IE/10 mg/ml Applichem 

Rhodamine-DHPE Molecular Probes Invitrogen 

RPMI1640+ 2mM L-Glutamine Gibco 

Texas-Red DHPE Molecular Probes Invitrogen 

TFE Sigma 

Trypsin Gibco 

WST-1 reagent Roche 

Disposables  

96-well transparent microtiter plates BD Falcon 

BD-Falcon tubes (15, 50 mL) BD Falcon 

Cell culture flasks BD Falcon 

Cryo-tubes VWR 

Disposable 50-mL syringes B-Braun Melsungen 

Disposable pipette tips (10-200-1000 µL); 

sterile pipette tips 
VWR 

Eppendorf cups (0.2-1.5-2.0 mL) Eppendorf 

Pasteur pipettes VWR 

Pipettes (sterile, one-way) VWR 

Sterile filters Sarstedt 

Experimental devices  

AFM microscope Digital Instruments 

Autoclave ThermoScientific 

Balance ThermoScientific 

Centrifuge ThermoScientific  

Confocal Laser Scanning Microscope BioRad, now Zeiss 

Copper conductive tape SPI Supplies 
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Digital thermometer VWR 

Fluorescence spectrometer K2 ISS Urbana-Champaign 

Freeze-dryer Atrbiotech 

FTIR spectrometer Nicolet 

Hemacytometer Brand GmbH 

High hydrostatic pressure cell home-made 

Incubator (37 C, 5% CO2) ThermoScientific 

ITO slides Sigma 

Microtiter-plate (ELISA) reader  Tecan 

Light microscope Olympus 

Pipette-boy Hirschmann Laborgeräte 

Pt wires Advent Research Materials Ltd 

Sterile bench ThermoScientific 

Thermostated water bath VWR 

Vacuum pump VWR 

Softwares  

Adobe Photoshop image processing 

Corel Draw image processing 

i-control microtiterplate-reader software 

ISS K2 Vinci fluorescence spectroscopy 

GRAMS ThermoScientific 

Laser Sharp 2000,  

Laser Sharp 2000 Emulation 

BioRad, now Zeiss-fluorescence microscopy 

imaging and data processing 

Microsoft Excel experimental data import and analysis 

Origin experimental data import and analysis 

v513, v614 AFM data acquisition and processing 

 

IAPP, IAPP-K-Bodipy-FL, IAPP 1-19 and IAPP 1-29, respectively, were dissolved in HFIP and 

kept at -20 ºC for at least 24 h, to ensure complete peptide disaggregation. Aliquots were prepared 
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and the HFIP removed in the freeze-dryer under high vacuum overnight, followed by rehydration 

in aqueous medium (water, buffer or cell culture medium), thus yielding the desired peptide 

concentrations for the planned experiments. 

2.2. Studies on IAPP and IAPP fragments fibril formation in the absence of lipid membranes 

High-pressure coupled with Fourier-transform Infrared (FT-IR) spectroscopic studies and 

atomic force microscopy (AFM) measurements were carried out to reveal the changes in IAPP, 

IAPP 1-19 and IAPP 1-29 aggregate and fibril formation under pressure-perturbation. These 

results could lead to a better understanding of the aggregation pathways and the possible 

amyloidogenic states of IAPP and may hence contribute to a better understanding of the 

pathogenesis of T2DM. Moreover, the results obtained may prove useful for the identification and 

molecular characterization of toxic intermediate states that may be used as targets for parallel 

searching of compounds that can interfere with their formation. 

2.2.1. FT-IR spectroscopy 

IR spectroscopy has become a standard method to investigate lipid model membranes, 

peptides and proteins (108-110). The method allows the identification of the structure of the 

measured molecules, and their interactions with the surroundings, depending on frequencies, 

widths, intensities, shapes and splitting of the IR absorption bands. In studies of proteins and 

peptides, FT-IR spectroscopy is useful in identifying secondary structure elements (111-115). The 

amide I' band (between 1600 and 1700 cm-1) is mainly associated with the carbonyl stretching 

vibration of the amide groups, which is directly related to the backbone conformation and 

hydrogen bonding pattern of the protein/peptide (116-121).  

The FTIR spectra of IAPP, IAPP 1-19, and IAPP 1-29, respectively, were recorded 

continuously for 24 h, every 5min, on a Nicolet 5700 FT-IR spectrometer equipped with a liquid 

nitrogen cooled MCT (HgCdTe) detector, using a cell with CaF2 transmission windows separated 

by 50 μm Teflon spacers. The temperature in the cell was controlled through an external water-

circuit, with a precision of 0.1 °C. For scanning the samples before and after pressure treatment, 

we used 50 mM NaH2PO4 (with 1 % residual TFE in D2O for IAPP) at pD 7.4 and a peptide 

concentration of 0.1 % w/w and additionally 0.5 wt% for the fragments. For each spectrum, 256 

interferograms of 2 cm−1 resolution were co-added. The sample chamber was continuously purged 
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with dry air. From the spectrum of each sample, a corresponding buffer spectrum was subtracted. 

The plots of the progress of α-helix–to–β-sheet refolding upon aggregation were calculated as (I − 

I
α
)/(I

β
− I

α
), where I

α 
is the spectral intensity at ~ 1620 cm

−1 
of the first spectrum, I

β 
is the intensity 

after complete aggregation, and I is a transient intensity at this wavenumber. All the spectra were 

baseline-corrected and normalized for the amide I' band area. All data processing was performed 

with the GRAMS software (Thermo Scientific). 

2.2.2. Atomic force microscopy (AFM) 

TappingMode™ (Figure 6) AFM operates by scanning a tip attached to the end of an 

oscillating cantilever across the sample surface.  

 
Figure 10 Scheme of AFM measurements using the TappingMode™ (adapted from the scanning probe microscopy 

training notebook, Digital Instruments). 

 

 The cantilever is oscillated at or near its resonance frequency with amplitude ranging 

typically from 20 nm to 100 nm. The tip lightly “taps” on the sample surface during scanning, 

contacting the surface at the bottom of its swing. The feedback loop keeps the oscillation 

amplitude constant by maintaining a constant root mean square of the oscillation signal acquired 

by the split photodiode detector. The vertical position (z) of the scanner at each (x, y) data point in 

order to maintain a constant “set - point” amplitude is stored by the computer to form the 

topographic image of the sample surface. By maintaining the oscillation amplitude fixed, a 
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constant tip-sample interaction is preserved during imaging. The operation can take place in either 

ambient or liquid environment. When imaging in air, the typical amplitude of the oscillation allows 

the tip to contact the surface through the adsorbed fluid layer without getting stuck (Scanning 

probe microscopy training notebook, Digital Instruments). 

For the AFM measurements, samples were diluted with deionised water to yield a final 

concentration of 1 µM. 20 µL were applied onto freshly cleaved muscovite mica and allowed to 

dry. Data were acquired in the tapping mode on a Multi Mode TM SPM AFM microscope 

equipped with a Nanoscope IIIa Controller from Digital Instruments. As AFM probes, Silicon 

SPM Sensors “NCHR” (force constant, 42 N/m; length, 125 mm; resonance frequency, 300 kHz) 

from Nanosensors were used (115, 122-124). All images were recorded on a MultiMode scanning 

probe microscope equipped with a Nanoscope IIIa Controller from Digital Instruments (Santa 

Barbara, California, USA). The microscope was coupled to an AS-12 E-scanner (13-μm) or J-

scanner (100-μm) and an Extender Electronics Module EX-II (Santa Barbara, California, USA), 

which allows for acquisition of phase images. Typical AFM-probes were Aluminium-coated 

NCHR silicon SPM sensors (force constant = 42 N/m; length = 125 μm; resonance frequency 

~250-330 kHz; nominal tip radius of curvature ≤ 5 nm) from Nanosensors, Nanoworld or 

Budgetsensors, with the optical block and base placed atop a commercially available active, piezo-

actuated vibration-damping desk from Halcyonics (Göttingen, Germany). All measurements were 

carried out in air using TappingMode™.  

2.2.3. High hydrostatic pressure (HHP) as tool in protein studies 

High hydrostatic pressure (HHP) has been widely used as a tool in understanding protein 

folding (8, 111, 112, 122, 125-129). High pressure tends to destabilize proteins due the fact that the 

protein-solvent system in the unfolded state occupies a smaller volume than the system in the 

native state. In a similar way, pressure leads to the dissociation of oligomeric proteins. These 

effects are caused by a combination of factors. The presence of cavities within the folded proteins, 

or at interfaces of oligomers, favours the unfolding or dissociation of these structures. The 

dissociation of electrostatic interactions also leads to a marked reduction in the overall volume 

caused by electrorestrictive effects of the water molecules around the unpaired charged residues. In 

a similar way, solvation of polar groups results in a decrease in volume. These effects compensate 
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for the increase in volume as the crystalline-like state of the protein interior is disrupted, exposed 

to solvent and hydrated upon unfolding. Finally, hydrophobic interactions have been shown to 

weaken upon pressurization (130). 

It is to be noted that using the pressure variable vs. the temperature variable in studies of 

protein folding and stability can offer a great number of advantages (125, 126). Pressure affects 

only the volume of the system in focus, while temperature denaturation involves changes in both 

the volume and the thermal energy of the system. Also, temperature-induced aggregation generally 

results in an irreversible aggregation process, which may be explained by less disfavoured 

hydrophobic interactions at higher temperatures. On the contrary, denaturation by high pressure is 

generally a reversible process. Furthermore, high pressure treatment can lead to dissociation of 

aggregated structures and may result in formation of monomers and natively folded structures (9, 

115, 127, 128). Moreover, the measurement of the activation volume for pressure-induced kinetic 

folding or unfolding reactions is one of the few methods yielding structural information regarding 

the transition states. Hence, in addition to co-solvent and temperature perturbation, pressure 

dependent studies can shed new light on alternative folding/aggregation pathways and their 

intermediate states. 

To the best of our knowledge, there are no reports regarding the effects of HHP on IAPP so 

far. Due to the fact that high hydrostatic pressure acts to disfavour hydrophobic and electrostatic 

interactions that cause protein aggregation, this parameter can be used as efficient tool to reveal 

new important information on the nucleation and growth processes of the peptide. 

In order to investigate the stability of IAPP towards high pressure, either fresh peptide or 

pre-formed fibrils were subjected to pressures up to 3.5 kbar and the changes were measured by 

tapping-mode AFM and FT-IR spectroscopy to yield information about the transformation process 

and the structures evolving at various levels of complexity.  

Incubation under pressure was carried out in a pressure cell equipped with sapphire optical 

windows, similar to that originally described by Paladini and Weber (131). The temperature of the 

pressure cell was controlled by means of a jacket connected to a circulating bath. Pressure was 

increased stepwise in increments of 150 bar until 3 and 3.5 kbar, respectively. The windows of the 

pressure cell were flushed with nitrogen at low temperatures to prevent water condensation.  
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2.3. Studies on IAPP fibril formation at lipid interfaces by fluorescence microscopy 

2.3.1. Advanced fluorescence microscopy techniques  

Optical microscopy is based on macroscopic properties such as phase gradients, light 

absorption, and birefringence. In contrast, fluorescence microscopy has the ability of monitoring 

the distribution of single molecular species based solely on the properties of fluorescence 

emission. By using intracellular components labeled with specific fluorophores, this method offers 

the possibility to detect their precise location as well as their associated diffusion coefficients, 

transport characteristics, and interactions with other biomolecules. While other methods used to 

study lipids, e.g., fluorescence spectroscopy, DSC, IR, NMR, X-ray diffraction, can provide mean 

parameters on the basis of data collected from bulk solutions of many liposomes (or cells), 

nowadays microscopy techniques, such as advanced fluorescence microscopy, can provide 

information about lateral lipid organisation at the level of single vesicles (or cells) (87). 

Improvements in conventional fluorescence microscopy 

A conventional fluorescence microscope differs from a standard microscope by the light 

source (xenon or mercury lamp), which produces UV-VIS light. The excitation wavelength is 

selected by an interference filter or a monochromator, and observation of the fluorescence is 

achieved by eye, photographic film or CCD (charge coupled device) camera (132). The depth of 

field of a conventional fluorescence microscope is 2-3 µm and the maximal resolution is 

approximately equal to half the wavelength of the radiation used (i.e. 0.2-0.3 µm for visible 

radiation). For samples thicker than the depth of field, the images are blurred by out-of-focus 

fluorescence. Corrections using a computer are possible, but other techniques are generally 

preferred, i.e., confocal microscopy or two-photon excitation microscopy (133).  

2.3.1.1. Confocal fluorescence microscopy 

The confocal microscope was invented in the mid 1950s, the principle of the method being 

as follows: a focused spot of light scans the specimen, the fluorescence emitted by the specimen is 

separated from the incident beam by a dichroic mirror and focused by the objective lens through a 

pinhole aperture to a photomultiplier (132). The major advantage of this technique is that 

fluorescence from out-of-focus planes above and below the specimen strikes the wall of the 
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aperture and cannot pass through the pinhole (Figure 11). A laser is often used in confocal 

fluorescence microscopy, but scanning is achieved by using vibrating mirrors or a rotating disk 

containing multiple pinholes in a spiral arrangement (Nipkow disk). In laser scanning confocal 

microscopy, images are stored on a computer and displayed on a monitor.  

 

 

Figure 11 Principle of confocal microscopy (top) and the set-up used in this thesis (bottom). 
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One of the main features of confocal microscopy is that it can produce optical slices of 

defined thickness through thick specimens. Using a lens of high numerical aperture, the thickness 

of confocal sections can reach a theoretical limit of about 0.5 µm. Thus, by moving the specimen 

up and down, a 3D image can be recorded. However, it should be noted that, because confocal 

microscopy collects only a fraction of the total fluorescence emitted by a sample, the excitation 

energy required to image this fluorescence must be higher than in conventional fluorescence 

microscopy. Therefore, the amount of photobleaching per detected photon is higher. 

Photobleaching should be minimized by using stable fluorophores and by operating the confocal 

microscope at low laser power, high detector sensitivity, and maximum objective numerical 

aperture. Confocal fluorescence microscopy has been widely used in cell biology; single living 

cells and cellular processes can be studied by this technique, e.g. for visualization of organelles, 

distribution of electrical potential, pH imaging, calcium imaging, etc. (134).  

Interesting applications in chemistry have also been reported, for example in studies of 

colloids, liquid crystals, polymer blends, photodegradation of naturally occurring polymers, dyeing 

of fibers and measurement of the glass transition temperature. Confocal fluorescence microscopy 

can be combined with time-domain and frequency-domain techniques to produce lifetime imaging 

(132). 

2.3.1.2. Two-photon excitation fluorescence microscopy 

In conventional fluorescence spectroscopy, a fluorophore is excited by absorption of one 

photon whose energy corresponds to the energy difference between the ground and the excited 

state, respectively. Excitation is also possible by the simultaneous absorption of two photons of 

lower energy (i.e. of longer wavelength) via a short-lived virtual state (Figure 12). For instance, 

absorption of two photons in the red can excite a molecule that absorbs in the UV. Two-photon 

excitation is a non-linear process; the absorption following a quadratic dependence on the intensity 

of the excitation light. 

When a single laser is used, the two photons are of identical wavelength, and the technique 

is called two-photon excitation fluorescence microscopy (135). When the photons are of different 

wavelengths, the technique is called two-colour excitation fluorescence microscopy. The 
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probability of two-photon absorption depends on both the spatial and temporal overlap of the 

incident photons (the photons must arrive within 10-18 s). The cross-sections for two-photon 

absorptions are small, typically 10-50 cm4s photon-1 molecule-1 for rhodamine B. Consequently, 

only fluorophores located in a region of very large photon flux can be excited. Mode-locked, high-

peak lasers like titanium-sapphire lasers can provide enough intensity for two-photon excitation in 

microscopy (132).  

   

Figure 12 One-photon excitation vs. two-photon excitation. The high photon densities required for adsorption (left) 

are achieved by focusing a high peak power laser light source on a diffraction-limited spot through a high numerical 

aperture objective. Therefore, in the areas above and below the focal plane, two-photon absorption does not occur 

(right), because of insufficient photon flux. This phenomenon allows for a sectioning effect (inherent spatial 

resolution) without the use of emission pinholes as in confocal microscopy.  

Because the excitation intensity varies as the square of the distance from the focal plane, 

the probability of two-photon absorption outside the focal region falls off with the fourth power of 

the distance along the vertical optical axis. Excitation of fluorophores can occur only at the point 

of focus. Using an objective with a numerical aperture of 1.25 and an excitation beam at 780 nm, 

over 80% of total fluorescence intensity is confined to within 1 µm of the focal plane. The 

excitation volume is of the order of 0.1-1 femtoliter. Compared to conventional fluorometers, this 

represents a reduction by a factor of 1010 of the excitation volume. For a mode locked laser source 

with an average power p0, repetition rate fp, pulse width τp, and wavelength λ, focused by an 

objective with a numerical aperture A, the number of photon pairs absorbed per laser pulse and per 

chromophore, na,is given below: 
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where c is the speed of light, h is Plank’s constant and δ is the two-photon cross section, typical of 

the order of 10–50 to 10–49 cm4 s photon–1 molecule–1 (136).  

Two-photon excitation provides intrinsic 3D resolution in laser scanning fluorescence 

microscopy. The 3D sectioning effect is comparable to that of confocal microscopy, but it offers 

two advantages with respect to the latter: because the illumination is concentrated in both time and 

space, there is no out-of-focus photobleaching, and the excitation beam is not attenuated by out-of-

focus absorption, which results in increased penetration depth of the excitation light. 

The advantage of two-colour excitation over two-photon excitation is not an improvement 

in imaging resolution, but the easier observation of microscopic objects through highly scattering 

media. In fact, in two-colour excitation, scattering decreases the in-focus fluorescence but only 

minimally increases the unwanted fluorescence background, in contrast to two-photon excitation. 

Two-photon excitation fluorescence microscopy is one of the most promising areas in 

biological and medical imaging nowadays (133).  

2.3.1.3. Experimental set-up for fluorescence microscopy studies 

 Images were recorded by a confocal laser scanning microscope (Biorad MRC 1024, 

extended for multiphoton excitation, now Zeiss, Germany, figure 13) coupled via a side-port to an 

inverted microscope (Nikon, Eclipse TE-300 DV, infinity corrected optics) enabling fluorescence 

excitation in the focal plane of an objective lens (Nikon Plan Fluor 40×, NA 0.6, extra long 

working distance 3.7 mm, see also figure 13). Fluorescence in the green and red PMT-channels 

(emission bandpass filters 522 nm/FWHM 35 nm and 580 nm/FWHM 40 nm, respectively) were 

acquired either sequentially by alternating the excitation with the 488 and 568 nm lines of a Kr-Ar-

Laser, or simultaneously by utilizing a Ti-Sap-Laser (Coherent, Mira 900-F, 76 MHz repetition 

rate, ca. 250 fs pulse width, pumped by a 5 W Verdi) tuned to 820 nm for optimal 2-photon 

excitation of rhodamine-DHPE. Image acquisition was controlled by the software LaserSharp2000 

(formerly Biorad, now Zeiss). 
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 Figure 13 The Bio-Rad 2-photon system extended for confocal excitation. 
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2.3.2. Giant unilamellar vesicles (GUVs) 

2.3.2.1.General aspects about GUVs 

The use of giant unilamellar vesicles (GUVs) in biophysics and biochemistry has been 

increasing over the past 20 years, partially due also to the development of preparation techniques. 

GUVs are vesicular self-assemblies enclosing an aqueous core, with an average size of 5 to 100 

µm, the size range allowing observing them by optical methods as individual macromolecular 

entitities, and representing the largest form of self-organisation, except for crystalization. Another 

advantage is that they are geometrically analogue to living cells, due to their size of a few tens of 

micrometers. 

GUVs have been extensively used in recent years as model systems to study, e.g., the 

lateral structure and mechanical properties of membranes, considering the effect of lipid-lipid, 

lipid-DNA, lipid-peptide and lipid-protein interactions. Due to the possibility of visualizing single 

vesicles, the problem of shape and size heterogeneity and the presence of multilamellar vesicles 

are excluded (87). 

Due to their similarity to cells, they are used as proto-cell models, to investigate the 

compartimentation and formation of gradients across the membrane. GUVs can also be used as 

microreactors; for instance, by the microinjection technique, targeted enzymatic-catalyzed 

reactions can take place inside the vesicles. GUVs are also applied in medicine and physiology, 

e.g. to study muscular activity, by building GUVs from muscle tissue membranes, and monitoring 

the activity of glucose transporters. Also, signal transduction pathways and the influence of toxins 

could be studied with the aid of GUVs. Native membranes can also built GUVs, e.g. pulmonary 

surfactants (137). Mechanical and elastical properties of membranes using GUVS as model 

systems have been addressed as well (138, 139). 

In order to increase the yield and size of GUVs, several preparation methods have been 

tested over the years, mainly involving either sources of ultra-thin lipid films with minimal 

mechanical movement, or the fusion of previously formed smaller vesicles. One of the first 

methods to prepare GUVs was described by Reeves und Dowben in 1969 (140). They prepared a 

thin lipid film from a mixture of chloroform and methanol, which was hydrated after drying and 

solvent removal wihout any shaking or moving, the result being a very heterogenous dispersion. 
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As the interest in GUVs increased, further methods and improvements were developed. For 

instance, the use of Teflon surfaces, the equilibration of lipid films in humidified atmosphere, and 

the use of spin-coating (141) to prepare very thin lipid films can be named as significant examples. 

Other methods make use of dialysis, freeze-thawing and dehydration-rehydration of small vesicles 

(142).  

A by now largely applied method to specifically produce only GUVs is the so-called 

electroformation method, whereby a dry lipid film is hydrated under an electric field (143). The 

method was since its discovery further optimized to reduce the time required for vesicle formation, 

and to obtain a more homogenous size range, and improved unilamellarity, by varying either the 

electroformation conditions (frequency, voltage) or the thickness of the applied lipid film. The 

method has been used both for planar parallel, as well as for cylindrical chambers, and the 

electrodes are generally either Pt wires or indium tin oxide (ITO) glass slides. Either steady or 

alternative current can be used. For a long time, until a novel electroformation protocol using 500 

Hz emerged (137), electroformation was limited to a ionic strength under 10 mM NaCl, and even a 

1 mM Ca2+ ions concentration was found to abolish the process of vesicle electroformation 

completely. Commonly used solvents are chloroform, methanol and diethylether. The lipid 

concentration to be applied is generally of 0.2 mg/mL, and the distance between the two Pt wired 

used as electrodes should be 3-5 mm, with a diameter of 0.8 mm. The parameters for the electrical 

field highly depend on the geometry of the electroformation chamber and must be optimized 

experimentally. During electroformation, the lipids must be in the fluid phase. 

2.3.2.2. Mechanism of GUVs electroformation 

The mechanism of GUVs electroformation is still poorly understood, although several 

effects of the external electric field on lipid swelling and vesicle formation have been suggested, 

with an increasing degree of speculation, as follows: direct electrostatic interactions between 

electrode and bilayers, electro-osmotically induced mechanical stresses; redistribution of double 

layer counter-ions between bilayers, decreased surface, membrane and line tension, 

electrochemical reactions, injection of charges from electrodes, and reorientation and lateral 

distribution of lipid molecules, inverse flexoelectric effect (144). The diameter of the 

electroformed GUVs highly depends on the lipid composition, swelling medium, and the external 
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AC field parameters, which give the amplitude of the electro-osmotic vibration and subsequently 

the membrane tension of a GUV immediately upon its formation. The predominating mechanism 

of electroformation is most likely the electro-osmotic periodic movement of the water medium at 

the water-electrode interface. These vibrations are directed perpendicularly to the electrode 

surface, where the initial lipid film is deposited. The vibrations pull lipid lamellae off the electrode 

causing their separation and growth. The vesicles increase in size up to 10-20 µm, this size 

corresponds to vesicles forming spontaneously from swelling lipid films. At this stage the contact 

area is increased, and destabilizing due to the AC-field through electroosmotic vibrations takes 

place. Thus, the neighbour vesicles fuse together into a larger one, become spherical and within a 

few minutes close their neck and some of them will eventually separate from the electrode (Figure 

14).  

 
 

Figure 14 Proposed mechanism of electroformation in aqueous environment (144). 
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2.3.2.3. Electroformation of GUVs on Pt wires  
 
The set-up to grow GUVs using the electroformation method consists of an 

electroformation chamber and an external AC or DC supply. The AC supply is a low-frequency 

generator providing a frequency of 0.1-50 Hz and up to 7 V voltage. For electroformation in high 

ionic strength buffer systems, a higher frequency, i.e. 500 Hz, is an essential parameter in 

successful GUVs production (137). 

 

Figure 15 Teflon chamber with two parallel cylindrical Pt wires. The bottom of the chamber was glued to the casing 

with 0.5 mm glass plates. The top of the chamber was designed to enable the addition of water and peptides into the 

chamber. 

Figure 15 shows a Teflon chamber with two parallel cylindrical Pt wires. The bottom of the 

chamber was glued to the casing with 0.5 mm glass plates. The top of the chamber remains open to 

enable adding of Millipore water and peptides.  

Thus, GUVs were prepared by electroformation (143, 145-148) in a home-made chamber 

on Pt wires. Individual lipid stocks were prepared at 10 mg/mL and mixed at a 1:2:1 molar ratio 

(DOPC: DPPC: cholesterol), yielding 200 µL lipid mixture, into which 6 µL of a 1 mM 
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rhodamine-DHPE (chemical structure illustrated in Figure 16) chloroform stock was added. The 

sample was further diluted with chloroform and 2 µL of the resulting 0.2 mg/mL lipid mixture 

were spread on each Pt wire; subsequently, chloroform was removed in a freeze-dryer at high 

vacuum for 1 h. The chamber was sealed with a cover slip and the lipids were hydrated with 1.5 

mL water, pre-warmed at 65 ºC, and electroformation was carried out for 90 min under AC, at 3 V 

and 10 Hz, at 65 ºC, a temperature at which the lipid mixture is known to be in the ld phase.  

 
Figure 16 Chemical structure of Lissamine™ rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, 

triethylammonium salt (rhodamine DHPE). 

 

After the completion of electroformation, the temperature was slowly reduced at a constant 

rate of 1 °C/min up to room temperature (25 °C). After choosing a region of interest for imaging of 

the GUVs (of ~ 30 µm diameter grown on Pt wires), the peptide of interest was added into the 

chamber and the lipid-peptide interaction was investigated over time via fluorescence microscopy. 

Rhodamine-DHPE was used to label preferentially the ld phase.  

2.3.2.4. Electroformation of GUVs on ITO slides  

In another variant, known as the ITO method (see Figures 17 and 18 for details), the 

electrodes consist of two plane parallel transparent electrodes – ITO coated glass plates. The dry 

lipid film is placed on the bottom glass and a silicon spacer separates the two plates and delimits 

the filling volume. The used chamber was self-made. A 550 µL aqueous volume is required to fill 

the chamber. 

It is important to keep in mind when designing such chambers, that the copper adhesive 

conductive tape used to close the electrical circuit should not come in contact with the fluid used 
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for hydration, in order to ensure a homogenous electrical field, and that the electrodes (in this case 

the ITO glass slides) should be placed in close proximity to each other (several mm). Additionally, 

ensuring that the lipid is spread homogenously on the electrode surface is desirable (149). For this 

purpose, spin-coating was used (see also Appendix, Figure C), by subjecting 20 µL lipid mixture 

in CHCl3 spread over the entire ITO surface to 840 rpm for 60 s (4 mg/mL, 1:425 Rhodamine-

DHPE: lipid molar ratio). Except for the above mentioned aspects, the electroformation protocol 

was the same as in the case of the Pt wires. 

. 

Figure 17 Schematic illustration of the electroformation concept in the case of the ITO method. 

 
Figure 18 Home-made chamber for electroformation on ITO slides. 

 

2.4. Cytotoxicity tests using the INS-1E cell line as model system 

2.4.1. Routine procedure for culturing the INS-1E cells 

The cell line employed was INS-1E, insulinoma beta cells from the rat pancreas. The cells 

were cultured in RPMI 1640 medium (with 2 mM glutamine) supplemented with 5 % foetal calf 

serum, 10 mM HEPES, pH 7.4, 1 mM sodium pyruvate, 50 μM 2-mercaptoethanol, 100 units/mL 

penicillin and 0.1 mg/mL streptomycin, at 37 °C, 5 % CO2, pH 7.4. 
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RPMI (Roswell Park Memorial Institute) 1640 was established in 1966 byMoore and 

colleagues based on RPMI 1630. It was originally developed for leukemia cells in 

monolayer/suspension, and it contains aminoacids, vitamins, serum growth factors, cytokines, 

being currently used for a large spectrum of cells, including suspension cultures of bone marrow 

cells, periphereal blood cells, and cells from solid tumors. RPMI 1640 contains the standard recipe 

of D-glucose and bicarbonate, but sometimes also L-glutamine if required. Like in the case of 

DMEM (Dulbecco’s Modified Eagle Medium), it can also contain HEPES, bicarbonate or reduced 

bicarbonate and can be used as transport medium (150).  

Sera are generally used at a 3-25 % ratio in the cell culture media. Nowadays, serum is not 

always used as supplement in cell culture media, in order to avoid contamination with 

mycoplasms, viruses and L-shaped bacteria. Serum has no exact composition, can differ from 

animal to animal, and therefore new lots should be tested prior to being used routine wise. Neither 

the exact composition of serum, nor the components which are in fact vital for cells are fully 

known so far. Serum generally contains growth factors, hormones, adhesion molecules, cytokines, 

amino acids, vitamins, and proteins (50-70 mg/mL). One should distinguish between foetal calf 

serum (FCS) and newborn calf serum (NCS). FCS is extracted from unborn calves, by butchering 

the mother cow between the third and the seventh month of pregnancy. PDGF-platelet derived 

growth factor. NCS is obtained by killing the calf in the first or second week of life, and is known 

to have a comparatively higher protein content. Currently, there are discussions whether heat-

inactivation of serum is indeed required. 

The INS-1E cell line was a gift from the group of Dr. Pierre Maechler (Genova University 

Hospital, Switzerland). The INS-1E cells were cultivated in cell culture flasks, at 37 °C and a 5 %-

CO2-content in the incubator. The cells were passaged once per week under the sterile bench, and a 

medium exchange was performed twice per week. The old medium was sucked off and the cells 

were washed with 5 mL diluted PBS, which was again sucked off. 3 mL Trypsin were added to the 

cells in order to detach them from the bottom surface, and left for incubation for ~ 5 minutes. After 

the complete solubilization of the cells from the bottom surface, a cell suspension was created by 

pipetting up-and-down with a sterile 5 mL pipette, until no cell clusters remained (controlled under 
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a light microscope, 20× air objective, Olympus). Two new cell culture flasks were set for further 

cultivation by adding 1 mL cell suspension in 25 mL fresh cell culture medium.  

Unlike preparing cells for cryoconservation, which has to be done slowly and with optimal 

cooling rates, defreezing of cells should be carried out as fast as possible. This is justified by the 

need to discard/dilute toxic cryoconservation products such as DMSO as soon as possible, in order 

to prevent cellular damage. For this purpose, cryovials containing cells were warmed up in a pre-

tempered water bath at 37 °C, until all ice crystals have been dissolved. The content of the 

cryovials was transferred under the sterile bench into a centrifuge tube, containing already pre-

warmed medium. Cells were then centrifuged for 10 minutes at 500 g and 37 °C. The supernatant 

was dissolved and the cell pellet was resuspendend into 200 µL freshly prepared medium. The cell 

number was determined as described in chapter 2.4.2 (see also Figure 19) and cells were seeded 

into new cell culture flasks at the required density (107, 148, 151). The cellular adhesion was 

controlled after 24 h under an optical microscope, prior to further handling. 

2.4.2. The WST-1 cell proliferation assay 

The WST-1 assay is a colorimetric assay for the quantification of cell proliferation and cell 

viability, based on the cleavage of the tetrazolium salt WST-1 by mithochondrial dehydrogenases 

in viable cells (Figure 19). The existence of a high number of viable cells results in an increase in 

the overall activity of mitochondrial dehydrogenases in the investigated sample, which in turn 

leads to an increase in the amount of formazan dye formed, thus directly correlating to the number 

of metabolically active cells in the culture. A strong yellow colour is a first visual indication of 

increased viability. It is used as a non-radioactive alternative to the [3H]-thymidine incorporation 

assay (152). The cell proliferation reagent WST-1 is a clear, slightly red solution, containing WST-

1 and an electron coupling reagent, diluted in phosphate buffered saline, sterile. Quantification of 

the formazan dye produced by metabolically active cells was realized by using a scanning multi-

well spectrophotometer (ELISA reader, Tecan 2000). The absorbance of the dye solution was 

measured at appropriate wavelengths, i.e. 450 nm with a reference at 620 nm. 

In recent years, several different tetrazolium salts like MTT, XTT and MTS have been 

employed for the measurement of cell proliferation and viability. Some advantages to other 

tetrazolium salts previously used are, as follows: WST-1 yields water-soluble cleavage products 
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which can be measured without an additional solubilisation step, it is stable and can be used as a 

ready-to-use solution and stored at 2-8 °C for several weeks without significant degradation. WST-

1 has a wide linear range and shows accelerated colour development compared to other dies. Plates 

can be read and returned to the incubator several times for further colour development. This 

technique requires neither washing nor harvesting of cells and the complete assay from the onset of 

the microculture to data analysis by ELISA reader is performed in the same microplate.  
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Figure 19 Cleavage of the tetrazolium salt WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulfonate) to formazan; EC = electron coupling reagent; RS= mitochondrial succinate-tetrazolium-reductase 

system. 

For a complete WST-1 assay, the experimental steps were as follows: 

Step 1: A cell suspension was prepared as described before. A hemacytometer was used to 

determine the total number of cells (Figure 20). The hemacytometer was covered with a cover slip 

and a small amount of cell suspension (~ 16 µL) was uniformly applied between the surface of the 

cover slip and that of the hemacytomerter with a micropipette. The cells in the 4 big squares (see 

Figure 20) were counted and the average value was calculated. One big square corresponds to 0.1 

µL. 

 
Figure 20 Schematic illustration of a hemacytometer. 
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This average number was then multiplied with 104/mL. The obtained value (e.g. 200 x 104) 

corresponds to 1000 µL. Therefore, the volume corresponding to the desired number of cells to be 

seeded into each well of the 96-well plate could be calculated, i.e. for 10000 cells/well. The cell 

suspension was diluted in order to obtain 100µL final volume/well.  

 A total number of either 36 or 72 wells of 96-well microplates (tissue culture grade, 96 

wells, flat bottom) were used for each experiment. Each measurement was carried out in triplicate. 

The wells corresponding to rows A and H were left empty. The cells were seeded into the 

remaining wells. Lines 2-12, rows B-D were filled with 100 µL diluted cell suspension. In line 1, 

rows A and H, only 100 µL medium was pipetted. The cells were incubated at 37 °C and 5% CO2 

for 24 h.  

Step 2: The active substance was added into the wells at the desired concentrations. 

Solutions of IAPP, IAPP and inhibitor, or free inhibitor, were prepared in Eppendorf cups prior to 

pipetting into the wells, for a total volume of 330 µL, out of which 100 µL was applied in each 

well (triplicate readings). The old medium was removed under the sterile bench from the wells. 

Several sterile tissues of corresponding size were placed under the bench and the wells were turned 

upside down, so that the medium could be adsorbed on the tissues. Further washing of the wells or 

directly sucking off the medium out of each well is not to be desired, since it would also detach 

some cells from the well bottom, interfering with the accuracy of the assay. 100 μL of the diluted 

stocks of active substances were thereupon distributed into the corresponding wells, i.e. rows B to 

G and lines 2 to 10. In rows A and H, and lines 1 and 12, only 100 μL medium were pipetted. Row 

12 corresponded thus to the 100% value, or control value, i.e. with no active substance to affect the 

survival of the cells. Row 1 served as blank value. The cells were exposed to the potential 

cytotoxic agents and further incubated at 37 ºC and 5% CO2
 for the respective desired incubation 

times.  

Step 3: The WST-1 cell proliferation reagent was diluted 1:4 with PBS, and subsequently 

1:10 with culture medium. 100 μL of this diluted solution was added to each well and allowed to 

react for 24 h, upon which the absorbance was measured. A control containing 100 μL of the 

diluted WST-1 (column 1) reagent, only, was measured as blank (applied in the wells which were 

treated in steps 1 and 2 with cell culture medium, only). 
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2.4.3. Sample preparation for fluorescence microscopy experiments 

Cells were cultured as described in section 2.4.1. The cells were then seeded into 96-well 

plates at 10000 cells/well, grown for 24 h prior to exposure to the agent to be tested (10 µM IAPP, 

a mixture of IAPP and resveratrol (1:1 molar ratio), or 10 µM resveratrol, respectively), and then 

exposed for different incubation times. After this step, the supernatant was replaced with a 5 µM 

membrane lipid probe (Texas Red-DHPE, 1 mM stock in DMSO) in serum-free medium for 20 

min, and afterwards the medium was replaced with PBS buffer, pH 7.4, containing 0.9 mM CaCl2, 

0.5 mM MgCl2 and 5 mM glucose, prior to the fluorescence microscopy investigations. IAPP-K-

Bodipy-FL was used to allow fluorescence imaging of the fibrils. 

(a)  (b)  
Figure 21 The fluorescent markers used in the illustrated cellular fluorescence imaging studies for amyloid staining: 

(a) Congo Red and (b) Thioflavine T. 

 

We have also tried to use staining with Congo Red and Thioflavine T (ThT), two amyloid-

specific dyes (Figure 21), known to bind essentially only to mature fibrils, but not to monomers or 

oligomers. However, we encountered that ThT was found to be toxic to INS-1E cells in the 

concentration range required for quantitative estimation of IAPP fibril formation (several µM). 

Also Congo Red showed pronounced non-specific binding to the cellular membranes of INS-1E 

cells. Moreover, we found a pronounced spectroscopic cross-talk between this dye and the cellular 

membrane marker Bodipy-DHPE, which was used in this approach in combination with Congo 

Red. As a consequence, we have opted for a different approach, where we simultaneously 

monitored two fluorescent dyes, with Bodipy being covalently coupled to the IAPP molecule, and 

either rhodamine-DHPE or Texas Red-DHPE as cellular membrane labels.  

2.4.4. Isolation of different IAPP aggregates and their cytotoxicity 

An IAPP stock was prepared by dissolving 3 vials of 0.5 mg IAPP each (84% peptide 

content) in 3 mL HFIP (108 µM IAPP). 100 µL from this stock were lyophilized overnight to yield 

a 100 µM IAPP solution upon redissolving in 108 µl acetate buffer, supplemented with 50 µM 
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ThT, for the ThT assay. The rest of the stock solution was liophylized overnight. The liophylized 

powder was redissolved in 10 mM natrium acetate buffer, pH 5.5, yielding a 100 µM IAPP 

solution, which was allowed to aggregate in 10 mM Natriumacetate buffer, pH 7.4, at 10 ºC, up to 

4 weeks. At different time points, i.e. 0 h, 7 h, 10 h, 25 h, 50 h, 100 h, 150 h, 150 h, 250 h, 3 

weeks, 4 weeks, and 5 weeks, respectively, aliquots were removed on ice, frozen in liquid nitrogen 

and then placed at -80 ºC for preservation, for future investigation by AFM for detection of 

predominant aggregation species, or for cytotoxicity tests for the determination of the major 

cytotoxic species. After all species of interest have been isolated, samples were defrosted 

(originally 1 h on ice) and diluted to either 10 or 20 µM peptide concentration with cell culture 

medium. A WST-1 assay was performed, as described in chapter 2.4.2., with the exception that in 

this case blanks corresponded to cell culture medium diluted 1:10 (for 10 µM IAPP final 

concentration) or 1:5 (for 20 µM IAPP final concentration) with natrium acetate buffer.  

Fluorescence spectroscopy measurements were carried out on a K2 multifrequency phase 

and modulation fluorometer with photon counting mode equipment (ISS, Urbana, IL). A schematic 

set-up is illustrated in Figure 22.  

ThT is a benzothiazole dye (Figures 20b and 23), which displays enhanced fluorescence 

upon non-covalent binding to mature amyloid fibrils. No intermediate/amorphous aggregate 

binding was reported. It has two maxima, λ1exc max = 335 nm, λ1emis max = 438 nm (425-455 nm), 

λ2exc max = 440 nm, λ2emis max = 482 nm, only the latter one being relevant for fibril binding studies. 

There are several hypotheses regarding the mechanism by which ThT interacts with amyloid 

fibrils. Although it is tempting to speculate that ThT may bind between the β-sheets of the fibrils, 

no experimental proof exists so far to support this statement (153); binding probably stabilizes the 

planar form of the molecule and leads to a 10-500 fold increase in ThT fluorescence intensity 

(153). Some studies suggest that the positive charge of ThT is involved in its micelle formation 

(above 4 μM) , which then binds to amyloid fibrils (154). The emission intensity at 482 nm was 

recorded upon excitation at 440 nm as a function of time t. The data were normalized by dividing 

the intensity at every point to the intensity recorded for the final aggregates. 
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Figure 22 A schematic set-up of the K2 fluorometer A xenon arc lamp acts as source of excitation light. The emitted 

light is focused with the help of lenses on the entrance slit of the excitation monochromator.; the spectral dispersion in 

the monochromator occurs in the concave, holographic gratings with 1200 grooves per millimeter. The spectral region 

ranges from 200-800 nm with Δλ = 0.25 nm. Both monochromators are equipped with a set of interchangeable slits, of 

2, 1, 0.5 mm; the linear dispersion of the monochromator being 8 nm/mm, slits have a bandwidth of 16, 8, and 4 nm. 

The monochromatic light is then stirred over a mirror, fastened to the corner of a two-way polarizer, directly on the 

beam splitter provided in the excitation light path, reflecting part of the excitation light to a reference cell, containing a 

“quantum counter”, a rhodamine-B concentrated solution which virtually absorbs all incidents light from 200-600 nm. 

The intensity can be converted to a signal proportional to the number of incident photons by the use of rhodamine B as 

reference, since excitation spectra are distorted primarily by the wavelength dependence of the intensity of the exciting 

light. The quantum yield and emission maximum (~630 nm) are essentially independent of excitation wavelength from 

220-600 nm. 

 

    
Figure 23 Model for the structure of ThT, showing the rotation of the rings. The amyloid state is thought to stabilize 

the planar structure of the molecule, thus causing intense fluorescence (153). 
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3. Results and discussion 

3.1. Studies on IAPP and IAPP fragments fibril formation in the absence of lipid membranes 

Here we report on high-pressure work with IAPP, including IAPP fragments, aim to reveal 

new information about their aggregation pathways and the structural properties and polymorphic 

nature of their aggregate and/or fibril structures. The conceptual framework for using such 

pressure-axis experiments is as follows: The interior of proteins is largely composed of rather 

efficiently packed residues (with a void volume on the order of less than 0.5%), more likely 

hydrophobic than those at the surface. High hydrostatic pressure induces conformational 

fluctuations due to a decrease in the strength of hydrophobic and electrostatic interactions, finally 

leading to partial pressure-induced unfolding through transfer of water molecules into the protein 

interior, gradually filling cavities and leading to the dissociation of close hydrophobic contacts and 

subsequent swelling of the hydrophobic protein interior (129, 130). 

3.1.1. High pressure studies on full-length IAPP 

  In order to investigate the stability of IAPP towards high pressure, either fresh peptide or 

pre-formed IAPP fibrils were subjected to pressures up to 3.5 kbar (350 MPa) and the changes 

were monitored by FT-IR spectroscopy and AFM to yield information about the transformation 

process and the structures evolving at various levels of complexity. The protein solutions were 

prepared from stock solutions in a water buffer with 1 % residual TFE. Such condition has been 

shown to give raise to or to synchronize the formation of pre-assembled β-sheet structures which 

are rich in fibrils and protofibrils (155). FT-IR spectroscopy was used to monitor the secondary 

conformational changes, a common tool used for monitoring α-helix to β-sheet transitions and to 

disentangle between different β-sheet structures that accompany the aggregation process, and 

which can also be used for pressure-dependent spectroscopic studies (113, 114, 127, 129).  

  Figure 24 shows FT-IR spectra of various IAPP samples: freshly dissolved IAPP and IAPP 

aggregated for 3 days at ambient pressure and at 3.5 kbar, respectively. All spectra were taken at 

room temperature (25 °C). The FT-IR spectrum of the freshly prepared IAPP sample (5 min after 

preparation) at a concentration as high as 0.1 wt% exhibits an intense IR band appearing at ~ 1622 

cm-1, which is due to intermolecular parallel β-sheet structures, and a pronounced peak at 1673 cm-

1, which is due to turns and residual trifluoracetic acid (TFA) in the sample. Such IR pattern is 
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indicative of the aggregated state of IAPP according to data of other amyloidogenic proteins, like 

insulin (115, 156). After the incubation period of 3 days at ambient temperature and pressure, the 

IR spectrum shows similar features, with a broadening and a small shift of the amide I' band to 

slightly smaller wavenumbers (~ 1618 cm-1), however.  

 
 

Figure 24 FT-IR spectra (at the top) of IAPP: (-) freshly dissolved sample at time zero, (- ⋅ - ⋅ -) after 3 d of 

aggregation in 50 mM NaH2PO4 (pD 7.4) at ambient pressure, (-  -  -) after 3 d at 3.5 kbar. All data were taken at T = 

25 oC. At the bottom of the figure, also the second derivative spectra are shown, which allow a more accurate 

determination of peak positions. 

 
  Very likely, a distribution of different sizes and shapes of IAPP aggregate is found initially, 

and the overall size of the structures evolving increases with increasing IAPP concentration. After 
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the incubation period it seems that the �-strands are realigning from a non-perfectly packed initial 

state to more ordered structures with stronger H-bonding, leading to the observed shift of the 

amide I' band to 1618 cm-1 accompanied by an increase of the β-turn content. When IAPP was 

aggregated under pressure (3.5 kbar), the aggregate band shifts to significantly smaller 

wavenumbers (∼ 1614 cm-1), indicating that the pressure treatment leads to the formation of a 

different aggregate structure with stronger intermolecular H-bonding between �-sheet strands, or 

to a larger population of these species.  

  In order to reveal the different morphological structures formed, AFM measurements were 

carried out for this IAPP concentration under the same preparation conditions (Figure 25). Most of 

the aggregate structures seen in the sample that was not subjected to HHP are short (< 1 �m) 

fibrils with an average of 5 - 15 nm diameters as determined from the AFM height profile. Such 

rather short fibrillar structures probably appear due to a comparably fast nucleation process at this 

rather high protein concentration. The pressure treated sample (Figure 25, panel B) still contains 

fibrils, but also a significant amount of smaller oligomeric particles (of 0.5 - 1.5 nm size). 

  Taking the FT-IR spectroscopic and AFM results together, we may conclude that the 

sample subjected to high pressure treatment displays less fibrillar β-sheet structures and a larger 

population of smaller amorphous aggregates with a different H-bonding pattern. To support these 

conclusions, the samples without and with 3 days of pressure treatment were centrifuged at 16.000 

rpm at 4 oC for 20 min in order to remove any insoluble material and the protein concentration of 

the supernatant was determined from the UV absorbance at 274.5 nm, using a molar extinction 

coefficient of 1440 M-1cm-1 (43). Protein was detected only for the pressurized IAPP (~ 17 % of 

the overall protein concentration). Immediately after the absorbance measurements, also far-UV 

CD spectra were taken. The HHP treated sample showed a strong negative band at about 200 nm 

and a positive band at 230 nm, characteristic for the presence of unordered structures (data not 

shown). The different fibrillar and non-fibrillar amorphous/oligomeric morphologies found for the 

high pressure treated sample indicate that not all IAPP aggregate structures are equally sensitive to 

pressure, hence suggesting the existence of pressure resistant fibrils with densely packed cores and 

a population that can be dissociated by HHP.  
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Figure 25 AFM height images of 0.1 wt% IAPP aggregates after 3 d without (panel A) and after pressure treatment at 

3.5 kbar (panel B). The same samples analyzed by FT-IR spectroscopy were diluted with deionized water to yield a 

final concentration of 1 µM. 20 µL were applied onto freshly cleaved muscovite mica and allowed to dry before the 

AFM analysis. 
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3.1.2. Kinetics of aggregation of IAPP and IAPP fragments 

  We also carried out a detailed comparative kinetic study of the aggregation/fibrillation 

reaction of IAPP, IAPP 1-19 and IAPP 1-29 in neutral buffer at 37 oC by FT-IR spectroscopic 

analysis.  

 
Figure 26 FT-IR spectra of freshly dissolved IAPP and fragments of IAPP at a concentration of 0.1 wt% (panel A) and 

0.5 wt% (panel B): (-) IAPP, (- - -) IAPP 1-19, (-·-·-) IAPP 1-29. At the bottom of the figure, also the second 

derivative spectra are shown, which allow a more accurate determination of peak positions. All data were taken at T = 

37 oC in 50 mM phosphate buffer (pD 7.4). 
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  The peptides were originally dissolved in HFIP and subjected to overnight lyophilization 

prior to re-hydration in buffer. Whereas the full-length IAPP readily forms fibrils even at 

concentrations in the low µM range, the aggregation reaction of the fragments occurs in a 

reasonable time range at much higher concentrations, only. Hence, kinetic experiments were 

carried out at 0.1 and 0.5 % wt% solutions at T = 37 oC.  

  All freshly dissolved peptides analyzed by FT-IR spectroscopy show a predominantly 

disordered conformation at time zero (Figure 26, panel A), indicated by a broad amide I' peak at ∼ 

1642-1644 cm-1. Both, full length IAPP and IAPP 1-29 already contain a significant amount of �-

sheet structures from the very beginning of the experiment at these concentrations. A characteristic 

shift from random coil to β-sheet structures is observed for all three peptides, with a significant 

amount of random/turn structures still present in the case of the two fragments even after 24 h 

(Figure 26, panel C). As revealed in Figure 26 (panel C), the random coil to beta-sheet conversion 

is much more pronounced for the full-length IAPP in comparison to the fragments. The position of 

the IR aggregate bands occurs at slightly different positions: at 1625 cm-1 for IAPP 1-19, at ∼1618 

cm-1 for IAPP 1-29 and at 1616-1618 cm-1 for full-length IAPP. For both the 1-19 and 1-29 IAPP 

fragments, the shift from random coil to β-sheet conformation occurs rather rapidly within the first 

20 minutes, followed by a much slower increase in β-sheet content, not even reaching plateau 

values even after 3 h (Figure 27). Conversely, for full-length IAPP, after a slightly slower initial 

nucleation process, the random to β-sheet conversion is completed after about 40 min.  

  In order to ensure sufficient time for complete fibril maturation in all three cases, we 

incubated samples prepared in the same manner as for the FT-IR experiments at 37 ºC for 24 h 

prior to take aliquots for the AFM analysis (Figure 28). Due to the peak of remaining TFA in the 

sample, peak fitting of the data is not very precise, but the β-sheet content of the mature fibrillar 

state can be estimated from the FT-IR data assuming similar transition dipole moments for the 

various conformers. The β-sheet content at the end of the experiment (after ∼20 h) is higher than 

50 % for IAPP, ∼ 32% for IAPP 1-19 and ∼ 27 % for IAPP 1-29.  
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Figure 27 Kinetics of the aggregation process for all three (▪▪▪ IAPP, ▲▲▲ IAPP 1-19, +++ IAPP 1-29) based on the 

normalized maximum peak intensities in the β0-sheet region of the amide I' band. All data were taken at T = 37 oC in 

50 mM phosphate buffer (pD 7.4). 

 

  Comparing the second derivative IR spectra at the final fibrillar structures (Figure 26, panel 

C), it can be seen that fragment IAPP 1-29 is the only one with a single peak in the β-sheet region, 

which appears at 1618 cm-1. IAPP 1-19 shows two β-peaks, a major one at 1625 cm-1 and a small 

one at ∼ 1614 cm-1. For comparison, full-length IAPP shows a main peak at ∼ 1616 cm-1 with a 

shoulder at ~ 1625 cm-1. Both, full IAPP and fragment 1-19 exhibit an additional peak around 

1640 cm-1 (much more pronounced for IAPP 1-29), indicating a high population of remnant 

unordered structures.  

  The different wave numbers assigned to individual peptide β-aggregate structures indicate 

different packing properties. The smaller the wave number is, the stronger the H-bond strength of 

the intermolecular β-sheet structure. Hence, compared to IAPP and fragment 1-29, fragment 1-19 

seems to form less strongly H-bonded and more disordered β-sheet fibrillar structures. Considering 

the fact that fragment 1-29 shows essentially one peak in the β-sheet region, only (at ∼ 1618 cm-1), 

this indicates that in fragment 1-29 the amino-acid regions 1-19 and 20-29 seem to take part in 

forming β-strands cooperatively and pack efficiently against each other.  
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Figure 28 Selection of AFM height images of 0.1 wt% of a) IAPP 1-19, b) IAPP 1-29, and c) full-length 

IAPP aggregates after 24 h at 37 ºC. Samples incubated under the same conditions as those measured in the 

FT-IR sample cell were diluted with deionized water to yield a final concentration of 1 µM. 20 µL were 

applied onto freshly cleaved muscovite mica and allowed to dry before the AFM analysis.  
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  To gain insight into the morphology and particular characteristics of the aggregate / fibril 

structures (size, length) formed by these three peptides, tapping-mode atomic force microscopy 

(AFM) studies were employed. Most aggregate structures seen for IAPP 1-19 (Figure 28a) under 

these preparation conditions are about 1-2 µm long. The sample seems to be rather polymorphic, 

with a relatively large population of different aggregate types with probably correspondingly 

different hydrogen bonding patterns (see the discussion of the FT-IR data above).  

  The following main types of structures could be identified: fibrils with 5-15 nm height and 

about 1-2 µm long, similarly to what is normally seen for full-length IAPP (Figure 26), thin 

protofibrils, having 1-2 µm length and 0.5-1.5 nm diameter, but also thick and short fibrils of less 

than 1 µm length and about 50 nm thickness are observed, probably as a result of considerable 

lateral growth of oligomers. In addition, some bent structures and a large population of oligomers 

(upper right corner of Figure 28 a) has been detected as well. 

  The corresponding fibrillar structures for IAPP 1-29 and full-length IAPP are shown in 

Figures 28b and 28c, respectively. IAPP 1-29 also presents a polymorphic behavior forming 

different types of fibrillar structures upon aggregation, ranging in length from 200 nm up to 2 µm 

with diameters of 5-15 nm as seen for IAPP as well. The fibrils are often found to be branched and 

sometimes also bent fibrils are found. Under these experimental conditions, IAPP forms mostly 

one type of fibrils, about 1-2 µm long with 15 nm diameter (Figure 28c). Often, bent structures are 

found as well. Oligomeric species and protofibrils are also present, but to a much lesser extent than 

for the IAPP fragments. 

  We have further increased the concentration of the fragments up to 0.5 wt%. A similar 

kinetics of aggregation was observed as in the case of the 0.1 wt% solution. The spectral 

characteristics are also similar to those of the lower concentration (Figure 26, panels B, D). For the 

IAPP 1-19 aggregate, we observe again two peaks, a major peak at 1625 cm-1 and a second one at 

1614 cm-1, the latter being more pronounced at this higher concentration (Figure 26, panel D). 

Hence, all the characteristics observed for the 0.1 wt% concentration are observed at this higher 

concentration as well, including the AFM morphologies of the fibrillar structures formed. 
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3.1.3. High pressure studies on IAPP fragments 

  High pressure studies were carried out on both IAPP fragments as well to reveal if high 

pressure treatment is able to disrupt the mature fibrillar structures formed by the 1-19 and 1-29 

fragments. Samples were first incubated at 37 ºC for 24 h, thus allowing complete fibrillation. 

From these samples, aliquots were taken for FT-IR spectroscopic and AFM analysis. The samples 

were then subjected to high hydrostatic pressure (3 kbar) for 24 additional hours at 25 ºC. 

  Representative FT-IR results are shown in Figure 29. Unlike what we have previously 

observed for the pressurized full-length IAPP samples, the fragments show no major spectral 

changes when comparing the pressure-treated samples with the untreated ones. This suggests that 

the fragments form aggregates which are rather pressure-insensitive, i.e. contain densely packed 

cores which are more pressure-stable than full-length IAPP. This obviously holds true for all 

aggregate structures present which have been detected by AFM analysis, the oligomeric and the 

fibrillar ones. In accordance with the FT-IR spectroscopic data, the AFM pictures of the 

pressurized samples did not exhibit significant morphological changes as well (data not shown).  

We pointed out in the introductory section that IAPP has not only one but several 

amyloidogenic cores that are interacting to form an organized aggregate structure and that 

hydrophobic interactions may drive the initial stage of the aggregation process. According to the 

literature, aggregation of the C-terminal domain of IAPP (amino acid residues 20-29 and 30-37) is 

thought to be most likely driven by hydrophobic interactions (50). Previous theoretical studies 

regarding secondary structure predictions of human IAPP indicate that there is one potential R-

helical region between amino acid residues 8 and 14 and three potential β-strand regions. A β-turn 

has been predicted at Asn31, which would result in two adjacent  β-strands (32-37 and 24-29); a 

third  β-strand is proposed to exist in region 18-23 (50). These predictions have been 

complemented by experimental studies, showing aggregation into ordered fibrillar structures of 

fragments 8-20 and 8-37 as well (47, 50). Additionally, in our study, the comparison of the 

fibrillation of the different peptides indicates that IAPP 1-19, IAPP 1-29, and full length IAPP are 

all three capable of self-assembly under similar conditions in vitro, to different extents, however. 

Interestingly, we found that fragment IAPP 1-19 is also prone to self-assembly and fibrillation. 

These findings suggest that the only region of IAPP reported not to form fibrils so far is region 1-
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13, to be more precise, region 1-8, which is the region exhibiting amino acid residues not prone to 

forming  β-sheets. Rather, this region has been suggested to be responsible for membrane insertion 

(52, 53) and has most likely a modulating influence on conformational conversions and fibril 

formation (50). As HHP is acting to weaken or even prevent hydrophobic self-organization and 

electrostatic interactions, we may expect that application of HHP may be used as a measure to 

reveal the importance of these interactions in formation of aggregates and/or fibrils of IAPP and its 

fragments.  

With all data taken together, a hypothetical model for IAPP fibril formation may be 

suggested: IAPP undergoes fast nucleation (due to several amyloidogenic “cores”), largely driven 

by hydrophobic interactions. Hence, formation and packing of fibrils are not perfect, and mixed-

registry  β-sheet structures might exist, in particular at these high protein concentrations that were 

used, which can partially be dissociated by pressure leading to smaller aggregate structures and 

oligomers. An HHP as low as 3 kbar is sufficient to weaken and (at least partially) disrupt the 

hydrophobic cores, thus leading to formation of a heterogeneous population of fibrillar aggregates 

with IR amide I′ bands in the low-wavenumber region (which is typical of a more strongly H-

bonding pattern of intermolecular  β-sheets) and a large amount of nonfibrillar smaller aggregates 

and oligomers, as detected by AFM. Our data also indicate that at least some of the preformed 

IAPP fibrils are sensitive to high hydrostatic pressure, similar to loosely packed, amorphous 

aggregates and inclusion bodies (131, 157, 158). Considering the fact that high hydrostatic 

pressure is an effective means of disturbing ionic and hydrophobic interactions but not hydrogen 

bonds, we can conclude that these former two types of interactions are also important for the 

stability of full-length IAPP fibrillar aggregates, as also suggested in work using denaturing agents 

(43).  

Unlike full-length IAPP, the fragments investigated here exhibit an enhanced stability 

toward high-hydrostatic pressure treatment with maintenance of their fibrillar structures even up to 

pressures of 3 kbar. This points toward more densely packed aggregate structures with less defect 

volume and strong cooperative hydrogen bonding in these fragments when compared to full-length 

IAPP. The FT-IR data clearly indicate that fragment 1-29 has intermolecular β-sheet 

conformational properties different from those of fragment 1-19, the latter exhibiting polymorphic 
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behaviour with more disordered structures and less strongly H-bonded fibrillar assemblies. 

Obviously, hydrophobic interactions and electrostatic interactions as well as packing defects play a 

minor role in the IAPP 1-29 assemblies. Also, this indirectly implies that in the C-terminal region, 

hydrophobic interactions and/or less efficient packing for amino acid residues 30-37 (present in 

full-length IAPP, sensitive to high pressure) becomes more important than in fragment 20-29 

(present in IAPP 1-29), which leads to the marked pressure sensitivity observed for full-length 

IAPP. The different molecular configurations of the peptides are probably the basis for the various 

structures and morphologies observed here. The packing of the residues outside the backbone 

region may constitute the observed polymorphisms. 

 
 

Figure 29 FT-IR spectra and the corresponding second derivative spectra of IAPP 0.5 wt% 1-19 (at the top of the 

figure) after 24 h of aggregation in 50 mM NaH2PO4 (pD 7.4) at ambient pressure (- - - ), and after additional 24 h at 3 

kbar (-). At the bottom of the figure, the FT-IR spectra and the corresponding second derivative spectra of IAPP 1-29 

after 24 h of aggregation in 50 mM NaH2PO4 (pD 7.4) at ambient pressure (-.-.-) and after additional 24 h at 3 kbar 

(…..) are shown. All data were taken at T = 37 oC. 

1 3 µm
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3.2. Studies on IAPP fibril formation at heterogenous raft lipid interfaces (by confocal/two-

photon excitation fluorescence microscopy 

The lipid mixture DOPC: DPPC: cholesterol 1:2:1 displays liquid-ordered (lo) / liquid-

disordered (ld) phase coexistence at room temperature. By gradually increasing the temperature, 

the transition to the all-fluid ld phase was detected to take place at ~ 40 °C (Figure 30). For 

visualization, we used the membrane fluorescence marker rhodamine-DHPE which is known to 

preferentially label the ld phase (displayed in grey in Figure 30), rather than the lo phase (displayed 

in black). Above ~ 40 °C, the fluorophore was found to be homogenously distributed all over the 

membrane surface of the GUVs, indicating the presence of a homogenous ld phase. Below that 

temperature, phase separation can be clearly seen. 

 
Figure 30 Temperature scan for GUVs made from DOPC : DPPC : cholesterol 1:2:1. The GUVs display lo / ld phase 

coexistence at room temperature. The transition from the lo / ld-coexistence region to the ld phase occurs at ~ 40 oC. 

Rhodamine-DHPE was used as membrane marker, labeling preferentially the ld domains (displayed in grey). The 

vesicle size is ~ 30 µm. 

 

Since we are essentially interested in the lipid phase coexistence region here, and how it 

can modulate peptide insertion and the fibril formation process of IAPP, the peptide was added 

into the system at room temperature, i.e., at 25 °C (Figure 31). Prior to peptide insertion into the 

membrane, no significant cross-talk between the red (rhodamine-DHPE) and the green (Bodipy-

FL) channel was detected (Figure 31, 0 min). Within 1-2 minutes after peptide addition, insertion 

of the C-terminally Bodipy-FL-labeled IAPP (IAPP(1-37)-K-Bodipy-FL) into the GUVs 

membranes is already detected. Moreover, the peptide seems to preferentially partition into the ld 

phase, already strongly affecting the lipid bilayer integrity within minutes after its addition. 
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Our time-lapse study indicates drastic changes in the GUVs morphology due to the strong 

interaction with IAPP, especially within the first hour of interaction (readings at 2, 35 and 60 min, 

after exposing the membrane to the peptide). With time, IAPP induces detachment of the otherwise 

stable GUVs from the platinum wires and incorporation of membrane lipids into the growing 

fibrils. Therefore, bent structures (after ∼ 1 h) and circularly-shaped fibrils (after ∼ 72 h) grow on 

the surface of available GUV templates. After ~ 72 h of incubation, a perfect overlap of the 

fluorescent signals in the two detection channels is seen, and no intact GUVs are detectable at this 

point anymore. These findings indicate an overall pronounced association/incorporation of lipids 

into the growing IAPP fibrils.  

 
Figure 31 Interaction of IAPP with raft-like GUVs (DOPC : DPPC : cholesterol 1:2:1) monitored at room 

temperature. C-terminally labeled IAPP (IAPP-K-Bodipy-FL, displayed in green) inserts preferentially into the ld lipid 

phase (displayed in grey), the insertion being already detectable 2 min after peptide addition (5 µM). The strongest 

effects are observable within the first hour of interaction. With time, IAPP fibrils grow at the expense of membrane 

material, adopting a circular shape, thus reflecting the shape and size of the GUVs which serve as template here (~ 30 

µm diameter). The scale bar represents 10 µm.  
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For comparison, we have also investigated the interaction of the same lipid system with 

unlabeled IAPP (data not shown). Identically prepared GUVs were in this case treated with 5 µM 

IAPP instead of 5 µM IAPP-K-Bodipy-FL. Under these conditions, we did not detect any 

influence of the fluorescence label on the interaction with the lipid membrane, and thus, on the 

mechanism and kinetics of IAPP aggregation. A similar kinetics of interaction and effect on 

membrane interaction and disruption is observed, with the most drastic changes occurring within 

the first hour after addition of the peptide. This finding is also in agreement with supplementary 

atomic force microscopy (AFM) measurements showing disruption of the raft membrane at an 

early stage of the fibrillation reaction of IAPP (data not shown). 

Several studies reported in the literature had previously indicated that the positively 

charged N-terminus is responsible for the insertion of IAPP into negatively lipid monolayers 

mainly via electrostatic interactions (53), and this is also the reason why we opted for the C-

terminal labeling of IAPP (PSL Laboratories, Heidelberg). However, understanding IAPP-

membrane interactions seems to be more complex, and electrostatic interactions are probably not 

the only important type of interaction present (52). It is to be noted that the even more positively 

charged rodent IAPP does not seem to insert strongly into negatively charged membranes (H18 in 

human IAPP corresponds to R18 in rodent IAPP) (53) and that the negatively charged DNA has a 

less pronounced accelerating effect on IAPP fibril formation as compared to anionic lipids (37), 

thus strengthening the important role of the hydrophobic lipid core region in IAPP fibril formation.  

Recently, it has been suggested that the interaction of IAPP with lipid head-groups via 

charge interaction might essentially lower the energy barrier for separating neighboring lipid 

molecules and inserting between the lipid chains (27). The previously reported literature data, and 

the strong peptide-membrane interaction observed in our study on the zwitterionic raft-model 

system, involving membrane damage, associated fibril growth and lipid incorporation into the 

growing fibrils, clearly demonstrate that the nature of the interaction is not purely electrostatic, but 

rather that, once adsorbed and partially inserted, IAPP will interact with the membrane via 

hydrophobic interactions, thus facilitating further peptide penetration, which leads to an increase in 

local peptide concentration in the core region of the membrane.  
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Once hydrophobic patches of membrane lipid chains are exposed to IAPP, the peptide will 

probably start “pulling” membrane lipids into the growing fibrils. In fact, hydrophobic interactions 

are also considered to be a major driving force in IAPP fibril formation in the absence of 

membranes (124). These findings may as well be the starting point of further studies on 

amyloidogenic peptides regarding the modulation of fibril formation by lipid in vivo. 

 To diminish energetic costs, initial incorporation of the peptides at the rim of the domains 

of the heterogeneous membrane, where the volume fluctuations are most prominent, would be 

most likely, leading to a favorable decrease of the associated line energy. The increase in 

membrane defects upon incorporation of the peptide will facilitate further peptide penetration, 

which leads to an increase in local peptide concentration in the core region of the membrane, thus 

allowing condensation of oligomeric particles and fibril growth. As the biological membranes are 

composed of a plethora of more or less fluid-like and raft-like domains, the strong membrane-

disrupting potency of IAPP oligomers in heterogeneous membranes might be the reason for its 

cytotoxicity. Furthermore, extraction of lipids may be a common feature of amyloid formation in 

vivo, since extracellular amyloid deposits from a number of diseases have been found to be 

associated with cellular lipids (19). These findings would have to be taken into account in the 

design of inhibitors for therapeutic approaches. 

3.3. Studies on IAPP fibril formation, associated cytotoxicity and their inhibition by 

resveratrol using the INS-1E cell line as model system 

3.3.1. Fluorescence imaging and cytotoxicity studies on the interaction of IAPP with INS-1E 

cells and the inhibitory effect of resveratrol 

We also visualized the interaction of IAPP with INS-1E cells (Figure 32), and additionally 

reveal the IAPP species formed in the presence of this potent inhibitor, with the aid of fluorescence 

microscopy imaging. IAPP readily inserts into the cell membrane within the first minutes of 

interaction (readings at 10, 20, 30 min, 1 h, data not shown), and fibrils grow at the expense of 

cellular membranes. After 3 h, fibrils already incorporated lipid membrane material, leading to 

structures of about 10 µm lengths and 2 µm thicknesses (Figure 32, 3 h).  

 



 72

 
Figure 32 Interaction of IAPP with INS-1E cells at different time points monitored by fluorescence microscopy. The 

barrier function of cellular membranes is lost in the presence of IAPP, lipids getting incorporated into the growing 

IAPP fibrils (25 - 50 µm length, 1.5 - 4 µm thickness). After 24 h, no significant increase in fibril dimensions was 

observed anymore. Non-treated cells were used as control (data not shown). Green: IAPP-K-Bodipy-FL, red: Texas-

Red DHPE labeled INS-1E cells, yellow: merge of the two detection channels showing co-localization of IAPP and 

cell membranes. The scale bar corresponds to 10 µm.  
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As the barrier function of the cellular membranes is lost, lipids and cellular material gets 

incorporated into the growing fibrils, thus explaining the unusual thickness and length of the fibrils 

(i.e., 25 - 50 µm length, 1.5 - 4 µm thickness) compared to the corresponding dimensions in the in 

vitro studies (72, 124, 151). A branching and twisting tendency was also observed. In all 

investigated samples, cellular lipids were incorporated into the fibrils, and after 24 h no significant 

increase in fibril dimensions was observed anymore. By using non-treated cells as well, it was 

obvious that the observed cellular morphological changes can be attributed to IAPP-induced cell 

death, in line with results using the WST-1 assay (Figure 33). 

Extending the discussion regarding the interaction of IAPP with lipid membranes, it is 

quite obvious that in the case of cellular studies, the situation may be much more complex. It is not 

only the lipid membranes that create a hydrophobic environment, thus allowing IAPP to penetrate 

into the lipid bilayer. Additional factors might also play an important role in attracting IAPP to the 

cellular surface, thus facilitating its aggregation. For example, binding to basement membrane 

heparan sulphate proteoglycans might additionally contribute to amyloid formation (159).  

A synthetic compounds, phenolsulfonphthalein, has been shown to inhibit IAPP fibril 

formation also (160), but still, with synthetic compounds, cell toxicity remains an issue for drug 

development. On the other hand, naturally occurring polyphenolic compounds have an advantage 

over synthetic ones because of their nontoxicity as well as their biocompatibility. These 

characteristics of naturally occurring polyphenolic compounds have been exploited for the 

discovery of A β and other amyloid inhibitors. In an elegant study, Wanker’s group has shown that 

EGCG, a naturally occurring polyphenolic compound, can inhibit amyloid formation of Aβ and α-

synuclein (75, 76). One other important polyphenolic compound, resveratrol, which is found in 

grapes and red wine, has been shown to inhibit the cytotoxicity of Aβ (25–35) and to prevent its 

fibril formation (77, 161, 162). 
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Figure 33 Cell viability of pancreatic β-cells (cell line INS-1E) after exposure to 10 µM IAPP (white), 10 µM of both 

IAPP and resveratrol (light grey), and 10 µM resveratrol, only (dark grey). 
 

 
Figure 34 Inhibition of IAPP fibril formation and reduced cytotoxicity in the presence of resveratrol on INS-1E cells 

at different time points. Cells were exposed to mixtures of IAPP and resveratrol at a 1:1 molar ratio. Both for the 24 

and 48 h-treated samples, no fibrillar structures are observed. The intact cell morphologies account for the reduced 

cytotoxicity acquired by efficient inhibition of IAPP aggregation by resveratrol at an early stage. Small spherical 

oligomeric particles (~1.5 µm diameter), possibly non-toxic off-pathway oligomers, are detected both in the vicinity of 

the cell membrane as well as in the bulk. Green: IAPP-K-Bodipy-FL, red: Texas-Red DHPE labeled INS-1E cells, 

yellow: merge of the two detection channels, showing the localization of IAPP non-toxic oligomeric aggregates, both 

near INS-1 E cell membranes as well as in the bulk. The scale bar corresponds to 10 µm.  
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The effect of resveratrol on IAPP fibril inhibition was studied by using the pancreatic cell 

line INS-1E. The first test was a standard WST-1 assay, performed as described in the methods 

section. In a control experiment, only 60% cells survived in the presence of 10 IAPP (Figure 33). 

In the presence of 10 µM resveratrol, the survival of the cells increased to about 90 %. As depicted 

in Figure 33, resveratrol itself is nontoxic to the cells at 10 µM concentrations. This shows that 

resveratrol is not only an effective in vitro inhibitor, it can also be considered a potent inhibitor in 

the cellular model system as well. Inhibiting the formation of oligomeric and fibrillar species 

during amyloid formation is a promising approach to prevent amyloid-related diseases.  

  It is clearly seen that resveratrol arrests IAPP fibril formation and associated cytotoxic 

effects at an early stage (Figure 34). Since it is generally believed that early oligomers may be 

more cytotoxic than mature fibrils, it can be speculated that in this case resveratrol leads to 

formation of non-toxic, off-pathway amorphous aggregates of approximately 1.5 µm diameter. 

Insertion into the membrane is largely prevented, since such structures are also visible in the bulk 

as illustrated in Figure 34, both for the 24 h-, as well as for the 48 h-treated sample. 

 
Figure 35 Schematic illustration of the inhibitory effect of resveratrol on IAPP fibrillation at lipid membrane 

interfaces (59). 

 
We have also tried to use Congo Red and Thioflavine T (ThT) staining of the fibrils 

formed. However, we encountered that ThT was found to be toxic to INS-1E cells in the 



 76

concentration range required for quantitative estimation of IAPP fibril formation (several µM). 

Also Congo Red showed pronounced non-specific binding to the cellular membranes of INS-1E 

cells. Moreover, we found a pronounced spectroscopic cross-talk between this dye and the cellular 

membrane marker Bodipy-DHPE, which was used in this approach in combination with Congo 

Red. As a consequence, we have opted for a different approach, where we simultaneously 

monitored two fluorescent dyes, with Bodipy covalently coupled to the IAPP molecule, and 

rhodamine-DHPE as cellular membrane label.  

Interestingly, membrane incorporation into IAPP fibrils was also observed in our cellular 

studies on INS-1E cells, fibrillar structures being typically 25-50 µm long and 1.5-4 µm thick. Our 

conclusions on model-raft systems and INS-1E cells are very well complemented by studies of 

Sparr et al. (25), who used different (non-raft) model lipid systems and a different cell line, and 

also observed lipid uptake into amyloid fibers, ruling out formation of discrete protein pores (26). 

All these results clearly point towards the incorporation of lipid upon IAPP fibril formation, with 

hydrophobic interactions being a major player in membrane-associated amyloid formation and thus 

possibly in the onset of T2DM, once the barrier function of the cell membrane is lost. It may very 

well be that lipid-containing amyloid aggregates are universal structures of amyloid in living cells. 

The imaging studies additionally indicate that the pronounced cytotoxicity of IAPP on INS-

1E cells can be largely overcome by inhibition of IAPP fibrillation by the red wine compound 

resveratrol, which is able to arrest IAPP fibril formation at an early stage, possibly leading to the 

formation of non-toxic, “off-pathway” large oligomeric and amorphous structures. Our 

fluorescence microscopy results, taken together with the WST-1 assay outcome (151), clearly 

show that the changes in morphology observed for cells treated with IAPP-resveratrol mixtures, 

compared to IAPP-treated cells, correlate with a change in toxicity. The findings presented here 

are also in line with additional X-ray reflectivity studies on the interaction of IAPP with resveratrol 

in the presence and absence of membrane interfaces (59). Several studies from our group (59, 148, 

151) indicate a stoichiometric interaction between IAPP and resveratrol, which leads to the 

formation of soluble complexes of peptide-inhibitor in the bulk, most likely via π-π stacking 

interactions, thereby preventing the insertion of IAPP into membrane bilayers (see also figure 35 

for a proposed model for the inhibition mechanism). Since resveratrol is non-toxic to pancreatic β-



 77

cells, this natural polyphenol might have the potential to be developed as drug candidate against 

T2DM, and presumably towards other amyloidogenic diseases as well in the future. 

3.3.2. Identifying the nature of the major IAPP cytotoxic species 

3.3.2.1. Kinetics of IAPP fibril formation monitored by the ThT assay 

The ThT assay for 100 µM IAPP in acetate buffer, pH 5.5, at 10 ºC (Figure 36), indicates a 

slow kinetics of aggregation with a lag phase of ~ 100 h, followed by a slow exponential growth 

phase, the fibril formation process being almost complete only after ~ 400 h.  
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Figure 36 100 µM IAPP incubated with a final 50 µM ThT concentration (after blank subtraction and normalization) 

in 10 mM natrium acetate buffer, pH 5.5, 10 °C, monitored for 400 h (when the maximum ThT fluorescence intensity 

was reached, where the fibril formation process was assumed to be essentially complete). 

 

The findings of the ThT kinetics assay are in good agreement with the characterization of 

monomeric, oligomeric, protofibrillar and mature fibrillar IAPP species, as detected by AFM 

analysis of samples aliquoted at different time points (Dr. Katrin Weise, personal communication). 

The same time points, i.e. 0 h, 7 h, 25 h, 50 h, 100 h, 150 h, 250 h, 504 h (3 weeks), and 672 h (4 

weeks), respectively, were also considered for isolating the species to be tested for their 

cytotoxicity on INS-1E cells by the WST-1 assay. 
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3.3.2.2. Comparative cytotoxicity of various IAPP aggregation species investigated by the 

WST-1 cell proliferation assay 

 Figures 37 (10 µM IAPP final concentration, after 1:10 dilution with cell culture medium 

of 100 µM IAPP samples aliquoted at different time points) and 38 (20 µM IAPP final 

concentration, after 1:10 dilution with cell culture medium of 100µM IAPP samples aliquoted at 

different time points) clearly indicate differential effects of various IAPP aggregation stages on the 

survival rate of INS-1 E cells; moreover, a concentration dependence can be detected, the 

cytotoxic effects being more pronounced in the case of cells treated with 20 µM IAPP.  

 Thus, comparing the ThT curve with the WST-1 outcome, a strong correlation between the 

time frame of the lag phase (0-100 h) and the pronounced cytotoxicity registered for samples 

aliquoted within this time period is seen. The data suggest an increased cytotoxicity of the 

monomeric and early oligomeric IAPP species. Almost no significant difference can be noticed 

among the 0 h, 7 h, 25 h, 50 h and 100 h samples, the survival rates for these particular time points 

being practically in a plateau region (~ 5 - 10 % for 10 µM IAPP and 1 - 2 % for 20 µM IAPP, 

respectively).  

 As the nucleation and growth reaction proceeds, the ThT intensity increases, correlating 

with a significant decrease in cytotoxicity for samples tested within this time region, both in the 

case of the 10 µM, as well as for the 20 µM IAPP-treated cells. Late protofibrils (samples isolated 

after 150 h, 250 h) lead to 80-85% survival rates for 10µM IAPP-treated samples, and 50-60% 

survival rates for 20 µM IAPP-treated samples, respectively. The mature fibrils (samples isolated 

after 3 weeks, 4 weeks) display the lowest comparative cytotoxicity, cellular survival reaching in 

this case 90 % for 10 µM IAPP and 75 - 80 % for 20 µM IAPP, respectively.  

Our findings support the recent hypothesis stating that the early IAPP oligomers are the 

species responsible for IAPP cytotoxicity (70). This is also to be expected, considering the 

proposed mechanism of interaction of IAPP with lipid membranes. Monomeric IAPP molecules 

are able to insert into membranes via their positively charged N-terminus. Hence, monomers 

and/or early oligomers probably accumulate at the membrane surface via electrostatic interactions 

between the peptide N-terminus and the zwitterionic lipid head-groups. For oligomeric species 
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hydrophobic interactions with the membrane acyl chain region might play a significant role as 

well. Once initial binding is achieved, further peptides are recruited and elongation is promoted. 
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Figure 37 Cytotoxicity of IAPP aggregates added at a final concentration to 10 µM IAPP in cell culture medium onto 

INS-1E cells, estimated by the WST-1 cell proliferation assay. Cells were seeded into 96-well microtiter plates and 

allowed to grow (5% CO2, 37 ºC) for 24 h prior to a 24 h-exposure to potentially cytotoxic IAPP species (incubation 

time: 0 h, 7 h, 25 h, 50 h, 100 h, 150 h, 250 h, 504 h, 672 h). The peptide was then removed and the cells were 

incubated for 24 h with the WST-1 reagent. 

 

 Thus, when previously isolated monomers, oligomers, protofibrils, late fibrils, and mature 

fibrils, respectively, are added onto the cellular membranes, the strongest interaction will be with 

the smallest species, i.e. monomers and early oligomers. Mature IAPP fibrils and late IAPP 

protofibrils are the least reactive IAPP species, already stabilized by intermolecular interactions 

between individual peptides, and thus they are less likely to interact with membranes. However, 

their increased size (several µm length) compared to individual monomeric peptides, can still exert 
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mechanical stress on the cell membranes, which might lead to perturbations in their barrier 

function, and thus could account for the slight cytotoxicity observed (~ 25% for 20 µM IAPP, ~ 

10% for 10 µM IAPP, respectively). 
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Figure 38 Cytotoxicity of IAPP aggregates added at a final concentration of 20 µM IAPP to cell culture medium onto 

INS-1E cells, estimated by the WST-1 cell proliferation assay. Cells were seeded into 96-well microtiter plates and 

allowed to grow (5% CO2, 37 ºC) for 24 h prior to a 24 h-exposure to potentially cytotoxic IAPP species (incubation 

time: 0 h, 7 h, 25 h, 50 h, 100 h, 150 h, 250 h, 504 h, 672 h). The peptide was then removed and the cells were 

incubated for 24 h with the WST-1 reagent. 

 

 Identifying and characterizing the major cytotoxic species is of great importance for 

amyloidogenic diseases research, as understanding the mechanism of interaction and cytotoxicity 

on cellular membranes might provide the platform for successful strategies for the rational design 

of anti-amyloid (anti-fibrillogenesis, anti-cytotoxicity) inhibitors. 
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4. Summary  

In this work, several aspects regarding the aggregation of IAPP which are essential for 

understanding T2DM were investigated. The fibril formation process was studied both in the 

absence and presence of lipid and cellular membranes. The first approach was to study the effect of 

high hydrostatic pressure on IAPP fibril formation, and comparatively on IAPP fragments, to 

understand the nature of the interactions governing fibrillar self-assembly. Additionally, the 

interaction of IAPP with the so far neglected model raft systems was investigated. Finally, the 

studies were to cellular membranes as well. IAPP cytotoxicity and the nature of the toxic species to 

pancreatic cells in culture was also addressed, including potential strategies to inhibit IAPP 

cytotoxicity and fibril formation by the red wine compound resveratrol. Based on all these data 

taken together, a model of interaction and inhibition could be proposed. 

Using the pressure variable, additional details of the polymorphic forms of amyloid and its 

precursors as well as the transformation processes between these polymorphic states could be 

revealed. It was seen that the conformational stability of the fibrils varies, probably reflecting the 

difference in side chain packing inside the amyloid fibrils. The amino acid sequence of a 

polypeptide is optimized by evolution for folding into the native conformation, but it is unlikely 

that a tight packing of the side chains can also be achieved for all residues in the non-native 

fibrillar structures. This is in accord with findings that amyloid fibrils made of short peptides or 

fragments of amyloidogenic proteins, such as of IAPP in this study or of TTR, can be more 

densely packed. Fragments of IAPP showed a relative increased stability against pressure-

treatment, suggesting tighter packing of their peptidic chains. An amyloid structure without 

optimal packing is likely to enable formation of various isoforms, suggesting the structural basis of 

multiple forms of amyloid fibrils in contrast to the unique native fold of functioning proteins. A 

disease caused by fibrillation of a protein often shows variations in terms of phenotypes and 

incubation periods. Such phenomena are termed strains and are thought to be connected to the fact 

that fibrils, also depending on the environmental conditions, can have various structural isoforms 

known as morphologies. IAPP seems to belong to this class of amyloidogenic proteins as well. In 

analogy to the multiple-kinetic-pathway folding tunnel described by the energy landscape for 
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globular protein folding, it seems very likely that there are generally also multiple routes to the 

formation of mature amyloid.  

The interaction studies with the model-raft lipid system DOPC : DPPC : cholesterol 1:2:1 

(a lipid mixture displaying ld / lo phase coexistence at room temperature) have shown that IAPP 

partitions preferentially into the liquid-disordered (ld) lipid phase within minutes after the addition 

of the peptide, which is followed by subsequent membrane disintegration. Under such 

experimental conditions (5 μM IAPP, 25 oC), fibrillation of IAPP does not take place in the bulk 

solvent in this time range. To diminish energetic costs, initial incorporation of the peptides at the 

rim of the domains of the heterogeneous membrane, where the volume fluctuations are most 

prominent, would be most likely, leading to a favourable decrease of the associated line energy. 

The increase in membrane defects upon incorporation of the peptide will facilitate further peptide 

penetration, which leads to an increase in local peptide concentration in the membrane core region, 

thus allowing condensation of oligomeric particles and fibril growth. Insertion into the l0 raft 

domains can be clearly ruled out. Predominantly circularly-shaped IAPP amyloid constructs are 

formed on the GUV templates, incorporating membrane lipids. The amyloid-lipid aggregates reach 

sizes of about 30 µm in diameter. Hence, this study clearly demonstrates the important ability of 

heterogeneous membranes in IAPP amyloid formation in vitro and most likely in vivo as well. 

Besides electroformation on Pt wires, a new chamber suitable for electroformation on ITO glass 

slides was developed, and the conditions for GUVs preparation were optimized, a major concern 

being the production of predominantly unilamellar species; spin-coating was found to favour this 

process. 

Interestingly, membrane incorporation into IAPP fibrils was also observed in our cellular 

studies on INS-1E cells, fibrillar structures being typically 25-50 µm long and 1.5-4 µm thick. Our 

conclusions on model-raft systems and INS-1E cells are very well complemented by studies of 

Sparr et al. (25), who used different (non-raft) model lipid systems and a different cell line, and 

also observed lipid uptake into amyloid fibers, ruling out formation of discrete protein pores. All 

these results clearly point towards the incorporation of lipid upon IAPP fibril formation, with 

hydrophobic interactions being a major player in membrane-associated amyloid formation and thus 
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possibly in the onset of T2DM, once the barrier function of the cell membrane is lost. It may very 

well be that lipid-containing amyloid aggregates are universal structures of amyloid in cells. 

Inhibitor design is a major concern in the field of amyloidogenic diseases. In this study, 

resveratrol, a small polyphenolic compound present in high amounts in grapes and red wine, has 

been shown to have pronounced effects on the survival of INS-1E cells treated with IAPP, by 

using the WST-1 assay, as well on the interaction of IAPP with model membrane systems, as 

revealed by imaging studies. An earlier role of resveratrol in cell survival has been attributed to its 

antioxidant activity. However, our inhibition results do not depend on the antioxidant activity. The 

imaging studies additionally indicate that the pronounced cytotoxicity of IAPP on INS-1E cells can 

be largely overcome by inhibition of IAPP fibrillation by the red wine compound resveratrol, 

which is able to arrest IAPP fibril formation at an early stage, possibly leading to the formation of 

non-toxic, “off-pathway” large oligomeric and amorphous structures. Since resveratrol is non-toxic 

to pancreatic β-cells, this natural polyphenol might have the potential to be developed as drug 

candidate against type II diabetes, and presumably towards other amyloidogenic diseases as well in 

the future. A model of interaction with IAPP and inhibition of IAPP fibril formation by resveratrol 

has also been proposed, and concomitant methods, i.e. AFM, ThT assay, ATR-FTIR, SAXS (59, 

148, 151), have demonstrated a stoichiometric inhibition mechanism, pointing towards the fact that 

resveratrol acts by π-π stacking interactions with IAPP molecules. 

To gain further insight into the mechanism of interaction between IAPP and cell 

membranes, and related cytotoxic effects, we isolated IAPP monomers, early, intermediate and late 

oligomers, protofibrils, as well as mature IAPP fibers, and carried out cytotoxicity tests with these 

compounds. It was thus revealed that it is the monomers and early oligomers which are cytotoxic, 

and much less the late protofibrils and mature fibrils. This once again points out the permeabilizing 

effect of IAPP oligomers to membranes, as suggested by model raft studies. The late protofibrils 

and mature fibrils seem to act through mechanical stress, only. Once the fiber has matured, 

interaction with the membrane (insertion into the membrane and further damage) is most likely 

prevented. 

 As the biological membranes are composed of a plethora of more or less fluid-like and raft-

like domains, the strong membrane-disrupting potency of early IAPP oligomers in heterogeneous 
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membranes might be the reason for their cytotoxicity. Furthermore, extraction of lipids may be a 

common feature of amyloid formation in vivo, since extracellular amyloid deposits from a number 

of diseases have been found to be associated with cellular lipids. These findings would have to be 

taken into account in designing inhibitors for therapeutic approaches. 
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5. Zusammenfassung 

 In dieser Arbeit wurden verschiedene Aspekte der Aggregation des IAPPs, welche 

notwendig für das Verständniss von T2DM sind, untersucht. Der Fibrillenbildungsprozess wurde 

sowohl ohne als auch mit Lipid- und Zellmembranen analysiert. Zuerst wurde der Effekt von 

hohem hydrostatischen Druck auf die Bildung von IAPP-Fibrillen und im Vergleich dazu auf 

IAPP-Peptidfragmente untersucht, um die Art der Wechselwirkungen zu verstehen, welche für die 

fibrilläre Selbstorganisation auschlaggebend sind. Zudem wurde die Wechselwirkung von IAPP 

mit den bis jetzt vernachlässigten Modellraftmembranen, sowie mit Zellmembranen studiert. Die 

IAPP-Zytotoxizität und die Art der auf β-Zellen der Bauchspeicheldüse in Zellkultur toxisch 

wirkenden Spezies wurden ebenfalls analysiert. Auβerdem wurden mögliche Strategien entwickelt, 

um die Zytotoxizität und Fibrillenbildung von IAPP durch z.B. Resveratrol (ein 

Rotweinbestandteil) zu inhibieren. Mit Hilfe der erhaltenen Daten konnte hierfür ein 

Wechselwirkungs- und Inhibierungsmechanismus vorgeschlagen werden. 

 Unter Verwendung der Druckvariable konnten zusätzliche Details des Polymorphismus der 

Amyloide, sowie ihre Vorstufen und Übergänge zwischen diesen Zuständen aufgedeckt werden. 

Die Konformationsstabilität der verschiedenen Fibrillen unterscheidet sich, was möglicherweise 

auf Unterschiede in der Packungsdichte der Seitenketten in den Amyloidfibrillen zurückgeführt 

werden kann. Die Primärstruktur eines Polypeptids wurde im Laufe der Evolution so optimiert, 

dass sie sich in die native Form faltet. Normalerweise wird aber eine solch hohe Packungsdichte 

der Seitenketten in nichtnativen Fibrillenstrukturen nicht für alle Aminosäuren erreicht. Dies ist in 

Übereinstimmung mit der Beobachtung, dass Amlyoidfibrillen, die aus kleinen Peptiden oder 

Fragmenten von Amyloiden, wie z.B. dem hier untersuchten IAPP oder TTR, bestehen, dichter 

gepackt werden können. Im Vergleich zu IAPP zeigen die IAPP-Fragmente unter Druck eine 

höhere Stabilität, was auf die höhere Packungsdichte ihrer Peptidketten zurückzuführen ist. Eine 

Amyloidstruktur ohne optimale Packungsdichte neigt dazu, die Bildung von verschiedenen 

Isoformen zu begüngstigen, im Gegensatz zu der einzigartigen Faltung von funktionstüchtigen 

Proteinen. Eine durch Amyloidbildung verursachte Krankheit zeigt oft unterschiedliche 

Phänotypen und Inkubationszeiten. Das Auftretten dieser „Erregerstämme“ hängt vermutlich damit 

zusammen, dass Fibrillen, in Abhängigkeit der Umgebungsbedingungen, verschiedene strukturelle 
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Isoformen (Morphologien) annehmen können. IAPP scheint auch zu dieser Kategorie von 

Amyloidproteinen zu gehören. Ähnlich wie für globuläre Proteine, gibt es für reife Fibrillen einen 

Faltungstrichter („Aggregationstrichter“) mit zahlreichen möglichen Routen.  

 Die Wechselwirkungsstudien mit dem Modellraftlipidsystem DOPC : DPPC : Cholesterin 

1 : 2 : 1 (eine bei Raumtemperatur ld/lo - Phasenkoexistenz zeigende Lipidmischung) zeigten, dass 

IAPP einige Minuten nach Peptidzugabe vorzugsweise in die ld-Phase insertiert, was zur 

Membranzerstörung führt. Unter diesen experimentellen Bedingungen (5 μM IAPP, 25 oC) findet 

die Fibrillbildung des IAPPs in der reinen Phase (Bulkphase) in diesem Zeitraum nicht statt. Die 

anfängliche Einlagerung der Peptidmoleküle in die Phasengrenze der heterogenen Membran, wo 

die Volumenfluktuationen am größten sind, ist wohl am wahrscheinlichsten, da dies den 

Energieaufwand durch bevorzugte Verringerung der assozierten Grenzenergie reduziert. Die 

Zunahme an Membran-Defekten nach Peptideinlagerung erleichtert die weitere Einlagerung von 

Peptidmolekülen. Dies führt zu einem Anstieg der lokalen Peptidkonzentration im 

Membraninneren und damit zu einer Kondensation der Oligomere und zum Fibrillenwachstum. 

Eine Einlagerung in die lo-Raftdomänen kann eindeutig ausgeschlossen werden. Es werden 

vorwiegend ringförmige IAPP-Amyloidstrukturen an den GUV-Templaten gebildet, welche Lipid 

in ihrem Inneren miteinschließen. Die Amyloid-Lipidaggregate erreichen Gröβen von ~ 30 µm im 

Durchmesser. Diese Studie zeigt daher sehr deutlich, dass heterogene Membranen eine groβe Rolle 

bei der IAPP-Amyloidbildung in vitro und wahrscheinlich auch in vivo spielen. Neben der 

Elektroformation an Pt-Drähten wurde auch eine neue Kammer für Elektroformation auf ITO-

Objektträgern entwickelt. Ziel dabei war, hauptsächlich unilamellare Spezies zu produzieren; Spin-

coating (Rotationsbeschichtung) favorisierte diesen Prozess.  

 Interessanterweise wurde auch eine Einlagerung des IAPPs in natürliche Membranen 

anhand von Zellstudien (INS-1E Zellen) beobachtet. Hierbei waren die fibrillären Strukturen 

typischerweise 25-50 µm lang und hatten einen Durchsmesser von 1.5-4 µm. Schlussfolgerungen 

aus den Untersuchungen an dem Modellraftsystem und den INS-1E-Zellen stehen im Einklang mit 

Studien von Sparr et al (25). Diese verwendeten andere (nicht-Raft) Modelllipidsysteme und eine 

andere Zelllinie, und fanden auch eine Membranaufnahme in den Amyloidfibrillen gefunden 

wurde, was gegen die Bildung der diskreten Protein-Poren in den Membranen spricht. Alle diese 
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Ergebnisse weisen auf die Aufnahme von Lipiden in IAPP-Amyloidfibrillen hin, wobei 

hydrophobe Wechselwirkungen eine wichtige Rolle spielen, und deshalb wahrscheinlich auch für 

das Auftreten des T2DMs von großer Bedeutung sind, wenn die Barrierefunktion der Zellmembran 

verloren geht. Es kann daher sehr wohl der Fall sein, dass Lipid-Amyloid-Aggregate 

Universalstrukturen bei der Amyloidbildung in natürlicher Zellumgebung sind. 

 Die Entwicklung von Inhibitoren ist ein wichtiges Anliegen auf dem Gebiet der 

Amyloidforschung. In dieser Arbeit wurde durch Anwendung des WST-1 Assays und mit Hilfe 

von Visualisierungsstudien beobachtet, dass Resveratrol, ein kleines Polyphenol, das in grßen 

Mengen in Weintrauben und Rotwein zu finden ist, eine ausgeprägte Wirkung auf die 

Überlebensrate der IAPP-behandelten INS-1E Zellen hat. Zuvor wurde die Rolle des Resveratrols 

für das Überleben der Zellen in Zellkultur auf seine antioxidative Aktivität zurückgeführt. Die hier 

durchgeführten Inhibierungsstudien stehen jedoch in keinem Zusammenhang mit den 

antioxidativen Eingeschaften. Die Mikroskopiestudien zeigten außerdem, dass die ausgeprägte 

Zytotoxizität des IAPPs auf INS-1E Zellen durch die Inhibierung der IAPP-Fibrilbildung in 

Anwesenheit von Resveratrol unterdrückt wird. Resveratrol kann die Fibrilbildung des IAPPs 

frühzeitig unterbinden, wobei sich sehr wahrscheinlich große „off-pathway“ - Oligomere und 

amorphe Aggregate bilden. Da Resveratrol selbst keine Toxizität auf β-Zellen aufweist, könnte 

dieses natürliche Polyphenol in Zukunft als Medikament gegen T2DM und sehr wahrscheinlich 

auch gegen andere Amyloidkrankheiten weiter entwickelt werden. Ein Mechanismus der 

Wechselwirkung und Inhibierung der IAPP-Fibrilbildung durch Resveratrol konnte vorgeschlagen 

werden, und ergänzende Methoden (AFM, ThT Assay, ATR-FTIR, SAXS) (59, 148, 151) zeigten 

einen stöchiometrischen Inhibierungsmechanismus. Dieser lässt sich wahrscheinlich auf die 

Inhibierung der Wechselwirkung zwischen unterschiedlichen IAPP Molekülen durch π-π-Bindung 

des Resveratrols mit dem IAPP zurückführen. 

 Um einen weiteren Einblick in den Mechanismus der IAPP-Zellmembran- 

Wechselwirkung sowie deren assoziierte zytotoxische Effekte zu gewinnen, wurden IAPP 

Monomere, frühe, mittlere und größere Oligomere, Protofibrillen und reife Fibrillen isoliert und 

hinsichtlich ihrer Zytotoxizität untersucht. Es wurde gefunden, dass die Monomere und kleinen 

Oligomere sehr toxisch auf INS-1E Zellen wirken, im Gegensatz zu den größeren Protofibrillen 
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und reifen Fibrillen. Dies belegt nochmals, dass die IAPP Oligomere Hauptursache für die 

Zerstörung der Membran sind. Die großen Proto- und reifen Fibrillen scheinen relativ zu den 

Monomeren und Oligomeren nur durch mechanische Beanspruchung einen minimalen Einfluss auf 

die Integrität der INS-E Zellen zu haben. Insofern kann die Wechselwirkung von reifen Fibrillen 

mit der Membran (Einlagerung in die Membran und Membranzerstörung) weitgehend 

ausgeschlossen werden. 

 Da biologische Membranen aus einer Fülle von mehr oder weniger fluiden und Raft-

ähnlichen Domäne bestehen, könnte die hohe membranzerstörende Potenz der kleinen IAPP-

Oligomere auf heterogene Membranen auch ein Grund für die beobachtete Zytotoxizität sein. 

Weiterhin könnte die Rekrutierung von Lipiden aus der Membran eine allgemeine Erscheinung der 

Amyloidbildung in vitro sein, da extrazelluläre Amyloid-Ablagerungen schon bei mehrere 

Krankheiten gefunden wurden. Diese Befunde sollten dann auch in der Zukunft bei der Inhibitor-

Entwicklung für therapeutische Anwendungen Berücksichtigung finden. 
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6. Appendix 

 

 
Figure A CH3-FLVHS-CH3 (IAPP 15-19 amino-acid region, 0.5 wt%) fibril formation monitored by FT-IR 

spectroscopy (upper panel: primary spectra, lower panel: second derivative spectra, red curves: time zero, green 

curves: after 20 h) and the morphology of mature fibers after 20 h incubation in 50 mM deuterated natrium phosphate 

buffer, pH 7.4, at 37 °C. The peak at 1620 cm-1 and the shoulder at 1613 cm-1 indicate the presence of β-strands, 

typical of fibrillar morphologies, in line with the AFM results, where fibers of several µm length, with pronounced 

twisting and a tendency for circular shapes, were detected. At lower concentrations, the peptide did not form fibers 

under the same experimental conditions. 

Wavenumber / cm-1 

A 
A 



 90

0 60 120 180 240
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hT

 fl
uo

re
sc

en
ce

 in
te

ns
ity

 
m

ea
su

re
d 

at
 4

82
 n

m

Time/min

 30 µM IAPP no lipid at 37 ºC
 30 µM IAPP with 50 µM DOPC: DOPG 

       7:3 at 37 ºC

 

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

 50 µM DOPC:DOPG 7:3 at 37 ºC  
 50 µM DOPC:DOPG 7:3 

      with 30 µM IAPP at 37 ºC 

  N
or

m
al

iz
ed

 C
F 

flu
or

es
ce

nc
e 

in
te

ns
ity

 m
ea

su
re

d 
at

 5
20

 n
m

Time/s

 
Figure B The interaction of 30 µM IAPP with LUVs (100 nm diameter) made of DOPC:DOPG 7:3, in 10 mM 

HEPES, 150 mM NaCl, pH 7.4. The ThT aggregation kinetics, with and without membrane, is displayed in the left 

panel, and the corresponding CF leakage curves, with and without peptide, in the right panel, respectively. The 

presence of the negatively charged membrane has an accelerating effect on IAPP fibril formation, and IAPP induces 

100 % leakage of CF-filled LUVs within 1 h after peptide addition. Full release of the otherwise self-quenched CF, 

encapsulated in LUVs (100 mM CF), is achieved by treatment of LUVs samples with the detergent Triton-X 100. 

Within 1 h from the initial exposure (IAPP and negatively charged LUVs), both IAPP fibrillation (ThT assay, left) and 

liposomal leakage (CF assay, right) are complete, suggesting that the lipid barrier destruction and IAPP fibrillation are 

concomitant processes. 

 
Figure C DOPC Rhodamine-DHPE labelled GUVs, electroformed in water on ITO slides (left), in water, at room 

temperature. GUVs were prepared under various conditions: (left) no spin-coating, 2.5 µL 0.2 mg/mL lipid, 

electroformation for 90 min at 3V and 10 Hz; (middle) spin-coating (800 rpm / 60 s), 200µL 4mg/mL lipid, 

electroformation: for 180 min at 3V and 10Hz; (right) spin-coating (800 rpm / 60 s), 20µL 4mg/mL lipid, 

electroformation for 100 min at 3V and 10Hz. Spin-coating ensures a homogeneous distribution of the lipid film on the 

ITO slide, thereby promoting the formation of mainly vesicular, predominantly unilamellar, structures. A higher lipid 

concentration and volume is needed in the former case. The scale bar represents 10 µm. 
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