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Abstract

In the automotive industry, a manufacturer must perform several hundreds of tests on pro-
totypes of a vehicle before starting its mass production. These tests must be allocated to
suitable prototypes and ordered to satisfy temporal constraints and various kinds of test de-
pendencies. To reduce costs, the manufacturer is interested in using the minimum number of
prototypes.

We apply Constraint Programming (CP) and a hybrid approach to solve the scheduling
problem. Our CP method can achieve good feasible solutions even for our largest instances
within a reasonable time. In comparison with existing methods, we can improve the solutions
for most of our instances and reduce the average number of required prototypes. The hybrid
approach uses mixed integer linear programming (MILP) to solve the planning part and CP
to find the complete schedule. Although the hybrid approach is not as robust as CP with
respect to data characteristics and additional constraints, it can complement CP in finding a
better lower bound.
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Chapter 1

Introduction

We start with the motivation of the test scheduling problem before describing the goals and
the structure of the thesis.

1.1 Motivation

In the automotive industry, a manufacturer must typically carry out several hundred tests on
vehicle prototypes before mass production of this vehicle can start. As a suitable production
system has not yet existed, these prototypes are handmade and expensive (between 0.5 to 1.5
million euros each). Therefore, it is in the interest of the manufacturer to reuse the prototypes
for several tests whenever possible. To this end, the tests must be arranged in an appropriate
order. For instance, any crash test must obviously be the last test on this prototype. Ignoring
cost differences between different variants of prototypes, the manufacturer wants to minimize
the number of prototypes required for the testing process while not delaying the start of
production.

Each prototype is a combination of various vehicle components, like the engine or the gear
box. Usually, there are several types of most components. Due to various incompatibilities
between different types of components, in practice, there are up to 600 possible variants with
different costs and production times. We can only allocate a test to a prototype variant if this
variant satisfies the component requirements of this test. For instance, while a prototype with
a gasoline engine is not suited to execute a diesel engine test it does not matter which kind of
engine is used to perform a brake system test. Therefore, it is necessary to build appropriate
variants of prototypes such that the scheduler can assign all tests to their suitable prototypes.

Furthermore, we must consider various temporal restrictions that can be modeled as re-
lease and due dates. For instance, consider a driving test in wintry conditions. As the complete
testing process typically takes more than one year, we can obtain the desired conditions for
this test by selecting appropriate release and due dates. Also the manufacturer may use due
dates to ensure that some critical tests are completed early enough to allow a repetition of
the tests in case of failure.

Most companies have a special shop for producing prototypes. Due to the limited capacity
of this shop, the prototypes are sequentially manufactured resulting in an availability time for
each prototype. Following the manufacturing, a prototype requires an initial set-up process
whose duration depends on the selected variant of the prototype and the planned test sequence
on this prototype. For instance, a prototype for a corrosion test must be painted while this

1



2 CHAPTER 1. INTRODUCTION

is not necessary for executing a crash test. Hence, the scheduler must ensure that tests can
start only when the assigned prototype is constructed and sufficiently prepared for the test.
Moreover, a valid schedule must obey additional constraints. For instance, a brake system
test must be completed before starting a long-run test. Also, we cannot execute two long-run
tests on the same prototype. Finally, a brake system test and a suspension system test must
be executed on the same prototype in order to verify the co-ordination of both systems.

Nowadays computer simulation techniques have been applied to perform various kinds of
tests like heat transfer simulation in a passenger compartment, calculation of flow patterns for
wind-tunnel tests, or crash simulation. However, Kohlhoff [32] mentioned that the use of real
prototypes is still indispensable for real verification because of the limitation in the accuracy
of computation methods and models. Moreover, several case studies [6, 53, 40, 59] have been
conducted with car manufacturers to develop a decision support tool for the test scheduling
process, although their problem-specific requirements can be slightly different from our case, as
discussed in Section 2.1. Therefore, it is important to develop an efficient scheduling approach
to meet the complex requirements and reduce the number of required prototypes.

In practice, mostly heuristic algorithms are applied either in a stand-alone fashion or to
generate a good initial solution for other complicated techniques [6, 53]. However, it takes
a significant amount of time to develop good heuristics. Moreover, it is rather complicated
to modify such an algorithm even if the problem is only slightly changed. Therefore, we
are particularly interested in using a standard approach that has a comparable efficiency
and robustness with respect to both the problem size and additional constraints. Thus, the
approach will allow us to incorporate a later modification of the problem and or to improve
the performance by fine tuning the algorithm.

In this thesis, we focus on the use of two new techniques: Constraint Programming (CP)
and a hybrid approach based on Bender’s Decomposition. CP has been successfully applied to
solve various kinds of scheduling problems, as shown by Baptiste et al. [4]. CP has a flexible
declarative programming language for a modeling part to generate a set of constraints to
be satisfied; and a search part to describe how to search for solutions. Furthermore, CP
applies a mechanism called constraint propagation to reduce the domain of variables. Both
the reduction and the search parts must simultaneously interact to determine a solution.

In general, the hybrid approach is a combination of different classical methods like Mixed
Integer Linear Programming (MILP), CP, or local search. It becomes a promising way to solve
larger and more complicated problems. In many cases, the hybrid approach can achieve better
solutions than pure algorithms based on only one technology, see Danna and Le Pape [15].

To apply the hybrid approach for our problem, we decompose our scheduling problem
into two sub-problems. The solution to the planning or master problem is the minimum
number of required prototypes and their corresponding variants such that the scheduling or
slave problem can actually perform all tests. The master and slave problems are solved by
MILP and CP, respectively, since MILP is a suitable tool for optimization, while CP has a
capability to quickly find a feasible solution.

During the procedure, the MILP and CP models must complement each other. The
optimal solution is achieved when CP manages to find a complete schedule corresponding
to the solution of the planning problem solved by MILP. However, if CP fails to find any
feasible solution, the planning problem must be reformulated such that the initial solutions
to the previous planning problem are excluded. To remove those solutions, a Bender’s cut
constraint is generated and augmented to the master problem. The whole problem is proved
to be infeasible if Bender’s cuts eliminate every feasible solution in the MILP problem.
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1.2 Goals of the Thesis

Our primary objective is to develop a solving approach which can schedule the given tests
subject to all requirements using the minimum number of prototypes.

The approach has to determine several decisions: the number of required prototypes, the
sequence of prototype variants, the allocation of tests to prototypes, and the sequence of tests
on each prototype.

Moreover, the following aspects should be concerned:

• Scalability
The approach should be applicable not only to a small size problem, but also to a
practical size one of several hundreds of tests.

• Performance
The approach should be able to find a good feasible solution within a reasonable time.
An optimal solution should be found if the problem size is small enough.

• Robustness
The approach should be robust to the changes of data characteristics and some problem-
specific constraints.

• Agility
The approach should be convenient for project implementation and later modification.

1.3 Structure of the Thesis

The thesis is organized as follows. First, Chapter 2 provides a general overview to some
similar projects related to the test scheduling problem in the automotive industry including
their solving techniques. As our problem can be classified as the resource investment problem,
we also provide relevant literature reviews in this field of Operations Research.

Next, we formally describe our problem using the mathematical notations. In addition,
we show the characteristic of the real-life instances obtained from a car manufacturer. We
solve these data sets later by several approaches to carry out the preliminary study.

In general, there are many approaches that can be applied to solve a scheduling problem.
Chapter 3 briefly provides a basic concept, advantages and disadvantages of several classi-
cal methods before describing the constraint-based scheduling and the hybrid approaches in
detail.

Afterward, we formulate the MILP model to solve the whole problem in Chapter 4.
Also, we suggest a simplified model to determine the lower bound of our large instances.
The model considers two important principles: set covering to select prototypes with suitable
components; and energetic reasoning to determine the number of prototypes required over
the time intervals between the distinct values of the release and due dates.

In Chapter 5, our problem is formulated with the help of the CP approach. To enhance
the performance of CP, we implement our own search strategy instead of using the available
search strategies in our CP solver. Our strategy tries to find and allocate a critical test first,
while using the minimum number of prototypes. Moreover, the flexibility of the CP approach
allows us to further provide two trade-off analyses. Despite our original goal, we may allow
to build more prototypes than necessary in order to reduce the total completion time of the
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testing process. On the contrary, when forcing to use less prototypes, we maximize the number
of tests which can be executed on time.

Chapter 6 describes our hybrid approach. While the formulations for the master and
slave problems are derived from our simplified MILP and CP models, we implement several
kinds of Bender’s constraint trying to avoid more invalid solutions in each iteration. Also, we
suggest alternative formulations of the hybrid method resulting from letting CP to take more
scheduling responsibility, while stronger Bender’s cuts can be further incorporated.

As the number of our real-life instances is limited and not enough to verify the per-
formance and robustness, we also apply our approaches to solve more random instances in
Chapter 7. Bartels and Zimmermann [6] generated these instances to verify the performance
of their heuristic approach in the case of another manufacturer. Although the new problem
is slightly different from our case, we decided to use these instances in order to compare the
results obtained by different methods and to study the robustness of our approaches to the
changes in the characteristics of data and in the constraints of the problem.

Finally, Chapter 8 summarizes the thesis and outlines the potential directions for future
research.



Chapter 2

Test Scheduling Problem

In this chapter, we discuss the test scheduling in detail. First, we provide a literature review
of relevant problems in the automotive industry and in operations research. Also, the problem
description is formally explained using the mathematical notations. Finally, we present the
characteristics of the real-life instances which will be solved in the following chapters by
various approaches.

2.1 Literature Review

We present the projects related to the test scheduling problem in several automobile man-
ufacturers with their problem characteristics and the solving approaches. In fact, this test
scheduling problem belongs to a class of the resource investment problem. A survey of rele-
vant researches in the field of operations research is provided subsequently.

2.1.1 Review of the Test Scheduling Problems in the Automotive Industry

To solve our prototype problem, Scheffermann et al. [53] developed a heuristic approach based
on specific problem knowledge and on some intuitive ideas. They improve the quality of their
initial result by tuning some parameters with the help of statistical methods. This approach is
used as a decision support tool to help the planning department in a real working environment.
However, it turned out to be rather difficult to find an appropriate parameter set that leads
to a good result.

Also, Karadgi [31] applied MILP to solve the simplified problem neglecting the component
requirements and the variant selection process. He suggested two formulations to minimize
the makespan; however, only small size instances of up to around 60 tests can be solved.

Later, Limtanyakul and Schwiegelshohn [38] applied CP to minimize the makespan of our
problem while the number of prototypes is given as an input parameter. Although minimizing
the makespan is not necessarily the primary objective, the manufacturer prefers to complete
the testing process as soon as possible using the given number of prototypes. With this
approach we can iteratively reduce the number of prototypes and repeat the procedure to
find the minimum number of prototypes that still allows a valid schedule while observing the
specified start of mass production. If the specified number of prototypes is large enough we
can always find feasible or even optimal solutions. Also, we can prove that the problem is
infeasible if the given number of prototypes is rather small. Therefore, we often encounter a

5



6 CHAPTER 2. TEST SCHEDULING PROBLEM

large set of numbers of prototypes for which our CP approach can neither prove feasibility
nor infeasibility of the problem within a reasonable time. We call this set the problem gap.

To complement the CP approach, Limtanyakul [36] suggested a simplified MILP model
to find a better lower bound of the number of required prototypes. The results of this study
confirm that CP has achieved good feasible solutions since only small gaps remain. Also, Lim-
tanyakul and Schwiegelshohn [37] presented a preliminary idea of using a hybrid method where
CP and MILP can work closely together in order to close this gap.

In addition to these previous studies, there are several projects related to vehicle tests of
car manufacturers. They slightly differ in problem characteristics and are solved using various
methods. However, they all have the same goal to reduce the cost of the testing process.

For the Ford Motor Company, Lockledge et al. [40] applied a multi-stage mathematical
programming model to optimize the fleet of prototypes. In the first stage, they determine the
number of required variants subject to component requirements of all tests. The second model
determines the minimum number of cars of each variant such that all tests can be executed
before their due dates. It is possible to apply MILP in this case because there are only few
different values of due dates. Therefore, the problem reduces to an assignment problem of tests
to one of these time slots. This assumption obviously simplifies the model and reduces the
number of integer variables. Unfortunately, this method is not applicable to our case as the
values of our due dates are widely spread over the whole time scale. Moreover, the complexity
of our model quickly increases if we consider other temporal constraints like release dates and
availability times.

Bartels and Zimmermann [6] dealt with a problem that is very similar to our problem.
It also considers component requirements and temporal constraints, while some additional
constraints are slightly different. Instead of tests being executed on the same or different
prototypes, they consider partially ordered destructive tests. For instance, a driving test that
can damage the chassis such that this prototype is no longer suitable to perform an acoustic
test. Therefore, either this driving test is executed after the acoustic test or they are allocated
on different prototypes. They presented an MILP formulation which can be applied to solve
only small size problems. To handle larger instances, they propose a heuristic approach based
on a priority-rule.

Furthermore, Zakarian [59] developed an analysis model and a decision support tool
to evaluate the performance of product validation and test plans for General Motors Truck
Groups. His work concentrated on stochastic scheduling. He modeled uncertainties associated
with processing times of tests and product failures in order to determine the trade-off between
the number of vehicles used in the validation plan and percentage of completed tests. First, he
applied several heuristic rules to generate initial schedules based on his probability function.
After that, he measured the performance of the obtained schedules with the help of a Markov
model and simulations.

2.1.2 Review of the Resource Investment Problem in Operations Research

Notice that in standard scheduling problems [48], the number of machines or resources is
typically known. However, the objective of our problem is to minimize the maximum demand
of resource utilization. We must consider both resource planning and scheduling. Therefore,
our problem is related to the resource investment problem (RIP) also known as the problem
of scarce time. There jobs can simultaneously occupy several kinds of resources and must be
finished within an overall project deadline. Assuming an unlimited capacity of resources, we
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want to achieve a non-delay schedule which minimizes the total resource cost. Möhring [43]
and Demeulemeester [17] presented exact algorithms for solving small instances of the RIP.
To deal with larger problems, Yamashita et al. [58] proposed a scatter search procedure with
multi-start heuristics. Neumann and Zimmermann [45] suggested a heuristic algorithm for a
resource leveling problem that includes RIP as a special case. Also, Caramia [12] suggested a
local search algorithm to minimize the peak demand.

More generally, Nübel [46] studied the variant RIP/max by including the minimum and
maximum time lags between the start time of activities. He applies a depth-first branch-and-
bound algorithm to explore the search scheme generated from pseudo-semi active schedules.
Hsu and Kim [23] suggested a priority-rule heuristic approach for the multi-mode resource
investment problem (MMRIP) in which at least one of the activities can be undertaken in
any of its several modes like having machines in parallel. Our test scheduling problem may
also be classified as MMRIP/Max.

2.2 Formal Problem Description

After informally explaining the problem in the Section 1, we now introduce the mathematical
notations used in the rest of this report. These notations are based on the book of Pinedo
[48] whenever possible.

V , I, and J are the sets of prototype variants, prototypes, and tests, respectively, with
|V | = l, |I| = m, and |J | = n. Additionally, we define V ′ = V ∪ {0} as the extended set of
prototype variants including a dummy variant 0.

Mj ⊆ V is the set of prototype variants that can perform test j ∈ J . Nv ⊆ J represents a
set of tests which can be executed by prototype variant v. Each prototype i ∈ I corresponds
to variant vi ∈ V ′. When vi = 0, it means prototype i needs not be actually built since it
cannot execute any test, that is, 0 /∈ Mj .

Each test j ∈ J has a processing time pj , a release date rj , and a due date dj . As
all tests are executed without interruption, the completion time Cj of test j must obey
rj + pj ≤ Cj ≤ dj . The makespan is defined as Cmax = maxj∈J{Cj}.

Let define parameter H̄ as a total time horizon of the whole schedule. It can be any large
positive number which is expected earlier to be greater than the due dates of all tests. We
specify H̄ = maxj∈J{dj} for all computations in this thesis.

Also, we define set R̄ = {r̄1, ..., r̄nr} which contains the distinct elements in the array of
all release dates [r1, ..., rn]. For instance, if our array of release dates is [2, 0, 0, 7], we obtain
R̄ = {0, 2, 7}. Similarly, set D̄ = {d̄1, ..., d̄nd

} contains only the distinct elements in an array
of all due dates [d1, ..., dn].

Moreover, we consider the following relations between two different tests j, k ∈ J :

• j ≺ k iff test j must be completed before test k is started.

• j ∼ k iff tests j and k must be executed on the same prototype.

• j � k iff tests j and k must not be executed on the same prototype.

Finally, JLast ⊆ J is the set of tests that must not be followed by any other test on the same
prototype.

Furthermore, we must formulate the availability time of a prototype. As already men-
tioned, we use a simple model for this purpose. This model considers the manufacturing time
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of a prototype, the set-up time of a prototype variant and a potential delivery delay of a
component of this prototype.

We assume that the workshop requires a constant construction period ap to build one
new prototype. It means prototype i ∈ I is not available before time ai = iap. An additional
time sv is further required to set-up variant v ∈ V .

Occasionally, there may be a delay for the delivery of a component such that this delay
cannot be compensated within prototype manufacturing. In this case, we assume that the
delay time bv of prototype variant v dominates the manufacturing of the prototype and
includes the integration of this component into the already existing prototype. Therefore, a
test cannot be executed on prototype i before the total prototype construction time a′i =
max{ai + svi , bvi}.

As already mentioned, we assume that the costs of the various prototype variants are
roughly similar. Therefore, our main objective is to minimize the number of required proto-
types mr, whose lower bound is represented by m̄r. Notice that mr ≤ m as we need not use
all given prototypes.

To match the common notation of scheduling problems, we consider prototypes and
tests as machines and jobs, respectively. Using the standard scheduling framework, this prob-
lem is an extension of scheduling identical machines in parallel. We may use the notation
Pm|rj , dj ,Mj , prec|mr to represent the problem. However, note that this notation does not
include all facets of the problem like the selection of a variant for each machine (prototype),
as well as the application-specific conditions like performing two tests on the same prototype
(j ∼ k).

Regarding the problem complexity, this optimization problem is equivalent to searching
for the minimum number of machines which can lead to a valid feasible schedule that observes
our due dates. If we omit temporal constraints, machine eligibility, and other additional
requirements, our problem can be considered as a bin packing problem, that is, we try to find
the minimum number of bins (or machines) to store items (or jobs) with various sizes (or
processing times). Hence, our problem is NP-hard in the strong sense as it is a generalization
of the bin packing problem, see Garey and Johnson [20].

Finally, as summarized in Figure 2.1, the scheduler has the following decision tasks:

1. Select the number and variant of prototypes from the given list

2. Allocate tests to each prototype

3. Order the sequence of tests on each prototype

2.3 Characteristics of the Real-Life Instances

From a real-life test scenario we obtain four data sets of different sizes from about 40 tests
to almost 500 tests. Table 2.1 shows the characteristics of those data sets, like the number of
variants and the average processing times of tests.

Note that the initial slack time of a test is defined as dj− rj−pj , with the corresponding
ratio (dj − rj − pj)/pj . However, rj , dj , and the slack time can be changed later due to the
constraint propagation when CP starts solving the instance. We also define the variant ratio
VR = (

∑
j∈J |Mj |)/nl.
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Figure 2.1: Tasks of the scheduler

These parameters can roughly measure the hardness to schedule the tests. We notice that
the tests in the fourth instance have longer slack times compared to the other instances. Also,
in the second instance, the variant ratio is almost one as most of the tests can be allocated
to any prototype variant.

We further provide more details like the number of distinct values of release (|R̄|) and
due dates (|D̄|), and the number of tests with precedence constraints. It can be seen that up
to 10% of all tests may be subject to special constraints. In the large data set involving several
hundred tests, the impact of those constraints may be considerable. Therefore, it is difficult to
later verify and correct a schedule that has been obtained by neglecting these requirements.

Furthermore, we provide the total list of prototype components which must be considered
in order to determine the machine eligibility set Mj .

• Engine type (Motortyp)

• Engine construction stage (Motorbaustufe)

• Gearbox type (Getriebetyp)

• Gearbox construction stage (Getriebebaustufe)

• Tonnage

• Wheelbase (Radstand)

• Specification (Ausführung)

• Height of storage area (Laderaumhöhe)

• Payload (Pritschenlänge)

• Steering (Lenker)

Finally, we determine the set-up time of prototype variants from the sum of the durations
of these following steps.
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Table 2.1: Detailed information of the real-life instances.

Instance 1 2 3 4
Number of tests 41 100 231 487
Number of variants 38 3 9 663
Average processing times (day) 11 10 10 45
Average release dates (day) 125 53 173 81
Average due date (day) 281 175 275 395
Average initial slack times (day) 145 113 92 274
Average initial slack ratio 20.32 29.08 21.52 41.78
Prototype construction period (day) 5 5 5 1
Average value of variant set-up times (day) 13 4 5 20
Average value of component delay times (day) 13 89 5 85
VR 0.36 0.98 0.31 0.02
|R̄| 19 17 27 7
|D̄| 25 18 41 74
|{j ∈ J |j ≺ k}| 1 1 3 1
|{j, k ∈ J |j ∼ k}| 2 2 6 68
|{j, k ∈ J |j � k}| 2 6 6 2
|JLast| 1 - 3 1

• Body work (Rohbau)

• Painting (Lackierung)

• Installation (Montage)

• Interval (Abstand)

• Commissioning (Inbetriebnahme)



Chapter 3

Methodology

The aim of this section is to provide a general overview of approaches currently applied to solve
a scheduling problem. First, we describe four classical approaches: problem-specific operations
research algorithms, Constraint Programming, Mixed Integer Linear Programming, and local
search.

To apply CP for solving scheduling problems, we also provide the common notations
and the concepts of standard propagation rules. Finally, we generally introduce the hybrid
approach which is the combination of different classical methods.

3.1 General Overview of Classical Solving Approaches

These classical approaches emerged from different areas: operations research, mathematics,
and computer science. Originally, each method is applied individually to solve a specific
problem. It is found out later that in many situations the same scheduling problem can be
represented and solved by another kind of technology. In the following, we briefly summarize
basic concepts, advantages, and disadvantages of each method.

• Problem-Specific Operations Research Algorithms
This area of study has been actively developed for several decades from industrial en-
gineering or management sciences. It defines a scheduling problem as the allocation of
tasks (or jobs) to scarce resources (or machines) over time. A scheduling problem is
represented by three elements to describe the machine environment, constraint, and ob-
jective [48]. Jobs are scheduled such that the objective is optimized subject to some given
constraints. Many kinds of problems are studied and analyzed thoroughly. Researchers
have been successfully developing algorithms to solve them optimally or provide near-
optimal solutions within a time bounded by a polynomial function of the problem size.
However, each algorithm is designed just for solving a specific problem. When the prob-
lem is slightly changed or includes some additional constraints, the algorithm often leads
to a poor solution.

• Mixed Integer Linear Programming (MILP)
MILP is a well known method to solve many combinatorial optimization problems [44,
57, 56]. Recently, many developments in theory have been integrated into MILP software
tools, for example cutting plane methods, branch strategy, and indicator constraints [24].
The progress of applying MILP was reported by Bixby et al. [9]. However, this method

11



12 CHAPTER 3. METHODOLOGY

requires a significant amount of experience to formulate a mathematical model for each
problem. Moreover, Linderoth and Ralphs [39] mentioned that the solving performance
strongly depends on the used solvers.

In general, the branch-and-bound mechanism is applied to find a solution by relaxing
some constraints, for instance, integrality constraints. It becomes easier to optimally
solve the resulting problem. The solution is a lower bound which can be used to prune
a domain of the search tree. The lower bound can further be improved by branching,
that is, splitting the feasible region into smaller parts. Alternatively, we can generate
cutting planes, which are linear inequalities added to the relaxation problem in order
to remove the optimal LP solution, while at least one optimal integer solution is kept.

MILP is particularly efficient if the continuous relaxation can be iteratively tightened
by adding cutting planes to improve the approximation. The approach is not robust to
variations in the problem size as the size of an MILP formulation typically grows much
faster than the actual size of the problem. Furthermore, many researchers report that
MILP alone is not an effective tool to solve large-scale scheduling problems for parallel
machines with release and due dates. For instance, Hooker [21] and Sadykov and Wolsey
[52] compared the performance of several methods including the MILP approach when
minimizing makespan and allocation cost. Their results showed that MILP can handle
small problems well but that it is not appropriate for cases dealing with many jobs like
our problem.

• Constraint Programming (CP)
CP is another deterministic approach for formulating and solving an optimization prob-
lem. It was originally developed for computer science applications. After a few decades,
CP has widely appeared in different research areas, for instance, planning and schedul-
ing, bioinformatics, vehicle routing, and configuration [51].

To apply CP, we first describe a problem formulation as a set of decision variables
and constraints. Each variable has its own finite set of possible values (domain), while
constraints restrict the value that variables can simultaneously take. A solution to CP
is an assignment of one value to every variable such that all constraints are satisfied.
Next, we can specify a search scheme to describe how the solver enumerates through the
possible assignments in order to achieve a solution. When a contradiction occurs during
the search, CP has a functionality called backtracking to keep trying other possible
decisions.

Since the search space is normally so large, CP also uses the constraints to remove
inconsistent values from the domain of variables. Each constraint has corresponding
filtering algorithms. The filtering algorithms can be applied initially before starting the
search and also simultaneously. Moreover, every time when the domain of a variable is
changed, it will trigger the filtering algorithms of constraints involving that variable.
This can lead further to the change in the domains of other variables and again trigger
their filtering algorithms. Thus, the process is known as constraint propagation.

Until now, CP is applied only to find a feasible solution to the standard Constraint
Satisfaction Problem. For solving an optimization problem, CP has a procedure to add
a new constraint such that the new objective is strictly better than the current value.
As a result, the solution will be improved until it reaches the optimal value.
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CP is superior to MILP in expressing constraints that are not limited to linear inequal-
ities. For instance, it supports logical expressions, like if. . .else, instead of using many
complex linear inequalities to represent the machine eligibility constraints. This leads
to a natural formulation of our complex scheduling problem.

In addition, we can enhance the performance of the CP solver by providing a problem
specific search strategy. The experience from using heuristics can be included into the
CP framework. Puget and Lustig [50] as well as Milano and Trick [42] provided more
reviews about the comparison between both MILP and CP in view of modeling and
solving techniques.

CP can solve a problem efficiently if constraints propagate well and tighten the objective
value. Therefore, minimization of the makespan is well suited as the last completion time
of all jobs directly leads to a lower bound of the objective value. For minimizing a sum
of set-up times or the allocation cost, any bounds of the cost function do not indicate
directly which term of the sum should be reduced, see Danna and Pape [15].

• Local Search
In many cases, it is not practical to apply a deterministic approach, especially when the
size of a problem becomes larger, as most of the scheduling problems are NP-hard, see
Bagchi [3]. The local search method can be a good alternative in case that good feasible
solutions are acceptable and should be found within a short period.

Although in many cases local search algorithms can converge quickly and find a good
solution, the trivial bounds on time complexity cannot be derived mathematically. An-
other major disadvantage is that it cannot guarantee to provide an optimal solution or
prove infeasibility.

This method has been used for several decades in combinatorial optimization. The basic
idea of local search is to find improvements to the current solution by making small
changes. At the beginning, an initial solution has to be given. After that, the algorithm
tries to optimize the solution by moving around the space of candidate solutions (the
search space) until a solution seems to close an optimal value or a time bound is finished.
There are various kinds of local search, for instance, simulated annealing or tabu search.

Apart from the basic local search, Genetic Algorithms are developed in order to ex-
plore the neighborhood more globally, see Aarts et al. [1]. The basic concept of the
approach involves a population of solutions, processes of natural selection, mutation
and recombination to produce better solutions.

3.2 Constraint-Based Scheduling

CP has been further applied to specifically handle a scheduling problem. We can observe this
method for many real-life applications, like production scheduling in steel manufacturing [16],
job-shop scheduling [47], and railway scheduling for cane transportation [41]. The success is
due to the development of efficient constraint propagation rules for scheduling problems in
several scenarios like disjunctive (or cumulative) resources with (or without) preemption, see
Baptiste et al. [4]. Moreover, the functionality to model and solve scheduling problems has
been included in several famous CP solvers like ILOG Scheduler [26], ECLipSe [14], and CHIP
V5 [7].
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Although our scheduling problem is just a specific case, we introduce the common no-
tations used to represent scheduling problems in general. Thus, we can later have a better
understanding of the mechanism of constraint propagation.

3.2.1 Representation of Scheduling Problems in CP Framework

We can consider a scheduling problem as a constraint satisfaction problem or as a constraint
optimization problem. First, we define a set of activities which are tasks or work to be com-
pleted. All activities must then be allocated over time to a set of resources, for instance,
workers, machines, or raw materials.

Note that the activities and resources are similar to jobs and machines used normally in
the standard scheduling problem. However in CP, these notations have more general defini-
tions in order to ease the formulation of the complex problem.

Also, we introduce two kinds of constraints: resource constraints due to the limited ca-
pacity of the resources; and the temporal constraints to define possible relationships between
the start and end times of the activities.

3.2.1.1 Resources

There are two types of resources: a disjunctive resource which can execute at most one ac-
tivity at a time; and a cumulative resource which can perform several tasks in parallel if
the resource capacity is not exceeded. Although the disjunctive resource can be represented
by the cumulative resource with a unit capacity, CP can apply more restricted and efficient
propagation rules for the disjunctive resource.

Moreover, we can construct more complex scheduling problems like parallel machines
from a set of disjunctive resources. It is also possible to use one cumulative resource with
capacity equal to the number of machines. However, we may get the solution in which jobs
can be transfered to different machines during their execution. Nevertheless, the cumulative
representation is preferred in appropriate applications since it can avoid the exploration of
symmetrical configurations and reduce the search space [25].

3.2.1.2 Activities

Each activity has a duration to be processed on the resource. A non-breakable activity is
an activity which executes without preemption from its start time to its end time, while a
breakable activity can be interrupted during the resource breaks, like weekend or lunch, but
not for processing other activities.

Also, in the case of elastic scheduling, the resource consumption of the activity can be
varied over time between 0 to the resource capacity. The sum of the resource consumption
over time must be equal to the given energy. For instance, an activity which requires the
energy of 8 units can be executed with a duration of 4 and a resource capacity of 2, or a
duration of 2 and a resource capacity of 4.

In non-preemptive scheduling, each activity Aj has three variables: start(Aj), end(Aj),
and proc(Aj) to represent the start time, end time, and processing time. In fact, if the pro-
cessing time is constant, it is sufficient to have one variable for each activity. Despite the
redundancy, three variables are still preferred in order to simplify the description of the con-
straints, see Barták [5].
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The time horizon must be discretized into identical slots. With the release date rj and
due date dj , the initial domains of start(Aj) and end(Aj) are [rj , lstj ] and [eetj , dj ] where
lstj and eetj stand for the latest start time and earliest end time of activity Aj . Figure 3.1
represents the domains of an activity with pj = 4, rj = 0, and dj = 10.

rj djeetj lstj

pj

Figure 3.1: Activity and its time domains.

The representation of preemptive scheduling is more complicated as two more variables
must be defined. X(Aj , t) is a binary variable, which takes the value one iff Aj executes at
time t. set(Aj) is a set variable representing the set of times at which Aj executes. As a result,
we can derive the following relations between these variables

X(Aj , t) = 1 ⇔ t ∈ set(Aj)
start(Aj) = min

t∈set(Aj)
t

end(Aj) = max
t∈set(Aj)

(t + 1)

proc(Aj) = |set(Aj)|

In non-preemptive scheduling, we further have set(Aj) = [start(Aj), end(Aj)), while
|set(Aj)| = proc(Aj) = end(Aj)− start(Aj).

Furthermore, in some scheduling problems like parallel machines, the activities can be
allocated to one resource from a set of compatible resources. We have to introduce a variable
xj representing the allocation of activity j to one of the machines in set I. Next, we consider
each activity as being split into m fictive activities for all machines. After that, the constraint
propagation process will deduce new time bounds for all fictive activities possible to utilize
resource i. Whenever the time bounds of an alternative activity Ai

j are found inappropriate,
the resource i cannot actually execute activity j. Thus, we can remove i from the domain of
xj .

3.2.1.3 Resource Constraints

As the activities compete for a resource over the time horizon, we need the resource constraints
to ensure that the total consumption is not higher than the resource capacity. It is simple
for the disjunctive resource as we can pose on a given machine either end(Ak) ≤ start(Aj) or
end(Aj) ≤ start(Ak), ∀j, k ∈ J, j 6= k.

For a cumulative resource with elastic activities, we assume that an activity can take
the resource amount E(Aj , t) at any time t on the resource with the capacity C. Also, the
activity has the energy requirement of E(Aj) to be fulfilled. The resource constraints are
given as follows:
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∑
t

E(Aj , t) = 0 ⇔ X(Aj , t) = 0∑
t

E(Aj , t) = E(Aj)

n∑
j=1

E(Aj , t) ≤ C .

In non-elastic scheduling, we can include an additional constraint E(Aj , t) = cjX(Aj , t),
where cj represents the amount of resource required by activity Aj . This leads further to the
subsequent conditions:

n∑
j|start(Aj)≤t<end(Aj)

cjX(Aj , t) ≤ C

for the preemptive scheduling and

n∑
j|start(Aj)≤t<end(Aj)

cj ≤ C

for the non-preemptive scheduling. Note also that the disjunctive resource is a special
case of cumulative resource with C = 1.

The constraint propagation techniques for the fully elastic case can also be applied to
the partially elastic and non-elastic problem. Similarly, we can apply the propagation rules
from the preemptive to the non-preemptive scheduling and from the cumulative to disjunctive
resource, see Le Pape [34]. All the relationships can be summarized in Figure 3.2.

Cumulative Resource

Preemptive Problem

Disjunctive Resource

Preemptive Problem

Cumulative Resource

Non-Preemptive Problem

Disjunctive Resource

Non-Preemptive Problem

Fully Elastic

Problem

Figure 3.2: Resource constraint propagation.

3.2.1.4 Temporal Constraints

There are two types of temporal constraints. The precedence constraint is used for defining a
relation of start (or end) time between two activities. Time-bounded constraints specify that
the start (or end time) of one activity must be after (or before) a given time.
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3.2.2 Constraint Propagation

The constraint propagation process helps us not to waste time exploring the inconsistent
nodes found by the filtering algorithms. However, if we spend too much effort on the propa-
gation mechanism, it can take a large amount of computational time and memory. Thus, it
is important to apply only the necessary rules. Here we provide the concept of the standard
rules which are applied later in the thesis.

According to the characteristic of our problem, we introduce the principles of these algo-
rithms, that is, a timetable constraint, a disjunctive constraint, and an edge-finding technique
only in the case of the disjunctive resource and without preemption. Many variants of these
rules for the cumulative resource with or without preemption are provided in Baptiste et al.
[4].

Furthermore, the energetic reasoning is discussed. Although it is designed for the cumu-
lative resource, the concept is relevant to our lower bound MILP formulation in Section 4.2.2.

All constraint propagation rules mentioned before are based on the time windows of
activities. However, Laborie [33] suggested that these rules are quite inefficient especially
when the time windows are very loose as they propagate nothing. We present also his new
concepts based on the relative positions, that is, an energy precedence graph and a balance
constraint.

3.2.2.1 Timetable Constraint

A data structure called Time-Table is basically applied to maintain information about resource
utilization and resource availability over time. The constraints can be propagated in two
directions. We can use information in the Time-Table of resources to change the time bounds
(earliest start time and latest end times) of activities. Also, the Time-Tables must be updated
when the time bounds of activities are changed due to any kind of constraint propagation.

Remember that we have the disjunctive resource constraint
∑n

j=1 X(Aj , t) ≤ 1 and the
non-preemption requirement X(Aj , t) = 1 iff start(Aj) ≤ t < end(Aj). The time bounds of
activities can be changed by the following conditions:

[X(Aj , t) = 0] ∧ [t < eetj ] ⇒ [start(Aj) > t]
[X(Aj , t) = 0] ∧ [lstj ≤ t] ⇒ [end(Aj) ≤ t]

We can realize that X(Aj , t) = 0 if at time t the resource is definitely occupied by other
activities. As the preemption is not allowed, the activity cannot be executed and finish before
its original earliest end time. Thus, the activity can start only after time t. Similarly, the
activity must finish earlier if the resource is not available between its original latest start time
and the end time. Also, when the time domains of activities are changed, we can update the
information back to the time-table using

start(Aj) ≥ min{t|ub(X(Aj , t)) = 1}
end(Aj) ≤ max{t|ub(X(Aj , t)) = 1}+ 1

where ub denotes an upper bound value of the variable. When ub(X(Aj , t)) = 1, it is still
possible to execute activity j at time t.
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3.2.2.2 Disjunctive Constraint

The disjunctive constraint ensures that two activities requiring the same machine cannot
overlap in time. Either activity Aj precedes activity Ak or vice versa.

end(Aj) ≤ start(Ak) ∨ end(Ak) ≤ start(Aj) (3.1)

When there are n activities, the algorithm needs quadratic computation in order to
maintain totally n(n − 1)/2 disjunctive constraints. Also, whenever the algorithm detects
that the earliest start time of activity j exceeds the latest start time of activity k, it can
deduce that activity k precedes activity j. Thus, the time bounds of both activities can be
tightened by a new temporal constraint end(Ak) ≤ start(Aj). A contradiction is detected if
neither of the two activities can precede each other.

3.2.2.3 Edge-finding

While the disjunctive constraint analyzes the precedence relation between pairs of activities,
the edge-finding technique consists of orderings of activities requiring the same resource. At
each node in a search tree, let Ω be a set of the selected activities. The bounding technique
tries to prove further that some activities must, can, or cannot execute first (or last) in Ω.
This result can lead to new possible orderings and new time bounds.

Let r̃Ω = mink∈Ω start(Ak) be the smallest start time of the activities in Ω. Also, d̃Ω =
maxk∈Ω end(Ak) represents the largest end time of the activities in Ω. Finally, we define
p̃Ω =

∑
k∈Ω pj as the sum of the processing times of all activities in Ω.

Note that activity Aj cannot execute after any activity in Ω if the duration between the
smallest start time of activities in Ω and the largest end time of activities in Ω including Aj

is not enough to execute all activities in Ω∪{Aj}. The opposite case is when Aj cannot start
before any activity in Ω. We represent both conditions as follows

d̃Ω∪{Aj} − r̃Ω < p̃Ω + pj ⇒ [Aj � Ω], ∀Ω,∀Aj /∈ Ω

d̃Ω − r̃Ω∪{Aj} < p̃Ω + pj ⇒ [Aj � Ω], ∀Ω,∀Aj /∈ Ω

where Aj � Ω (Aj � Ω) means Aj executes before (after) all activities in Ω, while
d̃Ω∪{Aj} = maxk∈Ω∪{Aj} end(Ak) and r̃Ω∪{Aj} = mink∈Ω∪{Aj} start(Ak). Moreover, we can
compute the new time bounds

[Aj � Ω] ⇒ end(Aj) ≤ min
∅6=Ω′⊆Ω

(d̃Ω′ − p̃Ω′), ∀Ω,∀Aj /∈ Ω

[Aj � Ω] ⇒ start(Aj) ≥ max
∅6=Ω′⊆Ω

(r̃Ω′ + p̃Ω′), ∀Ω,∀Aj /∈ Ω

All above constraints are used to determine whether activity Aj must execute first (or
last) in a set of all activities. There are still other similar rules to detect whether activity Aj

can or cannot execute first (or last) in a set of all activities, as described in [4].
To adjust the time bounds of n activities, an algorithm with the complexity of O(n2) was

firstly implemented by Carlier and Pinson [13]. Later, they developed an O(n log n) algorithm;
however, a more complex data structure is required [4].
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3.2.2.4 Energetic Reasoning

The energetic reasoning is based on the comparison between the amount of energy which a
resource can provide over a time interval [t1, t2) and the amount of energy definitely required
to process the activities. Here we present only the condition for a cumulative resource and
without preemption.

We define WSh(Aj , t1, t2) as the amount of energy definitely required by an activity Aj

during a time interval [t1, t2), and

• p+
j (t1) = max{0, pj −max{0, t1 − rj}} is the number of processing time units required

by Aj if it is left-shifted, that is, scheduled as soon as possible;

• p−j (t2) = max{0, pj −max{0, dj − t2}} is the number of processing time units required
by Aj if it is right-shifted, that is, scheduled as late as possible.

As limited by the duration of time interval, Aj definitely consumes the resource with
WSh(Aj , t1, t2) = cj(min{(t2 − t1), p+

j (t1), p−j (t2)}). We can compute the overall energy con-
sumption of all activities by WSh(t1, t2) =

∑
j∈J WSh(Aj , t1, t2). As the resource can provide

at most C(t2 − t1), the schedule is still valid as long as C(t2 − t1)−WSh(t1, t2) ≥ 0 for all t1
and t2 with t2 ≥ t1.

Moreover, we can use the values of WSh to adjust the time bounds of activities. Since Aj

needs the amount of energy at cjp
+
j (t1) in order to be scheduled as early as possible, we can

realize that it is not possible to finish Aj before t2 if there is a time interval [t1, t2) where

WSh(t1, t2)−WSh(Aj , t1, t2) + cjp
+
j (t1) > C(t2 − t1) .

Also, the new lower bound of the end time of Aj can be computed as

t2 +
1
cj

(WSh(t1, t2)−WSh(Aj , t1, t2) + cjp
+
j (t1)− C(t2 − t1)) .

Similarly, Aj is not allowed to start execution before t1 if we find

WSh(t1, t2)−WSh(Aj , t1, t2) + cj min((t2 − t1), p+
j (t1)) > C(t2 − t1)

and the lower bound of the start time of Aj becomes

t2 −
1
cj

(C(t2 − t1)−WSh(t1, t2) + WSh(Aj , t1, t2)) .

The O(n3) algorithm to compute the time adjustment of n activities is shown in [4].

3.2.2.5 Energy Precedence Graph

The energy precedence graph is defined for a cumulative resource using a directed graph. Each
node represents a resource event due to the change of the resource availability, for instance, the
start of an activity. An edge is a precedence relation between a pair of two events. The prece-
dence relations of events can be derived from several relations like initially-specified temporal
constraints, search decisions, or the orderings discovered by other propagation algorithms.
During computation, new events and new precedence relations can be incrementally inserted.



20 CHAPTER 3. METHODOLOGY

Based on the energy requirement, the algorithm maintains arc-consistency and deduces the
time bound of these events.

Here, we demonstrate the idea using a simple scenario, while the formal representation
can be found in Laborie [33]. Let x be a resource event and Ω be a subset of events which
happen and finish before x. As the resource with capacity C must provide enough energy to
execute all resource constraints in Ω, we can deduce a time bound of x by

start(x) ≥ min
y∈Ω

(start(y)) +

∑
y∈Ω cypy

C(R)

where cy and py correspond to the consumption rate and the duration of event y.
The propagation of the energy precedence graph can be performed within the complex-

ity of O(n(p̄ + log n)), where n is the number of events and p̄ is the maximum number of
predecessors of a given event in the graph.

3.2.2.6 Balance Constraint

The balance constraint is another filtering algorithm based on relative positions. It maintains
the minimum and maximum capacity requirements by determining the levels of resource
consumption both before and after the start and end time of activities in the precedence
graph. Although the balance constraint is generally defined for a discrete reservoir in which
activities may produce or consume the resource capacity, it can also be applied to a discrete
resource by adding a production event at the time origin of the schedule.

Laborie [33] provided the propagation rules which in fact are more beneficial for the
problem with the discrete reservoir since the production events allow us to tighten the domain
of time variables and determine new precedence relations between these time points.

In the case of the discrete resource, the balance constraints can be used only to detect
a contradiction. Given an event x and the set of events B(x) which necessarily start before
x, a contradiction is found whenever the upper bound of resource level before x, L<

max(x) =
C −

∑
y∈B(x) cy, becomes less than zero.

The balance constraint should be used only for small or medium-size problems because
it requires considerably high computation cost, that is, O(n3) for the worst case [26].

Laborie [33] mentioned that the energy precedence graph is based on global energy con-
siderations like the edge-finding or the energetic reasoning algorithms, while the balance
constraint is more similar to the timetable approach since we are interested in the level of
resource demand. Moreover, all propagation rules are complementary since no technique can
dominate the others.

3.3 The Hybrid Approach

Until now there has not been a single approach that can efficiently solve all kinds of combina-
torial optimization problems. Recently, many researchers have tried to combine two different
approaches together. Many cases show that hybrid approaches can achieve better results than
algorithms based on only one technology.

To apply the hybrid approach, there are many possibilities that depend on the choice of
two classical methods. Overviews of some important kinds of hybrid approaches are given by
Danna et al. [15] and Aron et al. [2]
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There are two types of cooperative schemes. In the decomposition scheme, one technique
is applied to solve a sub-problem. Information received from solving this part is used by
another technique to solve the overall problem. The multiple search scheme uses two or
more optimization methods solving the full problems in turns or in parallel and exchanging
information to improve the subsequent search.

However, it is still very difficult and challenging to develop the hybrid strategy for practi-
cal applications. First, we need to formulate several models instead of a single one. It requires
much more time and effort during the modeling phase. Moreover, there are very few designers
who know how to efficiently apply all these four classical techniques. They have to select
methods that seem to be most suitable and then design a good coordination scheme. Other-
wise, a considerable amount of time will be lost for interaction and communication between
different schemes rather than for problem solving.

The combination between MILP and CP is one of the famous strategies in the area of
hybrid optimization. There are many ways to combine MILP and CP. The simplest idea is
developed, for instance, in a warehouse location problem [25]. MILP is applied to calculate
the lower bound at each node of the search tree, while CP provides flexibility to express a
compact model and a search procedure. As the model is mixed with the CP formulation,
linear relaxation is applied only to all linear constraints.

Moreover, Thorsteinsson [54] proposed the branch-and-check framework, which integrates
Bender’s decomposition, branch-and-bound, and CP. The branch-and-price method was sug-
gested by Easton et al. [19]. CP is applied to solve a pricing sub-problem and generate a
column augmented to a master MILP problem. Apart from that, the branch-and-cut algo-
rithm for MILP can be modified by using CP to detect infeasibility and generate cuts, as
introduced by Bockmayr and Pisaruk [10].

In this thesis, we apply the MILP-CP hybrid approach based on Bender’s decomposition.
It was originally developed by Jain and Grossmann [29] to minimize the allocation cost. Later
Hooker [22] used it to minimize the number of late jobs and total tardiness. Benini et al. [8]
reported its application to minimize the communication cost in a Multi-Processor System-on-
Chip.
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MILP Approach

In this section, we apply the MILP approach to solve our test scheduling problem. First, we
formulate the complete MILP model to minimize the number of required prototypes with
respect to all constraints. The model is based on sequencing variables and disjunctive con-
straints.

Also, we suggest a simplified MILP model to determine the lower bound of our large
instances. To formulate the lower bound model, we apply the concept of set covering to
consider the component requirements. Additionally, the impact of the temporal constraints
can be partially considered after we further include the energetic reasoning in the model.

We finally provide the computational results of solving our real-life instances using the
complete and simplified MILP models.

4.1 Complete Formulation

There are many possibilities to formulate an MILP model for solving an optimization problem.
The modeling style has an impact on the problem size, that is, the number of variables and
constraints. Also, it is more effective for the branch-and-bound mechanism if the LP relaxation
model can refer to a good lower bound.

Bartels and Zimmermann [6] suggested an MILP formulation for their test scheduling
problem. The model uses time-indexed variables. The time horizon is discretized into slots of
identical size. Each slot requires n variables to represent which job occupies a machine at the
moment. Thus, the size of the MILP model not only depends on the number of tests but also
on the length of time horizon of the solving scheduling problem. That means the problem
complexity can be significantly influenced by the characteristics of the input data.

Here, we develop our MILP model to describe our complete requirements and solve our
real-life instances. Moreover, we rather use sequencing variables which represent the order of
any two jobs since the size of the model can be limited to a function of the number of tests
and prototype variants.

Assuming that all prototypes are identical, Karadgi [31] provided two MILP formulations
based on sequencing variables. The first model uses wijk variables to represent both the
allocation of test j to prototype i and its sequence with test k, while the second model uses
xij and yjk variables to separate the test allocation from the sequencing decision.

Also, the definition of the sequence of tests in both models is slightly different. The first
model considers the sequence of tests j and k only when test j immediately precedes test

22
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k. In the second model, the sequence is defined as when test j is scheduled anytime before
test k. For instance, we consecutively execute test j, k, and l on machine i. That corresponds
to the results wijk = wikl = 1 and wijl = 0 in the first model, while yjk = ykl = yjl = 1 in the
second model since test j just precedes test l, but not immediately.

Karadgi [31] mentioned that the second model requires about twice as many constraints
as the first model. However, a number of decision variables in the first model tends to explode
more abruptly when the problem slightly increases. The computational results also shows that
the second model can solve a larger instance with around 60 tests.

Regarding the problem size, we formulate our problem with complete requirements using
xij and yjk variables like the second formulation. However, we need to introduce another
binary decision variable zvi to determine the relation to the variant of prototype i. In the
following, we formally provide the definition of all variables:

• Test-to-prototype allocation variable

xi,j =
{

1 if test j is allocated to prototype i
0 otherwise

• Test sequencing decision variable

qj,k =
{

1 if test j is scheduled anytime before test k
0 otherwise

It should be clear that we can interpret the sequence of tests from the qj,k variable only
when both tests j and k are executed on the same machine, that is, xi,j = xi,k = 1.

• Prototype variant decision variable

zv,i =
{

1 if prototype i belongs to variant v
0 otherwise

Note that we may not require all prototypes of I. Thus, the ones not needed may remain
unassigned,

∑
v∈V zv,i = 0.

• Completion time variable

Cj ∈ N = {0, 1, . . . } represents the completion time of test j

Next, we can formulate our MILP model using the objective function (4.1) to minimize
the number of required prototypes.

Minimize
∑
v∈V

∑
i∈I

zv,i (4.1)

For the allocation of tests and the selection of prototype variants, we use the following
constraints:
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∑
v∈V

zv,i ≤ 1 ∀i ∈ I (4.2)∑
i∈I

xi,j = 1 ∀j ∈ J (4.3)∑
v∈V

zv,i ≥ xi,j ∀i ∈ I,∀j ∈ J (4.4)

zv,i + xi,j ≤ 1 ∀i ∈ I,∀j ∈ J,∀v ∈ V ′ ∩Mj . (4.5)

Constraint (4.2) enforces that prototype i is assigned to at most one prototype variant.
When prototype i is not required to execute any test, it will not be assigned to any variant.
That means

∑
v∈V zv,i will be forced to remain zero due to our objective function (4.1).

Test j must be allocated to exactly one prototype by Constraint (4.3). Constraint (4.4)
states that only a prototype whose variant has already been selected can execute a test. Due
to the component requirement, Constraint (4.5) restricts test j from executing on prototype
i which does not have suitable components.

After that, we define the disjunctive constraints:

qj,k + qk,j = 1 ∀j, k ∈ J ; j 6= k (4.6)
Cj + pk − H̄(3− qj,k − xi,j − xi,k) ≤ Ck ∀i ∈ I; j, k ∈ J ; j 6= k (4.7)
Ck + pj − H̄(2 + qj,k − xi,j − xi,k) ≤ Cj ∀i ∈ I; j, k ∈ J ; j 6= k (4.8)

qj,j = 0 ∀j ∈ J. (4.9)

Constraints (4.6) ensures that either test j precedes test k or vice versa. Remember that
such a relation can be interpreted only when both tests are allocated to the same prototype.
For tests using the same prototype, we have to ensure that they occupy the resource at
different times. When j ≺ k, constraint set (4.7) is valid and constraint set (4.8) is redundant.
Similarly, when k ≺ j, constraint set (4.8) is valid and constraint set (4.7) is redundant.
Furthermore, Constraint (4.9) prevents a test from preceding or succeeding itself.

After that, the following temporal requirements must be considered.

rj + pj ≤ Cj ∀j ∈ J (4.10)
dj ≥ Cj ∀j ∈ J (4.11)

ai + sv + pj − H̄(2− xi,j − zv,i) ≤ Cj ∀i ∈ I,∀j ∈ J,∀v ∈ Mj (4.12)
bv + pj − H̄(2− xi,j − zv,i) ≤ Cj ∀i ∈ I,∀j ∈ J,∀v ∈ Mj (4.13)

Constraint (4.10) ensures that the processing of test j starts only after the test has been
released. Constraint (4.11) makes sure that the processing of test j is completed before the due
date dj . Once test j is assigned to prototype i belonging to variant v, it is necessary to make
sure that it is processed only after prototype i becomes available and its initial set-up process
is finished. This can be achieved by Constraint (4.12). Similarly, Constraint (4.13) represents
the condition that test j cannot start until the maximum delay time of the components
required for its corresponding prototype is reached.
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Finally, we include the following additional constraints due to the problem-specific re-
quirements.

Cj + pk ≤ Ck ∀j ≺ k, j, k ∈ J (4.14)
xi,j = xi,k ∀i ∈ I,∀j ∼ k, j, k ∈ J (4.15)

xi,j + xi,k ≤ 1 ∀i ∈ I,∀j � k, j, k ∈ J (4.16)
qj,k = 1 ∀j ∈ J \ JLast,∀k ∈ JLast (4.17)

xi,j + xi,k ≤ 1 ∀i ∈ I,∀j, k ∈ JLast, j 6= k (4.18)

The precedence constraint can be formulated as shown in Constraint (4.14). For any pair
of tests (j, k) with j ∼ k, they must be assigned to the same machine and this is enforced
by Constraint (4.15). Also, for tests (j, k) with j � k, both tests must be processed on
different prototypes, see Constraint (4.16). As the crash test must always be the last test
executed, Constraint (4.17) restricts the crash test to follow other normal tests. Moreover,
Constraint (4.18) does not allow two crash tests to be performed on the same prototype.

Notice that we use a large positive value to turn on or turn off enforcement of some con-
straints, for example, Constraint (4.7). However, this technique, known as Big-M formulation,
usually leads to a poor lower bound as mentioned by Dyer and Wolsey [18].

4.2 Lower Bound Formulations

The first lower bound model is based on solving the set covering problem to satisfy the
component requirements of all tests. The minimum number of prototype variants can be
initially obtained. The energetic reasoning concept helps us further calculate the demand of
each variant definitely required over the time intervals between the release and due dates.

Since the lower bound models still neglect how to sequence tests on each prototype, these
solutions do not correspond to valid schedules. The result means that we need at least the
same number of prototypes or more in order to carry out all tests. Nevertheless, the solution
obtained from the simplified model can be regarded as the lower bound of the objective
function to minimize the number of prototypes required.

4.2.1 Formulation Based on Set Covering

We notice that around 600 prototype variants exist in real-life instances. However in practice,
it is not necessary to use all of them. It is sufficient to select a group of prototype variants
from the given list such that they can satisfy the component requirements of all tests. Clearly,
it is more convenient for the scheduling process to have variants which can be used for most
of the tests, while special variants are selected only when necessary. Also, when the same
variants are constructed repeatedly, the prototype workshop tends to have more experience
which results in the reduction of the total construction time.

Lockledge et al. [40] previously showed that this selection problem is basically the same
as the set covering problem. We want to select the smallest set of variants which still can
perform all tests.

As one of the famous optimization problems, the set covering problem appears in several
kinds of applications, for instance, crew scheduling. The set covering problem is NP-hard in
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the strong sense, see Garey and Johnson [20]. However, there are many efficient algorithms
available as provided in the survey by Caprara and Toth [11]. Also, William [56] mentioned
that the set covering problem is similar to the LP problem as the optimal solution must be
one of the vertex points. However, the optimal vertex solution is not necessarily the same as
the optimal solution obtained through solving its LP model.

To formally describe the problem, we define a binary variable for each variant v

uv =
{

1 if variant v is selected
0 otherwise

Next, we introduce the MILP formulation as follows:

minimize
∑
v∈V

uv (4.19)

subject to ∑
v∈Mj

uv ≥ 1 ∀j ∈ J (4.20)

∑
v∈Mj∩Mk

uv ≥ 1 ∀j ∼ k . (4.21)

The objective function 4.19 minimizes the number of variants. For the basic set covering
problem, we use Constraint (4.20) to guarantee that each test has at least one variant suitable
for its component requirements. In addition, we can consider the constraints for two tests
which must be assigned to the same prototype. Both tests require at least one common
variant being able to perform them together. Thus, Constraint (4.21) is further included.

4.2.2 Formulation Based on Energetic Reasoning

The formulation based on set covering considers only the component requirements of all tests.
It is important to include other characteristics of the problem like the temporal requirements.
We further apply the idea of the relaxation model introduced by Hooker [22]. He suggested a
model to minimize the number of late jobs according to the specified capacity of the cumulative
resources. On the contrary, our problem aims to minimize the peak of resource usage such that
no test is late. This concept is similar to energetic reasoning applied for constraint propagation
in cumulative resources, see Baptiste et al. [4].

In this section, the concepts of set covering and energetic reasoning are combined in
order to improve the lower bound. We first describe the fundamental knowledge of energetic
reasoning before presenting the formulation.

4.2.2.1 Necessary Condition of Energetic Reasoning

First, we use parameters t1 ∈ R̄ and t2 ∈ D̄ with t1 < t2 to define the following sets:

• J(t1, t2) = {j ∈ J |t1 ≤ rj , dj ≤ t2}

• Jl(t1, t2) = {j ∈ J |rj < t1, t1 < dj ≤ t2, t1 < rj + pj}

• Jr(t1, t2) = {j ∈ J |t1 ≤ rj < t2, t2 < dj , dj − pj < t2}
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• Jol(t1, t2) = {j ∈ J |rj < t1, t2 < dj , 0 < rj + pj − t1 ≤ t2 − dj + pj}

• Jor(t1, t2) = {j ∈ J |rj < t1, t2 < dj , rj + pj − t1 > t2 − dj + pj > 0}

• Joa(t1, t2) = {j ∈ J |rj < t1, t2 < dj , rj + pj > t2, dj − pj < t1}

Figure 4.1 represents the concept of energetic reasoning. First, the necessary condition
requires that we provide at least enough resources for processing all jobs in J(t1, t2). We
further include some parts of jobs which do not completely belong to J(t1, t2), called the
Left-Shift and Right-Shift conditions. Jl represents a set of jobs which can be left-shifted to
start at their earliest start times rj but cannot finish before t1. Hence, the overlapping part of
at least rj +pj−t1 can be included. Similarly, for the right-shift condition, jobs in set Jr(t1, t2)
contribute at least t2−dj+pj . Also, we apply left-shifting or right-shifting to other jobs in order
to determine the minimum contributing value (max{0,min{rj+pj−t1, t2−dj+pj , t2−t1}}). In
this Left/Right-Shift category, tests in set Jol(t1, t2) and Jor(t1, t2) contribute their minimum
energy requirement when they are left- and right-shifted, while tests in Joa(t1, t2) consume
the whole period between t1 and t2.

rj dj

t1 t2

J(t1,t2)

Jl(t1,t2)
Jr(t1,t2)

Jol(t1,t2)

Jor(t1,t2)

Joa(t1,t2)}

Figure 4.1: Representation of the energetic reasoning concept

4.2.2.2 MILP Formulation

In the formulation, we use the following decision variables.

• Variant demand variable

wv ∈ N = {0, 1, . . . } the number of required prototypes of variant v

• Test-to-variant allocation variable

yv,j =
{

1 if test j is assigned to a prototype of variant v.
0 otherwise
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• Prototype variant decision variable

zv,i =
{

1 if prototype i belongs to variant v
0 otherwise

The objective function (4.22) is to minimize the total number of required prototypes.

minimize
∑
v∈V

wv (4.22)

After that, we include the following constraints:

∑
v∈Mj

yv,j = 1 ∀j ∈ J (4.23)

wv ≥ yv,j ∀j ∈ J,∀v ∈ V (4.24)∑
v∈V

zv,i ≤ 1 ∀i ∈ I (4.25)∑
i∈I

zv,i = wv ∀v ∈ V . (4.26)

Constraint (4.23) assigns each test to exactly one variant which belongs to the eligible
set of the test. Consequently, Constraint (4.24) guarantees that at least one prototype is built
if the variant is selected for any test. Also, each prototype belongs to at most one variant, see
Constraint (4.25). In addition, Constraint (4.26) balances the number of prototypes of each
variant determined by variables zv,i and wv.

The energetic reasoning conditions can be further included using

wv(t2 − t1) ≥
∑

j∈J(t1,t2)

yv,jpj +
∑

j∈Jl(t1,t2)∪
Jol(t1,t2)

yv,j(rj + pj − t1) + · · ·

+
∑

j∈Jr(t1,t2)∪
Jor(t1,t2)

yv,j(t2 − dj + pj) +
∑

j∈Joa(t1,t2)

yv,j(t2 − t1) + · · ·

+
∑

j∈JLast|dj<t1

yv,j(t2 − t1) +
∑

i∈I|t1<ai+sv<t2,
ai+sv≥bv

zv,i(ai + sv − t1) + · · ·

+
∑

i∈I|t1<bv<t2,
ai+sv<bv

zv,i(bv − t1) +
∑

i∈I|ai+sv≥t2,
ai+sv≥bv

zv,i(t2 − t1) + · · ·

+
∑

i∈I|bv≥t2,
ai+sv<bv

zv,i(t2 − t1) ∀v ∈ V,∀j ∈ Nv,∀t1 ∈ R̄,∀t2 ∈ D̄. (4.27)

Constraint (4.27) considers the necessary energy consumption as explained in the previous
section. As shown in Figure 4.2, we can additionally consider the impact of the crash test as
if it still occupied the resource after its due date. Also, the total prototype construction time
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a'1

a'2

dj

t1 t2

Crash Test

J(t1,t2)

a'3

Jr(t1,t2)

Figure 4.2: Impact of the crash test and the prototype construction time on the resource
utilization

a′i = max{ai + svi , bvi} can either partially overlap with the period considered or completely
consume the entire gap if the prototype is not yet ready.

Furthermore, we apply the energetic reasoning concept for tests that must be executed
on the same machine. Let us define Js(j) = {j}∪{k ∈ J |j ∼ k} as a set of tests that must be
executed together with test j (including j itself). After that, we introduce the constraints:

t2 − t1 ≥
∑

k∈Js(j)∩J(t1,t2)

yv,kpk ∀v ∈ V,∀j ∈ Nv,∀t1 ∈ R̄,∀t2 ∈ D̄, t2 > t1 (4.28)

yv,j = yv,k ∀j ∼ k,∀v ∈ V (4.29)

Constraint (4.28) ensures that a resource with unit capacity can process all tests which
must be allocated to the same prototype. The constraint is particularly useful since in our
real-life instances sometimes more than two tests must be allocated together, for instance,
when we have test j, k, and l where j ∼ k and j ∼ l. Constraint (4.29) is further included
since these tests certainly require the same prototype variant.

Finally, we can partially consider the effect of other problem specific constraints.

wv ≥ yv,j + yv,k ∀j � k,∀v ∈ V (4.30)

wv ≥
∑

j∈Nv∩JLast

yv,j ∀v ∈ V (4.31)

For tests which must be done on different prototypes, if they use the same variant,
Constraint (4.30) demands that at least two vehicles are available. Similarly, it is not possible
to perform several crash tests on the same prototype. As in Constraint (4.31), the number of
last jobs assigned to any variant must be less than the number of that prototype variant.

4.3 Computational Results

We solve the real-life data instances mentioned in Section 2.3. Our MILP solver is ILOG
CPLEX 10.0 [24]. All computations in this report are performed on a Pentium Dual-Core,
3.0 GHz, and 4 GB RAM. We keep using CPLEX parameters at the default values.
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As shown in Table 4.1, the complete MILP model can only be applied to solve small
instance with 40 tests. No feasible solution can be found when the problem size increases to
100 tests. Our computer runs out of memory after solving the problem for about 36 hours.
We obtain only a lower bound of 3.5 from the linear relaxation problem.

Notice that our objective function must always be an integer number. Actually, we can
round up the lower bound to 4 prototypes. In fact, we can use the functionality in CPLEX
to reject unnecessary incumbents. Alternatively, we simply include the constraint to ensure
that the objective function must be greater than 4 before we repeat solving the complete
MILP. After 5 days of computation, CPLEX can neither find a solution nor further improve
the previous lower bound.

As the size of the MILP formulation explodes rapidly for other larger instances, we
cannot even start the solving process. Our computer runs out of memory before completely
translating the model to a machine-readable format.

Note that regardless of the amount of memory available in a computer, CPLEX always
has the memory restriction of 2GB when running on a 32-bit computer platform [28]. To
access more memory, it is necessary to use a 64-bit machine platform.

Table 4.1: Minimizing the number of required prototypes by solving the
complete MILP model

n #Variable #Constraint mr Total time (s)
41 2,828 78,298 5a 233.86
100 13,602 92,393 3.5b 132,284.36
231 72,072 8,465,220 - -
487 425,106 134,373,138 - -

Next, we apply the set covering and energetic reasoning formulations to realize the lower
bound of the number of required prototypes. The computational results are shown in Table 4.2.
All instances can be optimally solved within a relatively short time.

As the solutions obtained from the set covering model refer to the minimum number of
required prototype variants, they can initially provide us with a lower bound of the objective
function for those large instances. However, these lower bounds are rather poor since only the
component requirements are included.

With the help of energetic reasoning, the lower bounds are further improved since we
also can consider the effect of other constraints like release dates, due dates and prototype
availability times.

Note further that the size of an MILP model is always critical for solving a large problem.
We can eliminate some unnecessary variables in yv,j as the relations between some tests and
variants are irrelevant due to the component requirements. Thus, the size of the master MILP
is substantially reduced when the tests are restricted to fewer variants.

Moreover, the size of our MILP model depends on the number of distinct values of release
and due dates. If each job always has its own values, the model can become too large to be
solved. This situation may happen more often in case of a randomly generated instance, while
in practice these values tend to be assigned in a duplicate fashion. As shown in Table 2.1,
even the instance of 487 tests totally contains around 80 values of distinct release and due
dates. While it is necessary to have a simplified model that is as accurate as possible, we
should also keep in mind that the size of the formulated MILP problem tends to explode in
large scale problems.
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Table 4.2: Determining the lower bound of the number of required proto-
type

n #Variable #Constraint m̄r Total time (s)
Solve the set covering model
41 38 42 5 0.04
100 3 101 2 0.02
231 9 234 9 0.03
487 663 521 101 0.84
Solve the energetic reasonning model
41 1,353 24,957 5 0.69
100 456 183 4 0.23
231 1,482 8,047 18 0.26
487 111,545 497,998 110 69.03

In practice, the heuristic or meta-heuristic approaches are usually implemented to solve
scheduling problems. The role of MILP is quite substantial. Mostly people formulate and solve
their MILP models for comparison with their approaches only in case of small size instances.
The results from this analysis tend to be extrapolated for real larger instances.

We show that when appropriate, the structure of the problem at hand can help us to
formulate the simplified MILP such that the true lower bound can be obtained even from
large data instances for further optimality gap measurement.



Chapter 5

CP Approach

In this section, we apply Constraint Programming to solve our scheduling problem. First,
we need to formulate the CP model whose objective function is to minimize the number
of required prototypes. Next, we suggest our specific search strategy to further improve the
performance of search algorithms.

After that, we briefly provide a technical introduction to the CP solvers we used in this
thesis, before comparing both the solutions and performance of our search strategy with the
default search available in our CP solvers.

Finally, we provide trade-off analyses to consider the impact of the increase and decrease
in the number of available prototypes on the completion time and the number of tests executed
on time.

5.1 CP Formulation

It is quite common in the CP community to define a resource constraint in a general scheduling
problem by the term cumulative(~t, ~p,~c, C), where ~t = [t1, .., tn], ~p = [p1, .., pn], ~c = [c1, .., cn]
are the vectors of starting times, processing times, consumption rates of jobs, respectively,
and C is the capacity of the machine. The constraint is satisfied if the condition

∑
j∈Jt

cj ≤ C
holds for all time instances t in the valid time frame, where Jt = {j ∈ J |tj ≤ t ≤ tj + pj} is
the set of tasks that are in progress at time t. Therefore, the total consumption of all jobs
j ∈ Jt cannot exceed capacity C.

In our problem, each prototype i is considered as a resource with capacity C = 1 since it
can perform at most one test at a time. Also, the consumption rate of test j is cj = 1 ∀j ∈ J
as each test requires a single prototype.

Next, we define the following variables:

• vi ∈ V ∀i ∈ I represents the variant of prototype i

• xj ∈ I ∀j ∈ J represents the prototype which is selected to carry out test j

• tj represents the start time of test j

To give an example for variable xj , we assume that set I and set J contain 5 prototypes
and 5 tests. When the sequence of the allocation of each test is ~x = [x1, x2, x3, x4, x5] =
[1, 2, 2, 3, 1], it means that we assign all tests to just three prototypes. The first prototype
(i = 1) executes test 1 and test 5. The second prototype (i = 2) executes test 2 and test 3.

32
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The third prototype (i = 3) executes test 4. Also, the number of required prototypes can be
determined from the maximum value in the sequence.

The CP formulation is presented as follows:

Minimize max
j∈J

xj (5.1)

subject to
tj ≥ rj ∀j ∈ J (5.2)
tj + pj ≤ dj ∀j ∈ J (5.3)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (5.4)
vi /∈ Mj ⇒ xj 6= i ∀i ∈ I, ∀j ∈ J (5.5)
xj = i ⇒ tj ≥ ai + svi ∀i ∈ I, ∀j ∈ J (5.6)
xj = i ⇒ tj ≥ bvi ∀i ∈ I, ∀j ∈ J (5.7)
tj + pj ≤ tk ∀j ≺ k, j, k ∈ J (5.8)
xj = xk ∀j ∼ k, j, k ∈ J (5.9)
xj 6= xk ∀j � k, j, k ∈ J (5.10)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k . (5.11)

The objective function (5.1) minimizes the maximum number of prototypes used to
allocate all tests. Constraint (5.2) and Constraint (5.3) state that tests must be performed
between their release and due dates. Constraint (5.4) is a resource constraint with the term
tj |xj = i denoting the tuple of start times for tests that are assigned to prototype i, i.e.
xj = i. According to the definition of the cumulative constraint, we prohibit the concurrent
execution of two jobs which are assigned to the same machine. Constraint (5.5) prevents that
a test is assigned to a prototype whose variant does not belong to the eligibility set of the
test.

Constraint (5.6) and Constraint (5.7) ensure that a test on machine i cannot start before
the availability of the prototype according to our model. Notice that both set-up time svi and
the availability time of components bvi depend on the value of variable vi, which is not known
a priori. It is another benefit of the CP approach that variables can index parameter arrays.

Constraint (5.8) represents the precedence constraints. Constraint (5.9) ensures that any
pair of tests (j, k) with j ∼ k will be executed on the same machine. Also, tests j and k with
j � k must be processed on different machines as restricted by Constraint (5.10). Finally,
Constraint (5.11) guarantees that test j ∈ JLast is the last job executed on the machine to
which it is allocated.

5.2 Search Strategy

Our search strategy tries to obtain a good feasible solution as soon as possible rather than to
find an optimal one. We separate the branching scheme into three parts with respect to our
decision variables: xj , vi, and tj .

1. Our strategy selects the most critical test j first. Among all prototypes that are able to
carry out this test, we try to select the one which has the lowest index i, as our objective
is to minimize maxj∈J xj which represents the number of prototypes required.
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To measure the priority of each test, we consider the number of remaining possible
prototypes as the first criterion. A tie is further broken by either the minimum latest
start time (lstj) or the minimum slack time (lstj − estj).

Initially, the domain of xj or a range of prototypes possible to execute test j is [1, ...,m].
That means we can assign test j to any prototype. As prototype 1 has the lowest index, it
is selected to execute test j, i.e. xj = 1. Due to the component requirements of test j, we
can realize which tests are no longer possible to be executed on prototype 1. The domains
of these tests must be reduced to [2, ...,m]. The mechanism of constraint propagation
helps us consider also the effect of other temporal and additional constraints.

The domain of xj further shrinks during the search. Therefore, a test with a lower degree
of freedom (fewer allocatable prototypes) receives a higher priority as it becomes more
difficult to find an appropriate prototype. The slack time and latest start time are used
to measure the criticalness in the time domain. A test with a small slack time tends
to be more difficult to schedule. Also, due to the construction time of prototypes, the
number of prototypes available at the beginning is limited. Thus, we give higher priority
to a test with a smaller latest start time.

2. We simply instantiate the variant vi of prototype i with any possible value in its re-
maining domain. Notice that at the root node the domain of vi starts with a complete
range in domain V . This means prototypes can be assigned to any variant. After the
test allocation process, the domain automatically shrinks as the constraint propagation
eliminates variants which cannot satisfy the component requirements of the assigned
tests.

3. The start time of each test is determined by using the schedule-or-postpone method,
see Le Pape et al. [35]. The algorithm selects an unscheduled job with minimum earliest
start time and tries to schedule it as early as possible. However, during backtracking
the job is postponed. It means that the algorithm can neglect this job until its domain
of earliest start time is increased due to the constraint propagation mechanism.

The complete branching scheme is shown in Algorithm 1. For the rest of this thesis, the
notations LST/MinId and Slack/MinId refer to these search schemes using latest start time
and slack time for the job selection criteria, while trying to choose the machine with the
minimum index to perform the selected job. The depth-first search is applied as we want to
achieve a feasible solution as soon as possible.

5.3 CP Solvers

To solve the CP problem, we apply ILOG OPL 3.7 [25] and ILOG Scheduler 6.2 [26]. OPL is a
programming language for representing optimization problems. As shown in Figure 5.1, OPL
is built on top of optimization engines: ILOG CPLEX [24] for linear and integer programming;
ILOG Solver [27] for constraint programming; and ILOG Scheduler [26] for constraint-based
scheduling. Therefore, one problem can be formulated and solved using different approaches.
Also, OPL provides a script language allowing users to iteratively solve optimization problems
or implement hybrid strategies.
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Algorithm 1 Branching scheme for test scheduling: LST/MinId and Slack/MinId

%PART 1) Assign tests to prototypes
%Let Ja be the set of tests not yet allocated
Ja := J
while Ja 6= ∅ do

- Select test j using criteria:
1) smallest number of possible machines
2) minimum latest start time or slack time

- Select a possible machine i having the lowest index i
- Try

xj = i
or

xj 6= i (for backtracking)
- Ja = J \ {j}

end while

%PART 2) Assign prototype variants
while not all prototypes have specified variants do

- Select prototype i arbitrarily
- Try to instantiate vi with possible values in its remaining domain

end while

%PART 3) Assign start times of tests (SetTimes)
%Let Js be the set of tests not yet postponed
Js := J
while not all tests have fixed start times do

if Js 6= ∅ then
- Select test j from Js using criteria:

1) minimum earliest start time
2) minimum latest end time

- Try
tj equals its earliest start time

or
postpone test j until its domain has been changed

else
Backtrack to the most recent choice point

end if
Update Js:
- remove tests which are postponed
- include tests whose domains are changed

end while
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Moreover, to solve CP problems on OPL, users can simply create a model without sug-
gesting a search. A specific search can also be implemented in order to improve the perfor-
mance. Compared to ILOG Solver, OPL provides high level modeling functionalities such that
a complex search procedure can be written in a concise and natural way, see Van Hentenryck
et al. [55].

Also, we apply ILOG Scheduler to solve our problem. Extended from ILOG Solver,
ILOG Scheduler provides the functionalities to implement constraint-based scheduling prob-
lems. Unlike OPL, users have to develop a model using the standard programming languages
like C++ or Java. Although ILOG Scheduler provides some basic search algorithms, users
must specifically implement a search together with the model. This certainly requires more
effort and experience. Nevertheless, ILOG Solver and Scheduler are inevitable for developing
advanced strategies. For instance, users can implement their node selection policy instead of
relying on the standard ones like depth-first search.

To apply the search algorithms available in ILOG Scheduler, we replace the resource
allocation process in our search Algorithm 1 with the algorithm called AssignAlternative,
while the rest of the algorithm still remains the same. In case of parallel machines with unit
capacity, we can try the AssignAlternative algorithm with three possible options: SelAltRes,
SelResMinGlobalSlack, and SelResMinLocalSlack. Moreover, the schedule-or-postpone method
used in the third part of Algorithm 1 is available as the SetTimes algorithm.

OPL

Scheduler

SolverCPLEX

Figure 5.1: Architecture of ILOG optimization software.

5.4 Computational Results

We formulate the CP model presented in Section 5.1 using ILOG OPL 3.7 [25] and ILOG
Scheduler 6.2 [26]. As mentioned in Section 5.3, we solve the problem using the search methods
available in OPL and Scheduler before comparing them with our search strategy in Section 5.2.
The time limit is set at 5 hours for the largest instance and 1 hour for the rest.

In ILOG Scheduler, we need to select appropriate constraint propagation rules apart
from implementing the model and search. There are several standard rules available in ILOG
Scheduler. First, we tried the lowest propagation strength containing only the light precedence
graph and disjunctive constraints. But with this approach we cannot get any solution even
for the smallest instance. Therefore, the edge-finding technique must be applied. Also, we
tried to use the strongest propagation level containing the balance constraint. However, the
computation cost is so high that our computer (Pentium Dual-Core, 3.0 GHz, 4 GB RAM)
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runs out of memory when solving the largest data instance. Hence, we did not use the balance
constraint for all computations.

Regarding the range of available machines, we might start by setting m = n. That means
in the worst case it is possible that each test has its own prototype for execution. But as in
practice many tests can share the same prototype, it suffices to specify m = dn/3e. Notice
that, in some cases we may not obtain a feasible solution even if such a large number of
machines is already specified. For instance, prototypes may be available too late if there are
many tests with very early due dates. However, it suggests that the conflicts must arise from
the temporal constraints rather than from the resource constraints.

The computational results in Table 5.1 show the comparison between the minimum num-
ber of required prototypes obtained from several search algorithms. As we use three different
search algorithms in ILOG Scheduler, we select only the best result of them to present here.
The detailed results are shown in Table A.1. The number of variables and constraints corre-
sponds to the CP model formulated in OPL. Also, the Gantt chart for the case of 100 tests is
provided in Figure 5.2, where test 0 represents the total construction time of each prototype.

For these instances, our algorithms outperform the standard search approaches in OPL
and Scheduler because these standard searches are generally designed to balance the load in
the set of available resources rather than to minimize the peak resource demand. Note that
CP can prove the optimality of its solution only for the smallest instance. For the other cases
it manages to achieve feasible solutions within a few minutes.

Note that in general provided there is enough time, the solver either achieves an optimal
solution for this number of prototypes or proves that the problem is infeasible. Due to limi-
tations of computation time in practice, the solver may not be able to prove the infeasibility
of the problem. Even if it finds a feasible solution we cannot be sure about its optimality as
long as there still are unexplored nodes in the search tree.

Table 5.1: Minimizing the number of required prototypes by CP.

n #Var #Const OPL Scheduler LST/MinId Slack/MinId
mr Time(s) mr Time(s) mr Time(s) mr Time(s)

41 793 2,120 5a 0.98b 5a 0.05c 5a 0.04b 5a 0.04b

100 3,935 10,636 5 1.11 5 0.51 5 0.29 5 0.29
231 19,253 70,019 19 14.82 23 6.42 18 8.15 18 6.42
487 76,088 331,957 111 242.03 121 1,398.36 111 131.73 111 85.79
a Optimal solution
b Total computation time

Time: Computation time to achieve the solution
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Furthermore, we apply CP to further determine m̄r, the lower bound of the number of
required prototypes. First, notice that our search scheme Algorithm 1 tries to achieve a good
feasible solution as soon as possible. To focus on tightening the lower bound, we may apply
another search scheme and strategy to always consider the best node, which leads to the
lowest cost function, in the search tree.

Alternatively, we apply the concept of destructive proof by simply checking the feasibility
of the CP model, that is, the objective function (5.1) is neglected in order to find a feasible
solution only. The procedure shown in Algorithm 2 starts by setting one prototype available
and further increments the number of prototypes as long as the solving problem is found
infeasible. We consider the final value as the lower bound which can be obtained from using
CP approach.

Algorithm 2 Destructive procedure to determine the lower bound
m = 1
repeat

Solve the feasibility of the CP model
m ⇐ m + 1

until Problem is feasible OR cannot be solved within the time limit

We apply Algorithm 2 to all instances except the instance of 41 tests where the optimal
solution has already been obtained. The computational results are shown in Table 5.2. For
other large instances, CP can only prove that the solving problem is infeasible within the limit
time if the number of prototypes is small enough. The instances with 100, 231, and 487 tests
have their lower bounds at 3, 9, and 9, respectively. Remember that our best feasible solutions
of these instances require 5, 18, and 111 prototypes, respectively. Therefore, we encounter a
large set of numbers of prototypes for which our CP approach fails to prove feasibility or
infeasibility within a reasonable time. We call this set the problem gap. In the case of the
largest instance, the problem gap between 10 to 110 prototypes is obviously too large.

Moreover, we provide the comparison between our CP solutions and the lower bounds
obtained from the simplified MILP model in Table 5.3. Previously, we could optimally solve
the instance of 41 tests by both MILP and CP. With the lower bound of the simplified MILP
model, we can realize that the solution obtained from CP for the instance of 231 tests is also
optimal.

In addition, the remaining gaps of other instances are just 1 prototype. Therefore, CP
can handle a large instance and find good feasible solutions. Also in practice, such a small gap
might be negligible as the manufacturer may prefer to have a more flexible schedule, rather
than the very tight and optimal one.
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Table 5.2: Determining the lower bound of the number of required proto-
types using CP.

n m #Var #Const Total computation time(s)
OPL Scheduler LST/MinId Slack/MinId

100 1 409 507 0.00 0.01 0.01 0.01
2 515 613 0.05 0.04 0.01 0.01
3 621 719 0.12 - 0.01 0.02

231 1 933 1,858 0.04 0.02 0.01 0.02
2 1,170 2,789 0.10 0.03 0.03 0.03
3 1,407 3,720 0.18 0.04 0.04 0.06
4 1,644 4,651 0.42 0.09 0.11 0.13
5 1,881 5,582 1.80 0.48 0.30 0.67
6 2,118 6,513 11.96 15.61 1.54 8.97
7 2,355 7,444 119.68 1,003.07 10.39 111.92
8 2,592 8,375 1,152.15 - 78.58 1,543.87
9 2,829 9,306 - - 766.20 -

487 1 1,984 2,961 0.18 0.09 0.08 0.09
2 2,477 3,973 0.30 0.20 0.19 0.19
3 2,970 4,985 0.58 0.36 0.33 0.32
4 3,463 5,997 1.52 1.48 0.78 0.68
5 3,956 7,009 6.17 6.18 2.40 2.20
6 4,449 8,021 39.15 30.44 9.71 10.07
7 4,942 9,033 283.75 181.00 49.63 57.02
8 5,435 10,045 2,338.19 1,226.72 308.76 330.20
9 5,928 11,057 17,625.10 9,325.13 2,385.11 2,378.18

-: No result within time limit

Table 5.3: Comparison between the number of required prototypes and
the lower bounds obtained from CP and MILP.

n mr Lower Bound (m̄r) Optimality Gap
CP Simplified MILP

41 5a 5 5 0
100 5c 4 4 1
231 18b 9 18 0
487 111c 9 110 1
a Optimal solution proved by CP
b Optimal solution proved by MILP
c Feasible solution

5.5 Trade-off Analysis Between Makespan and Number of Pro-
totypes

Although our main objective is to reduce the number of required prototypes, it is interesting to
analyze how the number of prototypes can affect the total completion time. The manufacturer
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might prefer to build more prototypes in order to gain a shorter testing period and start mass
production earlier.

To perform the trade-off analysis, we apply the classical approach of parameterization,
that is, we fix the number of prototypes and minimize the makespan with respect to all
constraints since in this problem the number of prototypes is discrete, while the makespan is
(almost) continuous. We slightly modify the CP model described in Section 5.1 by changing
the objective function to minimize the makespan Cmax and by including a constraint to ensure
that the makespan is not smaller than the completion time of any test. The resulting model
called CP-Cmax model is provided as follows:

Minimize Cmax

subject to
Constraint (5.2)–(5.11)
Cmax ≥ tj + pj ∀j ∈ J. (5.12)

Note that this optimization problem can be represented by Pm|rj , dj ,Mj , prec|Cmax which
is NP-hard in the strong sense as a generalization of Pm|prec|Cmax, see Pinedo [48].

We suggest the trade-off procedure in Algorithm 3. Initially, we assume the availabil-
ity of a large number of prototypes such that the makespan only depends on the temporal
constraints. Like in the previous section, we may define m = dn/3e.

After solving the problem, we determine mr, the number of prototypes actually required
from the solution. Notice that although our new objective is to minimize the makespan, the
algorithm may find a solution using a number of prototypes lower than the one initially
specified. Also, we reduce the number of available machines from mr to further realize how
much the makespan will be changed. That means we skip computations between m and mr.
This procedure is repeated until the CP-Cmax model becomes infeasible or the calculation
cannot terminate within a given time limit.

Algorithm 3 Trade-off procedure between the makespan and the number of prototypes

m ⇐ dn/3e
repeat

Solve the CP-Cmax model
Determine mr, the number of required prototypes, from the obtained feasible solution
m ⇐ mr − 1

until Problem is infeasible OR cannot be solved within the time limit

The computational results of the trade-off analyses are provided in Table 5.4. First, we
use OPL with default search as the CP solver. We then obtain the makespan and the number
of required prototypes according to the specified number of prototypes. Additionally, we
provide the corresponding results computed by search algorithms in Scheduler and our search
algorithms: LST/MinId and Slack/MinId. For Scheduler we select only the best results to
present here. The detailed computations of the instances with 231 and 487 tests are available
in Table A.2, A.3, and A.4

In the case of the instance with 41 tests, we start from m = 14 and get a solution
using 5 prototypes with the optimal makespan of 330 days. However, if we set m = 4 the
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problem becomes infeasible as it has not enough prototypes to execute all tests with respect
to all constraints. Also, for other larger instances we can achieve optimal solutions at the first
iteration (m = dn/3e). But after reducing a number of vehicles, we only get feasible solutions
with a slight increase in the makespan.

For these large instances, CP mostly obtains the feasible solutions. The optimal solutions
are found only when the given number of prototypes is large enough. As the resource capacity
is so high, our scheduling problem is mainly restricted by the temporal constraints. It is similar
to solving Pm||Cmax which normally is NP-hard in the strong sense. However, an efficient
polynomial time algorithm exists when m ≥ n, see Pinedo [48].

We notice that during the trade-off procedure, the number of variables and constraints
becomes smaller in each iteration. However, the slight decrease in the problem size alone
cannot compensate for the complexity caused by the resource constraints.

Moreover, it should be noted that an optimal value of the makespan in one iteration can
be regarded as a lower bound of the makespan in the next iteration. This may reduce the
search space as the constraints are tighter. However, this idea does not work effectively here
since in each case where an optimal solution is found the makespan is actually determined
by the earliest completion time (rj + pj) of a test with a very long processing time. Normally
during constraint propagation, a lower bound of the makespan is already constrained to be
greater than or equal to the earliest completion times of all jobs. Therefore, it does not help
CP when we try to include the same condition.

Finally, we illustrate the trade-off analysis in case of the instance with 487 tests in
Figure 5.3. Although our search strategies aim to minimize the number of required prototypes,
they can achieve solutions with a shorter makespan compared to OPL and Scheduler. The
analysis also shows that the manufacturer can reduce the makespan by roughly 100 days (or
from 501 to 398 days) if the cost of 10 additional prototypes is acceptable.
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Figure 5.3: Trade-off between the makespan and the number of prototypes for the instance
with 487 tests.

5.6 Trade-off Analysis Between the Number of Executed Tests
and Prototypes

In contrast to the previous section, we here assume that the manufacturer tries to use less
prototypes than required. As not all tests can be executed within their due dates, we try to
maximize the number of tests which can be completed on time.

First, we modify our CP model in Section 5.1 to consider the total number of late jobs as
the new objective function, while the due date constraint is neglected. We further introduce
Constraint (5.13) to ensure that binary variable Uj = 1 if test j is late; otherwise zero. The
CP-Late model is then provided as follows:

Minimize
∑
j∈J

Uj

subject to
Constraint (5.2), (5.4)–(5.11)
Cj > dj ⇒ Uj = 1 ∀j ∈ J. (5.13)

Note that this optimization problem can be represented by Pm|rj , dj ,Mj , prec|
∑

j∈J Uj

which is NP-hard in the strong sense as a generalization of 1|rj |
∑

Uj , see Pinedo [48].
However, we find that the performance of CP becomes very poor. As shown in Table 5.5,

we solve the CP-Late model using various search algorithms. We specify the number of pro-
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totypes with sufficient values which are determined from our feasible solutions. However, the
solutions obtained from the CP-Late model contain many late jobs instead of none.

In this case, after relaxing the due date constraint, the scheduling problem becomes
quite loose. Constraint propagation cannot efficiently tighten the domain of variables. Also,
our search strategies are not appropriate for this objective function since it keeps trying to
unreasonably allocate more tests on the lowest index prototype. We can determine which tests
are late only after their start times are assigned at the end of our search. CP can just realize
that the final result leads to so many late jobs. The effort has already been taken in vain to
search in this region.

Table 5.5: Minimizing the number of late jobs using CP.

n m number of late jobs
OPL Scheduler Slack/MinId LST/MinId

41 5 8 5 0 8
100 5 90 89 90 90
231 19 124 - - -
487 111 128 128 101 101

-: No result within time limit

To properly deal with the problem Pm||
∑

Uj , it becomes necessary to implement another
specific search strategy. We cannot separately consider the allocation and sequence parts. For
each job, both decisions must be more dynamically interleaved.

Instead of solving the complete problem directly, we apply the procedure to iteratively
determine the variant and the test allocation for each prototype. Thus, we can apply CP
to solve just a single machine problem to minimize the number of late tests. Although we
may lose a globally optimal solution, this strategy allows us to solve smaller problems more
efficiently by standard approaches.

However, the precedence constraints cannot properly be included in this procedure since
we solve the problem iteratively. Thus, we apply the technique used in the heuristic algo-
rithm developed by Scheffermann et al. [53]. As they noticed that only few tests require this
requirement and the corresponding release and due dates are quite close, it is acceptable to
adjust the due date of the earlier test to be the release date of the following test.

Let us define Js ⊆ J as a set of tests which are considered for scheduling in each iteration.
Also, Jm ⊆ Js is a set of the tests which must be scheduled within their due dates. Note that
we use set Jm to give higher priority to some tests which are definitely assigned to this
prototype.

We formulate the CP-Late-Single model as follows:

Minimize
∑
j∈Js

Uj

subject to
tj ≥ rj ∀j ∈ Js (5.14)
Cj > dj ⇒ Uj = 1 ∀j ∈ Js (5.15)
Cj ≤ dj ∀j ∈ Jm (5.16)
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cumulative(tj , pj , cj , 1) ∀j ∈ Js (5.17)
tj ≥ ai + svi ∀j ∈ Js (5.18)
Uj = Uk ∀j ∼ k, j, k ∈ Js (5.19)
Uj + Uk ≥ 1 ∀j � k, j, k ∈ J (5.20)
Uj = 0 ∧ Uk = 0 ⇒ tj ≥ tk + pk ∀j ∈ JLast ∩ Js,∀k ∈ Js, j 6= k . (5.21)

Notice that this model considers only tests provided in Js. Also, our procedure will
actually select tests with Uj = 0 to be executed on this prototype. We will try to schedule
other late tests again on the next possible prototypes.

Constraint (5.15) is applied for any test in Js when test j is late, its variable Uj be-
coming one. Only tests j ∈ Jm must be on schedule as restricted by Constraint (5.16).
Constraint (5.17) is a resource constraint of a single machine.

Constraint (5.19) ensures that test j and k with j ∼ k must be assigned to the same
prototype. It means either both tests are performed within their due dates on this machine
or will be considered for scheduling later on the next prototypes. Also, for test j and k
with j � k, they must be processed on different machines due to Constraint (5.20). Finally,
Constraint (5.21) ensures that tests j ∈ JLast will be executed in the last sequence if it is
assigned to this machine.

Our procedure is shown in Algorithm 4. We define Ja as a set of tests not yet allocated.
Also, Jn represents a set of tests neglected because they certainly cannot be completed on
schedule.

In the initial stage, we apply the set covering MILP model in Section 4.2.1 to determine
the minimum set of required variants Vr. Thus, we need not consider such a large number of
all variants. After that, the main procedure starts from allocating tests on the first prototype
i = 1 and continues to use more prototypes until there are no more tests left in Ja.

Inside the loop, we first check whether it is still possible to execute tests within their due
dates. If the availability time of a prototype plus the minimum set-up time is larger than the
latest start time (dj − pj) of any test, then the test is put into Jn.

After that, for each prototype variant we solve the CP-Late-Single model twice. First, we
specify Jm to be an empty set and Js to be a set in which tests can be performed only by this
variant. That means we try to schedule these tests first because we want to avoid building
the same prototype variant just for them. Second, we consider all other tests which are also
possible to be allocated to this variant. These tests receive lower priority because they still
have chances to be performed on other variants.

The final result stored in Jv contains a list of candidate tests for processing on each
variant v. After completing calculation for all variants, we select variant v∗ which has the
largest number of tests executed on time. This variant v∗ is then assigned to prototype i
and tests in Jv∗ are scheduled. The remaining tests will be considered for scheduling on the
additional prototypes.

In Algorithm 4, we use the number of executed tests as a single criterion in order to select
the best prototype variant. However, we realize that some tests should have higher priority
to be scheduled before considering other tests. Due to the availability time for building a
new prototype, we should try to allocate tests with early latest start times to firstly-built
prototypes. Otherwise, after missing their due dates, the test can only be neglected.

Therefore, we propose Algorithm 5 in which the variant selection process also depends
on the priority of tests. We include the step of searching for job j∗, the unscheduled job which
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has the minimum latest start time. Also, instead of considering all variants in Vr we limit
ourselves to variants which are able to perform job j∗. To ensure that job j∗ is executed
without delay on the current prototype, it is the first test we add to set Jm.

Algorithm 4 Trade-off procedure between the number of executed tests and prototypes
Solve the set covering MILP model to determine Vr from V
Ja := J
Jn := ∅
i := 1
repeat

for all j ∈ Ja do
if dj − pj < ai + minv∈Vr∩Mj{sv} then

Jn := Jn ∪ {j}
Ja := Ja \ {j}

end if
end for
for all v ∈ Vr do

Jv := ∅
Js := {j ∈ Ja ∩Nv|

∑
v∈V Mj = 1}

Jm := ∅
Solve the CP-Late-Single
for all j ∈ Js do

if Cj ≤ dj then
Jm := Jm ∪ {j}

end if
end for
Js := Ja ∩Nv

Repeat solving the CP-Late-Single
for all j ∈ Js do

if Cj ≤ dj then
Jv := Jv ∪ {j}

end if
end for

end for
Select variant v∗ which has the largest number of tests executed on time
Ja := Ja \ Jv∗

i := i + 1
until Ja = ∅

We implement the procedure using OPL Studio 3.7 [25]. As we need to frequently solve
a great number of CP problems in each iteration, we do not wait until the solver reaches an
optimal solution. We accept a feasible solution obtained within a specified time limit of 60
seconds.

The computational results for the instances with 41 and 100 tests are shown in Table 5.6,
while Figures 5.4 and 5.5 present the solutions of the instances with 231 and 487 tests. For each
prototype, we accumulate the number of executed tests and compare the solutions obtained
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Algorithm 5 Trade-off procedure between the number of executed tests and prototypes with
priority of tests

Solve the set covering MILP model to determine Vr from V
Ja := J
Jn := ∅
i := 1
repeat

for all j ∈ Ja do
if dj − pj < ai + minv∈Vr∩Mj{sv} then

Jn := Jn ∪ {j}
Ja := Ja \ {j}

end if
end for
Select test j∗ which has the minimum latest start time in Ja

for all v ∈ Vr ∩Mj∗ do
Jv := ∅
Js := {j ∈ Ja ∩Nv|

∑
v∈V Mj = 1}

Jm := {j∗}
Solve the CP-Late-Single
for all j ∈ Js do

if Cj ≤ dj then
Jm := Jm ∪ {j}

end if
end for
Js := {j ∈ Ja ∩Nv}
Repeat solving the CP-Late-Single
for all j ∈ Js do

if Cj ≤ dj then
Jv := Jv ∪ {j}

end if
end for

end for
Select variant v∗ which has the largest number of tests executed on time
Ja := Ja \ Jv∗

until Ja = ∅
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from Algorithms 4 and 5 with the results known from Section 5.4 using the Slack/MinId
algorithm.

We realize that the final outcome seems to be useless if our procedures need more pro-
totypes than necessary to execute all tests. In the second instance, for example, the new
solution obtained from Algorithm 5 requires 7 prototypes, although we previously knew that
5 prototypes are sufficient to carry out all 100 tests.

However, the results of instances with 231 and 487 tests show that our procedures can
quickly execute more tests compared to the original strategy Slack/MinId. Only in the end,
the trends become flat and steady as now we need to produce prototype variants which are
quite specific for a few special tests.

As a result, the manufacturer has more chances of earlier detecting any failure which
may occur in between. It is quite useful for the long-term planning where a large number of
prototypes and tests is involved. Although applying these trade-off procedures may require a
few prototypes more, we gain more flexibility to correct and repeat some tests.

Notice also that when solving the instance of 487 tests, Algorithm 4 behaves too greedy at
the beginning, as few tests are finally neglected and cannot be completed on time. Algorithm 5
slightly compromises the number of executed tests, while being able to finish all tests within
their due dates.

Table 5.6: Trade-off between the number of executed tests and prototypes
for the instances with 41 and 100 tests.

n number of prototypes
1 2 3 4 5 6 7 8

Slack/MinId
41 17 19 37 39 41 - - -

100 39 61 78 98 100 - - -
Algorithm 4
41 29 35 37 39 41 - - -

100 19 48 71 93 96 98 99 100
Algorithm 5
41 29 34 37 39 41 - - -

100 18 36 63 90 97 99 100 -
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Figure 5.4: Trade-off between the number of executed tests and prototypes for the instance
with 231 tests.
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Figure 5.5: Trade-off between the number of executed tests and prototypes for the instance
with 487 tests.



Chapter 6

Hybrid Approach Based on
Bender’s Decomposition

We start the description of our hybrid approach with the master MILP model to solve the
planning aspect, before describing the slave CP model to find a complete schedule. Also, we
suggest several Bender’s cut constraints to eliminate invalid solutions from the previous steps.

Moreover, we suggest two alternative formulations of our hybrid approach. We allow CP
to immediately correct some decisions determined by the MILP model, instead of waiting for
the next iteration. As a result, the stronger Bender’s cuts can be further developed. Finally,
we compare various computational results obtained from solving the real-life instances by our
hybrid methods.

6.1 Master MILP Model

To estimate the demand of prototypes in the master problem, we apply the lower bound
formulation based on energetic reasoning suggested in Section 4.2.2. However, we must use
binary variables to represent the number of prototypes instead of integer variables in order
to comply with the logic-based Bender’s cut.

Therefore, for each variant v, we replace its demand variable wv with an array of binary
variables wv,h, where h ∈ H = {1, ..., g}. We assume at most g prototypes can be built for
each variant. Also, at most one element of each array can be equal to 1. We define

wv,h =
{

1 if exactly h prototypes of variant v are required
0 otherwise

For instance, there are 3 variants with the maximum limit of 5 prototypes. When the
first and third variant require 1 and 4 prototypes, we obtain

wv,h =

 1 0 0 0 0
0 0 0 0 0
0 0 0 1 0


We keep using the test-to-variant allocation variables yv,j and the prototype variant

variables zv,i. After slightly modifying the energetic reasoning model, we obtain the master
MILP model:

51
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Minimize
∑
v∈V

∑
h∈H

hwv,h (6.1)

subject to∑
h∈H

wv,h ≤ 1 ∀v ∈ V (6.2)∑
v∈Mj

yv,j = 1 ∀j ∈ J (6.3)

∑
h∈H

wv,h ≥ yv,j ∀j ∈ J,∀v ∈ V (6.4)∑
v∈V

zv,i ≤ 1 ∀i ∈ I (6.5)∑
i∈I

zv,i =
∑
h∈H

hwv,h ∀v ∈ V (6.6)∑
h∈H

hwv,h(t2 − t1) ≥
∑

j∈J(t1,t2)

yv,jpj +
∑

j∈Jl(t1,t2)∪
Jol(t1,t2)

yv,j(rj + pj − t1) + · · ·

+
∑

j∈Jr(t1,t2)∪
Jor(t1,t2)

yv,j(t2 − dj + pj) +
∑

j∈Joa(t1,t2)

yv,j(t2 − t1) + · · ·

+
∑

j∈JLast|dj<t1

yv,j(t2 − t1) +
∑

i∈I|t1<ai+sv<t2,
ai+sv≥bv

zv,i(ai + sv − t1) + · · ·

+
∑

i∈I|t1<bv<t2,
ai+sv<bv

zv,i(bv − t1) +
∑

i∈I|ai+sv≥t2,
ai+sv≥bv

zv,i(t2 − t1) + · · ·

+
∑

i∈I|bv≥t2,
ai+sv<bv

zv,i(t2 − t1) ∀v ∈ V,∀j ∈ Nv,∀t1 ∈ R̄,∀t2 ∈ D̄ (6.7)

t2 − t1 ≥
∑

k∈Js(j)∩J(t1,t2)

yv,kpk ∀v ∈ V,∀j ∈ Nv,∀t1 ∈ R̄,∀t2 ∈ D̄ (6.8)

yv,j = yv,k ∀j ∼ k,∀v ∈ V (6.9)∑
h∈H

hwvh ≥ yv,j + yv,k ∀j � k,∀v ∈ V (6.10)∑
h∈H

hwv,h ≥
∑

j∈Nv∩JLast

yv,j ∀v ∈ V (6.11)

In principle, the objective function (6.1) and (4.22) are the same. We can see also that
Constraints (6.3)–(6.11) are equivalent to Constraints (4.23)–(4.31). Only Constraint (6.2) is
included to ensure that at most one variable in the array H can equal one.
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6.2 Slave CP Model

The solution of the master MILP model consists of yv,j and zv,i which determine the allocation
of tests to variants and the sequence of prototype variants. The slave CP model is required
only to determine the allocation of tests to prototypes xj and the start time tj .

Note that we must specifically determine the test allocation to the prototypes not just to
the variants because of the constraints for tests executed on the same and different prototypes.
Otherwise, we can basically consider a group of prototypes with the same variant as one
cumulative resource with the capacity Cv =

∑
h∈H hwv,h.

We further apply the CP model in Section 5.1 to formulate the slave CP model:

solve
yvi,j 6= 1 ⇒ xj 6= i ∀i ∈ I,∀j ∈ J (6.12)
zv,i = 1 ⇒ vi = v ∀i ∈ I,∀v ∈ V (6.13)
tj ≥ rj ∀j ∈ J (6.14)
tj + pj ≤ dj ∀j ∈ J (6.15)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (6.16)
xj = i ⇒ tj ≥ ai + svi ∀i ∈ I, ∀j ∈ J (6.17)
xj = i ⇒ tj ≥ bvi ∀i ∈ I, ∀j ∈ J (6.18)
tj + pj ≤ tk ∀j ≺ k, j, k ∈ J (6.19)
xj = xk ∀j ∼ k, j, k ∈ J (6.20)
xj 6= xk ∀j � k, j, k ∈ J (6.21)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k . (6.22)

As most constraints remain the same, we only explain the modifications here. First, we
neglect the objective function (5.1) to minimize the peak demand since it is sufficient to find
a feasible solution which satisfies all constraints.

Also, the results of variables yv,j from the master problem restrict tests to be performed
just on the specified prototype variants, although there are other possible variants available.
Therefore, we use Constraint (6.12) to replace the original component requirement which is

vi /∈ Mj ⇒ xj 6= i ∀i ∈ I, ∀j ∈ J. (6.23)

Moreover, the sequence of prototype variants in the slave CP model must comply with
the result from the MILP model as restricted by Constraint (6.13).

6.3 Bender’s Cut

The Bender’s cut constraint is proposed to eliminate invalid solutions from the previous steps.
The constraint will be incorporated into the master MILP problem if the solutions from the
previous steps are found infeasible by the slave CP model.

Assume that a solution of the MILP model at iteration k consists of wk
v,h, yk

v,j , and zk
v,i.

The simplest way to eliminate this solution is to include the nogood constraint
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∑
v∈V

∑
h∈Ek

v

wv,h +
∑
v∈V

∑
j∈F k

v

yv,j +
∑
v∈V

∑
i∈Gk

v

zv,i ≤
∑
v∈V

(|Ek
v |+ |F k

v |+ |Gk
v |)− 1 (6.24)

where Ek
v = {h ∈ H|wk

v,h = 1}, F k
v = {j ∈ J |yk

v,j = 1}, and Gk
v = {i ∈ I|zk

v,j = 1}.
As it is quite inefficient to remove just one solution for each iteration, we try to con-

currently eliminate other possible failures that might occur. To do so, we formulate sub-CP
models for each prototype variant instead of solving just the slave CP model. Each sub-
CP model considers only a cumulative resource constraint with its corresponding resource
capacity and the set of allocated tests. Next, we check the feasibility of each sub-CP model
separately. Assume the sub-CP model of variant v′ is found infeasible. That means its resource
capacity with the corresponding prototype sequence (specified in Ek

v′ and Gk
v′ , respectively)

is not sufficient to accommodate all the jobs in the given set, j ∈ F k
v′ . As the processing times

are always constant, this result can be implied in any other variant. This leads to another
Bender’s cut ∑

h∈Ek
v′

wv,h +
∑

j∈F k
v′

yv,j +
∑

i∈Gk
v′

zv,i ≤ |Ek
v′ |+ |F k

v′ |+ |Gk
v′ | − 1 ∀v ∈ V. (6.25)

Notice that the complete schedule is invalid as well, if only one of all sub-CP models is not
feasible. The nogood constraint (6.24) can be immediately included without solving the whole
slave CP model. Although it takes an additional effort to solve the small sub-CP models, we
expect to gain a benefit from reducing the number of iterations and the computation time for
solving the large master MILP model.

Moreover, the prototype availability time can be considered as a dummy job competing
with other normal jobs to occupy the resource. Assume the sub-CP model is infeasible when
using one prototype in the second order of the prototype sequence. Due to the increasing
availability time, it is also impossible to allocate the same set of tests to the prototype in the
third order. Therefore, we can avoid a similar failure to happen on any succeeding prototype
via the following constraint

∑
i∈I

aizv,i <
∑

i∈Gk
v′

aizv,i + M̄(|Ek
v′ |+ |F k

v′ | −
∑

h∈Ek
v′

wv,h +
∑

j∈F k
v′

yv,j) ∀v ∈ V. (6.26)

where M̄ is a sufficiently large positive number, that is M̄ =
∑

i∈I ai.
Constraint (6.26) is valid for resource capacity Ek

v′ and test allocation F k
v′ and ensures

that we have more time for executing these tests by using prototypes which are completed
earlier.

Due to the restriction of the allocation of tests only to their specified variants, the hybrid
approach in this section is called the hybrid approach with fixed test allocation. Its complete
diagram is also provided in Figure 6.1.

6.4 Alternative Formulations of the Hybrid Approach

We further suggest two alternative formulations to apply the hybrid approach. First, as-
sume we let the slave CP model choose any suitable variant for the tests. That means Con-
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- Obj. (6.1)

- Const. (6.2-6.11)
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xj , tj
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Optimal

solution
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Solve sub-CP
v1 v2 vg

Add Const. (6.25, 6.26)

Slave CP

- Const. (6.12-6.22)

solve

Figure 6.1: Diagram of the hybrid approach with fixed test allocation.

straint (6.12) is neglected. As a result, we can replace the nogood constraint (6.24) by a
stronger Bender’s cut

∑
v∈V

∑
h∈Ek

v

wv,h +
∑
v∈V

∑
i∈Gk

v

zv,i ≤
∑
v∈V

(|Ek
v |+ |Gk

v |)− 1. (6.27)

Due to Constraint (6.27), the master problem does not need to try many possibilities of
allocation between tests and variants since we let CP take responsibility. Thus, the number
of iterations can be reduced. However, this is reached at the cost of solving more difficult CP
models.

In the second formulation, we allow CP to change the sequence of prototypes, while only
the number of prototype variants is restricted by the master problem. To do so, the slave CP
model must include the following constraint

∑
h∈H

hwv,h =
∑

i∈I|vi=v

1 ∀v ∈ V. (6.28)

Constraint (6.28) ensures that the number of prototypes of variant v found in the slave
CP equals its demand determined by the master MILP. After that, we introduce another
Bender’s cut constraint if the solutions are invalid.

∑
v∈V

∑
h∈Ek

v

wv,h ≤
∑
v∈V

|Ek
v | − 1. (6.29)

Finally, we name both alternative formulations the hybrid approach with fixed prototype
sequence and the hybrid approach with fixed variant demand, respectively, and present their
diagrams in Figure 6.2.
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Figure 6.2: Diagrams of the hybrid approaches with fixed prototype sequence and fixed variant
demand.

6.5 Computational Results

We apply the hybrid approach with time limits of 5 hours for total computation, 10 minutes
for the master MILP and the slave CP, and 1 minute for the sub-CP. We solve the real-life
instances with several scenarios. First, we assume not to consider the effect of the Left/Right-
Shift term in the MILP problem. Next, we use the original hybrid approach with fixed test
allocation, before applying the hybrid approaches with fixed prototype sequence and with
fixed variant demand. We present the computational results in Table 6.1.

For all cases and all iterations, the master MILP can be solved optimally and the fea-
sibility of the sub-CP problems can be proved within the time limits. However, sometimes a
slave CP model can neither be proved feasible or infeasible. If this happens, we add a cut to
eliminate this solution before proceeding to the next iteration. We clearly make a difference
between the number of problems which are proved infeasible (#Inf) and which are unsolvable
by our algorithms within the given time limits (#Uns).

We provide the solutions of the MILP model at the first and the last iteration (m1
r ,m

f
r ).

If the program can convert this solution to a complete solution within the overall time limit,
mf

r represents the optimal solution. Otherwise, mf
r denotes the best lower bound as shown

in the instances with 100 and 231 tests. The hybrid approach can find the optimal solution
for our largest instance with 110 prototypes, compared with a solution with 111 prototypes
obtained from the CP approach.

Also, we can solve the instance with 231 tests only after including the effect from the
Left/Right Shift term. During the computation, there are a number of unsolvable slave CP
models, which might lead to an optimal solution if more computation time was provided. Al-
though we did not completely explore these intermediate solutions, we maintained optimality
as the objective value mf

r did not change since the first iteration.
Moreover, it took just 1 and 4 iterations to solve the instances with of 231 and 487 tests

if we let the CP approach try to relocate tests to any suitable variant instead of using only the
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variant specified by the master problem. Note that Constraint (6.12) restricts the slave CP
model not to change the misleading allocations which must be corrected later after repeating
several iterations. The CP approach is more efficient to search for other feasible alternatives
while MILP is applied only to estimate the demand and determine the sequence of prototype
production.

Also, we can get a complete solution requiring 5 prototypes for the instance with 100
tests. However, we cannot be sure that this is an optimal solution since for the objective of 4
prototypes, the slave CP model cannot be completely solved within the time limit in several
iterations.

However, when we let the CP approach change a prototype sequence, the instance with
487 tests cannot be solved as before. When we use less information from the planning master,
it becomes harder for the slave CP model to find a feasible solution with 110 prototypes.
Remember that a solution with one additional prototype is found if we solve the complete
problem by using CP alone.

Therefore, the hybrid approach can optimally solve a very large problem but fails to solve
a smaller problem. We assume that the characteristics of data play a more important role
than the problem size. Even for a large problem, the overall problem can be clearly divided
via our decomposition method when tests are naturally separated to their specific variants
and along the time horizon by the component requirements and the temporal constraints.
For the instance with 100 tests, we found that almost all tests can be assigned to any pro-
totype variant. This leads to a huge number of possible reallocations which cannot be easily
eliminated by using our Bender’s cuts.

As a stronger cut policy can be applied if we know a minimum set of jobs which causes the
conflict, we tried the algorithm suggested by Junker [30]. Given a set of jobs, this algorithm
can determine the critical set within a polynomial number of steps by solving partitioned
problems. Although these partitioned problems are significantly smaller, many of them still
cannot be solved within reasonable time. Only a few cuts can be generated and they are not
enough to help us to obtain an optimal solution.
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Table 6.1: Minimizing the number of required prototypes using the hybrid
approach.

n Master MILP Slave CP Sub CP
# It m1

r mf
r Time(s) #Inf #Uns Time(s) #Inf Time(s)

Neglecting Left/Right-Shift in master MILP
41 1 5 5a 0.77 0 0 0.01 0 0.01

100 183 4 4b 73.08 154 29 18,076.10 147 0.08
231 56 18 18b 18.6 26 30 18,023.60 27 0.07
487 19 110 110a 1,000.4 18 0 0.02 28 0.26
Hybrid approach with fixed test allocation
100 191 4 4b 75.90 161 30 18,344.4 128 0.14
231 13 18 18a 3.86 0 12 7,213.4 0 0.01
487 4 110 110a 229.38 3 0 0.01 5 0.03
Hybrid approach with fixed prototype sequence
100 6 4 5 1.55 2 3 1,801.49 2 0.01
231 1 18 18a 0.29 0 0 0.50 0 0.01
487 4 110 110a 230.15 3 0 0.61 5 0.07
Hybrid approach with fixed variant demand
100 2 4 5 0.41 0 1 600.41 0 0.01
231 1 18 18a 0.26 0 0 0.45 0 0.01
487 40 110 110b 2,079.46 15 25 15,012.5 22 0.64
a Optimal Solution
b Lower Bound

m1
r ,m

f
r : solution of MILP at the first and last iteration

#It: number of total iterations
#Inf: number of infeasible problems
#Uns: number of unsolvable problems



Chapter 7

Performance and Robustness
Verification

In the previous chapters we applied our approaches to solve a small number of real-life in-
stances. In order to investigate the performance and robustness of our algorithms, we use
random instances generated for a similar problem. As the new problem has some different
requirements, we first explain the changes necessary for our formulations.

Moreover, we briefly discuss a concept of the heuristic method which was applied to solve
the instances. Also, we suggest more search schemes based on the combinations of different
resource and job selection methods before ending with the comparison of results obtained
from various approaches.

7.1 The New Problem

As mentioned before, Bartels and Zimmermann [6] studied a test scheduling problem which
is similar to our case in several aspects. First, it considers the same objective function to
schedule all the tests using the minimum number of prototypes. Also, due to the component
requirements, the suitable variant of prototypes must be chosen from the given list to carry
out the tests.

The temporal constraints are more generally regarded as the minimum and maximum
time lags between the start times of activities. As a result, we include the condition tj − tk ≥
δkj , where δkj is a weight parameter to represent the necessary time lag between the start
times of both activities. The overall project deadline d̄ is given. Also, we include two dummy
jobs 0 and n + 1 which have zero processing times and must be executed at time 0 and at
the deadline. The release and due dates of job i can be represented by the minimum time lag
between jobs 0 and i, and between jobs i and n + 1, respectively.

Moreover, the precedence constraint can be realized as the time lag constraint by setting
the weight parameter to a processing time of the predecessor job. That means we have tk−tj ≥
pj for j, k ∈ J : j ≺ k. The prototype availability time ai is still considered because of the
limited capacity to build new prototypes, while the set-up time svi and the component delay
time bvi are neglected.

The constraints for the crash tests are still the same, while there is no need for tests
to be executed on the same or on different prototypes. As mentioned before, a new restric-
tion for a partially ordered destructive test is required. We state that for two different tests

59
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j, k ∈ J : j ' k, the constraint is valid iff either job k precedes job j or both jobs are executed
on different prototypes. That means the execution of test j can cause partial damage such
that an associated prototype is no longer valid for test k. However, we can use this prototype
to perform other tests which require its undamaged components.

7.1.1 Formulation for CP Approach

In the following, we provide the CP model for the new problem.

Minimize max
j∈J

xj

subject to
tj − tk ≥ δkj ∀j, k ∈ J ∪ {0, n + 1}, j 6= k (7.1)
xj = xk ⇒ tj ≥ tk + pk ∀j ' k, j, k ∈ J (7.2)
xj = i ⇒ tj ≥ ai ∀i ∈ I,∀j ∈ J (7.3)
vi /∈ Mj ⇒ xj 6= i ∀i ∈ I,∀j ∈ J (7.4)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (7.5)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k (7.6)

In comparison with the CP model in Section 5.1, we here include the new requirement for
the time lag constraint as shown in Constraints (7.1). Also, Constraint (7.2) becomes necessary
when there is a partially ordered destructive restriction for two different tests j, k ∈ J : j ' k.
When both tests happen to share the same prototype, we have to ensure that test k is executed
before test j.

Constraint (7.3) for the restriction on the prototype availability time is just slightly
changed from Contraint (5.6) by neglecting the variant set-up times. The rest of the new model
remains the same. Constraint (7.4) is introduced for the component requirement. The resource
constraint is enforced by Constraint (7.5). For the crash test, we need Constraint (7.6).

7.1.2 Formulation for Hybrid Approach

To apply the hybrid approach, we have to determine both the master MILP and the slave CP
models.

For the master problem, we can keep using the model in Section 6.1. Only the additional
Constraints (6.9) and (6.10) for tests executed on the same and different prototypes can be
neglected.

Unfortunately, we cannot even partially consider the impact of both time lag constraint
and the partially ordered test. It is hard to include this kind of precedence relation because
our model is based on energetic reasoning, where we need to know the exact release and due
dates.

For the slave CP model, we can apply most of the constraints formulated in the previous
section. Thus, we will explain only the different points. Since there exist three different ways
of using the hybrid approach, we further describe each case as follows.
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1. Slave CP model for the hybrid approach with fixed test allocation

solve
yvi,j 6= 1 ⇒ xj 6= i ∀i ∈ I,∀j ∈ J (7.7)
zv,i = 1 ⇒ vi = v ∀i ∈ I,∀v ∈ V (7.8)
tj − tk ≥ δkj ∀j, k ∈ J ∪ {0, n + 1}, j 6= k (7.9)
xj = xk ⇒ tj ≥ tk + pk ∀j ' k, j, k ∈ J (7.10)
xj = i ⇒ tj ≥ ai ∀i ∈ I,∀j ∈ J (7.11)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (7.12)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k (7.13)

Constraint (7.7) restricts the allocation of tests to prototypes which belong to the vari-
ants specified by the yvi,j variables in the master model. Similarly, Constraint (7.8)
ensures that the results of zv,i variables determine the variant of each prototype in the
slave CP model.

2. Slave CP model for the hybrid approach with fixed prototype sequence

solve (7.14)
zv,i = 1 ⇒ vi = v ∀i ∈ I,∀v ∈ V (7.15)
tj − tk ≥ δkj ∀j, k ∈ J ∪ {0, n + 1}, j 6= k (7.16)
xj = xk ⇒ tj ≥ tk + pk ∀j ' k, j, k ∈ J (7.17)
xj = i ⇒ tj ≥ ai ∀i ∈ I,∀j ∈ J (7.18)
vi /∈ Mj ⇒ xj 6= i ∀i ∈ I,∀j ∈ J (7.19)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (7.20)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k (7.21)

To allow CP to select any appropriate prototype variant, we use Constraint (7.4) for
the component requirement, while Constraint (7.7) is removed.

3. Slave CP model for the hybrid approach with fixed variant demand

solve (7.22)∑
h∈H

hwv,h =
∑

i∈I|vi=v

1 ∀v ∈ V (7.23)

tj − tk ≥ δkj ∀j, k ∈ J ∪ {0, n + 1}, j 6= k (7.24)
xj = xk ⇒ tj ≥ tk + pk ∀j ' k, j, k ∈ J (7.25)
xj = i ⇒ tj ≥ ai ∀i ∈ I,∀j ∈ J (7.26)
vi /∈ Mj ⇒ xj 6= i ∀i ∈ I,∀j ∈ J (7.27)
cumulative(tj |xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (7.28)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J, j 6= k (7.29)

Constraint (7.23) ensures that the results obtained from the master problem determine
the number of prototypes for each variant in the slave model. However, the production
sequence of these prototypes can be changed as Constraint (7.8) is removed.
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Let us assume that there are 2 variants requiring 2 and 1 prototypes, respectively.
CP will search for the production sequence which can lead to a feasible schedule. For
instance, CP may try using variables v1 = 2, v2 = 1, and v3 = 1. That means we build
a prototype for the second variant first and then two prototypes of the first variant.
Also, it may be possible for the production sequence with variables v1 = 1, v2 = 2, and
v3 = 1. We can see that CP commits only to keep the total demand of each variant
unchanged.

7.1.3 The Existing Approach

After describing the models for the new problem, we provide more details about the approach
previously used by Bartels and Zimmermann [6]. They applied the priority-rule heuristic
method which tries to schedule the most critical job first by using criteria like the minimum
latest start time or the highest total number of successors. Also, various kinds of planning
schemes are applied to allocate the selected test, for instance, as early (or late) as possible
in the forward (or backward) planning schemes. Each variation of different priority-rules and
planning schemes is considered as a single-pass heuristic method. It can either find one or no
feasible solution.

To further improve the method, the concept of multi-pass heuristic procedure is applied.
Instead of relying on a limited number of rules, the priority can be calculated from the
weighted sum of several rules. By repeatedly solving each instance with different weight values,
we hope to achieve better feasible schedules. Also, we can apply various planning schemes.
The whole technique is called the multi-directional multi-pass heuristic procedure.

Within this process, tests are assigned to the existing prototypes if possible. When a
new prototype must be inevitably included, the algorithm tries to select the variant which is
suitable for most of the unscheduled tests.

7.2 Additional Branch Schemes

As the performance of CP depends significantly on the search part, we introduce more branch
schemes besides Slack/MinId and LST/MinId suggested in Section 5.2. In general, the search
tree is so large that CP cannot visit all nodes within a given time limit. Using various branch
schemes can help us explore other potential areas to find better solutions.

It is quite important to have an efficient strategy especially when CP starts exploring the
search tree. Since we use the standard backtrack procedure, only nodes at the bottom of the
tree are thoroughly visited. Therefore, we focus on changing our branch scheme only in the
allocation part, while the other parts for assigning prototype variants and start times remain
the same. In the following, we suggest several criteria to prioritize the tests and prototypes.

7.2.1 Test Selection Method

To select a critical test, we always consider the number of remaining possible prototypes as
the first criterion. To break a tie, we apply several temporal criteria:

• Slack
Tests are selected using the minimum slack time.
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• LST
Tests are selected using the minimum latest start time.

• Slack-LST
Normally tests are selected using the minimum slack time. But when the slack times of
some tests become less than a certain point compared with the prototype construction
period ap, we switch to consider those tests and select one of them using the minimum
latest start time. The Slack-LST rule is formally described in Algorithm 6. By setting
the parameter c′ = 1, 2, and 3, we obtain the rules: Slack-LST1, Slack-LST2, and
Slack-LST3, respectively.

These rules allow us to occasionally schedule tests whose latest start times are getting
tight since we might miss their due dates if only considering the slack time. Notice
that the slack time represents the difference between the possible latest and earliest
start times to execute a test. When the gap is quite small compared to the prototype
availability time, it also means only few prototypes can perform the test. We assume that
the resource availability becomes more critical for the test with minimum latest start
time since it certainly needs prototypes built quite at the beginning of the production
sequence. These prototypes tend to be overwhelmed because our policy suggest using
them repeatedly to reduce the peak demand.

Algorithm 6 Test selection method: Slack-LST

%Let Ja be the set of tests not yet allocated
Initialize Jm := ∅ and Jt := ∅
From Ja, find test j having the minimum number of possible prototypes, and add to Jm

From Jm, find test j whose lstj − estj < c′ap, and add to Jt

if Jt 6= ∅ then
From Jt, select test j with the minimum latest start time

else
From Jm, select test j with the minimum slack time

end if
Return test j

• LST-Slack
Normally tests are selected using the minimum latest start time. But when the slack
times of some tests become less than a certain point compared with their processing
times, we switch to consider those tests and select one of them using the minimum
slack time. The LST-Slack rule is formally described in Algorithm 7. By specifying the
parameter c̄ = 1, 2, and 3 in the algorithm, we obtain the rules: LST-Slack1, LST-Slack2,
and LST-Slack3, respectively.

These rules allow us to occasionally consider tests whose slack times are getting smaller
compared to their processing times. Unlike the slack time, the latest start time neglects
to consider the overall possible time gap to schedule tests. Since the rule normally selects
a test with an early due date, we assume even the test with the minimum due date may
not be so critical. Thus, we should occasionally switch to use the slack time as the
measurement criterion.
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Algorithm 7 Test selection method: LST-Slack

%Let Ja be the set of tests not yet allocated
Initialize Jm := ∅ and Jt := ∅
From Ja, find test j having the minimum number of possible prototypes, and add to Jm

From Jm, find test j whose lstj − estj < c′pj , and add to Jt

if Jt 6= ∅ then
From Jt, select test j with the minimum slack time

else
From Jm, select test j with the minimum latest start time

end if
Return test j

• Backward Planning
We further implement a search scheme using problem-specific knowledge. As suggested
by Bartels and Zimmermann [6], it is beneficial to apply a backward planning scheme
especially in this case which has quite a lot of crash tests and partially destructive tests.
The backward planning rule is formally described in Algorithm 8.

Since we want to perform the tests as late as possible, the maximum latest start time
is considered as the second criterion after the number of possible machines. Also, we
prefer crash tests and partially ordered destructive tests to other tests.

Algorithm 8 Test selection method: Backward Planning

%Let Ja be the set of tests not yet allocated
Initialize Jm := ∅ and Jt := ∅
From Ja, find test j having the minimum number of possible prototypes, and add to Jm

From Jm, find test j with the maximum latest start time, and add to Jt

if Jt ∩ JLast 6= ∅ then
arbitrarily select a crash test j in Jt

else if Jt ∩ Jd 6= ∅, where Jd = {j|j, k ∈ J, j ' k} then
arbitrarily select a partially ordered destructive test j in Jt

else
arbitrarily select a test j in Jt

end if
Return test j

7.2.2 Prototype Selection Method

Once a critical test is found, it must be allocated to an appropriate prototype. We apply two
prototype selection methods trying to reuse the resources when possible in order to minimize
the peak demand.

• MinId
We select a prototype which can perform test j and has the minimum index i.

• MaxSt
We prefer to select a possible prototype already required by any other test since using a
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new prototype should be avoided. After that, we choose a prototype which can perform
test j at the maximum latest start time. Unlike the MinId method, the MaxSt no
longer tries to use the prototypes available early. These prototypes should be used only
if necessary as the number of prototypes is especially scarce at the beginning.

The MaxSt rule is formally described in Algorithm 9. As mentioned before, during the
procedure we select one test and allocate it to an appropriate prototype until all tests
can be scheduled. We use set Jb to collect tests which are already allocated. These tests
have their corresponding prototypes which are gathered in set Ir. These prototypes must
be built as we have assigned the jobs to them. We prefer to use these prototypes again
if one of them can execute test j. That is the case when Ip ∩ Ir 6= ∅, where Ip is a set of
all prototypes which can perform test j. We then select a prototype by considering the
maximum latest start time.

We have to mention further that Ip contains also every prototype in I ∩ Ir. Until
now, these prototypes are not yet required to perform the tests in Jb. However, when
Ip ∩ Ir = ∅, we must inevitably allocate test j to one of the unused prototypes. The
minimum index policy is applied for the prototype selection.

Algorithm 9 Prototype selection method: MaxSt

%Given the selected test j and the set of allocated tests Jb

%Let Ip be the set of prototypes possible to execute test j
%Let Ir be the set of prototypes required by test j ∈ Jb

if Ip ∩ Ir 6= ∅ then
Select prototype i which can perform test j at the maximum start time

else
Select a new prototype i ∈ Ip with the minimum index

end if
Return machine i

7.2.3 Resulting Branch Schemes for Test Allocation

We further combine the proposed test and prototype selection methods in order to achieve
various allocation branch schemes. For instance, Algorithm 10 represents the Slack/MaxSt
scheme. Function SelectTest(Slack, Ja) selects test j from a set of tests not yet allocated by
using the minimum slack time. After that, function SelectPrototype(MaxSt, j, J ∩ Ja) finds
prototype i to perform test j by applying the MaxSt selection method.
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Algorithm 10 Slack/MaxSt test allocation branch scheme

%PART 1) Assign Tests to Prototypes
%Let Ja be the set of tests not yet allocated
Ja := J
while Ja 6= ∅ do

j = SelectTest(Slack, Ja)
i = SelectPrototype(MaxSt, j, J ∩ Ja)
Try

xj = i
or

xj 6= i (for backtracking)
Ja = J \ {j}

end while

7.3 Computational Results

For this new problem, Bartels and Zimmermann [6] generated random instances based on
the real characteristics, for instance, 10% and 30% are the crash tests and partially ordered
destructive tests which have an impact on 50% of all tests. There are two sets of instances:
100 instances of 20 tests with 4 variants; and 60 instances of 600 tests with 25 variants. All
instances are available on their web-site (http://www.wiwi.tu-clausthal.de/testsets-evt).

7.3.1 Solving the Random Instances of 20 Tests

Bartels and Zimmermann [6] reported that the small instances can be solved optimally using
the MILP method within 100 seconds on Pentium IV, 2.4 GHz, while the best solution of
their heuristic approach is about 8% far from the optimal values.

To evaluate the performance of the CP approach, we first solve the small instances and
can achieve the same optimal solutions for all cases as shown in Table A.5. The average
computation time is 8.52 and 10.25 seconds for our search algorithms Slack/MindId and
LST/MinId, respectively. In fact, we cannot compare the performance with MILP when using
different computer platforms. However, we may conclude that both methods are still quite
efficient when dealing with the small problems.

We further apply the hybrid approach and its alternative formulations. However, only
the hybrid approach with fixed variant demand can obtain the optimal solutions with an
average computation time of 11.22 seconds and about 18 iterations. We realize that our
MILP model provides many misleading directions as it fails to consider an impact of several
constraints in the scheduling problem. Even for these small problems, it takes a number of
iterations to correct the mistakes. These mistakes cannot even be recovered when the slave
CP models excessively obey the planning part. In this situation, it is better to let CP take
more responsibility in order to complement the MILP model.
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7.3.2 Solving the Random Instances of 600 Tests

For the large instances, Bartels and Zimmermann [6] can apply only the priority-rule heuristic
method. It takes less than 0.4 seconds for the single-pass method and totally around 30 seconds
for the multi-directional multi-start method which actually applies the single-pass heuristic
procedure to solve each instance 100 times with different weight values.

We further apply CP with various search schemes to solve the large instances of 600 tests.
We first consider the test selection methods: LST, Slack, Slack-LST, and LST-Slack, together
with MinId and MaxSt rules for the prototype selection. The total number of prototypes is
initialized at m = dn/3e.

After getting all solutions, we can determine the best feasible solutions without backward
planning. Next, we subtract these results by one prototype to initialize the number of machines
m for Backward Planning/MinId and Backward Planning/MaxSt.

The detailed computation results are shown in Table A.6-A.10. The main results are sum-
marized in Table 7.1 where the solutions obtained from CP are compared with the heuristic
method.

In addition, Table 7.2 further provides the performance analysis of using different search
schemes. Of totally 60 instances, we present the number of instances which can be solved
and the number of instances whose solutions are improved compared with those obtained
by the heuristic method. Also, we provide a number of instances whose solutions are equal
to the best feasible results known from all methods. The average value of the corresponding
deviation gaps can be further determined.

First when comparing our basic search algorithms: Slack/MinId and LST/MinId, we can
achieve feasible solutions for 56 and 55 instances with deviation gaps of around 1.89% and
5.94%, respectively. Using the slack time can solve slightly more instances with a smaller
deviation gap, while contributing the best solutions for 17 cases. Although neither algorithm
Slack/MinId nor algorithm LST/MinId is perfectly robust to cope with all cases, both strate-
gies can complement each other and achieve better solutions for 38 instances compared with
the heuristic method.

Moreover, we consider the results from the combined strategies: LST-Slack and Slack-
LST with the setting parameter c′ = 1, 2, 3. Although we try to simultaneously apply both
slack and latest start times, we cannot successfully combine LST/MinId and Slack/MinId
to achieve a single algorithm which can handle all instances. For the best case, using Slack-
LST2/MaxSt still misses one instance.

We do not further try to set parameter c′ with different values since we noticed that
the number of instances solved does not keep increasing after changing from Slack-LST2 and
LST-Slack2 to Slack-LST3 and LST-Slack3, respectively.

Regarding the computation time, CP takes around five minutes on average to achieve the
best solutions. For the remaining computation time of around 1 hour, CP got lost in the huge
search tree. We also notice that the backtracking procedure always happens as our branch
scheme does not directly guide to the solutions. However, we should not wait too long and
only rely only on backtracking. It is better to stop and restart computation with the different
search schemes allowing us to explore other possibilities.

Before applying the backward planning scheme, CP has already improved the solutions for
46 instances when compared with the heuristic method. We then use the best solutions from
our CP to initialize the number of prototypes available for the backward planning scheme.
As a result, we can find better solutions for 11 instances more. Mostly, we further improve
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our own best results, while the number of instances whose solutions are improved compared
to those obtain from the heuristic method slightly increase to 48.

After that, we calculate the average number of required prototypes for these 60 instances
using all solving methods available. The priority-rule heuristic method finds the solutions with
an average of 74.83 prototypes. We can reduce the number to 73.37 prototypes using Slack-
/MinId and LST/MinId. The number further decreases to 72.12 prototypes after applying
other search schemes.

Moreover, we determine the difference between the number of required prototypes ob-
tained from CP and from the heuristic method, that is, mCP

r −mHeu
r . The histogram is shown

in Figure 7.1. Similarly, we further compare CP with the best known results, as shown in
Figure 7.2.

In most cases, CP can decrease the prototype demand. Nevertheless, there are 2 instances
where the heuristic method finds better solutions than CP. We may find out which heuristic
rule can lead to these solutions and implement it as another search scheme in CP.

Our hybrid approach fails to achieve complete solutions for all large instances. The av-
erage lower bound is just 60.42 or differs by around 20.5% from the best feasible solutions.
Mostly, the lower bounds are 60 due to the number of crash tests which is always 10% of the
total number of tests. Only for the instance numbers 38, 40, and 56, we obtain lower bounds
at 66, 67, and 72, respectively.

Obviously, our master problem cannot consider the impact of partially ordered destruc-
tive tests covering 30% of the total number of tests. Moreover, our model neglects the time
lag constraints required for most of the tests.

We want to further mention another possible drawback of the hybrid approach. Notice
that the size of our MILP model depends on the number of distinct values of both release and
due dates. If each job always has its own values, the model can become too large to be solved.
This situation may occur more often in the case of randomly generated instances, while in
practice these values tend to be assigned in a duplicate fashion.

It is also possible to group all random values into fewer milestones in order to reduce
the size of the formulated MILP problem. However, the performance of the hybrid approach
can be diminished since the master model should be as precise as possible. Therefore, we
might have to find a trade-off between the correctness of the master problem and the system
capacity.
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Table 7.1: Computational results from solving 60 instances of 600 tests
using various approaches

No. Heu CP No. Heu CP
LST-Slack w/o Back Best LST-Slack w/o Back Best

1 63 62a 62 62 31 71 72 68a 68
2 94 89a 89 89 32 72 71 70a 70
3 88 84 83a 83 33 67 64 63a 63
4 71 70 69a 69 34 75 73a 73 73
5 68a 68a 68 68 35 72 68a 68 68
6 84 79 77a 77 36 83 79a 79 79
7 63a 67 63a 63 37 80 77 76 74a

8 97 98 98 96a 38 99 96 94a 94
9 66 63a 63 63 39 73 70a 70 70

10 70 69 69 66a 40 106 100 98a 98
11 63 63 63 62a 41 71 68a 68 68
12 69 69 68 66a 42 67a 68 67a 67
13 67 66 65a 65 43 67 62a 62 62
14 82 79 79 78a 44 64 64 62a 62
15 69 66 64a 64 45 84 82 80a 80
16 70 72 69a 69 46 69 66 65a 65
17 65 67 63a 63 47 76a 78 76a 76
18 86 82 81a 81 48 67 64a 64 64
19 72 69 68a 68 49 85 81 80a 80
20 62a 62a 62 62 50 76 75 73a 73
21 79 78 77a 77 51 79 76 76 74a

22 65a 67 66 66 52 98 93 93 92a

23 63a 63a 63 63 53 67 66 65 64a

24 65 63 63 61a 54 64 64 63a 63
25 66 66 65a 65 55 66a 66a 66 66
26 81a 83 82 81a 56 106 100 98a 98
27 69 65a 65 65 57 72 69a 69 69
28 65 66 64a 64 58 64 63 62a 62
29 87a 87a 87 87 59 95 92a 92 92
30 81a 83 81a 81 60 65a 70 69 69

Avg. 74.83 73.37 72.42 72.12
a Best feasible solutions of all methods

Heu: Heuristics
LST-Slack: LST/MinId and Slack/MinId
w/o Back: Before apply backward planning
Best: Best solutions of CP
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Table 7.2: Analysis of solving 60 instances of 600 tests using CP with
various branch schemes

Job- Machine- Time(s) #Solved #Imp #Best Avg. Gap
selection selection instances Heu from Best
method method Solution (%)
Slack MinId 268.63 56 37 17 1.89

MaxSt 278.08 58 39 17 1.80
LST MinId 273.83 55 13 1 5.94

MaxSt 263.76 55 12 1 6.07
Slack-LST1 MinId 262.70 57 35 13 2.43

MaxSt 257.01 56 36 10 2.51
Slack-LST2 MinId 264.11 58 37 18 1.93

MaxSt 264.68 59 38 16 1.93
Slack-LST3 MinId 264.39 58 35 18 1.97

MaxSt 268.08 58 36 18 1.82
LST-Slack1 MinId 267.44 58 27 6 3.94

MaxSt 265.30 58 25 6 4.15
LST-Slack2 MinId 282.48 57 27 9 3.64

MaxSt 260.85 58 27 8 3.83
LST-Slack3 MinId 277.48 56 34 15 2.24

MaxSt 272.47 55 32 14 2.56
Backward MinId 66.35 18 48 57 0.15
Planning MaxSt 69.84 16 46 56 0.19
Scheduler 2,592.51 44 2 0 40.10
Best results by Slack+LST/MinId 60 38 18 1.89
Best results w/o Backward Planning 60 46 47 0.55
Best results from CP 60 48 58 0.13

#Imp Heu: number of instances whose solutions are better than those obtained by the
heuristic method
#Best: number of instances whose solutions are equal to the best-known results
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Figure 7.1: Histogram of the difference between the number of required prototypes obtained
from CP and from the priority-rule heuristic method
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from CP and from the best known results



Chapter 8

Conclusion and Future Research

We finally summarize the main contributions of our work, before closing the thesis with open
issues for future research.

8.1 Thesis Conclusion

We have presented a scheduling problem of the automotive industry where several hundreds
of tests must be performed on vehicle prototypes. This problem requires the determination of
the variant of each prototype and the sequence prototype production. Tests must be allocated
to prototypes with suitable components. Also, a feasible schedule must satisfy temporal and
problem-specific constraints. Our objective is to minimize the peak demand for prototypes
required for the testing process.

In Chapter 4, we formulate our complete scheduling problem using MILP. As a general
purpose solving platform, MILP allows us to concentrate only on the modeling part and rely
on the standard configuration in the MILP solver to find a solution. However, the scalability
is the main obstacle since MILP cannot handle our large instances.

Moreover, we suggest the lower bound MILP model which considers two basic principles:
selecting a set of variants to satisfy the component requirements and determining the number
of variants certainly required over some important time intervals. Although the model neglects
other consequences, its solution can be treated as a lower bound value of the entire problem.
Also, simplifying the model allows us to solve the largest instance. We can further compare
the obtained lower bound with a solution from any approach to measure the real optimality
gap.

In Chapter 5, we further apply the CP approach to solve the problem. Unlike MILP,
CP helps us to naturally express our complex set of requirements in a compact and scalable
formulation. Moreover, we introduce our own search strategy trying to schedule critical tests
first and use as few resources as possible. CP optimally solves the small problems and manages
to generate good feasible solutions for our large real-life instances.

CP is quite convenient to develop a new application since most CP solvers provide some
standard search algorithms. Users can concentrate on the modeling part only. The perfor-
mance can be tweaked later using a more specific search. However, CP is quite inefficient to
handle the optimization problem, especially for our objective function, as only poor lower
bounds are obtained. Without the lower bounds from MILP, we cannot realize that CP has
already achieved the feasible solutions which are almost optimal.

72



8.2. FUTURE RESEARCH 73

Moreover, we suggest trade-off procedures based on solving CP models. The analysis
helps us to realize how much the makespan can be reduced or how many late tests can
happen if we are allowed to build more or less prototypes than necessary.

In Chapter 6, we apply a hybrid approach based on Bender’s decomposition using MILP
and CP to iteratively address the planning and the scheduling problems. Also, we suggest
several kinds of Bender’s cut apart from the standard nogood constraint.

The hybrid approach can optimally solve a large instance if the characteristics of the
instance are suitable for decomposition by our MILP model. Otherwise, no feasible solution
is achieved during the process since this hybrid approach spends all efforts to increase the
lower bound until it eventually obtains an optimal solution.

Our hybrid alternatives let the slave CP model correct the intermediate decision obtained
from the master MILP model, while the stronger Bender’s cuts can be introduced. CP can
be more efficient to look for other feasible solutions without changing the objective function.
However, the complexity of solving the slave problem increases. We can even lose the benefit
of decomposition if the slave problem becomes too difficult for CP.

In Chapter 7, we further verify the performance and robustness of our methods by using
the similar case study and its random instances. We slightly modify our models to consider
different constraints. We show that CP still remains robust and efficient, even when using the
basic search schemes. The hybrid approach, however, can only provide the lower bounds since
the effect of several new constraints cannot be observed by the master problem.

More sophisticated branch schemes are also proposed to explore wider search regions
and further improve our results. When comparing CP with the heuristic method, we find
better feasible solutions for most of the instances and reduce the average number of required
prototypes.

It takes CP several minutes of computation time to achieve its solutions while the heuris-
tic method is clearly faster. However, our computation time is still within a reasonable range,
especially for the long-term planning. Moreover, we need not change the solving algorithm
after modifying the side constraints. Furthermore, the knowledge acquired from using the
heuristic method can provide us with a guideline for developing an efficient search strategy
in CP.

8.2 Future Research

Although our scheduling problem originally arises from the automotive industry, we believe
that our solving techniques can be generally applied to any similar application dealing with
the minimization of the resource demand in a parallel machine environment.

Therefore, it is still challenging to further improve our methods using our case study as
a benchmark. We would like to suggest some promising research areas to be carried out in
the future.

For the MILP approach, we can replace the Big-M formulations in the complete model
by the indicator constraints which have recently been introduced in CPLEX [24]. The result-
ing formulations tend to be numerically more robust and accurate. However, we may still
encounter a scalability problem.

Regarding the CP approach, we can improve its performance and robustness by using
more advanced search frameworks. Instead of the standard depth-first search, we can also
apply the limited discrepancy search which tries to follow a path suggested by a heuristic
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method as long as a number of wrong turns does not exceed a specified limit.
Also, we can use more intelligence backtracking policies, like backjumping, backmarking,

or hybrid algorithms suggested by Prosser [49].
CP can be further combined with the local search methods. For instance, in ILOG Sched-

uler [26], CP is enhanced to cooperate with the large neighborhood search. We can shuffle
between the resource allocation and job sequencing within the CP framework. We may spec-
ify a strategy to move tests out of a machine seldom used and insert them to other possible
machines.

Concerning the MILP-CP hybrid approach, we may apply a Branch-and-Check frame-
work suggested by Thorsteinsson [54]. The approach in our thesis tries to solve the master
problem optimally before checking the overall feasibility. It can result in a large number of
solving iterations if the optimal solution of the planning process is not realistic and quite far
from the optimal solution for the whole schedule. The Branch-and-Check method suggests to
check the feasibility of the slave problem whenever we find any integer feasible solution for
the master problem. This may help us to find a better feasible solution faster.



Appendix A

Supplementary Computational
Results

We provide the additional results obtained from solving the real-life and random instances.
Remember that we obtain 4 real-life instances which contain 41, 100, 231, and 487 tests,
respectively. Also, there are two sets of random instances: 100 instances of 20 tests and 60
instances of 600 tests.

A.1 Solving the Real-life Instances

We use the same footnotes as in Table A.1 for all tables in this section. The time limit is
specified at 5 hours for the instance with 487 tests and at 1 hour for the rest. If the value
of the total computation time exceeds the time limits, it means the computation terminates
and achieves just a feasible solution without optimality proof.

Table A.1: Minimizing the number of required prototypes by CP with
search algorithms in ILOG Scheduler

n SelResMinGlobal SelResMinLocal SelAltRes
mr Time(s) Total mr Time(s) Total mr Time(s) Total

Time(s) Time(s) Time(s)
41 5a 0.13 0.14 5a 0.14 0.16 5a 0.05 0.07
100 5 5.08 3,609.44 5 5.42 3,610.32 5 0.51 3,606.15
231 21 6.42 3,610.52 22 6.68 3,610.70 23 6.27 3,610.83
487 121 1,398.36 18,012.40 121 1,425.12 18,104.40 - - -
a Optimal solution

Time: Computation time to achieve the solution
Total Time: Total computation time
-: No result within the time limit
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Table A.2: Trade-off between the number of prototypes and the makespan
for the instance with 231 tests using the SelResMinGlobal and SelResMin-
Local alogrithms in ILOG Scheduler

m SelResMinGlobal SelResMinLocal
mr Cmax Time(s) Total Time(s) mr Cmax Time(s) Total Time(s)

77 73 376a 47.23 47.57 70 376a 26.05 26.34
72 72 376a 33.49 33.76 no computation
71 71 376a 31.04 31.23 no computation
70 70 376a 23.19 23.38 no computation
69 69 376a 23.36 23.53 69 376a 11.96 12.12
68 68 376a 21.30 21.48 68 376a 15.04 15.19
67 67 376a 22.65 22.86 67 376a 14.81 14.98
66 66 376a 19.86 20.02 66 376a 12.15 12.34
65 65 376a 18.95 19.13 65 376a 11.88 12.05
64 64 376a 18.21 18.35 64 376a 11.27 11.44
63 63 376a 18.27 18.42 63 376a 11.84 12.02
62 62 376a 15.18 15.33 62 376a 9.28 9.43
61 61 376a 13.46 13.63 61 376a 7.91 8.04
60 60 376a 13.59 13.74 60 376a 8.23 8.37
59 59 376a 10.61 10.78 59 376a 6.90 7.05
58 58 376a 8.27 8.42 58 376a 5.03 5.17
57 57 376a 6.12 6.26 57 376a 4.58 4.72
56 56 376a 5.53 5.68 56 376a 4.79 4.91
55 55 376a 5.55 5.69 55 376a 4.01 4.14
54 54 376a 5.29 5.44 54 376a 4.15 4.30
53 53 376a 4.88 5.04 53 376a 4.15 4.32
52 52 376a 4.64 4.77 52 376a 3.71 3.83
51 51 376a 4.13 4.25 51 376a 3.71 3.86
50 50 376a 4.98 5.11 50 376a 3.74 3.87
49 49 376a 3.97 4.09 49 376a 3.83 3.94
48 48 376a 4.20 4.35 48 376a 3.65 3.77
47 47 376a 3.47 3.61 47 376a 3.76 3.87
46 46 376a 3.78 3.88 46 376a 3.46 3.58
45 45 376a 3.47 3.56 45 376a 3.65 3.77
44 44 376a 3.62 3.72 44 398 2.35 3,605.28
43 43 376a 3.48 3.60 43 376a 3.81 3.91
42 42 376a 3.66 3.78 42 376a 3.33 3.43
41 41 376a 3.46 3.55 41 376a 3.38 3.48
40 40 376a 3.43 3.53 - - - -
39 39 376a 3.33 3.43 - - - -
38 38 376a 3.20 3.30 - - - -
37 37 376a 3.04 3.14 - - - -
36 36 376a 3.03 3.14 - - - -
35 35 376a 3.00 3.10 - - - -

Continued on Next Page. . .
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m SelResMinGlobal SelResMinLocal
mr Cmax Time(s) Total Time(s) mr Cmax Time(s) Total Time(s)

34 34 463 1.56 3,604.75 - - - -
33 33 376a 2.71 2.79 - - - -
32 32 376a 2.55 2.62 - - - -
31 31 390 1.75 3,603.32 - - - -
30 30 390 1.70 3,603.47 - - - -
29 29 390 1.62 3,603.50 - - - -
28 28 390 1.54 3,603.32 - - - -
27 27 376a 2.33 2.42 - - - -
26 26 376a 2.24 2.31 - - - -
25 25 381 1.91 3,605.21 - - - -
24 24 381 8.81 3,604.88 - - - -
23 23 386 69.78 3,605.34 - - - -

Table A.3: Trade-off between the number of prototypes and the makespan
for the instance with 231 tests using the SelAltRes alogrithm in ILOG
Scheduler

m SelAltRes
mr Cmax Time(s) Total Time(s)

77 24 376a 5.82 6.05
23 23 379 1.98 3,605.47

Table A.4: Trade-off between the number of prototypes and the makespan
for the instance with 487 tests using search algorithms in Scheduler (Se-
lAltRes cannot find any solution.)

m SelResMinGlobal SelResMinLocal
mr Cmax Time(s) Total Time(s) mr Cmax Time(s) Total Time(s)

162 162 381a 7,166.72 7,173.86 162 381a 6,392.91 6,399.84
161 161 381a 7,031.49 7,038.05 161 381a 6,276.13 6,282.45
160 160 381a 6,909.15 6,915.50 160 381a 6,045.92 6,051.90
159 159 381a 6,793.29 6,799.60 159 381a 5,999.57 6,005.64
158 158 381a 6,665.32 6,671.61 158 381a 5,920.28 5,926.34
157 157 381a 6,521.04 6,527.20 157 381a 5,797.30 5,802.93
156 156 381a 6,424.89 6,431.78 156 381a 5,717.49 5,723.62
155 155 381a 6,285.50 6,291.81 155 381a 5,587.78 5,594.06
154 154 381a 6,159.98 6,166.32 154 381a 5,457.85 5,463.42
153 153 381a 6,022.47 6,028.90 153 381a 5,318.80 5,324.13
152 152 381a 5,962.65 5,969.06 152 381a 5,241.34 5,247.15
151 151 381a 6,761.71 6,767.76 151 381a 5,137.73 5,142.99

Continued on Next Page. . .
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m SelResMinGlobal SelResMinLocal
mr Cmax Time(s) Total Time(s) mr Cmax Time(s) Total Time(s)

150 150 381a 6,619.86 6,626.15 150 381a 5,025.25 5,030.37
149 149 381a 6,478.35 6,484.71 149 381a 4,904.02 4,909.18
148 148 381a 6,319.54 6,325.50 148 381a 4,830.36 4,835.17
147 147 381a 6,202.97 6,209.37 147 381a 4,770.09 4,774.96
146 146 381a 6,090.43 6,096.71 146 381a 4,864.26 4,869.32
145 145 381a 5,917.14 5,923.48 145 381a 4,719.35 4,724.28
144 144 381a 5,765.03 5,770.57 144 381a 4,578.94 4,583.74
143 143 381a 5,637.12 5,642.51 143 381a 4,479.51 4,485.09
142 142 381a 5,552.67 5,558.79 142 381a 4,400.24 4,405.26
141 141 381a 5,478.85 5,484.36 141 381a 4,268.64 4,273.61
140 140 381a 5,357.20 5,362.72 140 381a 4,126.12 4,131.02
139 139 381a 5,234.58 5,240.04 139 381a 4,056.63 4,061.47
138 138 381a 5,145.41 5,150.76 138 381a 4,039.40 4,044.22
137 137 381a 5,057.50 5,062.54 137 381a 3,881.34 3,885.78
136 136 381a 4,973.13 4,978.20 136 381a 4,054.24 4,058.72
135 135 381a 4,885.90 4,891.11 135 381a 3,994.83 3,999.43
134 134 382 4,771.50 18,015.60 134 382 3,900.31 18,015.30
133 133 382 4,667.92 18,020.60 133 385 3,708.28 18,014.70
132 132 385 4,487.08 18,015.50 132 386 3,642.66 18,013.00
131 131 393 4,073.28 18,012.40 131 385 3,937.77 18,020.00
130 130 393 3,957.51 18,013.20 130 392 3,585.38 18,013.00
129 129 424 2,847.83 18,013.00 129 392 3,507.17 18,013.20
128 128 438 2,324.16 18,012.70 128 443 1,825.23 18,013.10
127 127 445 2,134.55 18,013.00 127 445 1,733.03 18,015.30
126 126 445 2,082.01 18,013.80 126 457 1,619.24 18,013.20
125 125 505 1,376.81 18,013.40 125 479 1,473.72 18,013.40
124 124 509 1,267.08 18,012.50 124 500 1,343.50 18,013.20
123 123 511 1,225.25 18,012.60 123 504 1,265.69 18,012.80
122 122 515 1,195.80 18,011.60 122 515 1,203.77 18,012.30
121 121 526 1,116.55 18,012.10 121 526 1,137.86 18,012.80
120 120 600 330.09 18,012.30 120 535 1,043.81 18,012.30
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A.2 Solving the Random Instances

We provide the computational results of the random instances obtained from the CP and
hybrid approaches. For CP we specify the time limit is specified at 1 hour for all random
instances. For the hybrid approach we set the time limits of 5 hours for total computation,
10 minutes for the master MILP and the slave CP, and 1 minute for the sub-CP.

Table A.5: Computational results from solving 100 instances of 20 tests by
CP and the hybrid approach.

No. Solu- CP Hybrid
tion Slack/ LST/ MILP Dis Com Total #It #Dinf #CInf

MinId MinId time time time time
1 8 0.76 0.63 0.07 0.01 0.17 0.25 6 0 5
2 7 0.37 0.36 0.09 0.00 1.00 1.09 7 0 6
3 6 0.32 0.32 0.47 0.00 0.38 0.85 20 0 19
4 7 0.43 0.74 0.35 0.00 0.46 0.81 18 0 17
5 7 0.58 0.36 0.26 0.01 0.28 0.55 13 0 12
6 5 0.09 0.13 0.05 0.00 0.04 0.09 5 0 4
7 6 0.24 0.22 0.08 0.00 0.08 0.16 6 0 5
8 7 0.37 0.19 0.37 0.00 0.10 0.47 17 0 16
9 6 0.12 0.59 0.08 0.00 0.07 0.15 6 0 5

10 7 1.50 2.02 0.54 0.00 0.51 1.05 21 0 20
11 8 0.67 1.18 0.40 0.00 3.49 3.89 17 0 16
12 7 0.95 4.40 0.37 0.00 2.89 3.26 19 0 18
13 6 0.67 0.65 0.07 0.00 0.09 0.16 6 0 5
14 8 1.23 1.36 1.23 0.00 0.98 2.21 42 0 41
15 7 0.39 0.47 0.26 0.00 0.21 0.47 15 0 14
16 6 0.26 0.31 0.13 0.02 0.15 0.30 8 0 7
17 9 8.23 26.11 3.83 0.02 46.47 50.32 103 0 102
18 8 16.71 9.28 0.24 0.01 22.45 22.70 16 1 14
19 6 0.16 0.33 0.08 0.00 0.06 0.14 7 0 6
20 8 6.21 51.83 0.31 0.01 60.23 60.55 17 0 16
21 6 0.49 0.76 0.78 0.00 19.07 19.85 33 0 32
22 6 0.13 0.20 0.00 0.00 0.00 0.00 1 0 0
23 8 3.05 5.07 1.92 0.00 26.34 28.26 54 1 52
24 5 0.15 0.16 0.06 0.00 0.02 0.08 5 0 4
25 7 0.82 0.77 0.29 0.01 5.01 5.31 19 0 18
26 8 34.49 46.26 0.84 0.01 18.39 19.24 36 0 35
27 6 0.13 0.12 0.07 0.00 0.14 0.21 5 0 4
28 6 0.11 0.10 0.11 0.00 0.04 0.15 8 0 7
29 6 0.24 0.40 0.33 0.00 0.06 0.39 8 0 7
30 6 0.16 0.51 0.25 0.01 0.28 0.54 13 0 12
31 8 0.71 0.66 0.24 0.00 0.87 1.11 12 0 11
32 7 3.30 5.74 0.11 0.00 0.70 0.81 9 0 8
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Table A.5 – Continued
No. Solu- CP Hybrid

tion Slack/ LST/ MILP Dis Com Total #It #Dinf #CInf
MinId MinId time time time time

33 6 0.33 0.54 0.12 0.00 0.07 0.19 7 0 6
34 9 63.46 86.11 4.75 0.01 95.10 99.86 89 0 88
35 7 0.42 0.82 0.37 0.00 0.15 0.52 16 0 15
36 7 0.93 2.08 0.53 0.01 2.38 2.92 17 0 16
37 6 0.12 0.14 0.04 0.00 0.00 0.04 5 0 4
38 6 0.17 0.69 0.13 0.00 0.07 0.20 7 0 6
39 4 0.10 0.13 0.01 0.01 0.00 0.02 2 0 1
40 7 3.67 6.60 0.25 0.00 1.65 1.90 16 0 15
41 7 0.33 0.61 0.25 0.01 0.72 0.98 16 0 15
42 6 0.14 0.13 0.10 0.00 0.08 0.18 8 0 7
43 6 0.28 0.32 0.05 0.00 0.27 0.32 4 0 3
44 7 1.06 0.84 0.82 0.01 1.14 1.97 34 0 33
45 7 0.99 0.80 0.08 0.00 0.29 0.37 7 0 6
46 6 0.13 0.23 0.11 0.01 0.17 0.29 8 0 7
47 6 0.14 0.14 0.00 0.00 0.01 0.01 2 0 1
48 9 323.14 340.38 1.43 0.02 124.45 125.90 31 0 30
49 5 0.11 0.10 0.06 0.00 0.03 0.09 5 0 4
50 7 0.89 2.49 0.47 0.03 5.91 6.41 22 0 21
51 7 0.79 0.83 0.55 0.00 1.29 1.84 23 0 22
52 8 26.80 13.68 0.94 0.00 8.80 9.74 36 0 35
53 5 0.12 0.19 0.11 0.00 0.11 0.22 7 0 6
54 8 2.37 9.94 0.61 0.00 2.14 2.75 25 0 24
55 7 1.42 2.86 0.07 0.00 0.14 0.21 6 0 5
56 7 7.34 4.34 0.02 0.00 0.04 0.06 2 0 1
57 9 32.75 38.80 7.71 0.04 156.89 164.64 97 24 72
58 8 8.19 7.82 1.49 0.01 5.70 7.20 50 0 49
59 8 0.76 0.69 1.09 0.01 1.80 2.90 36 0 35
60 7 1.57 1.42 0.04 0.01 0.51 0.56 4 0 3
61 7 0.37 0.49 0.30 0.00 0.52 0.82 14 0 13
62 6 0.36 0.56 0.07 0.00 0.71 0.78 7 0 6
63 7 0.52 1.25 0.37 0.00 0.32 0.69 16 0 15
64 6 0.12 0.18 0.08 0.00 0.08 0.16 6 0 5
65 6 0.11 0.10 0.08 0.00 0.03 0.11 6 0 5
66 10 19.76 43.46 1.25 0.01 61.00 62.26 35 3 31
67 6 0.29 0.16 0.16 0.00 0.07 0.23 10 0 9
68 8 2.53 1.87 1.32 0.02 1.13 2.47 40 0 39
69 7 1.17 3.53 0.13 0.00 0.43 0.56 9 1 7
70 7 6.53 8.85 0.07 0.01 1.61 1.69 8 0 7
71 8 10.04 37.00 1.80 0.03 3.35 5.18 47 0 46
72 6 0.17 0.16 0.11 0.01 0.24 0.36 9 0 8
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Table A.5 – Continued
No. Solu- CP Hybrid

tion Slack/ LST/ MILP Dis Com Total #It #Dinf #CInf
MinId MinId time time time time

73 7 1.19 8.84 0.31 0.00 0.34 0.65 16 0 15
74 5 0.09 0.09 0.07 0.00 0.02 0.09 5 0 4
75 7 0.71 0.45 0.04 0.00 0.05 0.09 4 0 3
76 6 2.10 2.09 0.06 0.00 0.30 0.36 7 0 6
77 7 1.27 0.49 0.29 0.02 0.40 0.71 16 0 15
78 7 0.77 1.39 0.35 0.00 0.37 0.72 17 0 16
79 7 2.59 1.93 0.30 0.01 0.76 1.07 16 0 15
80 8 2.90 8.68 0.91 0.03 13.26 14.20 34 0 33
81 6 0.40 0.52 0.07 0.00 0.06 0.13 5 0 4
82 6 0.25 0.25 0.06 0.00 0.11 0.17 8 0 7
83 10 208.41 196.99 6.45 0.01 307.43 313.89 97 0 96
84 5 0.15 0.19 0.01 0.00 0.01 0.02 2 0 1
85 6 0.22 0.26 0.10 0.01 0.47 0.58 7 0 6
86 8 3.21 3.37 1.26 0.00 9.21 10.47 45 0 44
87 7 10.02 4.47 0.04 0.00 19.06 19.10 7 0 6
88 7 0.12 0.11 0.12 0.00 0.05 0.17 8 0 7
89 8 10.25 6.98 0.29 0.00 21.12 21.41 18 0 17
90 6 0.14 0.21 0.08 0.02 0.06 0.16 6 0 5
91 6 0.16 0.23 0.11 0.01 0.16 0.28 7 0 6
92 7 0.89 0.89 0.36 0.01 2.61 2.98 19 0 18
93 6 0.32 0.81 0.18 0.01 0.02 0.21 11 0 10
94 6 0.16 0.15 0.05 0.00 0.16 0.21 4 0 3
95 6 0.12 0.13 0.06 0.00 0.07 0.13 6 0 5
96 6 0.20 0.22 0.02 0.00 0.02 0.04 3 0 2
97 5 0.08 0.10 0.04 0.01 0.07 0.12 5 0 4
98 6 0.20 0.31 0.13 0.00 0.94 1.07 9 0 8
99 5 0.08 0.10 0.02 0.00 0.01 0.03 3 0 2

100 7 0.58 1.46 0.06 0.00 0.26 0.32 7 0 6
Avg 6.77 8.52 10.25 0.54 0.01 10.68 11.22 17.53 0.30 16.23

Table A.6: Computational results from solving 60 instances of 600 tests by
search algorithms in ILOG Scheduler, Slack/MinId, and LST/MinId

No. Standard Search Strategies in ILOG Scheduler Specified Search Strategies
SelAltRes Global Slack Local Slack LST/MinId Slack/MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
1 72 219.4 106 8,302.64 147 916.41 67 189.75 62 272.33
2 98 175.5 - - - - 96 261.02 89 324.14
3 - - - - - - 86 256.62 84 254.39
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No. Standard Search Strategies in ILOG Scheduler Specified Search Strategies
SelAltRes Global Slack Local Slack LST/MinId Slack/MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
4 - - 139 2,292.31 140 1956.16 - - 70 287.81
5 - - - - - - 72 233.36 68 232.27
6 93 171.5 130 3,204.24 122 4123.42 82 291.92 79 252.27
7 73 188.07 122 5,082.47 - - 67 242.62 68 190.8
8 98 171.27 - - - - 108 257.58 98 264.52
9 - - 81 11,377.50 - - 71 201.67 63 375.33

10 - - - - - - - - 69 304.31
11 73 202.41 84 10,438.00 147 871.59 63 312.43 63 229.34
12 - - 108 6,780.30 130 3822.06 72 295.16 69 241.31
13 73 191.18 145 1,188.90 - - 67 431.87 66 341.3
14 91 202.15 110 6,793.97 117 6093.26 81 238.55 79 240.69
15 - - 121 5,026.34 - - 66 237.89 66 280.78
16 - - 125 5,022.84 - - 73 245.36 72 238.58
17 - - - - - - - - 67 238.68
18 92 199.02 - - - - 88 289.56 82 240.32
19 - - - - - - 69 288.22 71 191.74
20 - - 89 10,250.80 147 879.65 - - 62 241.31
21 88 183.47 119 5,257.52 129 3899.68 84 248.15 78 243.81
22 - - 145 1,101.09 145 1103.88 69 333.58 67 325.57
23 - - - - - - 63 231.81 64 277.03
24 - - 111 7,287.17 147 881.72 66 288.8 63 235.43
25 - - 146 1,036.02 - - 71 208.41 66 300.77
26 91 201.94 99 8,378.49 95 9127.31 88 180.45 83 247.27
27 76 201.57 87 10,152.30 - - 69 246.46 65 246.17
28 - - 147 864.89 - - 66 197.57 - -
29 92 190.44 147 752.53 115 6094.44 90 177.53 87 245.3
30 - - - - - - 83 367.76 83 237.14
31 81 205.45 83 11,106.20 113 7362.19 72 281.51 - -
32 - - 145 1,152.22 - - 73 247.69 71 243.17
33 - - 84 10,574.80 147 899 67 221.41 64 262.67
34 87 188.05 145 1,143.62 - - 78 237.28 73 232.34
35 - - 150 179.37 - - 71 232.66 68 364.8
36 - - 131 5,202.74 137 2485.78 85 294.71 79 243.08
37 - - - - 150 194.25 77 252.62 78 245.51
38 103 184.34 143 1,381.66 - - 105 173.5 96 256.91
39 76 192.27 88 10,335.20 - - 74 188.67 70 237.66
40 - - - - - - 105 371.02 100 348.68
41 - - - - - - 70 254.6 68 293.98
42 77 201.47 88 10,041.70 130 4142.34 68 296.36 68 259.21
43 - - 87 9,719.69 - - 68 243.47 62 360.44
44 - - 133 3,452.93 150 215.28 66 193.89 64 200.22
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No. Standard Search Strategies in ILOG Scheduler Specified Search Strategies
SelAltRes Global Slack Local Slack LST/MinId Slack/MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
45 85 176.33 137 2,415.44 - - 83 265.07 82 257.79
46 - - - - - - 66 243.08 - -
47 - - - - - - 81 179.03 78 236.85
48 75 196.98 - - - - 66 290.41 64 233.07
49 88 173.74 113 5,780.20 131 2683.09 86 306.65 81 245.79
50 - - 140 2,088.20 140 2119.71 - - 75 260.57
51 - - 140 1,856.29 123 4674.32 83 299.73 76 239.24
52 - - - - - - 100 251.78 93 311.57
53 - - - - - - 67 245.92 66 315.83
54 - - 87 10,895.50 105 8732.95 64 813.03 66 257.28
55 - - - - - - 70 355.96 66 432.74
56 - - - - - - 108 261.11 100 259.51
57 - - 85 10,474.50 146 1099.23 70 252.41 69 205.85
58 73 203.34 86 10,535.60 146 1058.63 65 252.33 63 322.94
59 - - - - - - 97 250.22 92 314.59
60 78 202.66 89 10,016.20 147 856.25 70 550.26 - -

Table A.7: Computational results from solving 60 instances of 600 tests
by LST/MaxSt, Slack/MaxSt, LST-Slack1/MinId, LST-Slack2/MinId, and
LST-Slack3/MinId

No. LST/ Slack/ LST-Slack1/ LST-Slack2/ LST-Slack3/
MaxSt MaxSt MinId MinId MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
1 67 191.58 62 274.55 65 233.1 66 276.29 64 234.44
2 96 263.35 89 325.9 93 250.69 93 329.39 91 259.81
3 88 322.01 81 306.57 86 257.03 84 250.92 84 255.38
4 - - 70 290.26 71 292.21 70 289.99 69 342.36
5 72 235.27 68 279.38 68 240.26 70 229.76 70 233.32
6 82 248.71 79 253.54 79 299.67 78 248.69 77 300.99
7 67 244.33 65 287.26 67 194.14 69 191.97 64 262.14
8 108 260.27 98 266.53 98 497.19 100 260.45 98 267.62
9 71 203 63 378.7 69 203.95 64 521.86 65 249.07

10 - - 69 305.55 69 248.68 70 297.87 69 353.33
11 64 273.78 63 233.78 66 192.16 65 234.83 66 194.54
12 72 247.18 68 244.24 69 240.87 69 245.55 69 244.04
13 68 392.92 66 344.5 68 396.52 65 378.12 68 349.79
14 81 241.22 79 243.27 81 242.55 79 244.47 80 244.48
15 66 239.58 66 283.21 66 326.82 64 366.95 66 236.82
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No. LST/ Slack/ LST-Slack1/ LST-Slack2/ LST-Slack3/
MaxSt MaxSt MinId MinId MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
16 73 247.46 72 243.01 71 240.63 70 240.67 69 242.7
17 - - 68 192.99 65 239.31 65 330.59 66 193.9
18 88 253.93 82 241.51 81 297.36 82 243.39 83 242.1
19 69 291.18 71 193.56 70 242.53 69 244.06 68 285.58
20 - - 62 243.42 65 204.86 64 334.24 62 204.51
21 84 250.25 80 302.23 84 191.28 83 244.97 79 254.03
22 69 335.71 68 285.67 68 287.04 67 380.08 66 246.56
23 63 233.6 62 362.78 64 230.99 63 190.51 - -
24 66 246.4 63 238.7 63 244.47 63 244.83 63 239.39
25 68 261.03 66 302.62 65 394.1 65 251.74 66 254.63
26 88 243.88 84 245.28 86 181.11 86 185.21 85 245.26
27 70 246.99 65 247.94 71 203.34 69 198.79 70 192.65
28 66 199.27 - - - - - - - -
29 90 178.86 87 247.12 92 178.84 90 181.97 87 182.69
30 87 244.42 83 239.08 84 179.24 84 239.22 81 238.67
31 72 285.08 70 194.19 69 240.27 72 192.62 68 233.71
32 72 299.49 70 244.99 70 300.35 71 243.83 71 242.02
33 67 225.04 63 305.18 68 220.7 66 305.4 68 263.4
34 78 238.02 72 234.64 76 237.26 76 233.94 74 232.4
35 71 234.78 68 367.78 68 361.92 68 366.41 68 275.07
36 85 249.87 79 246.55 82 250.42 82 185 79 243.38
37 77 254.34 77 299.82 77 251.67 78 302.61 76 249.24
38 105 175.16 96 325.88 97 257.16 94 651.1 95 328.2
39 74 190.35 70 240.39 76 244.77 72 240.97 74 239.46
40 105 373.6 100 352.33 101 353.74 100 274.01 101 272.06
41 70 256.64 68 296.32 69 249.99 70 254.63 69 249.85
42 68 257.61 68 260.44 68 261.37 67 261.32 67 304.4
43 68 245.3 63 323.18 68 386 68 246.62 63 372.65
44 66 195.3 64 201.75 - - 70 192.4 63 464.13
45 83 267.7 82 260.15 82 370.52 80 315.98 81 262.58
46 66 244.91 - - 66 237.66 - - 67 199.38
47 81 180.7 77 238.88 80 235.32 81 235.72 78 239.82
48 66 242.02 64 234.98 68 237.59 69 185.15 65 235.1
49 86 308.08 81 303.69 83 250.56 84 250.17 81 420.07
50 - - 75 262.86 77 261.27 77 205.53 - -
51 83 301.95 76 240.79 77 288.5 77 241.77 76 293.72
52 100 254.31 93 314.16 97 248.23 95 249.84 94 251.13
53 67 247.95 66 318.26 66 192.28 69 188.96 66 289.04
54 65 556.24 66 258.54 66 304.51 66 341.17 63 636.92
55 70 358.97 66 435.56 68 449.64 67 391.2 66 474.73
56 108 263.04 99 334.14 99 402.58 99 332.55 98 403.7

Continued on Next Page. . .



A.2. SOLVING THE RANDOM INSTANCES 85

No. LST/ Slack/ LST-Slack1/ LST-Slack2/ LST-Slack3/
MaxSt MaxSt MinId MinId MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
57 70 256.21 69 208.58 72 205.1 69 256.45 69 255.16
58 65 254.99 63 326.13 62 248.85 - - - -
59 97 252.35 92 316.12 94 247.92 96 245.29 93 319.97
60 70 440.44 67 279.35 69 284.68 69 833.4 70 237

Table A.8: Computational results from solving 60 instances of 600 tests
by LST-Slack1/ MaxSt, LST-Slack2/MaxSt, LST-Slack3/MaxSt, Slack-
LST1/MinId, and Slack-LST2/MinId

No. LST-Slack1/ LST-Slack2/ LST-Slack3/ Slack-LST1/ Slack-LST2/
MaxSt MaxSt MaxSt MinId MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
1 65 233.26 66 276.82 64 233.69 62 274.03 62 275.43
2 94 251.77 92 258.98 91 261.3 92 259.99 91 326.39
3 85 317.03 84 251.44 84 254.56 81 374.1 84 256.39
4 71 292.3 70 288.39 69 290.85 70 292.14 71 242.29
5 68 240.28 70 230.12 70 233.35 68 229.34 68 229.29
6 79 302.16 78 247.96 77 300.87 78 299.45 79 243.94
7 67 193.96 67 240.84 64 262.23 69 194.96 67 197.7
8 98 418.71 100 260.31 98 264.18 98 266.64 98 265.94
9 69 203.69 64 522.93 65 249.35 67 250.5 67 250.87

10 69 248.67 71 250.11 69 354.83 69 255.53 69 257.29
11 66 192.17 65 234.42 65 232.89 64 275.07 64 275.7
12 69 240.75 69 245.55 69 243.93 69 244.82 69 244.46
13 68 396.09 65 379.22 - - 65 391.14 66 285.99
14 81 242.77 79 244.98 80 244.46 79 243.83 79 243.84
15 66 326.84 64 367.19 66 237.18 66 238.03 66 238.1
16 71 242.51 70 240.81 - - 70 242.88 70 243.33
17 65 238.91 68 194.42 66 193.85 - - 63 232.15
18 81 345.93 82 242.55 83 242 83 241.49 82 241.57
19 73 194.11 69 244.1 68 285.07 68 285.65 68 328.94
20 65 204.83 64 334.25 62 205.33 62 287.95 62 289.06
21 84 191.42 83 185.08 77 302.36 78 244.88 78 245.35
22 66 372.54 67 379.78 66 243.46 66 285.62 66 286.44
23 64 231.13 63 189.94 - - 61 192.21 - -
24 63 245.2 63 245.99 63 238.99 64 198.38 63 240.71
25 72 198.32 65 249.73 66 255.16 66 250.63 66 249.13
26 87 180.75 85 184.28 84 244.63 82 247.69 82 241.95
27 71 203.43 69 198.44 71 193.7 65 248.46 65 248.43
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No. LST-Slack1/ LST-Slack2/ LST-Slack3/ Slack-LST1/ Slack-LST2/
MaxSt MaxSt MaxSt MinId MinId

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
28 - - - - - - 64 246.78 64 249.42
29 90 247.26 90 181.66 87 184.24 88 244.25 88 243.84
30 84 179.65 85 240.21 81 300.08 82 238.08 81 300.27
31 69 240.32 72 192.25 68 234.38 71 192.87 69 282.25
32 70 301.24 70 247.15 70 243.61 70 249.07 71 249.36
33 68 220.71 66 304.73 68 262.84 65 265.94 65 258.83
34 77 237.77 76 234.25 73 233.56 73 236.02 73 232.73
35 68 361.03 68 365.71 68 274.78 69 235.37 68 279.83
36 82 250.24 82 184.98 79 243.99 79 298.33 80 244.1
37 77 252.04 77 302.59 76 248.41 78 246.92 77 244.82
38 97 257.88 95 325.29 95 330.26 96 261.91 96 336.3
39 76 244.79 72 241.1 74 239.66 74 243.12 73 191.51
40 101 353.64 100 273.07 101 273.66 100 350.67 100 352.9
41 68 250.34 70 254.33 69 254.03 67 392.91 69 345.76
42 68 260.93 69 262.01 69 261.28 69 211.51 69 211.67
43 69 339.71 67 294.39 63 372.94 64 328.48 64 327.06
44 - - 70 192.17 63 464.36 66 194.16 62 292.9
45 82 372.08 80 316.27 81 262.93 83 259.31 82 258.41
46 66 238.36 - - 67 198.61 - - 66 199.27
47 80 234.84 82 179.44 78 239.74 76 233.6 76 232.39
48 68 238.72 69 185.2 65 234.55 - - 65 236.95
49 83 249.14 84 250.95 81 419.86 83 247.27 80 308.48
50 77 261.4 77 206.4 - - 74 256.61 73 308.91
51 77 288.57 77 286.72 76 293.56 77 237.18 76 236.93
52 97 248.28 95 249.47 94 251.25 94 245.31 97 171.95
53 66 191.74 69 189.73 66 289.22 68 246.34 71 193.75
54 66 301.81 69 198.91 68 459.99 71 205.44 64 303.03
55 68 447.76 67 389.87 66 474 68 347.15 66 436.63
56 100 333.6 99 405.54 98 403.79 100 261.38 98 398.15
57 71 252.07 69 256.05 72 205.7 69 254.29 69 259.1
58 62 249.56 65 244.52 69 201.42 63 371.61 64 200.67
59 94 248.34 95 247.05 93 322.95 92 321.19 92 249.29
60 69 284.16 71 238.8 70 238 67 235.25 - -
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Table A.9: Computational results from solving 60 instances of 600 tests by
Slack-LST3/ MinId, Slack-LST1/MaxSt, Slack-LST2/MaxSt, and Slack-
LST3/MaxSt

No. Slack-LST3/ Slack-LST1/ Slack-LST2/ Slack-LST3/
MinId MaxSt MaxSt MaxSt

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
1 62 274.73 62 274.93 62 275.66 62 274.8
2 92 261.96 92 259.84 89 454.01 92 262.26
3 83 255.41 81 307.44 84 255.72 83 255.74
4 71 238.63 70 243.65 71 242.49 71 238.55
5 68 228.75 68 229.1 68 228.87 68 228.66
6 78 251.52 77 246.15 77 294.4 77 300.35
7 63 247.31 69 195.42 63 292.35 63 247.27
8 98 345.25 98 267.15 98 266.03 98 346.22
9 67 249.97 67 250.58 67 250.68 67 249.81

10 69 259.02 69 255.7 69 257.01 69 258.91
11 64 276.84 64 273.46 64 275.48 64 275.93
12 68 287.94 68 244.96 68 244.32 67 336.29
13 66 285.85 70 195.93 66 285.8 65 352.76
14 79 244.16 79 243.72 79 243.81 79 243.88
15 66 284.54 66 238.02 66 238.11 66 286.3
16 70 241.08 70 242.56 70 242.34 70 241.06
17 63 327.76 - - 63 232.06 63 327.36
18 83 242.82 83 242.4 82 242.42 83 244.22
19 68 280.77 68 285.66 68 284.82 68 280.22
20 62 289.11 62 287.27 62 289.84 62 289.67
21 78 243.71 78 244.64 78 297.93 78 244.44
22 66 281.53 67 244.66 67 244.13 66 281.6
23 67 190.82 61 192.53 - - 67 190.7
24 65 199.45 64 199.83 63 241.65 63 240.47
25 68 202.79 66 300.82 66 299.86 66 247.58
26 82 245.06 83 249.86 83 241.76 83 245.31
27 68 245.17 65 247.94 65 247.76 67 288.25
28 64 249.41 64 246.79 64 248.61 64 249.26
29 87 247.35 88 244.51 88 244.19 87 247.06
30 82 238.94 82 239.09 81 300.11 82 238.1
31 71 195.13 69 237.96 70 194.83 71 195.13
32 71 197.13 69 248.76 69 248.35 71 197.51
33 63 257.56 65 264.35 66 216.5 - -
34 74 235.52 72 234.33 72 235.7 74 294.91
35 69 275 69 235.84 68 280.55 69 273.75
36 80 245.93 79 297.2 80 243.54 80 246.1
37 77 245.48 77 300.65 77 298.09 77 298.06
38 96 331.83 96 330.77 96 335.96 96 336.63

Continued on Next Page. . .
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No. Slack-LST3/ Slack-LST1/ Slack-LST2/ Slack-LST3/
MinId MaxSt MaxSt MaxSt

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
39 73 191.76 74 243.11 73 191.56 73 191.52
40 98 344.31 100 351.41 100 354.89 99 267.77
41 70 201.68 73 200.4 67 342.84 68 299.29
42 67 305.51 68 259.29 68 258.92 68 259.01
43 64 374.22 64 328.01 64 329.08 64 374.31
44 - - 66 194.49 63 248.26 62 199.27
45 82 315.52 83 258.38 82 258.88 82 315.61
46 65 199.72 - - 66 199.38 65 201.56
47 76 236.85 75 233.97 75 232.59 76 236.46
48 67 230.66 - - 65 236.41 67 231.15
49 82 251.14 83 247.62 80 308.36 82 250.69
50 73 263.26 74 255.42 73 308.31 73 263.32
51 76 236.5 77 237.21 76 237.66 76 236.27
52 94 245.13 94 244.67 97 171.75 94 244.82
53 65 292.69 - - 71 193.09 65 292.76
54 65 401.79 71 205.52 65 260.18 - -
55 66 440.49 68 347.35 66 437.56 66 440.91
56 99 400.12 99 333 99 332.85 99 401.73
57 69 253.29 69 253.96 72 210.46 68 255.03
58 64 200.9 63 371.16 64 200.72 64 200.33
59 92 247.85 92 247.71 92 250.48 92 250.34
60 - - 67 235.55 68 236.28 69 281.15
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Table A.10: Computational results from solving 60 instances of 600 tests
by Backward Planning/MinId and Backward Planning/MaxSt

No. Backward/ Backward/ No. Backward/ Backward/
MinId MaxSt MinId MaxSt

Sol. Time(s) Sol. Time(s) Sol. Time(s) Sol. Time(s)
1 - - - - 31 69 45.49 69 43.88
2 - - - - 32 - - - -
3 - - - - 33 - - - -
4 - - - - 34 - - - -
5 - - - - 35 - - - -
6 - - - - 36 - - - -
7 - - - - 37 74 52.02 74 51.69
8 96 144.47 - - 38 - - - -
9 - - - - 39 - - - -

10 67 88.92 66 134.86 40 - - - -
11 62 36.86 - - 41 - - - -
12 66 43.8 66 44.02 42 - - - -
13 - - - - 43 - - - -
14 78 48.24 78 48.6 44 - - - -
15 65 39.01 65 39.19 45 81 51.85 81 52.49
16 70 47.5 70 47.62 46 - - - -
17 - - - - 47 - - 77 50.21
18 - - - - 48 - - - -
19 - - - - 49 - - - -
20 - - - - 50 - - - -
21 77 50.07 - - 51 74 91.23 74 91.2
22 - - - - 52 92 65.81 92 66.42
23 - - - - 53 64 81.67 64 82.01
24 61 71.49 61 72.08 54 63 125.05 63 127.35
25 - - - - 55 - - - -
26 81 55.59 81 56.17 56 - - - -
27 - - - - 57 - - - -
28 - - - - 58 - - - -
29 - - - - 59 - - - -
30 81 55.3 81 109.57 60 - - - -
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