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Abstract

We consider the problem of testing the equality of J quantile curves from independent
samples. A test statistic based on an L2-distance between non-crossing nonparametric esti-
mates of the quantile curves from the individual samples is proposed. Asymptotic normality
of this statistic is established under the null hypothesis, local and fixed alternatives, and the
finite sample properties of a bootstrap based version of this test statistic are investigated
by means of a simulation study.
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1 Introduction

In recent years quantile regression models have found considerable applications, in particular

in medicine, economics and environment modelling [see Yu et. al. (2003) or Koenker (2005)],

because in contrast to mean regression quantile regression models are robust to outliers and

require weaker assumptions on the data generating process. Following Koenker and Bassett

(1978), quantile regression can be considered as a supplement to least squares methods and

yield a great extension of parametric and nonparametric regression methods. Many authors

propose parametric quantile regression models because of their simplicity and – in some cases –

interpretability of the parameters. On the other hand, if a parametric model is not appropriate,

nonparametric estimation methods have also been proposed in the recent literature [see e.g. Yu

and Jones (1997, 1998), De Gooijer and Zerom (2003) or Horowitz and Lee (2005) among others].

Because a “correct” parametric specification of the quantile regression can increase the efficiency

of the statistical analysis substantially, several authors have proposed specification tests for the
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hypothesis of a parametric form of quantile regression models [see e.g. Zheng (1998), Bierens and

Ginther (2001) or Horowitz and Spokoiny (2001) among others].

The present paper is devoted to the analysis of a response, say Y , across several groups in the

presence of covariates. More precisely, we will investigate the problem of comparing J ≥ 2 inde-

pendent samples, say {(Xi1, Yi1)}n1
i=1, . . . , {(XiJ , YiJ)}nJi=1 using nonparametric quantile regression

techniques. An important question in this context is whether the data are poolable. Some effort

has been spent on nonparametric analysis of covariance using mean regression [see Hall and

Hart (1990), Härdle and Marron (1990), King, Hart and Wehrly (1991), Delgado (1993), Dette

and Munk (1998), Dette and Neumeyer (2001), Kulasekera (1995), Young and Bowman (1995)

among others]. Our work in this area is motivated by the fact that the methods for nonpara-

metric analysis of covariance based on mean regression are usually not robust with respect to

outliers. Consider for example the problem of testing the equality of two nonparametric regres-

sion functions H0 : g1 = g2 from independent samples. If g1(t) = cos(πt), g2(t) = cos(πt) + t the

wild bootstrap test proposed by Dette and Neumeyer (2001) yields the rejection probabilities

91.6% 96.1% 98.3%

for the level 5%, 10% and 20%, respectively, where the the sample size of each sample is 50 and

the errors are centered normally distributed errors with variance σ2 = 0.5. However, if 20% of

the errors are replaced by Cauchy distributed random variables multiplied by σ, the power of

the test drops dramatically and is given by

36.0% 42.9% 49.7%.

This example indicates that it is necessary to use more robust methods for the nonparametric

analysis of covariance, and quantile regression offers an interesting alternative. Despite these

observations the problem of comparing different samples using quantile regression has not found

much attention in the statistical literature. To our knowledge, the problem of comparing con-

ditional median regression has been considered by Batalgi, Hidalgo and Li (1996) and Lavergne

(2001). A test for comparing other conditional quantile curves than the median curves has been

investigated by Sun (2006), who proposed a test generalizing ideas of Zheng (1996).

In the present paper we present an alternative approach to the problem of comparing nonpara-

metric conditional quantile curves. Our work is motivated by several observations. First, the

approach of Sun (2006) requires the choice of d additional bandwidths (where d is the dimen-

sion of the predictor), which are not used directly for the estimation of the conditional quantile

curves. Second, the tests proposed in the references are based on estimates of the conditional

quantile curves which may cross, and it is not clear how the power is affected by this crossing.

Third, it is known that the tests based on the approach of Zheng (1996) are usually less effi-

cient than tests based on the L2-distance [see e.g. Dette and van Lieres and Wilkau (2001)]. A

further difference between the cited references and the present work is that we also investigate

the asymptotic distribution of the proposed test statistic under fixed alternatives. Results of

this type are important for studying the power of the test and for the construction of tests of
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precise hypotheses in the sense of Berger and Delampady (1987) as demonstrated in Sections 3

and 4. The paper will be organized as follows. In Section 2 we introduce the model, the testing

problem and the test statistic considered in this paper. In Section 3 we discuss the asymptotic

theory. The finite sample properties of a bootstrap version of the proposed test are investigated

by means of a simulation study in Section 4. Finally, all technical details are deferred to an

appendix.

2 An L2-distance between non-crossing quantile curves

We consider J independent samples, say

{(Xi1, Yi1)n1
i=1}, . . . , {(XiJ , YiJ)nJi=1},(2.1)

where for each j = 1, . . . , J the random variables (X1j, Y1j), . . . , (Xnjj, Ynjj) are independent

identically distributed. We assume that the explanatory variable Xij has a continuous and

positive density, say fj, on the interval [0, 1]. The restriction to a one dimensional predictor is

made for the sake of a transparent presentation, and the general case will be briefly mentioned

in Remark 3.6. Throughout this paper let Fj(y|x) = P (Y1j ≤ y|X1j = x) denote the conditional

distribution function of Yij given Xij = x, and assume that it has a density, say fj,Y (y|x), which

is continuous in both arguments. For fixed p ∈ (0, 1) let F−1
j (p|x) denote the corresponding

conditional quantile function (j = 1, . . . , J). We are interested in the hypothesis that the data

can be pooled for the estimation of the conditional p−quantile curve, that is

H0 : F−1
1 (p|·) = · · · = F−1

J (p|·) versus H1 : F−1
i (p|·) 6= F−1

j (p|·) for some i 6= j.(2.2)

The test statistic proposed in this paper will be based on an appropriate estimate of the quantity

M2 :=
J∑
j=1

j−1∑
i=1

∫
(F−1

i (p|t)− F−1
j (p|t))2wij(t)dt,(2.3)

where wij(·) denote strictly positive weight functions. Note that the null hypothesis is satisfied

if and only if M2 = 0, and as a consequence it is reasonable to reject the null hypothesis if an

estimator of M2 attains a large value.

Note that estimating M2 requires appropriate nonparametric estimates of the conditional quan-

tile functions. Several such estimators have been proposed in the literature [see e.g. Yu and

Jones (1997, 1998), Takeuchi, Le, Sears and Smola (2006) or Dette and Volgushev (2008) among

others]. In this paper we follow the last-named authors who proposed non-crossing estimates of

quantile curves using a simultaneous inversion and isotonization of an estimate of the conditional

distribution function. To be precise, let

F̂j(y|x) :=

nj∑
k=1

w̃kj(x)I{Ykj ≤ y}(2.4)
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denote a nonparametric estimate of the conditional distribution function, where the quantities

w̃kj are either the Nadaraya-Watson weights, i.e.

w̃kj(x) :=
Kr

(
Xkj−x
hr

)
∑nj

l=1Kr

(
Xlj−x
hr

)(2.5)

or the local linear weights, i.e.

w̃kj(x) :=
Kr

(
Xkj−x
hr

)
(Sj,2(x)− (x−Xkj)Sj,1(x))

Sj,2(x)Sj,0(x)− S2
j,1(x)

,(2.6)

Sj,i(x) :=

nj∑
l=1

Kr

(x−Xlj

hr

)
(x−Xlj)

i i = 0, 1, 2.

In (2.5) and (2.6) Kr denotes a nonnegative kernel and hr is a bandwidth converging to 0 with

increasing sample sizes. Following Dette and Volgushev (2008) we consider a strictly increasing

distribution function G : R→ (0, 1), a nonnegative kernel Kd with bandwidth hd, and define for

j = 1, . . . , J

Ĥ−1
j (p|x) :=

1

Njhd

Nj∑
k=1

∫ p

−∞
Kd

 F̂j
(
G−1( k

Nj
)|x
)
− u

hd

 du ,(2.7)

where Nj ∈ N and F̂j is the Nadaraya-Watson or local linear estimate of the conditional dis-

tribution function from the jth sample defined by (2.4). Note that it is intuitively clear that

Ĥ−1
j (p|x) is a consistent estimate of

H−1
hd,j

(p|x) :=
1

hd

∫ 1

0

∫ p

−∞
Kd

(
Fj(G

−1(v|x))− u
hd

)
dudv .(2.8)

If hd → 0, the right hand side of this equation can be approximated as follows

H−1
hd,j

(p|x) ≈ H−1
j (p|x) :=

∫
R
I{Fj(y|x) ≤ p}dG(y)(2.9)

=

∫ 1

0

I{Fj(G−1(v|x)) ≤ p}dv = G ◦ F−1
j (p|x),

and as a consequence an estimate of the conditional quantile function can be defined by

F̂−1
j (p|x) := G−1(Ĥ−1

j (p|x)).(2.10)

For the two bandwidths hd and hr we assume throughout this paper

(2.11) nh5
r → c ; hd = o(hr)
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for n→∞ and a given constant c ≥ 0. Moreover, if n =
∑J

j=1 nj denotes the total sample size,

we assume for the relative sample sizes of the different groups

lim
n→∞

nj
n

= aj ∈ (0, 1); j = 1, . . . , J ;(2.12)

and nj = O(Nj) for each j = 1, . . . , J .

The estimate of the quantity M2 is now defined in an obvious manner, that is

Tn =

∫ J∑
j=1

j−1∑
i=1

(F̂−1
j (p|t)− F̂−1

i (p|t))2ŵij(t)dt .(2.13)

Here F̂−1
j (p|t) corresponds either to the Nadaraya-Watson estimator with the quantity ŵij defined

by

ŵij(x) =
(
f̂i(x)f̂j(x)

)2

(2.14)

with f̂i being a kernel density estimator of fi or to the local linear estimator, where we set

ŵij(x) =
1

n4
in

4
jh

16
r

(
(Si,2Si,0 − S2

i,1)(Sj,2Sj,0 − S2
j,1)
)2

(x) .(2.15)

The two statistics corresponding to (2.14) and (2.15) will be denoted by TNWn and TLLn throughout

this paper. It is intuitively clear that TNWn and TLLn are consistent estimates of

M2
NW =

J∑
j=1

j−1∑
i=1

∫
(F−1

i (p|t)− F−1
j (p|t))2f 2

i (t)f 2
j (t)dt ,(2.16)

and

M2
LL = µ4

2(Kr)
J∑
j=1

j−1∑
i=1

∫
(F−1

i (p|t)− F−1
j (p|t))2f 4

i (t)f 4
j (t)dt ,(2.17)

respectively. In the following section we investigate the asymptotic properties of the statistics

TNWn and TLLn .

3 Weak convergence under H0 and H1

For the investigations of the asymptotic properties of the statistics TNWn and TLLn we require,

besides the assumptions stated in Section 2, the following basic assumptions:

(A) The function G is strictly increasing, twice continuously differentiable and the second

derivative of G−1 is bounded on every interval [a, b] with 0 < a ≤ b < 1.
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(B) The density fj of X1j is twice differentiable and f ′′j is bounded.

(C) The conditional distribution function Fj(y|x) is three times differentiable with respect to

both arguments. The kth partial derivatives with respect to y or x are denoted by ∂k1 or

∂k2 , respectively, and we assume that the derivatives ∂2(Fj(y|x)), ∂2
2(Fj(y|x)), ∂3

2(Fj(y|x))

and ∂3
1(Fj(y|x)). Moreover, we assume that infx fj,Y (F−1

j (p|x)|x) > 0.

(D) The conditional quantile function F−1
j (y|x) is twice differentiable with respect to x with

bounded second derivative.

(E) The kernels Kr and Kd are symmetric, bounded, nonnegative and their support is given

by the interval [−1, 1]. Additionally, Kd is twice continuously differentiable on the interval

(−1, 1) and K ′′d is Lipschitz continuous. For i, j ∈ N we use the notation

µi(K) =

∫
K(u)uidu and µ

(j)
i (K) =

∫
Kj(u)uidu

and assume

µ0(Kr) = µ0(Kd) = 1.

(F) The bandwidths hd and hr satisfy

hr = o(h
3/4
d ), hd = o(h5/4

r ).(3.1)

To illustrate assumption (3.1), consider the case where hr is proportional to the optimal band-

width, i.e. hr ∼ n−1/5. In this case one could use hd = bnh
5/4
r , where bn is a sequence converging

to 0 such that bnn
1/80 → ∞. Our first result states the asymptotic distribution of the test

statistic Tn in the two sample case (i.e. J = 2) under the null hypothesis H0 of equal quantile

curves.

Theorem 3.1. If J = 2 and the assumptions stated in Section 2 as well as assumptions (A) -

(F) are satisfied, then under the null hypothesis we have

n
√
hr

(
TNWn − h4

rB
NW
1 − 1

nhr
BNW

2

)
D−→ N (0, V NW ),(3.2)

where the terms BNW
1 and BNW

2 are defined as

BNW
1 =

∫ 1

0

(f2(x)C1(x)− f1(x)C2(x))2dx,

BNW
2 = p(1− p)µ(2)

0 (Kr)

∫ 1

0

((
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

a2

+
(
∂1(F−1

1 (p|x))
)2 f1(x)f 2

2 (x)

a1

)
dx,

Cj(x) = ∂1(F−1
j (p|x))µ2(Kr)

(
∂2(Fj(F

−1
j (p|x)|x))f

′

j(x) +
1

2
∂2

2(Fj(F
−1
j (p|x)|x))fj(x)

)
,
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and the asymptotic variance is given by

V NW = 2p(1− p)
{
p(1− p)

∫
(Kr ∗Kr)

2(u)du

×
∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f1(x)f 2

2 (x)

a1

+
(
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

a2

)2

dx

+2c

∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f1(x)f 2

2 (x)

a1

+
(
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

a2

)
×(f2(x)C1(x)− f1(x)C2(x))2dx

}
.

Similarly, if the local linear estimate is used as initial estimate for the conditional distribution

function, it follows that

n
√
hr

(
TLLn − h4

r B
LL
1 −

1

nhr
BLL

2

)
D−→N (0, V LL),(3.3)

where the terms BLL
1 and BLL

2 are defined as

BLL
1 = µ6

2(Kr)

∫ 1

0

f 4
1 (x)f 4

2 (x)(C1(x)− C2(x))2dx,

BLL
2 = p(1− p)µ(2)

0 (Kr)µ
4
2(Kr)

×
∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f 3

1 (x)f 4
2 (x)

a1

+
(
∂1(F−1

2 (p|x))
)2 f 4

1 (x)f 3
2 (x)

a2

)
dx,

Cj(x) =
1

2
∂1(F−1

j (p|x))∂2
2(Fj(F

−1
j (p|x)|x)),

and the asymptotic variance has the form

V LL = 2p(1− p)µ8
2(Kr)

{
p(1− p)

∫ 1

0

(Kr ∗Kr)
2(u)du

×
∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f 3

1 (x)f 4
2 (x)

a1

+
(
∂1(F−1

2 (p|x))
)2 f 4

1 (x)f 3
2 (x)

a2

)2

dx

+2cµ2
2(Kr)

∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f2(x)

a1

+
(
∂1(F−1

2 (p|x))
)2 f1

a2

)
f 7

1 (x)f 7
2 (x)

×(C1(x)− C2(x))2dx
}
.

The proof of Theorem 3.1 is complicated and therefore deferred to the Appendix. In the following

we discuss the asymptotic properties of the statistic Tn under local and fixed alternatives. In

the case of local alternatives of the form

F−1
1 (p|x) = F−1

2 (p|x) +
g(x, p)
√
n h

1/4
r
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it follows by a careful inspection of the proof of Theorem 3.1 that

n
√
hr

(
TNWn − h4

r B
NW
1 − 1

nhr
BNW

2

)
D−→ N (γ2

NW (p), V NW )

n
√
hr

(
TLLn − h4

r B
LL
1 −

1

nhr
BLL

2

)
D−→ N (γ2

LL(p), V LL)

where BNW
1 , BNW

2 , V NW , BLL
1 , BLL

2 , V LL are defined in Theorem 3.1 and the quantities γ2
NW (p)

and γ2
LL(p) are given by

γ2
NW (p) =

∫ 1

0

f 2
1 (x)f 2

2 (x)g2(x, p)dx, γ2
LL(p) = µ4

2(Kr)

∫ 1

0

f 4
1 (x)f 4

2 (x)g2(x, p)dx,

respectively. The following result considers the asymptotic properties under a fixed alternative.

In this case the statistics TNWn and TLLn are also asymptotically normal distributed, where they

have to be centered by M2
NW respectively M2

LL and the variance is of order n−1.

Theorem 3.2. If J = 2, the assumptions stated in Section 2 and assumptions (A) - (F) are

satisfied, we have under a fixed alternative

√
n
(
TNWn + h2

r(B̃
NW
1 − B̃NW

2 )−M2
NW

)
D−→ N (0, Ṽ NW ),(3.4)

where M2
NW is defined in (2.16), the terms B̃NW

1 and B̃NW
2 are given by

B̃NW
1 = 2

∫ 1

0

(f1(x)C2(x)− f2(x)C1(x)) (F−1
2 (p|x)− F−1

1 (p|x))f1(x)f2(x)dx,

B̃NW
2 = µ2(Kr)

∫ 1

0

(
f 2

2 (x)f1(x)f
′′

1 (x) + f 2
1 (x)f2(x)f

′′

2 (x)
) (
F−1

2 (p|x)− F−1
1 (p|x)

)2
dx ,

and the quantities C1 and C2 are defined in Theorem 3.1. The asymptotic variance is given by

Ṽ NW = 4p(1− p)
2∑
j=1

1

aj
E

(∂1(F−1
j (p|X1j))

fj(X1j)

)2

f 4
1 (X1j)f

4
2 (X1j)(F

−1
2 (p|X1j)− F−1

1 (p|X1j))
2


+4

2∑
j=1

1

aj
V ar

(
f 2

1 (X1j)f
2
2 (X1j)(F

−1
2 (p|X1j)− F−1

1 (p|X1j))
2

fj(X1j)

)
Similarly, if the local linear estimate is used as an initial estimate for the conditional distribution

function it follows

√
n
(
TLLn − h2

r (B̃LL
1 − B̃LL

2 )−M2
LL

)
−→ N (0, Ṽ LL) ,(3.5)

where the terms B̃LL
1 and B̃LL

2 are given by

B̃LL
1 = 2µ5

2(Kr)

∫ 1

0

(
C̄2(x)− C̄1(x)

)
(F−1

2 (p|x)− F−1
1 (p|x))f 4

1 (x)f 4
2 (x)dx,

8



B̃LL
2 = µ3

2(Kr)

∫ 1

0

f 2
1 (x)f 2

2 (x)

{
f 2

2 (x)

(
1

2
µ4(Kr)f

′′

1 (x)f1(x)− µ2
2(Kr)

(
f
′

1

)2

(x)

)
+ f 2

1 (x)

(
1

2
µ4(Kr)f

′′

2 (x)f2(x)− µ2
2(Kr)

(
f
′

2

)2

(x)

)}(
F−1

2 (p|x)− F−1
1 (p|x)

)2
dx

and the asymptotic variance is given by

Ṽ LL = 4µ8
2(Kr)p(1− p)

2∑
j=1

1

aj
E

(∂1F
−1
j (p|X1j)

fj(X1j)

)2

f 8
1 (X1j)f

8
2 (X1j)

(
F−1

1 (p|X1j)− F−1
2 (p|X1j)

)2


+16µ8

2(Kr)
2∑
j=1

1

aj
V ar

(
1

fj(X1j)
f 4

1 (X1j)f
4
2 (X1j)

(
F−1

1 (p|X1j)− F−1
2 (p|X1j)

)2
)
.

Remark 3.3. The bias and variance terms in Theorem 3.1 and 3.2 are rather complicated and

sdepend on several features of the data generating process. Under additional assumptions these

expressions simplify. For example, if the densities of the predictors and the whole conditional

distributions are identical, i.e. f1(x) = f2(x) and F2(y|x) = F1(y|x), then it is easy to see that

BNW
1 = BLL

1 = 0

in Theorem 3.1 (note that the hypothesis H0 does not imply equality for the densities of the

explanatory variable or the distributions Fi(y|x)). Similarly, if hr = o(n−1/5) we have c = 0 and

the representations of the variances in V NW and V LL in Theorem 3.1 are substantially simpler.

In the remaining part of this section we state the corresponding result in the case of J ≥ 2

samples. The basic structure of the results is the same, but the corresponding variance terms

are substantially more complicated.

Theorem 3.4. Let the assumptions of Section 2 and assumptions (A) - (F) be satisfied.

(a) Under the null hypothesis H0 in (2.1) the weak convergence (3.2) and (3.3) hold, where the

terms BNW
1 , BNW

2 , V NW and BLL
1 , BLL

2 , V LL are given by

BNW
1 =

J∑
j=1

j−1∑
i=1

∫ 1

0

(fj(x)Ci(x)− fi(x)Cj(x))2dx,

BNW
2 = p(1− p)µ(2)

0 (Kr)
J∑
j=1

j−1∑
i=1

∫ 1

0

((
∂1(F−1

j (p|x))
)2 f 2

i (x)fj(x)

aj

+
(
∂1(F−1

i (p|x))
)2 fi(x)f 2

j (x)

ai

)
dx,
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V NW = 2p2(1− p)2

∫
(Kr ∗Kr)

2(u)du

{
J∑
j=1

j−1∑
i=1

E

[
1

fi(X1i)

×
(
fi(X1i)f

2
j (X1i)

ai

(
∂1(F−1

i (p|X1i))
)2

+
f 2
i (X1i)fj(X1i)

aj

(
∂1(F−1

j (p|X1i))
)2
)2
]

+ 2
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

1

a2
l

E

[(
∂1(F−1

l (p|X1l))
)4

fl(X1l)
f 2
i (X1l)f

2
j (X1l)f

2
k (X1l)

]
+4cp(1− p)

J∑
j=1

j−1∑
i=1

∑
l∈{i,j}

1

al

×E

[(
∂1(F−1

l (p|X1l))

fl(X1l)

)2

f 2
i (X1l)f

2
j (X1l) (fj(X1l)Ci(X1l)− fi(X1l)Cj(X1l))

2

]

+8cp(1− p)
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

1

al
E

[(
∂1(F−1

l (p|X1l))
)2

fl(X1l)
fi(X1l)fj(X1l)fk(X1l)

×
∏

m∈{i,j,k}\{l}

(fm(X1l)Cl(X1l)− fl(X1l)Cm(X1l))


and

BLL
1 = µ6

2(Kr)
J∑
j=1

j−1∑
i=1

∫ 1

0

f 4
i (x)f 4

j (x)
(
Ci(x)− Cj(x)

)2
dx,

BLL
2 = p(1− p)µ(2)

0 (Kr)µ
4
2(Kr)

×
J∑
j=1

j−1∑
i=1

∫ 1

0

((
∂1(F−1

i (p|x))
)2 f

3
i (x)f 4

j (x)

ai
+
(
∂1(F−1

j (p|x))
)2 f

4
i (x)f 3

j (x)

aj

)
dx

V LL = p2(1− p)2µ8
2(Kr)

∫ 1

0

(Kr ∗Kr)
2(u)du

{
J∑
j=1

j−1∑
i=1

E

[
1

fi(X1i)

×
(
f 3
i (X1i)f

4
j (X1i)

ai

(
∂1(F−1

i (p|X1i))
)2

+
f 4
i (X1i)f

3
j (X1i)

aj

(
∂1(F−1

j (p|X1i))
)2
)2
]

+ 2
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

1

a2
l

E
[(
∂1(F−1

l (p|X1l))
)4
f 4
i (X1l)f

4
j (X1l)f

4
k (X1l)fl(X1l)

]
+4cp(1− p)µ10

2 (Kr)


J∑
j=1

j−1∑
i=1

∑
l∈{i,j}

1

al

10



E

[(
∂1(F−1

l (p|X1l))

fl(X1l)

)2

f 8
i (X1l)f

8
j (X1l)

(
Ci(X1l)− Cj(X1l)

)2

]

+ 2
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

E

[(
∂1(F−1

l (p|X1l))
)2

al
f 4
i (X1l)f

4
j (X1l)f

4
k (X1l)f

2
l (X1l)

×
∏

m∈{i,j,k}\{l}

(C l(X1l)− Cm(X1l))

 .

(b) Under a fixed alternative the weak convergence (3.4) and (3.5) hold, where the terms

B̃NW
1 , B̃NW

2 , Ṽ NW and B̃LL
1 , B̃LL

2 , Ṽ LL are defined by

B̃NW
1 = 2

J∑
j=1

j−1∑
i=1

∫ 1

0

(fj(x)Ci(x)− fi(x)Cj(x)) (F−1
j (p|x)− F−1

i (p|x))fi(x)fj(x)dx,

B̃NW
2 = µ2(Kr)

J∑
j=1

j−1∑
i=1

∫ 1

0

(
f 2
j (x)fi(x)f

′′

i (x) + f 2
i (x)fj(x)f

′′

j (x)
) (
F−1
j (p|x)− F−1

i (p|x)
)2
dx,

Ṽ NW = 4p(1− p)
J∑
j=1

j−1∑
i=1

∑
l∈{i,j}

1

al

×E

[(
∂1(F−1

l (p|X1l))

fl(X1l)

)2

f 4
i (X1l)f

4
j (X1l)(F

−1
i (p|X1l)− F−1

j (p|X1l))
2

]

+8p(1− p)
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

E

[
1

al

(
∂1(F−1

l (p|X1l))
)2

× f 2
i (X1l)f

2
j (X1l)f

2
k (X1l)

∏
m∈{i,j,k}\{l}

(F−1
l (p|X1l)− F−1

m (p|X1l))


+4

J∑
j=1

j−1∑
i=1

 ∑
l∈{i,j}

1

al
V ar

(
f 2
i (X1l)f

2
j (X1l)(F

−1
i (p|X1l)− F−1

j (p|X1l))
2

fl(X1l)

)

+ 8
i−1∑
k=1

∑
l∈{i,j,k}

1

al
V ar

fi(X1l)fj(X1l)fk(X1l)
∏

m∈{i,j,k}\{l}

(F−1
l (p|X1l)− F−1

m (p|X1l))


and

B̃LL
1 = 2µ5

2(Kr)
J∑
j=1

j−1∑
i=1

∫ 1

0

(
C̄j(x)− C̄i(x)

)
(F−1

j (p|x)− F−1
i (p|x))f 4

j (x)f 4
i (x)dx,

B̃LL
2 = µ3

2(Kr)
J∑
j=1

j−1∑
i=1

∫ 1

0

f 2
i (x)f 2

j (x)

{
f 2
j (x)

(
1

2
µ4(Kr)f

′′

i (x)fi(x)− µ2
2(Kr)

(
f
′

i

)2

(x)

)

11



+ f 2
i (x)

(
1

2
µ4(Kr)f

′′

j (x)fj(x)− µ2
2(Kr)

(
f
′

j

)2

(x)

)}(
F−1
j (p|x)− F−1

i (p|x)
)2
dx,

Ṽ LL = 4µ8
2(Kr)p(1− p)


J∑
j=1

j−1∑
i=1

∑
l∈{i,j}

1

al

× E

[(
∂1F

−1
l (p|X1l)

fl(X1l)

)2

f 8
i (X1l)f

8
j (X1l)

(
F−1
i (p|X1l)− F−1

j (p|X1l)
)2

]

+ 2
J∑
j=1

j−1∑
i=1

i−1∑
k=1

∑
l∈{i,j,k}

E

[(
∂1(F−1

l (p|X1l))
)2

al
f 2
l (X1l)f

4
i (X1l)f

4
j (X1l)f

4
k (X1l)

×
∏

m∈{i,j,k}\{l}

(F−1
l (p|X1l)− F−1

m (p|X1l))


+16µ8

2(Kr)
J∑
j=1

j−1∑
i=1

∑
l∈{i,j}

1

al
V ar

(
1

fl(X1l)
f 4
i (X1l)f

4
j (X1l)

(
F−1
i (p|X1l)− F−1

j (p|X1l)
)2
)

+32µ8
2(Kr)

J∑
j=1

j−1∑
i=1

i−1∑
k=1

 ∑
l∈{i,j,k}

E

[
1

al
f 2
l (X1l)f

4
i (X1l)f

4
j (X1l)f

4
k (X1l)

×
∏

m∈{i,j,k}\{l}

(F−1
l (p|X1l)− F−1

m (p|X1l))
2


− 1

al

∏
m∈{i,j,k}\{l}

E
[
f 4
m(X1l)f

3
l (X1l)(F

−1
l (p|X1l)− F−1

m (p|X1l))
2
] .

Remark 3.5. The results of Theorem 3.1, 3.2 and 3.4 can be used to obtain an asymptotic level

α test by rejecting the null hypothesis for large values of TNWn or TLLn . A bootstrap version of

this test will be investigated by means of a simulation study.

Note that the asymptotic properties of the test statistics under fixed alternatives can be used

to study the power function of the resulting test. For example, in the case of J = 2 samples,

the power of the test, which rejects the null hypothesis for large values of the statistic TLLn , is

approximately given by

P (H0 rejected | H1 is true) ≈ 1− Φ

(
−
√
n(M2

LL + h2
r(B̃

LL
1 − B̃LL

2 ))√
Ṽ LL

)
,(3.6)

where Φ denotes the distribution function of the standard normal distribution and the quantities

M2
LL, B̃

LL
1 , B̃LL

2 and Ṽ LL are defined in Theorem 3.2 We will use this approximation to explain

some of the finite sample properties of the proposed test in the following section.

12



Remark 3.6. Note that the results of this section can easily be generalized to a multivariate

predictor, by simply using a multivariate Nadaraya-Watson or local linear estimate of the con-

ditional distribution function in the initial step [see e.g. Härdle, Müller, Sperlich and Werwatz

(2004)] and calculating the L2-distance over the cube [0, 1]d (where d is the dimension of the pre-

dictors and [0, 1]d the support of the corresponding density). The details are omitted for the sake

of brevity. However, it should be mentioned here that some care is necessary if the test based

on Tn is applied in the case of a multivariate predictor, because of the curse of dimensionality.

If d ≥ 3 it is usually difficult to estimate the conditional quantile curve with sufficient precision,

and as a consequence a test for the equality of the conditional quantile curves will not be very

accurate.

4 Finite sample properties

In order to investigate the performance of the proposed test for finite samples, we have performed

a small simulation study. It is well known that the approximation of the nominal level of tests

based on the L2-distance between two nonparametric estimates is usually rather poor [see e.g.

Fan and Linton (2003)]. For this reason we propose to use a smoothed residual bootstrap to

obtain critical values. To be precise, let

Ûij = Yij − F̂−1
j (p|Xij) (i = 1, . . . , nj; j = 1, . . . , J)(4.1)

be the estimated quantile-residuals, where F̂−1
j (p|·) is the estimator of the p−th quantile-function,

calculated from the j−th sample. We now randomly draw with replacement from the estimated

residuals in each sample (name the resulting random variables U∗ij) and add independent normally

distributed random variables τij, with expectation µp(δ) and variance δ2, where µp(δ) is chosen

to guarantee that τij has p−quantile 0. The obtained quantities UB
ij = Û∗ij + τij are the required

bootstrap residuals. The bootstrap data (XB
ij , Y

B
ij ) are now defined as

XB
ij = Xij,

Y B
ij = F̂−1(p|Xij) + UB

ij ,

where F̂−1(p|·) is an estimator of the conditional quantile-function calculated from the pooled

data. From the bootstrap sample we calculate the bootstrap statistic TBn , and the α−quantile

of the test statistic Tn is estimated on the basis of R bootstrap replications. More precisely, if

t∗ denotes the (1 − α)-quantile of the bootstrap sample T
B(1)
n , . . . , T

B(R)
n , the null hypothesis is

rejected if

Tn > t∗.(4.2)

13



Remark 4.1. Note that the wild bootsrap proposed by Sun (2006) will not work for the test

statistic proposed in this paper. The reason is that the wild bootsrap is constructed to obtain

bootstrap residuals with p−quantile zero where the second and third moments are as close as

possible to the corresponding moments of the true residuals. However, the asymptotical vari-

ance of our estimator contains the term ∂1F
−1
j (p|x) = 1/fj,Y (F−1

j (p|x)|x) and the wild bootsrap

residuals do not reproduce this quantity correctly.

In contrast to the wild bootsrap of Sun (2006), the proposed bootsrap procedure aims at pro-

ducing residuals with density close to the density of the true residuals Yi − F−1
j (p|Xi). In order

to heuristically understand why this actually works, observe that the density of the bootstrap

residuals conditional on the data is of the form:

fBj (y) =

∫
φµp(δ),δ2(u− y)dF̂U

j (u) =
1

nδ

∑
i

φ0,1

(
Ûij − µp(δ)− y

δ

)
,

where F̂U
j denotes the empirical distribution function of Û1j, · · · , Ûnjj and φµp(δ),δ2 the density of

a N (µp(δ), δ
2) random variable. In the case p = 50%, which corresponds to µp(δ) = 0, this is the

Kernel density estimator of Parzen (1962) with a Gaussian Kernel and bandwidth δ (for other

values of p, this will hold asymptotically since µp(δ) tends to zero as δ → 0). Hence the density of

the bootstrap residuals conditional on the data is close to the true density of the residuals. This

argument demonstrates that the smoothing parameter δ corresponds to a bandwidth in density

estimation and should be chosen accordingly. In particular, this motivates the choice (4.7).

Remark 4.2. The bootstrap proposed here only works for i.i.d. errors. However, by replacing

the estimator F̂U
j in Remark 4.1 with a conditional version (which would correspond to locally

drawing residuals with replacement) it can easily be extended to the general case.

In the simulation study we compared J = 2 quantile curves. The nonparametric estimates

F̂−1
j (p|·) were calculated using local-linear weights, the Epanechnikov kernel

Kr(x) = Kd(x) =
3

4
(1− x2)I[−1,1](x)(4.3)

and the bandwidths

hr,j =

(
p(1− p)
φ(Φ−1(p))2

)1/5(
σ2

nj

)3/10

,(4.4)

where σ2 denotes the variance of the residuals of the data-generating process, and φ,Φ denote

the density and distribution function from the standard normal distribution, respectively. This

choice of bandwidths is motivated by Dette and Neumeyer (2001) and Yu and Jones (1998). The

estimate F̂−1(p|·) from the pooled sample was calculated using the bandwidth

hr =

(
p(1− p)
φ(Φ−1(p))2

)1/5(
σ2

n1 + n2

)3/10

(4.5)
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Table 1: Rejection probabilities of the test (4.2) of equal 50% quantile curves under the null

hypothesis for models (4.8) and (4.9) with normally distributed errors. The numbers in brackets

denote the corresponding rejection probabilities of the test of Dette and Neumeyer (2001).

p = 0.5

model g1(t) = g2(t) = t2

(n1, n2) (25,25) (25,50) (50,50) (50,100) (100,100)

α = 5% 5.70% 5.94% 5.74% 5.42% 4.94%

(5.5%) (5.61%) (4.12%) (5.42%) (4.62%)

α = 10% 10.64% 11.00% 10.56% 9.92% 9.94%

(9.51%) (10.62%) (7.85%) (10.40%) (10.05%)

α = 20% 21.00% 20.20% 20.34% 18.88% 19.14%

(18.81%) (17.78%) (15.71%) (20.01%) (19.62%)

model g1(t) = g2(t) = cos (πt)

α = 5% 5.84% 5.42% 5.90% 5.52% 5.30%

(3.82%) (4.57%) (4.85%) (4.62%) (5.11%)

α = 10% 10.44% 10.10% 10.34% 10.42% 10.40%

(8.15%) (8.61%) (8.93%) (8.90%) (10.09%)

α = 20% 20.74% 19.82% 19.76% 19.28% 21.30%

(14.6%) (16.20%) (17.74%) (18.71%) (20.11%)

Table 2: Rejection probabilities of the test (4.2) of equal 25% quantile curves under the null

hypothesis for models (4.8) and (4.9) with normally distributed errors.

p = 0.25

model g1(t) = g2(t) = t2

(n1, n2) (25,25) (25,50) (50,50) (50,100) (100,100)

α = 5% 5.64% 5.40% 5.88% 5.82% 5.40%

α = 10% 10.78% 10.68% 11.30% 10.74% 10.68%

α = 20% 20.84% 20.76% 21.12% 21.42% 20.76%

model g1(t) = g2(t) = cos (πt)

α = 5% 6.20% 5.60% 5.54% 6.02% 6.90%

α = 10% 11.14% 10.52% 10.50% 10.60% 11.35%

α = 20% 21.42% 20.98% 20.92% 19.92% 20.50%
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and we used hr,1 and hr,2 also for the calculation of the test statistic in the bootstrap procedure.

The bandwidth hd was always chosen as hd = h1.3
r as in Dette and Volgushev (2008).

The choice of the function G is not very critical (c.f. Dette, Volgushev 2008), and we set G

equal to the distribution function of a normally distributed random variable with mean µG and

varinace σ2
G where µG was chosen as the sample mean of Y1j, ..., Ynjj for the calculation of F̂−1

j ,

as the sample mean of the pooled Y−data for F̂−1 and as the sample mean of Y B
1j , ..., Y

B
njj

for

the quantile estimators in the bootstrap. The same applies for σ2
G which was taken to equal the

corresponding sample variances.

The data were generated by

Yij = gj(Xij) + Uij (i = 1, . . . , nj; j = 1, 2),(4.6)

where the random variables Xij were uniformly distributed on the interval [0, 1] and Uij were

normally distributed with mean 0 and variance σ2. For the smoothing of the bootstrap residuals

we used different δ’s for each group if the sample sizes were different, i.e.

δj =

(√
2

σ3

)−1/5

n
−1/4
j .(4.7)

Following Dette and Neumeyer (2001) we considered two cases for the simulation of the nominal

level, that is

g1(t) = g2(t) = t2,(4.8)

g1(t) = g2(t) = cos (πt),(4.9)

and the variance was chosen as σ2 = 1. We resampled R = 99 times and rejection probabilities

were calculated by 2000 simulation runs. The simulated rejection probabilities for testing the

equality of the 50% and 25% quantile curves are displayed in Table 1 and 2, respectively. We

observe a rather precise approximation of the nominal level in all cases. For the sake of com-

parison, Table 1 contains also the simulated level of the wild bootstrap test proposed by Dette

and Neumeyer (2001), which is based on an L2-distance of the estimates for the mean regression

curves from both samples and therefore most similar to the approach presented in this paper.

The results are fairly comparable, where we observe a slightly better approximation of the 20%

level by the procedure (4.2).

It might also be of interest to study the robustness properties of both tests. For this purpose

we have simulated data according model (4.6) where 80% of the random errors Uij are standard

normally distributed and the remaining 20% are Cauchy distributed. The corresponding results

are display in Table 3, and we observe that the nominal level of the test (4.2) is slightly underes-

timated in the presence of errors with an infinite variance. On the other hand, the test of Dette

and Neumeyer (2001) yields a more substantial discrepancy between the nominal and the actual

level in the presence of Cauchy distributed errors. This effect is clearly visible in the case (4.8)

and also in the model (4.9) if α = 20%.
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Table 3: Rejection probabilities of the test (4.2) of equal 50% quantile curves under null hy-

pothesis for models (4.8) and (4.9) with 80% normally and 20% Cauchy distributed errors. The

numbers in brackets denote the corresponding rejection probabilities of the test of Dette and

Neumeyer (2001).

p = 0.5

model g1(t) = g2(t) = t2

(n1, n2) (25,25) (25,50) (50,50) (50,100) (100,100)

α = 5% 4.1% 5.0% 4.6% 4.2% 5.6%

(2.7%) (3.0%) (3.3%) (3.5%) (4.0%)

α = 10% 7.8% 9.1% 9.1% 9.3% 10.0%

(6.9%) (5.1%) (5.4%) (5.3%) (7.6%)

α = 20% 17.0% 17.9% 18.6% 19.8% 20.4%

(13.3%) (11.9%) (11.2%) (9.9%) (11.3%)

model g1(t) = g2(t) = cos (πt)

α = 5% 4.5% 4.5% 4.4% 6.2% 4.3%

(3.2%) (4.8%) (5.7%) (4.1%) (5.5%)

α = 10% 8.9% 8.6% 9.2% 12.1% 10.9%

(6.1%) (7.9%) (7.9%) (5.9%) (9.9%)

α = 20% 18.8% 17.8% 18.0% 20.7% 18.8%

(12.7%) (13.5%) (12.9%) (10.0%) (13.8%)
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Table 4: Rejection probabilities of the test (4.2) of equal 50% quantile curves under various

alternatives with normal errors. The numbers in brackets denote the corresponding rejection

probabilities of the test of Dette and Neumeyer (2001).

p = 0.5

n1 = n2 = 25 n1 = n2 = 50

model α = 5% α = 10% α = 20% α = 5% α = 10% α = 20%

(a) 53.0% 66.6% 79.0% 84.0% 92.2% 96.6%

(60.7%) (73.3%) (85.3%) (97.4%) (98.9%) (99.4%)

(b) 45.8% 60.4% 73.8% 82.4% 91.2% 95.8%

(87.9%) (93.2%) (97.1%) (100%) (100%) (100%)

(c) 55.8% 67.0% 79.0% 82.2% 88.6% 95.6%

(61.9%) (72.4%) (82.1%) (91.6%) (96.1%) (98.3%)

(d) 97.8% 98.8% 99.4% 100% 100% 100%

(98.7%) (99.5%) (100%) (100%) (100%) (100%)

(e) 52% 64.8% 77.2% 87.6% 91.6% 95.6%

(20.6%) (26.9%) (35.8%) (58.0%) (65.5%) (74.3%)

(f) 94.8% 98.2% 99.6% 100% 100% 100%

(77.0%) (82.9%) (88.0%) (99.7%) (99.9%) (99.9%)

Table 5: Rejection probabilities of the test (4.2) of equal 25% quantile curves under various

alternatives with normal errors.

p = 0.25

n1 = n2 = 25 n1 = n2 = 50

model α = 5% α = 10% α = 20% α = 5% α = 10% α = 20%

(a) 44.0% 60.0% 74.4% 83.6% 91.2% 97.2%

(b) 44.0% 56.6% 69.6% 79.4% 87.8% 94.6%

(c) 55.4% 64.0% 77.0% 80.8% 86.6% 92.6%

(d) 93.0% 96.4% 99.0% 99.8% 99.8% 100%

(e) 48.2% 61.2% 74.2% 78.4% 85.8% 93.0%

(f) 94.4% 97.2% 99.0% 100% 100% 100%
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For the investigation of the power properties of the new test we considered the following models

(a) g1(t) = −g2(t) = 0.5 cos (2πt)

(b) g1(t) = −g2(t) = 0.5 sin (2πt)

(c) g1(t) = g2(t)− t = cos (πt)

(d) g1(t) = g2(t)− 1 = cos (πt)

(e) g1(t) = g2(t)− t = cos (2πt)

(f) g1(t) = g2(t)− 1 = cos (2πt)

which have also been investigated by Dette and Neumeyer (2001). The variance of the random

errors Uij was chosen as σ2 = 0.5. Following these authors, the simulated rejection probabilities

from 1000 simulation runs are displayed in Table 4 and 5 corresponding to the estimation of

the 50% and 25% quantile curve, respectively. The results indicate that the alternatives are

detected with reasonable probabilities in all cases under consideration. A comparison of the

rejection probabilities in Table 4 and 5 shows that a difference between the 25% quantile curves

is detected with slightly lower probability as a difference between the 50% quantile curves.

A heuristic argument for this observation is that usually the 25% quantile curve is harder to

estimate. However, a more rigorous explanation of this phenomenon is possible on the basis of

Theorem 3.2, which gives the asymptotic distribution of the test statistic under fixed alternatives.

Note that Remark 3.5 shows that of the power of the test is determined (in first order) by
M2
LL√
Ṽ LL

,

in particular the power is an increasing function of this quantity. Consequently, the ratio
M2
LL√
Ṽ LL

could be used to get some idea about the power properties of the new test.

In the scenario considered in our simulation study we have uniformly distributed predictors and

normally distributed errors with mean 0 and variance σ2, which yields

M2
LL√
Ṽ LL

=


1
8

(
1
2

p(1−p)
φσ(Φ−1

σ (p))2
+ 1

2

)−1/2

, in models (a) and (b)

1
12

(
1
3

p(1−p)
φσ(Φ−1

σ (p))2
+ 16

45

)−1/2

, in models (c) and (e)

1
4

(
p(1−p)

φσ(Φ−1
σ (p))2

)−1/2

, in models (d) and (f),

where φσ and Φ−1
σ denote the density and the quantile function of a centered normally distributed

random variable with variance σ2, respectively. These quantities are maximal for p = 0.5 and are

given in Table 6 for σ2 = 0.5. The empirically observed differences in the the power for the 25%-

and 50% quantile curves [see Table 4 and 5] can be qualitatively explained by the differences

between the values in Table 6.

For a sake of comparison, Table 4 also contains the rejection probabilities of the test of Dette and

Neumeyer (2001) for the six scenarios. We observe a comparable behaviour for the alternatives

(a), (c) and (d) [with slight advantages of the test proposed by Dette and Neumeyer (2001)]. In

the scenario (b) the test of Dette and Neumeyer (2001) yields much larger rejection probabilities

than the test (4.2), while in the remaining cases (e) and (f) the test based on quantile function

is more powerful. The improvements are substantial for the alternative (e).
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Table 6: M2
LL/
√
Ṽ LL for the different models considered in the simulation study.

Models

(a) and (b) (c) and (e) (d) and (f)

p = 0.25 0.128 0.102 0.260

p = 0.5 0.133 0.106 0.282

Table 7: Rejection probabilities of the test (4.2) of equal 50% quantile curves under various

alternatives with 80% normally and 20% Cauchy distributed errors. The numbers in brackets

denote the corresponding rejection probabilities of the test of Dette and Neumeyer (2001).

p = 0.5

n1 = n2 = 25 n1 = n2 = 50

model α = 5% α = 10% α = 20% α = 5% α = 10% α = 20%

(a) 30.2% 45.3% 64.1% 71.2% 81.9% 90.1%

(18.5%) (25.5%) (34.1%) (30.7%) (37.3%) (44.5%)

(b) 23.9% 41.1% 60.1% 67.3% 79.7% 89.8%

(58.4%) (68.3%) (75.8%) (77.4%) (79.7%) (83.2%)

(c) 30.2% 46.8% 62.6% 63.1% 74.1% 84.5%

(33.1%) (39.1%) (46.3%) (36.0%) (42.9%) (49.7%)

(d) 71.0% 83.3% 91.8% 94.1% 96.3% 96.7%

(58.7%) (63.9%) (69.5%) (62.7%) (65.8%) (70.1%)

(e) 31.5% 44.2% 60.4% 65.1% 75.0% 83.9%

(15.2%) (21.0%) (27.4%) (22.4%) (27.2%) (34.8%)

(f) 67.5% 81.4% 91.5% 92.0% 94.6% 95.5%

(47.0%) (53.1%) (59.7%) (58.1%) (61.4%) (63.9%)

We conclude the study of the finite sample properties with a brief investigation of the impact of

outliers on the power of the new test and the test of Dette and Neumeyer (2001). For this purpose

we considered the same models and parameters as in the previous paragraph, but replaced 20%

of the errors by Cauchy-distributed random variables multiplied by σ. The results are displayed

in Table 7 for the new test (4.2) and the test of Dette and Neumeyer (2001). Compared to

the case of 100% normally distributed errors, we observe a loss in power for both tests. For

the new test the rejection probabilities are in average about 26% smaller for the sample sizes

n1 = n2 = 25 and about 10% smaller for sample sizes n1 = n2 = 50. For the test of Dette and

Neumeyer (2001), the average loss of power is more substantial and given by 36% and 44% for

the cases n1 = n2 = 25 and n1 = n2 = 50, respectively. As a consequence, the test (4.2) nearly

always yields larger rejection probabilities in the case of 20% Cauchy distributed errors.
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5 Appendix: Proofs

To keep the notation simple we concentrate on the case of J = 2 samples, Nj = nj and the

Nadaraya-Watson estimate. The corresponding statements for the local linear estimate and more

than 2 samples follow by exactly the same arguments with an additional amount of notation.

5.1 Proof of Theorem 3.1.

We use the notation H−1
j (p|x) = G(F−1

j (p|x)), G̃(x) = (G−1)
′
(H−1

1 (p|x)) and obtain by a Talor-

expansion under the null hypothesis H0 (note that the distribution function G is strictly mono-

tone)

Tn =

∫
(F̂−1

1 (p|t)− F−1
1 (p|t) + F−1

2 (p|t)− F̂−1
2 (p|t))2ŵ12(t)dt(5.1)

=

∫
G̃2(t)

(
Ĥ−1

1 (p|t)−H−1
1 (p|t)− (Ĥ−1

2 (p|t)−H−1
2 (p|t))

)2

ŵ12(t)dt

+2

∫
G̃(t)ŵ12(t)(Ĥ−1

1 (p|t)− Ĥ−1
2 (p|t))

×
[
(G−1)

′′
(ξ1)(Ĥ−1

1 (p|t)−H−1
1 (p|t))2 − (G−1)

′′
(ξ2)(Ĥ−1

2 (p|t)−H−1
2 (p|t))2

]
dt

+

∫
ŵ12(t){[(G−1)

′′
(ξ1)]2(Ĥ−1

1 (p|t)−H−1
1 (p|t))4

−2(G−1)
′′
(ξ1)(G−1)

′′
(ξ2)(Ĥ−1

1 (p|t)−H−1
1 (p|t))2(Ĥ−1

2 (p|t)−H−1
2 (p|t))2

+[(G−1)
′′
(ξ2)]2(Ĥ−1

2 (p|t)−H−1
2 (p|t))4}dt,

where the random variables ξ1 and ξ2 satisfy |ξj −H−1
j (p|t)| ≤ |Ĥ−1

j (p|t)−H−1
j (p|t)|. Under the

assumptions of Theorem 3.1 it follows from Dette and Volgushev (2008) that

Ĥ−1
j (p|t)−H−1

j (p|t) = Op(h
2
r) +Op

(
1√
nhr

)
,

and as a consequence the last two integrals in (5.1) are of order op((n
√
hr)
−1). Therefore it

remains to consider the first integral, which will be denoted by T
(1)
n throughout this section.

From the definition of Ĥ−1
j (p|x) in (2.7) we obtain by a further Taylor expansion

Ĥ−1
j (p|x)−H−1

j (p|x) = ∆
(1)
j (p|x) + ∆

(2)
j (p|x) + ∆

(3)
j (p|x) + ∆

(4)
j (p|x),
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where

∆
(1)
j (p|x) := − 1

njhd

nj∑
i=1

Kd

(
Fj(gij|x)− p

hd

)(
F̂j(gij|x)− Fj(gij|x)

)
,

∆
(2)
j (p|x) := − 1

2njh2
d

nj∑
i=1

K
′

d

(
Fj(gij|x)− p

hd

)(
F̂j(gij|x)− Fj(gij|x)

)2

,

∆
(3)
j (p|x) := − 1

6njh3
d

nj∑
i=1

K
′′

d

(
ξij − p
hd

)(
F̂j(gij|x)− Fj(gij|x)

)3

,

∆
(4)
j (p|x) :=

1

njhd

∫ p

−∞

nj∑
i=1

Kd

(
Fj(gij|x)− u

hd

)
du−H−1

j (p|x),

we used the notation gij := G−1
(

i
nj

)
, and the random variables ξij satisfy |ξij − Fj(gij|x)| ≤

|F̂j(gij|x)−Fj(gij|x)|. Using similar arguments as in Dette and Volgushev (2008) it follows that

∆
(2)
j (p|x) = op

(
1

nhrhd

)
+ op

(
h4
r

hd

)
,

∆
(3)
j (p|x) = Op

(
h6
r

h
5/2
d

)
,

∆
(4)
j (p|x) =

1

2
µ2(Kd)h

2
d∂

2
1(H−1

j (p|x)) +O

(
1

nhd

)
.

An application of the Cauchy-Schwarz-inequality yields for the quantities

Tn,kl :=

∫ 1

0

G̃2(x)
(

∆
(k)
2 (p|x)−∆

(k)
1 (p|x)

)(
∆

(l)
2 (p|x)−∆

(l)
1 (p|x)

)
ŵ12(x)dx = op

(
1

n
√
hr

)
for all (k, l) 6= (1, 1). This implies

T (1)
n = Tn,11 + op

(
1

n
√
hr

)
(5.2)

=

∫ 1

0

G̃(x)2
(
f1(x)f̂2(x)∆

(1)
2 (p|x)− f2(x)f̂1(x)∆

(1)
1 (p|x)

)2

dx+ op

(
1

n
√
hr

)
,

where we have used the definition of ŵ12(x) = (f̂1(x)f̂2(x))2. Now we define the independent

identically distributed random variables

Zkj(x) :=
−1

n2
jhdhr

nj∑
l=1

Kd

(
Fj(glj|x)− p

hd

)
Kr

(
Xkj − x
hr

)
(I{Ykj ≤ glj} − Fj(glj|x)).

Remembering the definition of the Nadaray-Watson-weights, we get

f̂j(x)∆
(1)
j (p|x) =

nj∑
k=1

Zkj(x).
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Further we define

(5.3) Z̃k(x) :=

{
f1(x)(Zk2(x)− E [Zk2(x)]) for 1 ≤ k ≤ n2

−f2(x)(Z(k−n2)1(x)− E
[
Z(k−n2)1(x)

]
) for n2 + 1 ≤ k ≤ n

which are centered independent random variables. Using this notation we obtain from (5.2) the

following representation for the statistic T
(1)
n

T (1)
n =

∫ 1

0

[A1(x) + 2A2(x) + A3(x)]dx+ op

(
1

n
√
hr

)
,(5.4)

where

A1(x) = G̃2(x)

(
n∑
k=1

Z̃k(x)

)2

A2(x) = G̃2(x)

(
n∑
k=1

Z̃k(x)

)(
f1(x)E

[
f̂2(x)∆

(1)
2 (p|x)

]
− f2(x)E

[
f̂1(x)∆

(1)
1 (p|x)

])
A3(x) = G̃2(x)

(
f1(x)E

[
f̂2(x)∆

(1)
2 (p|x)

]
− f2(x)E

[
f̂1(x)∆

(1)
1 (p|x)

])2

.

Obviously we have E [A2(x)] = 0 and straightforward but tedious calculations [see Wagener

(2008)] yields

E [A1(x)] = p(1− p)µ(2)
0 (Kr)

{(
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

n2hr
(5.5)

+
(
∂1(F−1

1 (p|x))
)2 f 2

2 (x)f1(x)

n1hr

}
+ o

(
1

n
√
hr

)
and

A3(x) = h4
r (f2(x)C1(x)− f1(x)C2(x))2 +O(h5

r).(5.6)

Similarly, it follows by Markov’s-inequality

(5.7) A1(x) = G̃2(x)
n∑
k=1

∑
l 6=k

Z̃k(x)Z̃l(x) + E [A1(x)] + op

(
1

n
√
hr

)

and we denote the first sum in (5.7) by Ã1(x). For the variances of Ã1(x), A2(x) and the

covariance we obtain

V ar

(∫ 1

0

Ã1(x)dx

)
=

2p2(1− p)2

hr

∫
(Kr ∗Kr)

2(u)du

×
∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f1(x)f 2

2 (x)

n1

+
(
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

n2

)2

dx

23



+o

(
1

n2hr

)
,

V ar

(∫ 1

0

A2(x)dx

)
= p(1− p)h4

r

∫ 1

0

((
∂1(F−1

1 (p|x))
)2 f1(x)f 2

2 (x)

n1

+
(
∂1(F−1

2 (p|x))
)2 f 2

1 (x)f2(x)

n2

)
×(f2(x)C1(x)− f1(x)C2(x))2dx+ o

(
h4
r

n

)
and

Cov

(∫ 1

0

Ã1(x)dx,

∫ 1

0

A2(x)dx

)
= o

(
1

n2hr

)
using Fubini’s Theorem. Finally we define random variables to apply the central limit theorem

of de Jong (1996) as follows:

WI :=


n
√
hr2

∫ 1

0
G̃2(x)Z̃k(x)Z̃l(x)dx if I = {k, l}

n
√
hr2

∫ 1

0
G̃2(x)Z̃k(x)

(
f1(x)E

[
f̂2(x)∆

(1)
2 (x)

]
− f2(x)E

[
f̂1(x)∆

(1)
1 (x)

])
dx if I = {k}

0 in all other cases.

Obviously these random variables are measurable with respect to the sigma field FI := σ{Ui|i ∈
I} where Uk = (Xkjk , Ykjk), jk = 1 if k > n2 and jk = 2 otherwise. Moreover these random

variables fulfil

E [WI1|FI2 ] = 0, if I1 6⊂ I2.

This means that condition (a) and (b) on the top of page 106 in de Jong (1996) are satisfied.

Therefore it remains to check the two other conditions of Theorem 1 on page 107 in this reference,

which can be done by a straightforward but tedious calculation. Consequently, Theorem 1 of de

Jong (1996) is applicable in the present context and it follows

W (n) := n
√
hr

(∫ 1

0

Ã1(x)dx+ 2

∫ 1

0

A2(x)dx

)
=
∑
|I|≤2

WI
D−→ N (0, V NW ).

Observing the representation for the expectations of the random variables A1(x) and A3(x) in

(5.5) and (5.6), respectively and the representation

Tn =

∫ 1

0

A1(x)dx+ 2

∫ 1

0

A2(x)dx+

∫ 1

0

A3(x)dx+ op

(
1

n
√
hr

)
the assertion of the Theorem 3.1 for the Nadaraya-Watson weights follows. 2

5.2 Proof of Theorem 3.2.

The proof of this theorem uses the same techniques as the one above and, for the sake of brevity,

only the main steps are presented. Under a fixed alternative the teststatics splits into

Tn = T (1)
n + 2T (2)

n + T (3)
n + op

(
1√
n

)
,
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where T
(1)
n is defined in the proof of Theorem 3.1 and the other quantities are given by

T (2)
n =

∫ 1

0

G̃(x)
(
Ĥ−1

1 (p|x)−H−1
1 (p|x)− (Ĥ−1

2 (p|x)−H−1
2 (p|x))

) (
F−1

2 (p|x)− F−1
1 (p|x)

)
ŵ12(x)dx,

T (3)
n =

∫ 1

0

(
F−1

2 (p|x)− F−1
1 (p|x)

)2
ŵ12(x)dx.

An inspection of the proof of Theorem 3.1 shows that under a fixed alternative the random

variable T
(1)
n is of order op

(
1√
n

)
(one has to investigate Tn,k4 more carefully). Straightforward

calculations yield

T (2)
n =

∫ 1

0

G̃(x)

(
f1(x)

n2∑
k=1

Zk2(x)− f2(x)

n1∑
k=1

Zk1(x)

)(
F−1

2 (p|x)− F−1
1 (p|x)

)
f1(x)f2(x)dx

+op

(
1√
n

)
,

E
[
T (2)
n

]
= −h2

r

∫ 1

0

(f1(x)C2(x)− f2(x)C1(x))
(
F−1

2 (p|x)− F−1
1 (p|x)

)
f1(x)f2(x)dx+ o

(
1√
n

)
,

V ar
(
T (2)
n

)
= p(1− p)

∫ 1

0

[
f 2

1 (x)f2(x)

n2

(
∂1(F−1

2 (p|x))
)2

+
f1(x)f 2

2 (x)

n1

(
∂1(F−1

1 (p|x))
)2
]

×(F−1
2 (p|x)− F−1

1 (p|x))2f 2
1 (x)f 2

2 (x)dx+ o

(
1

n

)
.

The statistic T
(2)
n is a sum of independent random variables. Because of the randomness of T

(3)
n ,

caused by the random weights ŵ12(x), which are needed to handle the random denominator

problem, we can not apply the central limit theorem of Lindeberg to T
(3)
n . Some calculations

give

E
[
T (3)
n

]
=

∫ 1

0

{
f 2

1 (x)f 2
2 (x) + h2

rµ2(Kr)
(
f 2

2 (x)f1(x)f
′′

1 (x) + f 2
1 (x)f2(x)f

′′

2 (x)
)}

×(F−1
2 (p|x)− F−1

1 (p|x))2dx+O

(
1

n

)
and

V ar
(
T (3)
n

)
= 4

{
1

n2

∫ 1

0

(
F−1

2 (p|x)− F−1
1 (p|x)

)4
f 4

1 (x)f 3
2 (x)dx

+
1

n1

∫ 1

0

(
F−1

2 (p|x)− F−1
1 (p|x)

)4
f 3

1 (x)f 4
2 (x)dx

}
−4

(
1

n1

+
1

n2

)(∫ 1

0

(
F−1

2 (p|x)− F−1
1 (p|x)

)2
f 2

1 (x)f 2
2 (x)dx

)2

+ o

(
1

n

)
.

and so the variances of T
(2)
n and T

(3)
n are of the same order. The covariance of T

(2)
n and T

(3)
n is of

order o (n−1). We are able to rewrite the teststatistic in the following way.
√
n (Tn − E [Tn]) =

√
n
(
2T (2)

n + T (3)
n − 2E

[
T (2)
n

]
− E

[
T (3)
n

])
+ op(1) =

∑
I⊂{1,...,n},|I|≤4

W̃I + op(1)
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where the random variables W̃I again fulfil the conditions on page 106 and 107 of de Jong (1996)

(due to lack of space, we do not give the exact definitions of W̃I). So we can apply Theorem 1

of de Jong (1996) and the assertion of Theorem 3.2 follows.

Remark 3.8 Sun (2006) also considered samples that include discrete variables. We can easily

generalize our test statistic in the following way for samples of this type. To be precise, let

Xij = (X1,ij, X2,ij), where X1,ij are discrete variables taking values in a given set, say χ, and

X2,ij are continuous variables satisfying the assumptions made throughout this paper. We define

the weights for the initial estimate of the conditional distribution function as follows:

wij((x1, x2)) = w̃ij(x2) (I{X1,ij = x1}+ λI{X1,ij 6= x1}) ,

where w̃ij are Nadaraya-Watson weights or local linear weights respectively and λ ≥ 0 is an

additional bandwidth satisfying

n
√
hrh

4
rλ = o(1),

λ√
hr

= o(1).

In this case we define

Tn =
∑
x1∈χ

∫ 1

0

J∑
j=1

j−1∑
i=1

(F̂−1
j (p|(x1, x2))− F̂−1

i (p|(x1, x2)))2ŵij(x2)dx2.

Analogous results to Theorem 3.1, Theorem 3.2 and Theorem 3.4 hold in this case. For example,

in the local linear case we have

n
√
hr (Tn −B1 −B2)

D−→N (0, V ),

where the asymptotic and bias variance are given by

B1 = µ6
2(Kr)

∑
x1∈χ

∫ 1

0

f 4
1 (x1, x2)f 4

2 (x1, x2)(C1(x1, x2)− C2(x1, x2))2dx2,

B2 = p(1− p)µ(2)
0 (Kr)µ

4
2(Kr)

∑
x1∈χ

∫ 1

0

(∂1(F−1
1 (p|x1, x2)))2f

3
1 (x1, x2)f 4

2 (x1, x2)

a1

+(∂1(F−1
2 (p|x1, x2)))2f

4
1 (x1, x2)f 3

2 ((x1, x2))

a2

dx2,

Cj(x1, x2) =
1

2
∂1(F−1

j (p|x1, x2))∂2
x2

(Fj(F
−1
j (p|x1, x2)|x1, x2)),

V = 2p(1− p)µ8
2(Kr)

∑
x1∈χ

{
p(1− p)

∫ 1

0

(Kr ∗Kr)
2(u)du

×
∫ 1

0

((
∂1(F−1

1 (p|x1, x2))
)2 f 3

1 (x1, x2)f 4
2 (x1, x2)

a1

+
(
∂1(F−1

2 (p|x1, x2))
)2 f 4

1 (x1, x2)f 3
2 (x1, x2)

a2

)2

dx2
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+2cµ2
2(Kr)

∫ 1

0

((
∂1(F−1

1 (p|x1, x2))
)2 f2(x1, x2)

a1

+
(
∂1(F−1

2 (p|x1, x2))
)2 f1(x1, x2)

a2

)
×f 7

1 (x1, x2)f 7
2 (x1, x2)(C1(x)− C2(x))2dx

}
,

respectively, fj (j = 1, 2) denotes the joint density of (X1,ij, X2,ij).
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