
DESIGN OF A COMMUNICATION FRAMEWORK FOR
INTEROPERABLE INFORMATION SYSTEMS

W. Hasselbring�

Department of Computer Science, Software Technology

University of Dortmund

D-44221 Dortmund, Germany

email: hasselbring@acm.org

ABSTRACT

Frameworks are class hierarchies plus models of inter-
actions which can be turned into complete applications
through various kinds of specialization. Design patterns
often guide the construction and documentation of frame-
works. The run-time architecture of a framework is char-
acterized by an inversion of control: event handler objects
of the application are invoked via the framework’s reactive
dispatching mechanism.

This paper reports the development process of a software
architecture that has been designed for accomplishing the
transfer of operation specifications among interoperable in-
formation systems within a larger project, such that

� the communication framework does not need to know
the structure and different types of operation specifi-
cations to be transferred and

� the individual information systems do not need
to know the communication platform (in our case
CORBA).

Some design patterns guided the construction of the result-
ing object-oriented framework to achieve a flexible soft-
ware architecture. The emphasis of this paper is the de-
scription of the way in which the communication frame-
work has been designed.

INTRODUCTION

Design patterns are descriptions of communicating objects
and classes that are customized to solve a general design
problem in a particular context (Gamma et al., 1995). The
pattern community catalogs useful design fragments and
the context that guides their use. They do not make special
distinctions between architectural patterns and patterns for
code. An organized collection of related patterns for a par-
ticular application domain can be called apattern systemor
pattern language.

All aspects of software systems, their development and
their deployment are suitable topics of individual patterns

�New address from August 1998 onwards: Department of Information
Managementand Computer Science, Tilburg University, 5000 LE Tilburg,
The Netherlands.

or comprehensive pattern languages. Patterns might be so
specific as to name particular objects, their responsibili-
ties, and interaction. A well-known pattern of this kind
is, for example, the Observer pattern from (Gamma et al.,
1995). It supports keeping co-operating components con-
sistent, with help of a change propagation mechanism.

Object-oriented frameworks can be regarded as incom-
plete software architectures which can be turned into com-
plete applications through various kinds of specialization
(Pree, 1995; Fayad and Schmidt, 1997). Design patterns
guide the construction and documentation of frameworks,
but they may also bediscoveredin existing object-oriented
frameworks, e.g., in frameworks for graphical user inter-
faces, communication middleware, databases, etc.

The communication framework presented in this paper
has been developed as part of a larger project in which het-
erogeneous information systems had to interoperate. An
important goal for the project organization was to decouple
the subsystem components as far as possible in a simple
way such that the individual subgroups within the project
team are able to work independently while agreeing on
small interface specifications.

BACKGROUND

The larger project in which the communication framework
has been developed aimed at integrating two components
of a hospital information systems: a system for controlling
the results of therapies in angiopathy and an administration
system for charging the treatment. The therapy control sys-
tem has been implemented in cooperation of the University
of Dortmund and the University Hospital Wuppertal (Ull-
rich et al., 1996) with the object-oriented database system
O2 (Bancilhon et al., 1992). The patient data management
system has been implemented with the relational database
system Oracle (Bronzite, 1989).

This section gives a brief overview of the federated sys-
tem architecture in this project which has been designed
according to the specific requirements of integrating repli-
cated information among heterogeneous information sys-
tems within hospitals (Hasselbring, 1997). Below, we
present an extended schema architecture and the associated
algorithms that restore the integrity of replicated informa-

1



tion when changes occur.
A database system(DBS) consists of a database man-

agement system and one or more databases that it man-
ages. A federated DBS is an integration of autonomous
database systems (Sheth and Larson, 1990). In a federated
DBS, both global applications and local applications are
supported. The local applications remain autonomous, but
must restrict their autonomy to some extent to participate
in the federation. Global applications can access multiple
local DBSs through the federation layer. The federation
layer can also control global integrity constraints such as
data value dependencies across multiple component DBSs.

To achieve a division of labor between system compo-
nents,agentsconnected to the component DBSs are intro-
duced asactiveDBSs (Widom and Ceri, 1996) to serve as
mediators between component DBSs and federation layer.
Figure 1 displays the general system architecture illustrat-
ing the division of labor between kernel and agents. The lo-
cal database management systems of the component DBSs
consider the active agents as local applications.

This approach allows a ‘separation of concerns’ be-
tween the federation kernel and the component agents. The
responsibility for monitoring and announcing changes in
component DBSs is delegated from the kernel of the fed-
eration layer to the agents for the individual component
DBSs. This way, the kernel of the federation layer sees
the component DBSs as active DBSs. An active DBS is
an extended conventional DBS which has the capability to
monitor predefined situations (situations of interest) and to
react with defined actions (Widom and Ceri, 1996). ‘Sep-
aration of concerns’ is an important principle for software
engineering (Ghezzi et al., 1991).

Figure 2 refines this architectural view, where the com-
munication service deploys an Object Request Broker ac-
cording to the CORBA architecture (Mowbray and Zahavi,
1995). In Figure 2, only one active agent is shown. At the
bottom layer in the federation kernel, the meta data of the
kernel (schema dependencies, etc.) are stored in the object-
oriented database system O2 (Bancilhon et al., 1992).

For federated DBSs, the traditional three-level schema
architecture (Date, 1995) is extended to support the dimen-
sions of distribution, heterogeneity, and autonomy. The
generally accepted reference architecture for schemas in
federated DBSs is presented in (Sheth and Larson, 1990). It
is obvious that this reference schema architecture has been
designed primarily to support global access to the compo-
nent DBSs, only secondarily to support integrity control.
Therefore, we extended the reference schema architecture
of (Sheth and Larson, 1990) with import, export and im-
port/export distinction forpublic schemas to adequately
support the algorithms for changing replicated information
(Hasselbring, 1997).

Figure 3 illustrates an example scenario for changing
replicas with our schema architecture that defines the de-

pendencies among replicated data. To explain Figure 3:
A local schema is the conceptual schema of a component
DBS which is expressed in the (native) data model of that
component DBS. Acomponentschema is a local schema
transformed into the (common) data model of the federa-
tion layer. An export or import schema is derived from
a component schema and defines an interface to the local
data that is made available to the federation. Afederated
schema is the result of the integration of multiple export
or import schemas, and thus provides a uniform interface
for global applications and the specification of the depen-
dencies among replicated data. Anexternalschema is a
specific view on a federated schema or on a local schema
which serves as a specific interface for applications (local
or global). In Figure 3, no external schemas are shown.

Specifying an import schema in our architecture is a
subscription to change notifications for the corresponding
data items. Export schemas specify data to be exported to
other systems. Import and export schemas are calledpub-
lic schemas (Hasselbring, 1997). The schema architecture
is the basis for algorithms that restore the integrity of repli-
cated information when changes occur.

We can only present an overview of our architecture in
this paper. For a more detailed description refer to (Hassel-
bring, 1997). A crucial design decision is the architecture
of the communication framework which is discussed in the
next section.

THE COMMUNICATION FRAMEWORK

The communication framework encapsulates CORBA ser-
vices to send and receive operations which restore the in-
tegrity of replicated information when changes occur in a
component DBS. The transferred data objects contain spe-
cifications of the operations1 to be transferred between the
federation layer and the (active) database agents. The de-
pendencies specified in the schema architecture determine
the destinations for the operation objects.

CORBA is the ‘Common Object Request Broker Archi-
tecture’ of the Object Management Group to standardize
interoperability among heterogeneous hardware and soft-
ware systems (Mowbray and Zahavi, 1995). Simply stated,
CORBA allows applications to communicate with one an-
other no matter where they are located or who has designed
them. CORBA defines the Interface Definition Language
(IDL) and the Application Programming Interfaces (API)
that enable client/server object interaction within a spe-
cific implementation of an Object Request Broker (ORB).
CORBA also defines interoperability by specifying how
ORBs from different vendors can interoperate.

The ORB is the middleware that establishes the client-
server relationships between objects. Clients can transpar-
ently invoke a method on a server object, which can be on

1For simplicity, the term operation is often used synonymously for
operation specificationwhen presenting the design.

2



the same machine or across a network. The ORB intercepts
the call and is responsible for finding an object that can ac-
cept the request, pass it the parameters, invoke its method,
and return the results. The client does not have to be aware
of where the object is located, its programming language,
its operating system, or any other system aspects that are
not part of an object’s interface. We deployed the Chorus
Cool CORBA implementation (Jacquemot et al., 1995) in
the presented project.

A basic question arises: How to transfer operation spec-
ifications by the communication framework, such that the
communication framework does not need to know their in-
ternal structure and the operation processing components
do not need to know the communication platform (in our
implementation CORBA)? The goal is a flexible software
architecture that allows a flexible team organization!

The first idea for designing the communication frame-
work was based on the design patternAbstract Factory.
The basic idea of this design pattern is that users of a
‘factory’ get an abstract interface for creating families of
related objects without specifying their concrete classes
(Gamma et al., 1995, pages 87ff). Figure 4 displays the
static structure for this pattern as a class diagram in the
UML notation (Fowler and Scott, 1997). The communi-
cation framework would be the client which only needs to
know the abstract classesOpFactory, InsertOp, Up-
dateOp and possibly additional operation classes. The
methods in the concrete subclasses ofOpFactory create
the corresponding concrete operation specifications (indi-
cated by the dotted arrows).

A more detailed explanation of the model in Figure 4
is given as follows. Rectangles are the UML symbols for
classes. Inheritance for specialization and generalization is
shown in UML as a solid-line path from the subclass to the
superclass, with a hollow triangle at the end of the path
where it meets the superclass (Fowler and Scott, 1997).
The C++ keywordvirtual (Stroustrup, 1991) is used to
specify abstract methods.

With the Abstract Factorypattern it has been achieved
that the communication framework does not need to know
the concrete classes. However, the number of different
products (here operation specifications) in the product fam-
ily is encoded within the model and the program code. In
the case of the requirement for additional operation types,
it becomes necessary to modify the communication frame-
work as a client of the factory; thus, yielding a somewhat
inflexible design (Hasselbring and Ziesche, 1997).

This situation led us to search for a solution in which
the communication framework becomes decoupled from
changes with respect to the structureand the number of
different operation specifications. Our next idea was the
design patternPrototype Factory. The basic idea of this
design pattern is that the different classes of operations
and their handlers are represented through ‘prototypical’

instances that are able to ‘clone’ themselves (Gamma et al.,
1995, pages 117ff).

Figure 5 displays the class structure for the prototypes of
operations and their handlers. Handlers process received
operation specifications. Figure 6 illustrates the architec-
ture of the communication framework which only needs to
know the abstract classesOperation andHandler, not
their concrete subclasses.

A more detailed explanation of the model in Figure 6 is
given as follows. In the UML, multiplicities for associa-
tions are specified through numerical ranges at the associ-
ation links. The default multiplicity is1. If the multiplicity
specification comprises a single star, then it denotes the un-
limited non-negative integer range (zero or more). Hollow
diamonds indicate part-of relations (aggregation). The ap-
plied design patternsSingletonandPrototype Factoryare
indicated through comment boxes that are attached to the
corresponding classes via dashed lines.

The classesSender andReceiver manage the trans-
fer of operations. They inherit some general methods for
using the Object Request Broker from the abstract class
Communication Service (see Figure 6). The return
values of the methods for sending and receiving operations
indicate the success or failure of a transfer.

It could be possible that the agent for a component DBS
is unable to accept a change operation due to various rea-
sons (out of memory, unavailability of the local database
management system, network error, violation of local in-
tegrity constraints, etc.). These situations are reported to
the federation layer via the Boolean return values of the
corresponding handler calls. If an error occurs, the federa-
tion layer keeps the failed operation and, depending on the
error type, manages the resulting inconsistency (Getta and
Maciaszek, 1995).

The communication framework uses two abstract classes
for which a user specifies concrete subclasses:

Operation: for each type of operation a concrete class
is defined through inheritance from the abstract class
Operation which specifies a uniform interface for
all operation types (see Figure 5). Each concrete sub-
class specifies the specific structure for the specifica-
tions of one type of operation to be exchanged via ob-
ject instances of this class. The communication frame-
work itself is independent of this specific structure.

TheClone method is needed to obtain copies of the
prototype objects. The attributeOpType identifies
the type of the prototype objects.

The methodsToSeq and FromSeq (Figure 5) are
needed to serialize the object structures into sequences
and vice versa. We use sequence structures from the
C++ Standard Template Library (STL) for this pur-
pose (Robson, 1997). These sequences are then trans-
ferred via the CORBA ORB. This way, the CORBA

3



IDL remains independent of the concrete object struc-
tures.

Handler: to receive and process operations of a specific
type, it is necessary to provide corresponding opera-
tion handlers to process the operations in an appro-
priate way (see Figure 5). On receipt of an operation
object, the communication framework uses copies of
prototypeobjects for operation/handler pairs, which
are managed by the class Pool (see Figure 6). The
handler is responsible for processing the associated
operation; thus, realizing the corresponding applica-
tion logic.

The presented mechanism, which makes the communi-
cation framework independent of the concrete operation
classes, has been achieved through guiding the design by
the patternPrototype Factory.

Another design pattern used in Figure 6 is calledSin-
gleton (Gamma et al., 1995, pages 127ff). Each CORBA
object (a C++ program) contains exactly one C++ object
instance of the classReceiver, because each database
agent is accessed as a CORBA object. However, several
Sender objects may exist within a CORBA object.

It turns out that the developed communication frame-
work is an object-oriented framework withinversion of
control (Fayad and Schmidt, 1997): the framework calls
the application which uses the framework. The han-
dlers that represent the application logic for processing re-
ceived operations are called by the communication frame-
work. This is different to the reuse in procedural languages
such as C, where the application calls functions/procedures
which are provided by a library.

THE C++ IMPLEMENTATION

Due to space limitations, only an outline of the C++ imple-
mentation can be presented in this paper.

To achieve the requirement that each CORBA object (a
C++ program) contains exactly one C++ object instance of
the classReceiver (design patternSingleton), the con-
structor of this class is declared asprivate. This pre-
vents a direct instantiation with thenew operator. Instead,
Receiver offers thestaticmethodInstancewhich
creates a newstatic object instance when first called.
For every following call the methodInstance just re-
turns a reference to the singleton object instance.

The Pool that is associated to theReceiver object
managesOperation/Handler pairs which are identi-
fied by theOperation’s attributeOpType. A client first
registers theOperation prototypes to be transferred to-
gether with the associatedHandler objects by means of
thePool’s methodRegisterOperation:

void RegisterOperation
(OpType, pair <Operation*, Handler*>);

The pair structure is provided by the C++ Standard
Template Library (STL) (Robson, 1997). These pairs are
retrieved by means of thePool’s methodGetOpera-
tion:

pair <Operation*, Handler*>
GetOperation (OpType);

Figure 7 illustrates the dynamic behavior on receipt of
an operation by means of a sequence diagram (Fowler and
Scott, 1997).

SUMMARY AND FUTURE WORK

Design patterns can be viewed as abstract descriptions of
simple frameworks that facilitate reuse of software archi-
tectures (Gamma et al., 1995). The present paper discusses
how design patterns guide the construction and documen-
tation of a framework. With the presented architecture,
the operation specifications can be transferred through the
communication framework in a way that

� the communication framework does not need to know
the structure and different types of operation specifi-
cations to be transferred and

� the operation processing components do not need to
know the communication platform.

This way, it was feasible decoupling the system compo-
nents in a flexible way such that the individual subgroups
within the project team were able to work independently
while agreeing on small interface specifications.

A design pattern describes a family of solutions to a re-
curring problem. Patterns form larger wholes like pattern
languages, systems or handbooks when woven together so
as to provide guidance for solving complex problem sets.
Patterns express the understanding gained from practice in
software design and construction. Writing them is a good
way to deepen, structure, and pass on the system skills we
build up and that are calledexperience. The documentation
of the employed design patterns is an important concern
in explaining the framework to (potential) users (Johnson,
1992). In addition, the description of the design patterns
in (Gamma et al., 1995) provides guidelines for the imple-
mentation together with some example code.

For the discipline of software engineering, modifiabil-
ity and extensibility (for maintenance) are important qual-
ity properties that should be achieved in system’s design
(Ghezzi et al., 1991). As one result, the communication
framework can be re-used for other systems with simi-
lar communication requirements, in particular exchange
of information among interoperable information systems!
Hereby, the receiving information systems define their ap-
plication logic within application-specific handlers which
are called by the communication framework on receipt of
the corresponding information.

4



In the current implementation, the transfer of opera-
tions is synchronous. To increase the potential parallelism,
the transfer of operations could be executed in separate
threads of execution. With appropriate synchronization,
even the execution of the event handlers could be paral-
lelized. These extensions could be guided by theReactor
pattern (Schmidt, 1995) which dispatches handlers auto-
matically when events occur from multiple sources.

At the current stage, classes inheriting from the abstract
classOperation are required to provide the concrete se-
rialization methodsToSeq andFromSeq for conversion
to/from STL sequences. In a future version of the frame-
work, we plan providing aSerializableinterface for the
classOperation similar to theSerializableinterface of
Java Beans (Englander, 1997). With the Java BeansSeri-
alizableinterface, all subclasses of a class that implements
this interface will also be serializable without the require-
ment of concrete serialization methods in the subclasses.

ACKNOWLEDGEMENTS

The author would like to thank Klaus Alfert, Andreas Din-
sch, Mario Ellebrecht, Xi Gao, Sven Gerding, Bet¨ul Ilikli,
Djamel Kheldoun, Patrick Koehne, Mischa Lohweber, Ulf
Radmacher, Karl-Heinz Schulte, Dilber Yavuz, and Peter
Ziesche for the cooperation in the project. Peter Ziesche
implemented the prototype of the communication frame-
work.

REFERENCES

Bancilhon, F., Delobel, C., and Kanellakis, P. (1992).
Building an Object-Oriented Database System: The Story
of O2. Morgan Kaufman.

Bronzite, M. (1989).Introduction to Oracle. McGraw-Hill,
London.

Date, C. (1995). An introduction to database systems.
Addison-Wesley, 6th edition.

Englander, R. (1997).Developing Java Beans. O’Reilly,
Sebastopol, CA.

Fayad, M. and Schmidt, D. (1997). Object-oriented
application frameworks. Communications of the ACM,
40(10):32–38.

Fowler, M. and Scott, K. (1997).UML Distilled: Applying
the Standard Object Modeling Language. Object Technol-
ogy Series. Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns – Elements of Reusable Object-
Oriented Software. Addison Wesley, Reading, MA.

Getta, J. and Maciaszek, L. (1995). Management of incon-
sistent information in federated systems. In Papazoglou,
M., editor,Proc. 14th International Conference on Object-
Oriented and Entity-Relationship Modeling (OOER’95),
volume 1021 ofLecture Notes in Computer Science, pages
412–423, Gold Coast, Australia. Springer-Verlag.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (1991).Fun-
damentals of Software Engineering. Prentice-Hall, Engle-
wood Cliffs, NJ.

Hasselbring, W. (1997). Federated integration of replicated
information within hospitals.International Journal on Dig-
ital Libraries, 1(3):192–208.

Hasselbring, W. and Ziesche, P. (1997). The use of design
patterns in the development of a federated hospital infor-
mation system with CORBA. InProc. ‘Verteilte Objekte
in Organisationen’ (Mobis ’97), volume 4, pages 21–25,
Bamberg. Rundbrief Informationssystem-Architekturen.
(in German).

Jacquemot, C., Jensen, P. S., and Carrez, S. (1995).
CHORUS/COOL: CHORUS object oriented technology.
In Object-Based Parallel and Distributed Computation
(OBPDC ’95), volume 1107 ofLecture Notes in Computer
Science, pages 187–204. Springer-Verlag.

Johnson, R. (1992). Documenting frameworks using pat-
terns. InProc. OOPSLA ’92, pages 63–76, Vancouver, BC.

5



Mowbray, T. and Zahavi, R. (1995).The Essential CORBA:
Systems Integration Using Distributed Objects. Wiley, New
York.

Pree, W. (1995).Design Patterns for Object-Oriented Soft-
ware Development. Addison-Wesley, Wokingham, Eng-
land.

Robson, R. (1997).Using the STL: The C++ Standard
Template Library. Springer-Verlag, New York.

Schmidt, D. (1995). Using design patterns to develop
reusable object-oriented communication software.Com-
munications of the ACM, 38(10):65–74.

Sheth, A. and Larson, J. (1990). Federated database sys-
tems for managing distributed, heterogeneous, and au-
tonomous databases.ACM Computing Surveys, 22(3):183–
236.

Stroustrup, B. (1991).The C++ Programming Language.
Addison-Wesley, Reading, MA, second edition.

Ullrich, I., Hasselbring, W., Jahnke, T., R¨oser, A., and
Christmann, A. (1996). An object-oriented system for ther-
apy control in angiopathy. InAbstracts of the 41. GMDS-
Jahrestagung, Bonn, Germany. (in German).

Widom, J. and Ceri, S., editors (1996).Active Database
Systems – Triggers and Rules For Advanced Database Pro-
cessing. Morgan Kaufmann Publishers, San Francisco.

management system
component database component database

management system...

locallocal
active agentactive agent applicationapplication

kernel

federation 

Fig. 1: The general system architecture with active
agents as mediators between component DBSs and fed-
eration kernel. Global applications are not displayed in
this figure, but they could be connected to the federation
kernel.

CORBA Object Request Broker

2

operation processing

component database 

communication framework communication framework

federation layer kernelactive agent
operation processing

federation graph

databaseO

component and local schema 
transforms operations between 

to send and receive operations
encapsulates CORBA services encapsulates CORBA services

to send and receive operations

determines what to do with
the operations

defines dependencies between 
public schemas

2
stores meta data

Oracle/O

Fig. 2: The layers in the CORBA-based architecture of
our prototype implementation.

6



CreateInsertOp()

CreateUpdateOp()

CreateInsertOp()

CreateUpdateOp()

CreateInsertOp()

CreateUpdateOp()virtual

virtual

UpdateOpAgent

InsertOpAgent

InsertOp

InsertOpFDBS

UpdateOp

UpdateOpFDBS

OpFactoryFDBS OpFactoryAgent

Client

OpFactory

Fig. 4: The design patternAbstract Factory in UML notation. The dashed arrows indicate the relations from concrete
factory methods to concrete product classes (this annotation is not UML notation).

event

local schema local schema local schema local schema

schema 4
component

schema 3
component

import schema
3

federated schema

export schema
2

import schema

component
schema 2schema 1

component

CDBS 1 CDBS 2 CDBS 3 CDBS 4

1

Fig. 3: An example scenario for changing replicas.
The edges illustrate the data dependencies among the
schemas. The dashed lines illustrate the data flow.

ToSeq()
FromSeq()

ToSeq()
FromSeq()

ToSeq()
FromSeq() process()

virtual

virtual

clone()
virtual

virtual

virtual clone()

Handler
handles

Update

Insert

clone()
process()

Insert Handler

clone()
process()

Update Handler

/handles

/handles

Operation

OpType

clone()

clone()

Fig. 5: Operations and their handlers in UML notation.
The symbol ‘/’ at the lower ‘handles’ associations indi-
cates their inheritance relationship to the correspond-
ing upper association.

7



instance()
receive()

Receiver

ToSeq()
FromSeq()

process()
virtual

virtual

clone()

Communication
Service

init()

send()

Sender

get_operation()
get_handler()

HandlerPool

*

*

receives

manages

m
an

ag
es

h
an

d
le

s

prototypes 
for clones

prototype factory

singleton

virtual

virtual

virtual clone()

*

* sends

Operation

OpType

Fig. 6: The general architecture of the communication framework in UML notation.

Receiver
Operation
PrototypeORB

receive

Pool
Operation
Sequence

Actual
Handler

Handler
Prototype

clone

create

process

create

GetOperation

FromSeq

clone
GetHandler

Fig. 7: A sequence diagram to illustrate the dynamic behavior on receipt of an operation. Within a sequence diagram,
an object is shown as a box at the top of a dashed vertical line which is called the object’slifetime during some
interaction with other objects. The sequential order of messages is represented by the vertical order of arrows between
the lifelines of objects as instances of a class.

8


		2002-04-03T17:00:35+0200
	Universitaetsbibliothek Dortmund - Eldorado




