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Abstract

We consider the problem of testing the parametric form of the volatility for high fre-

quency data. It is demonstrated that in the presence of microstructure noise commonly

used tests do not keep the preassigned level and are inconsistent. The concept of pre-

averaging is used to construct new tests, which do not su�er from these drawbacks. These

tests are based on a Kolmogorov or Cramér-von-Mises functional of an integrated stochas-

tic process, for which weak convergence to a (conditional) Gaussian process is established.

The �nite sample properties of a bootstrap version of the test are illustrated by means of

a simulation study.

AMS Subject Classi�cation: 62M02, 62G10, 62P20

Keywords and phrases: goodness-of-�t test, microstructure noise, stable convergence, paramet-

ric bootstrap, heteroscedasticity

1 Introduction

The volatility is a popular measure of risk in �nance with numerous applications including the

construction of optimal portfolios, hedging and pricing of options. Therefore estimating and

investigating the volatility and its dynamics is of particular importance in applications and

numerous models have been proposed for this purpose [see e.g. Black and Scholes [6], Vasicek

[25], Cox et al. [8], Hull and White [15] and Heston [14] among many others]. Because the

misspeci�cation of the form of the volatility can lead to serious consequences in the subsequent
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data analysis numerous authors recommend to use goodness-of-�t tests for the postulated model

[see e.g. Ait-Sahalia [2], Corradi and White [9], Dette et al. [11], Dette and Podolskij [10] among

others]. The literature on statistical inference in this context can be divided into two classes

depending on the type of available data. The �rst class of goodness-of-�t tests can be used,

when the available data consists of discrete observations of the process sampled at time points

∆, 2∆, 3∆, . . . , n∆, where ∆ > 0 is �xed and n → ∞. The other class of tests addresses the

situation of high frequency data, where discretely observed data of the price process is available

at time 0,∆, 2∆, . . . , n∆ = T , where T is �xed and n → ∞ (which means that ∆ → 0 for an

increasing sample size).

In the present paper we consider the case of high frequency data, where - in principle - for an

increasing sample size information about the whole path of the volatility would be available.

However, in concrete applications the situation is much more complicated because of the pres-

ence of microstructure noise, which is usually existent in high frequency data. This additional

noise is caused by many sources of the trading process such as discreteness of observations [see

e.g. Harris [19], [20]], bid-ask bounces or special properties of the trading mechanism [see e.g.

Black [5] or Amihud and Mendelson [4]]. While microstructure noise has been taken into ac-

count for the construction of estimators of the integrated volatility and other related quantities

[see e.g. Zhang et al. [27], Jacod et al. [17] or Podolskij and Vetter [21], [22]], properties of

goodness-of-�t tests in this context have not been investigated so far in the literature.

Consider for example the problem, where the process {Zt}t∈[0,1] is observed at the n time points

1/n, 2/n, . . . , 1. Under the assumption that

Zt = Xt with dXt = σt dWt (1.1)

Dette and Podolskij [10] proposed to reject the hypothesis of a constant di�usion coe�cient in

(1.1), i.e. H0 : σ2
t = σ2(t,Xt) = σ2, whenever

Tn =
√
n sup
t∈[0,1]

∣∣∣∣∣
∑bntc

k=1 |Z k
n
− Z k−1

n
|2 − t

∑n
k=1 |Z k

n
− Z k−1

n
|2

√
2
∑n

k=1 |Z k
n
− Z k−1

n
|2

∣∣∣∣∣ > c1−α , (1.2)

where c1−α denotes the (1− α) quantile of the supremum of a Brownian Bridge. Now consider

the situation, where microstructure noise is present, which is usually modeled by an additional

additive component, that is

Z i
n

= X i
n

+ U i
n
, i = 1, . . . , n (1.3)

where {U i
n
| i = 1, . . . , n} denotes a triangular array of random variables with mean 0 and

variance ω2. In Table 1 we show the �nite sample behaviour of the test (1.2) for the hypothesis

of a constant volatility if σ2
t = σ2(t, x) = θ+ (1− θ)x2 (note that the case θ = 1 corresponds to

the null hypothesis). We observe that the test keeps its preassigned level only in the case where

ω is rather small. In most cases the nominal level is clearly underestimated. On the other

hand, the test is not able to detect any alternative. An intuitive explanation for this behaviour
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is that in the presence of microstructure noise the variances of the di�erences Z k
n
− Z k−1

n
are

dominated by the term ω2. This leads to inconsistent estimates of the integrated volatility

as pointed out in Zhang [27]. More precisely, a straightforward calculation shows that under

microstructure noise the statistic Tn shows the same asymptotic behavior as the the statistic

√
n sup
t∈[0,1]

∣∣∣∣∣
∑bntc

k=1 |U k
n
− U k−1

n
|2 − t

∑n
k=1 |U k

n
− U k−1

n
|2

√
2
∑n

k=1 |U k
n
− U k−1

n
|2

∣∣∣∣∣ , (1.4)

which converges weakly to √
λ

2
sup
t∈[0,1]

|Bt|,

no matter if the null hypothesis is valid or not. Here Bt denotes a Brownian bridge and

λ = E[(Uk/n/ω)4]. This means that in the presence of microstructure noise the test (1.2) has

asymptotic level α if and only if λ = 2. In all other cases the test does not keep its preassigned

level. Moreover, because the asymptotic properties under null hypothesis and alternative are

the same, the test is not consistent.

[INSERT TABLE 1 HERE]

The present paper is devoted to the problem of constructing a consistent asymptotic level α

test for a general parametric form of the volatility in the presence of microstructure noise. In

Section 2 and 3 we present the basic model and introduce a stochastic process which can be used

to test parametric hypotheses about the form of the volatility in models with microstructure

noise. For this purpose we use the concept of pre-averaging, which was introduced in Podolskij

and Vetter [21] and extended in several other papers [see e.g. Jacod et al. [17] or Podolskij

and Vetter [22]] in the context of volatility estimation. Our main results are presented in

Section 4, where we prove stable convergence of two stochastic processes which will form the

basis of the proposed new tests for the parametric form of the volatility. The new tests can

detect alternatives converging to the null hypothesis with a rate n−1/4 and therefore achieve

the optimal rate of convergence in problems of this type [see Gloter and Jacod [13]]. Section 5

deals with the problem of testing nonlinear hypotheses for the volatility. Roughly speaking, this

situation can be reduced to the linear case using standard arguments from nonlinear regression

models [see Seber and Wild [24]], but there appear interesting di�erences in the asymptotic

distribution of the process, if the null hypothesis is not satis�ed. In Section 6 we investigate

the �nite sample properties of a bootstrap version of the new tests and investigate the e�ect of

microstructure noise in the context of goodness-of-�t testing. In particular, it is demonstrated

that the new tests based on the concept of pre-averaging provide a satisfactory solution to the

problem of checking model assumptions in the presence of microstructure noise. Finally, all

proofs of the results and technical details are presented in an Appendix.
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2 Testing parametric hypotheses for the volatility

Suppose that the process X = (Xt)t is de�ned on some appropriate �ltered probability space

(Ω(0),F (0), (F (0)
t )t∈[0,1], P

(0)) and admits the representation

Xt = X0 +

∫ t

0

as ds+

∫ t

0

σs dWs, (2.1)

where W = (Wt)t is a standard Brownian motion and the drift process a and the volatility

process σ satisfy some weak regularity conditions, which will be speci�ed later. Furthermore,

we assume that the process can be observed at discrete points on a �xed time interval, say

[0, 1].

Various assumptions on the structure of the volatility process have been proposed in the litera-

ture, typically depending on the �nancial asset, whose price process is modeled by X. Among

such models, a large class involves the case where σ is de�ned to be a local volatility process,

thus merely a function of time and state [see e.g. Black and Scholes [6], Vasicek [25], Cox et

al. [8], Chan et al. [7], Ait-Sahalia [2] or Ahn and Gao [3] among many others]. Because

an appropriate modeling of the volatility is of particular importance for the construction of

portfolios, hedging and pricing, many authors point out that the postulated model should be

validated by an appropriate goodness-of-�t test [see e.g. Ait-Sahalia [2] or Corradi and White

[9]]. In several cases the hypothesis for the parametric form of the volatility is linear and one

has to consider the following two situations:

H0 : σ2
t = σ2(t,Xt) =

d∑
i=1

θi σ
2
i (t,Xt) a.s. (2.2)

or

H̄0 : σt = σ(t,Xt) =
d∑
i=1

θ̄i σ̄i(t,Xt) a.s., (2.3)

where the functions σ1, . . . , σd (or σ̄1, . . . , σ̄d) are known and the parameters θ1, . . . , θd (or

θ̄1, . . . , θ̄d) are unknown. Other models involve volatility functions, where the parameters enter

nonlinearly [see Ait-Sahalia [2]] and the corresponding hypotheses will be considered later in

Section 5, because the basic concepts are easier to explain in the linear context.

Let us focus on the problem raised in (2.2) for the moment, as the testing problem in (2.3)

can be treated in the same way. Dette and Podolskij [10] proposed to construct a test statistic

using an empirical version of the stochastic process

Nt :=

∫ t

0

{
σ2
s −

d∑
j=1

θminj σ2
j (s,Xs)

}
ds, (2.4)
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where

θmin = (θmin1 , . . . , θmind )T := argminθ∈Rd

∫ 1

0

{
σ2
s −

d∑
j=1

θj σ
2
j (s,Xs)

}2

ds.

Thus, one uses the L2 distance to determine the best approximation to the unknown volatility

process σ2 by a linear combination of the given functions σ2
1, . . . , σ

2
d. It can easily be seen that

the null hypothesis in (2.2) is equivalent to

Nt = 0 ∀ t ∈ [0, 1] a.s.,

and a well-known result from Hilbert space theory [see Achieser [1]] implies that

Nt = B0
t −BT

t D
−1C, (2.5)

where

B0
t =

∫ t

0

σ2
s ds and Bi

t =

∫ t

0

σ2
i (s,Xs) ds for i = 1, . . . , d,

D and C denote a d× d-matrix and a d-dimensional vector, respectively, with

Dij =

∫ 1

0

σ2
i (s,Xs) σ

2
j (s,Xs) ds and Ci =

∫ 1

0

σ2
s σ

2
i (s,Xs) ds.

Note that these quantities depend on the particular path of the process.

In practice, one does not observe the entire path of the di�usion process X = (Xt)t and it

is therefore necessary to de�ne an empirical version based on appropriate estimators for the

quantities in (2.5). Let us brie�y discuss the solution to the problem in the case, where the

di�usion process X = (Xt)t can be observed at the discrete times tn,i = i
n

(0 ≤ i ≤ n) without

further restrictions. Based on the decomposition above, Dette and Podolskij [10] propose to

de�ne an empirical version

Ñt = B̃0
t − B̃T

t D̃
−1C̃

plugging in appropriate estimators for the unknown quantities. Quite naturally, one uses a

Riemann approximation of each integral, where one chooses n|X k
n
−X k−1

n
|2 as a local estimate

for σ2
k−1
n

. Thus,

D̃ij =
1

n

n∑
k=1

σ2
i (
k

n
,X k

n
) σ2

j (
k

n
,X k

n
) for i, j = 1, . . . , d, (2.6)

C̃i =
n∑
k=1

σ2
i (
k − 1

n
,X k−1

n
) |X k

n
−X k−1

n
|2 for i = 1, . . . , d,
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and the quantities B̃0
t and B̃t = (B̃1

t , . . . , B̃
d
t )T are given by

B̃0
t :=

bntc∑
k=1

|X k
n
−X k−1

n
|2, B̃i

t :=
1

n

bntc∑
k=1

σ2
i (
k

n
,X k

n
) for i = 1, . . . , d. (2.7)

In this context one can prove a (stable) central limit theorem for the process (Ñt−Nt)t with the

optimal rate of convergence n−
1
2 , from which one may construct test statistics of Cramér-von-

Mises or Kolmogorov-Smirnov type. For example, if d = 1, σ2
1(t,Xt) = 1, the hypothesis (2.2)

reduces to the hypothesis of constant volatility considered in the introduction. To be precise,

we have D̃ = 1, C̃1 =
∑n

k=1 |X k
n
−X k−1

n
|2, B̃0

t =
∑bntc

k=1 |X k
n
−X k−1

n
|2, and B̃1

t = bntc
n
≈ t and

we obtain the process in the Kolmogorov-Smirnov statistic (1.2), which converges (stably) to

the supremum of a Brownian bridge [see Dette and Podolskij [10]].

However, as pointed out in the introduction di�usion processes observed at high frequency are

contaminated by microstructure e�ects such as rounding or bid-ask bounces. In particular, in

the presence of microstructure noise the corresponding test for the hypothesis (2.2) does not

keep its asymptotic level and is not consistent. Thus a modi�cation of the corresponding test

statistics is necessary, which will be discussed in the following sections.

3 Assumptions and de�nitions

In the case of microstructure noise it is less obvious how to estimate the unknown quantities

in (2.5), basically for two reasons: One has to to �nd a local estimator for the unknown

volatility function σ2
t (which has to be done in the noiseless framework as well, but becomes

more complicated in this setting), and one needs an estimator for the path Xt itself, which

cannot be observed directly. We solve both questions by applying the idea of pre-averaging,

which was introduced in Podolskij and Vetter [21] and extended in several other papers [see

e.g. Jacod et al. [17] or Podolskij and Vetter [22]] in the context of volatility estimation. Let

us start with some basic assumptions.

Since we are dealing with microstructure noise, we have to de�ne a second process Z = (Zt)t,

which is connected to the underlying Ito semimartingale X through the equation

Zt = Xt + Ut

for some noise process U . Even though we assume in the following that the observation times

are given by tn,i = i
n
for 0 ≤ i ≤ n, it will be convenient to de�ne the observed process (and

thus the noise process as well, even though it will typically not be measurable in time) for any

t. For this purpose we use a similar setting as in Jacod et al. [17].

We consider for each t in [0, 1] a probability measure Qt(ω
(0), dz), which corresponds to the

transition from Xt(ω
(0)) to the observed process Zt on R. Thus, it is natural to de�ne the space

of observations Ω(1) = R[0,1], equipped with its product Borel-σ-�eld F (1) and the probability
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measure P (1)(ω(0), dω(1)), which is the product ⊗t∈[0,1]Qt(ω
(0), ·) to ensure some sort of (con-

ditional) independence of the noise variables. (Zt)t is then given as the canonical process on

(Ω(1),F (1), P (1)) with the natural �ltration F (1)
t = σ(Zs; s ≤ t). The �ltered probability space

(Ω,F , (Ft)t∈[0,1], P ), on which both processes X and Z live, is then de�ned as

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft =
⋂
s>tF

(0)
s ×F (1)

s ,

P (dω(0), dω(1)) = P (0)(dω(0))P (1)(ω(0), dω(1)).

}
(3.1)

This setting allows for quite general forms of noise; however, we restrict ourselves to the case of

i.i.d. noise, thus the transition probability Qt(ω
(0), dz) depends on ω(0) only through z−Xt(ω

(0))

and has the form

Qt(ω
(0), dz) = k

(
z −Xt(ω

(0))
)
dz,

where k is a density with bounded support. Furthermore, we assume that the moment condi-

tions

E[Ut] = 0, E[U2
t ] = ω2, E[U4

t ] <∞ (3.2)

hold.

In order to introduce the pre-averaged statistics we have to de�ne some further quantities.

First, we choose a sequence mn, such that

mn√
n

= κ+ o(n−
1
4 ) (3.3)

for some κ > 0, and a nonzero real-valued function g : R → R, which vanishes outside of the

interval (0, 1), is continuous and piecewise C1 and has a piecewise Lipschitz derivative g′. We

associate with g (and n) the following real valued numbers and functions:

gnj = g( j
mn

), g
′n
j = gnj − gnj+1, ψ1 =

∫ 1

0
(g′(s))2 ds, ψ2 =

∫ 1

0
(g(s))2 ds

s ∈ [0, 1] 7→ φ1(s) =
∫ 1

s
g′(u)g′(u− s) du, φ2(s) =

∫ 1

s
g(u)g(u− s) du

i, j = 1, 2 : Φij =
∫ 1

0
φi(s)φj(s) ds

 (3.4)

Furthermore, we de�ne for an arbitrary process V the random variables

V n
j = V j

n
, ∆n

j V = V n
j − V n

j−1, V
n

k =
mn∑
j=1

gnj ∆n
k+jV. (3.5)

Typically, we have V = X or Z and for these processes V
n

k can be represented as

V
n

k =

∫ k+mn
n

k
n

gn

(
s− k

n

)
dVs with gn(s) =

mn∑
j=1

gnj 1( j−1
n
, j
n

](s), (3.6)
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where we use the convention
∫ b
a
c dUs = c(Ub − Ua) for arbitrary constants a, b and c. Finally,

we set

X̂ k
n

=
1

mn

mn∑
j=1

Zn
k+j. (3.7)

As pointed out before, we need additional assumptions on the process X as well as on the given

basis functions in (2.2) and (2.3), respectively. Since the conditions on σ2
i and σ̄i are similar,

we will restrict ourselves to the �rst case only.

It is required that the functions σ2
1, . . . , σ

2
d are linearly independent and that each σ2

i is twice

continuously di�erentiable. Moreover, we assume that

E[| det(D)|−β] <∞ (3.8)

for some β > 0.

Regarding the various processes in X, the assumptions are as weak as possible when testing

for (2.2). We simply have to ensure that the process in (2.1) is well-de�ned, which follows if we

assume that a is locally bounded and predictable and that σ is càdlàg. [see Jacod and Shiryaev

[18] or Revuz and Yor [23]]. When working with (2.3) we propose additionally that the true

volatility process σ is almost surely positive and that is has a representation of the form (2.1)

as well, namely that it satis�es

σt = σ0 +

∫ t

0

a′s ds+

∫ t

0

σ′s dWs +

∫ t

0

v′s dVs,

where a′, σ′ and v′ are adapted càdlàg processes, with a′ also being predictable and locally

bounded, and V is a second Brownian motion, independent of W .

4 Goodness-of-�t tests addressing microstructure noise

The two estimators of interest are Z
n

k and X̂ k
n
, which are both local averages of the noisy data,

but with slightly di�erent intuitions behind them. For the latter one, the �ltering applies to

the observations directly, and it is easy to see that such a procedure reduces the impact of the

noise variables around time k
n
and still provides information about the latent price X k

n
, since

the path of X does not �uctuate too much. For Z
n

k , the averaging happens on the increments

rather than on the prices, but due to the assumptions on g the interpretation is similar: one

reduces the noise e�ects, but keeps information about the increments of X.

We start with the construction of a test for the hypothesis (2.2) again. Local estimators for σ2

can be obtained from |Zn

k |2, but it is well known that this quantity is not an unbiased estimate

(it contains an intrinsic bias due to the noise variables U) and has a di�erent stochastic order
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than the increments X k
n
−X k−1

n
in the no-noise case. Thus, we de�ne

ω̂2
n :=

1

2n

n∑
i=1

|∆n
i Z|2,

which is a consistent estimator for ω2, see Zhang et al. [27]. Mimicing the procedure from the

no-noise case presented in Section 2, we set

D̂ij :=
1

n

n−mn∑
k=1

σ2
i (
k

n
, X̂ k

n
) σ2

j (
k

n
, X̂ k

n
) for i, j = 1, . . . , d, (4.1)

Ĉi :=
1

κψ2

n−
1
2

n−mn∑
k=1

σ2
i (
k

n
, X̂ k

n
)
(
|Zn

k |2 − n−
1
2
ψ1

κ
ω̂2
n

)
for i = 1, . . . , d, (4.2)

as well as

B̂0
t :=

1

κψ2

n−
1
2

bntc−mn∑
k=1

(
|Zn

k |2 − n−
1
2
ψ1

κ
ω̂2
n

)
(4.3)

and

B̂i
t :=

1

n

bntc−mn∑
k=1

σ2
i (
k

n
, X̂ k

n
) for i = 1, . . . , d. (4.4)

We de�ne at last the process

N̂t = B̂0
t − B̂T

t D̂
−1Ĉ, (4.5)

which turns out to be an appropriate estimate of the process {Nt}t∈[0,1] de�ned in (2.4). Our

�rst result speci�es the asymptotic properties of the process {An(t)}t∈[0,1] with

An(t) = n
1
4 (N̂t −Nt). (4.6)

Theorem 1 If the assumptions stated in the previous sections are satis�ed, the process (An(t))t∈[0,1]

de�ned in (4.6) converges weakly in D[0, 1] to a mean zero process (A(t))t∈[0,1]. Conditionally

on F the limiting process is Gaussian, and its �nite dimensional distributions coincide with the

conditional (with respect to F) �nite dimensional distributions of the process{
γV

(
I{V ≤ t} −BT

t D
−1g(V,XV )

)
−
(∫ t

0

γs ds−BT
t D

−1

∫ 1

0

γs g(s,Xs) ds
)}

t∈[0,1]
, (4.7)

where V ∼ U [0, 1],

g(V,XV ) = (σ2
1(V,XV ), . . . , σ2

d(V,XV ))T (4.8)

and

γ2
s =

4

ψ2
2

(
Φ22κσ

4
s + 2Φ12

σ2
sω

2

κ
+ Φ11

ω4

κ3

)
. (4.9)
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Note that the rate of convergence n−
1
4 is optimal for this problem, since it is already optimal

for the estimation of B0
t even in a parametric setting [cf. Gloter and Jacod [13]].

In order to construct a test statistic based on Theorem 1 we have to de�ne an appropriate

estimator for the conditional variance of the process {A(t)}t∈[0,1], which is given by

s2
t =

∫ t

0

γ2
s ds− 2BT

t D
−1

∫ t

0

γ2
sg(s,Xs) ds+BT

t D
−1

∫ 1

0

γ2
sg(s,Xs)g

T (s,Xs) ds D
−1Bt.

Obviously, we use B̂t and D̂ as the empirical counterparts for Bt and D. In order to obtain

estimates for the other random elements of s2
t , we de�ne

Γk =
4 Φ22

3 κ ψ4
2

|Zn

k |4 + n−
1
2

8

κ2

(Φ12

ψ3
2

− Φ22 ψ1

ψ4
2

)
|Zn

k |2 ω̂2

+ n−1 4

κ3

(Φ11

ψ2
2

− 2 Φ12 ψ1

ψ3
2

+
Φ22 ψ

2
1

ψ4
2

)
ω̂4

as a local estimator for the process γ2 and observe that [see Jacod et al. [17]]

ĝ0(t) :=

bntc−mn∑
k=1

Γk
P−→
∫ t

0

γ2
s ds

ĝi(t) =

bntc−mn∑
k=1

Γk σ
2
i (
k − 1

n
, X̂ k−1

n
)

P−→
∫ t

0

γ2
s σ

2
i (s,Xs) ds

ĝij =
n∑
k=1

Γk σ
2
i (
k − 1

n
, X̂ k−1

n
) σ2

j (
k − 1

n
, X̂ k−1

n
)

P−→
∫ 1

0

γ2
s σ

2
i (s,Xs) σ

2
j (s,Xs) ds.

Inserting these estimators in the corresponding elements of s2
t gives the consistent estimator,

that is

ŝ2
t = ĝ0(t)− 2B̂T

t D̂
−1ĝ(t) + B̂T

t D̂
−1ĜD̂−1B̂t, (4.10)

where ĝ(t) = (ĝ1(t), . . . , ĝd(t))
T and Ĝ = (ĝij)

d
i,j=1. A consistent test for the hypothesis (2.2)

is now obtained by rejecting the null hypothesis for large values of Kolmogorov-Smirnov or

Cramér-van-Mises functional of the process{
n1/4N̂t

ŝt

}
t∈[0,1]

.

In principle a similar approach can be used to construct a test for the hypothesis (2.3). However,

in this case things change considerably. Quite naturally, Dette and Podolskij [10] restate this

hypothesis as

Mt = 0 ∀ t ∈ [0, 1] a.s.,
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where

Mt :=

∫ t

0

{
σs −

d∑
j=1

θ̄minj σ̄j(s,Xs)
}
ds (4.11)

and

θ̄min = (θ̄min1 , . . . , θ̄mind )T := argminθ̄∈Rd

∫ 1

0

{
σs −

d∑
j=1

θ̄jσ̄j(s,Xs)
}2

ds.

Obviously, we have an analogous representation as in (2.5), namely Mt = R0
t −RT

t Q
−1S, where

R0
t =

∫ t

0

σs ds and Ri
t =

∫ t

0

σ̄i(s,Xs) ds for i = 1, . . . , d,

and Q and S are a d× d-matrix and a d-dimensional vector, respectively, with

Qij =

∫ 1

0

σ̄i(s,Xs) σ̄j(s,Xs) ds and Si =

∫ 1

0

σs σ̄i(s,Xs) ds.

However, an appropriate de�nition of an empirical version of the form

M̂t = R̂0
t − R̂T

t Q̂
−1Ŝ

requires some less obvious modi�cations, because local estimators for σs are more di�cult to

obtain in this setting. Using a pre-averaged estimator of the form |Zn

k | again causes an intrinsic

bias, but due to the absolute value (instead of the square as in the previous setting) its correction

turns out to be impossible at the optimal rate. However, it has been argued in Podolskij and

Vetter [21] that using in (3.3) a sequence of a larger magnitude than n
1
2 reduces the impact of

the noise terms in Z
n

k . This modi�cation makes inference about σs possible, though resulting

in a worse rate of convergence. To be precise, we �x some δ > 1
6
and choose ln such that

ln

n
1
2

+δ
= ρ+ o(n−( 1

4
+ δ

2
))

for some ρ > 0. Using the sequence ln instead of mn, we de�ne all quantities from (3.4) to (3.7)

in the straightforward way. Next we set

Ŝi =
1

µ1

√
ρψ2

n−( 3
4

+ δ
2

)

n−ln∑
k=1

σ̄i(
k

n
, X̂ k

n
) |Zn

k | for i = 1, . . . , d,

and

R̂0
t =

1

µ1

√
ρψ2

n−( 3
4

+ δ
2

)

bntc−ln∑
k=1

|Zn

k |,
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where µ1 denotes the �rst absolute moment of a standard normal distribution. Moreover, it is

natural to use the following estimators R̂t = (R̂t̂, . . . , R̂
d
t )
T and Q̂ = (Q̂ij)

d
i,j=1, for the quantities

Rt and Q:

R̂i
t :=

1

n

bntc−ln∑
k=1

σ̄i(
k

n
, X̂ k

n
) for i = 1, . . . , d

and

Q̂ij =
1

n

n−ln∑
k=1

σ̄i(
k

n
, X̂ k

n
) σ̄j(

k

n
, X̂ k

n
) for i = 1, . . . , d.

Finally, we de�ne

Bn(t) = n
1
4
− δ

2 (M̂t −Mt) (4.12)

for any t ∈ [0, 1] and obtain the following result.

Theorem 2 If the assumptions stated in the previous sections are satis�ed, the process (Bn(t))t∈[0,1]

de�ned in (4.12) converges weakly in D[0, 1] to a mean zero process (B(t))t∈[0,1]. Conditionally

on F the limiting process is Gaussian, and its �nite dimensional distributions coincide with the

conditional (with respect to F) �nite dimensional distributions of the process{
γ̄V

(
I{V ≤ t} −RT

t Q
−1ḡ(V,XV )

)
−
(∫ t

0

γ̄s ds−RT
t Q
−1

∫ 1

0

γ̄s ḡ(s,Xs) ds
)}

t∈[0,1]
, (4.13)

where V ∼ U [0, 1], ḡ(V,XV ) = (σ̄1(V,XV ), . . . , σ̄d(V,XV ))T and

γ̄2
s =

2ρΞ

µ2
1

σ2
s ,

Ξ =

∫ 1

0

ξ(s) ds, ξ(s) = f
(φ2(s)

ψ2

)
,

f(u) =
2

π

(
u arcsin(u) +

√
1− u2 − 1

)
.

The estimation of the conditional variance of the process {B(t)}t∈[0,1]

r2
t =

∫ t

0

γ̄2
s ds− 2RT

t Q
−1

∫ t

0

γ̄2
s ḡ(s,Xs) ds+RT

t D
−1

∫ 1

0

γ̄2
s ḡ(s,Xs)ḡ

T (s,Xs) ds Q
−1Rt.

becomes easier in this context. With the notation

Γ̄k = n−( 1
2

+δ) 2 Ξ

ψ2 µ2
1

|Zn

k |2,
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we have

ĥ0(t) =

bntc−ln∑
k=1

Γ̄k
P−→
∫ t

0

γ̄2
s ds

ĥi(t) =

bntc−ln∑
k=1

Γ̄k σ̄i(
k − 1

n
, X̂ k−1

n
)

P−→
∫ t

0

γ̄2
s σ̄i(s,Xs) ds

ĥij =
n∑
k=1

Γ̄k σ̄i(
k − 1

n
, X̂ k−1

n
) σ̄j(

k − 1

n
, X̂ k−1

n
)

P−→
∫ 1

0

γ̄2
s σ̄i(s,Xs) σ̄j(s,Xs) ds

and consequently a consistent estimator r̂2
t for the conditional variance is given by

r̂2
t = ĥ0(t)− 2R̂T

t Q̂
−1ĥ(t) + R̂T

t Q̂
−1ĤQ̂−1R̂t, (4.14)

where ĥ(t) = (ĥ1(t), . . . , ĥd(t))
T and Ĥ = (ĥij)

d
i,j=1. A consistent test for the hypothesis (2.3)

is now obtained by rejecting the null hypothesis for large values of the Kolmogorov-Smirnov or

Cramér-van-Mises functional of the process{
n1/4−δ/2M̂t

r̂t

}
t∈[0,1]

.

Note that one knows from previous work that it is neither necessary to de�ne X to be an

Ito semimartingale with continuous paths as in (2.1) nor to model the noise terms U as being

independent and identically distributed to obtain similar results as in Theorem 1 and 2. In fact,

for an underlying Ito semimartingale exhibiting jumps one can use bipower-type estimators as

discussed in Podolskij and Vetter [22] in order to de�ne an estimator closely related to B̂0
t .

Moreover, it has been argued in Jacod et al. [17] that even for a noise process with càdlàg

variance (depending on ω(0)) a similar theory as presented in this paper applies.

5 Nonlinear hypotheses

In this section we brie�y discuss the case of a nonlinear hypothesis

H0 : σ2
t = σ2(t,Xt) = σ2(t,Xt, θ), (5.1)

where θ ∈ Θ ⊂ Rd denotes the unknown parameter. Under suitable conditions on the parameter

space Θ, H0 can be restated as Nt = 0 ∀ t ∈ [0, 1] a.s., where the process {Nt}t∈[0,1] is de�ned

by

Nt = B0
t −Bt(θ0) :=

∫ t

0

{
σ2
s − σ2(s,Xs, θ0)

}
ds.
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Here, θ0 is the parameter corresponding to the best L2-approximation of σ2
s by the parametric

class, that is

θ0 = argminθ∈Θ g(θ), where g(θ) =

∫ t

0

{
σ2
s − σ2(s,Xs, θ)

}2

ds.

An analogue of the process N̂t introduced in (4.5) is given by

N̂t = B̂0
t − B̂t(θ̂), (5.2)

where B̂0
t is de�ned by (4.3),

B̂t(θ̂) =
1

n

bntc−mn∑
k=1

σ2(
k

n
, X̂ k

n
, θ̂), (5.3)

θ̂ = argminθ∈Θ gn(θ), where gn(θ) =
n−mn∑
k=1

{
s2
k −

1

n
σ2(

k

n
, X̂ k

n
, θ)

}2

(5.4)

and

s2
k =

n−
1
2

κψ2

(
|Zn

k |2 − n−
1
2
ψ1

κ
ω̂2
n

)
. (5.5)

From similar arguments as in the proof of Theorem 3 in the Appendix we see that

Bt(θ0)− B̂t(θ̂) =

∫ t

0

{
σ2(t,Xt, θ0)− σ2(t,Xt, θ̂)

}
ds+ op(n

− 1
4 ).

Assuming the common regularity conditions for nonlinear regression [see Gallant [12] or Seber

and Wild [24]] θ0 is the unique minimum of g and attained at an interior point of Θ. It is easy

to see that θ̂ → θ0 in probability in this case, and thus we can assume that θ̂ satis�es g′n(θ̂) = 0.

This implies that

0 = g′n(θ̂) = g′n(θ0) + g′′n(θ̃)(θ̂ − θ0) ⇔ θ̂ − θ0 = −(g′′n(θ̃))−1 g′n(θ0)

for a suitable choice of θ̃. Moreover,

−g′n(θ0) = 2
n−mn∑
k=1

{
s2
k −

1

n
σ2(

k

n
, X̂ k

n
, θ)

}
∂

∂θ
σ2(

k

n
, X̂ k

n
, θ0)

∣∣
θ=θ0

= 2
( n−mn∑

k=1

s2
k

∂

∂θ
σ2(

k

n
, X̂ k

n
, θ)
∣∣
θ=θ0
−
∫ 1

0

σ2(s,Xs, θ0)
∂

∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

ds
)

+ op(n
− 1

4 )

= 2
( n−mn∑

k=1

s2
k

∂

∂θ
σ2(

k

n
, X̂ k

n
, θ)
∣∣
θ=θ0
−
∫ 1

0

σ2
s

∂

∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

ds
)

+ op(n
− 1

4 ),
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where the last equality follows from the de�nition of θ0. Thus, the quantity−g′n(θ0) has a similar

structure as the term Ĉ −C in the linear case, and in particular it is of order Op(n
− 1

4 ) as well.

Furthermore, we have θ̃ → θ0 in probability, and thus it can be assumed that g′′n(θ̃) is positive

de�nite and that the di�erence ||g′′n(θ̃)−g′′n(θ0)|| is small. We conclude that (θ̂−θ0) = Op(n
− 1

4 ),

and thus

Bt(θ0)− B̂t(θ̂) =

∫ t

0

( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds · (θ̂ − θ0) + op(n

− 1
4 )

= −
∫ t

0

( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds (g′′n(θ0))−1 g′n(θ0) + op(n

− 1
4 ).

Furthermore, the d× d−dimensional matrix g′′n(θ0) takes the form

g′′n(θ0) = 2
( 1

n
STS −

n−mn∑
k=1

{
s2
k −

1

n
σ2(

k

n
, X̂ k

n
, θ0)

}
Hk

)
,

where the (n−mn)× d matrix S is given by

S =

(
∂

∂θ
σ2(

k

n
, X̂ k

n
, θ)
∣∣
θ=θ0

)
k=1,...,n−mn

and Hk denotes the Hessian

Hk =
∂2

∂θ2
σ2(

k

n
,X k

n
, θ)
∣∣
θ=θ0

.

Again, a similar calculation as given in the Appendix shows that

g′′n(θ0) = g′′(θ0) +Op(n
− 1

4 ),

where the d× d matrix

g′′(θ0) = 2

∫ 1

0

(( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)
ds

− 2

∫ 1

0

{
σ2
s − σ2(s,Xs, θ0)

} ∂2

∂θ2
σ2(s,Xs, θ)

∣∣
θ=θ0

ds

is positive de�nite. Note that the second term in this sum vanishes, when either the hypothesis

is linear (since the Hessian is zero) or the null hypothesis is valid (since σ2
s equals σ

2(s,Xs, θ0)).

In these cases the matrix g′′(θ0) takes precisely the same form as D in the linear setting. In

any case, g′′(θ0) is of order Op(1), and thus we end up with the representation

Bt(θ0)− B̂t(θ̂) = −
∫ t

0

( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds (g′′(θ0))−1 g′n(θ0) + op(n

− 1
4 ),
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and the asymptotics are driven by g′n(θ0). Consequently, it follows from the proof of Theorem 1

in the Appendix that in the case of testing a nonlinear hypothesis of the form (5.1), the process

{
√
n(N̂t −Nt)}t∈[0,1] exhibits a similar asymptotic behavior as in the linear case, that is

{n
1
4 (N̂t −Nt)}t∈[0,1] =⇒ {A(t)}t∈[0,1],

where conditionally on F the limiting process is Gaussian, and its �nite dimensional distribu-

tions coincide (conditionally on F) with the �nite dimensional distributions of the process{
γV

(
I{V ≤ t} −

∫ t

0

( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds (g′′(θ0))−1

(
∂

∂θ
σ2(V,XV , θ)

∣∣
θ=θ0

)T )
−

(∫ t

0

γs ds−
∫ t

0

( ∂
∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds (g′′(θ0))−1

∫ 1

0

γs

(
∂

∂θ
σ2(s,Xs, θ)

∣∣
θ=θ0

)T
ds
)}

t∈[0,1]
,

where the constant γu is de�ned in (4.9). We �nally note again that, in the case of a �xed

alternative and a nonlinear null hypothesis, this expression has a di�erent structure than the

corresponding term in Theorem 1.

6 Simulation study

We have indicated in the introduction that the original test for a constant volatility from the

noise-free model loses its asymptotic properties in the presence of noise. Unsurprisingly, for a

smaller variance of the noise variables, the data look more like observations from a continuous

semimartingale and thus the test statistics behaves roughly in the same way as before, provided

that the sample size is not too large. On the other hand, for a large variance of the error terms

these are dominating, and thus the whole procedure breaks down even for small sample sizes.

The same problem arises if the variance of the error is small but the sample size is large (see

the discussion in the introduction). We start with a further example simulating the level of the

bootstrap test proposed by Dette and Podolskij [10] for a parametric hypothesis, assessing its

quality for various sample sizes n and di�erent variances ω2.

[INSERT TABLE 2 HERE]

Precisely, we have used the bootstrap test in Dette and Podolskij [10] for testing the hypothesis

H0 : σ2(t, x) = θx2, where b(t, x) = 0.1x. The results are obtained from 1000 simulation runs

and 500 bootstrap replications and displayed in Table 2 for various sample sizes and standard

deviations ω of the noise process. We observe that for n = 256 and a (small) standard deviation

of ω = 0.001 the test does roughly keep its asymptotic level, whereas it cannot be used at all

when the variance becomes larger. Moreover, even if the variance is small but the sample

size is increased, the test does not keep its pre-assigned level (see the results for ω = 0.001

and n = 1024 in Table 2). Roughly speaking, we observe from these and similar simulation
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results that there is no need for using tests, which address the problem of microstructure noise,

if both the variance of the noise terms and the sample sizes (in our example n ≤ 256) are

small. On the other hand, it is known from empirical research that it is not realistic to assume

extremely large values of ω, but the sample size for high frequency data is usually much larger

than 256. Consequently, in many applications tests ignoring the presence of microstructure will

neither keep their pre-assigned level nor be consistent, and the application of testing procedures

addressing the problem of microstructure noise is strictly recommended.

In the following section we illustrate the �nite sample properties of a bootstrap version of the

Kolmogorov-Smirnov test based on the processes investigated in Section 4 and 5. Since the

stochastic order of |∆n
i Z| is basically determined by the maximum of n−

1
2 and ω (which are

the orders of |∆n
iX| and |∆n

i U |, respectively), we kept nω2 = 0.1024 �xed in order to have

comparable results for di�erent sample sizes n. The regularisation parameters κ and ρ were set

to be 1/2 each. All simulation results presented in the following paragraphs are based on 1000

simulation runs and 500 bootstrap replications (if the bootstrap is applied to estimate critical

values).

For all testing problems discussed below we have not used exactly the statistics N̂t and M̂t, but

related versions accounting for �nite sample adjustments. Following Jacod et al. [17], where it

has been shown that �nite sample corrections improve the behaviour of the estimate B̂0
t (and

presumably of Ĉ as well) substantially, we have replaced the quantities ψi and Φij in (3.4) by

certain numbers ψni and Φn
ij, which constitute the "true" quantities for �nite samples, but are

replaced by their limits ψi and Φij in the asymptotics. See Jacod et al. [17] for details.

6.1 Testing for homoscedasticity

In the problem of testing for homoscedasticity the limiting process (A(t))t∈[0,1] in (4.7) has

an extremely simple form, when the null hypothesis of a constant process (σt)t∈[0,1] holds. In

fact, the �nite dimensional distributions of the process (A(t))t∈[0,1] coincide with the �nite

dimensional distributions of the process

{γ(I{V ≤ t} − t)}t∈[0,1]

for V ∼ U [0, 1], which means that (A(t))t∈[0,1] is a rescaled Brownian bridge. Thus we obtain

the weak convergence (An(t)

ŝt

)
t∈[0,1]

D−→ (Bt)t∈[0,1], (6.1)

where (Bt)t∈[0,1] is a standard Brownian bridge. Of course, this result can be used to construct

a Kolmogorov-Smirnov or a Cramér-von-Mises test, and we have investigated the properties of

the Kolmogorov-Smirnov test for di�erent sample sizes n, where the noise satis�es U ∼ N (0, ω2)

and the drift function is again given by b(t, x) = 0.1x. A similar test can be constructed using
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Theorem 2, but the corresponding results are omitted for the sake of brevity as the rate of

convergence in this case becomes worse.

[INSERT TABLE 3 HERE]

In Table 3 we present the simulated level of the Kolmogorov-Smirnov test using the critical

values from the asymptotic distribution. It can be seen that the asymptotic level of the test

is slightly underestimated. This e�ect becomes less visible for a larger sample size, but even

then it is still apparent. Note that these �ndings are in line with previous simulations on noisy

observations and it is likely that they are due to the fact the rate of convergence for most

testing problems is only n−
1
4 , just as in our case.

6.2 Testing general hypotheses

For a general null hypothesis in (2.2), the distribution of the limiting process (A(t))t∈[0,1] depends

on the path of the underlying semimartingale (Xt)t∈[0,1] and on the volatility (σt)t∈[0,1], and thus

we cannot use it directly for the calculation of critical values. For this reason we propose the

application of the parametric bootstrap in order to obtain simulated critical values. First we

compute the global estimators ω̂2 and θ̂ = D̂−1Ĉ as well as each n
1
4 N̂t and ŝ

2
t from the observed

data. Under the null hypothesis Nt equals zero, and thus it is intuitively clear that the null

hypothesis has to be rejected for large values of the standardised Kolmogorov-Smirnov statistic

Yn = sup
t∈[0,1]

∣∣∣n 1
4 N̂t

ŝt

∣∣∣.
In a second step, we generate bootstrap data

(Z
∗(j)
i
n

, i = 1, . . . n, j = 1, . . . β),

where Z
∗(j)
1
n

= X
∗(j)
1
n

+ U
∗(j)
1
n

, the X
∗(j)
i
n

are realisations of the process in (2.1) with bs ≡ 0

and σ2
s = σ2(s,Xs) =

∑d
k=1 θ̂kσ

2
k(s,Xs) (corresponding to the null hypothesis) and each U

∗(j)
i
n

is normally distributed with mean zero and variance ω̂2. Using these data, we calculate the

corresponding bootstrap statistics Y
∗(j)
n and use these to compute the quantiles of the bootstrap

distribution. Finally, the null hypothesis is rejected if Yn is larger than the (1− α)-quantile of

the bootstrap distribution.

[INSERT TABLE 4 HERE]

In order to investigate the approximation of the nominal level we consider the hypothesis of

constant volatility and the hypothesis H0 : σ2(t, x) = θx2. The data is generated under the

null hypothesis with drift function b(t, x) = 0.1x and the rejection probabilities are depicted

in Table 4. These results show that the bootstrap approximation works well even for a small

n. In particular, we see that in the case of homoscedasticity the exact asymptotic test using
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the weak convergence of Yn to the supremum of a standard Brownian bridge is outperformed

(compare with Table 3). In the case of testing the parametric hypothesis H0 : σ2(t, x) = x2 we

observe a slight overestimation of the nominal level by the bootstrap test.

As an example for testing the hypothesis H̄0 de�ned in (2.3) we have chosen σ(t, x) = θ|x| and
investigated the properties of the analogues of Yn and Y

∗(j)
n from above, where we have replaced

n
1
4 N̂t and ŝt by n

1
4
− δ

2M̂t and r̂t, respectively. In this case we chose δ = 1
4
, corresponding to

ln = O(n−
3
4 ) and a rate of convergence n−

1
8 . Note that in this particular situation there is

no need for stating the hypothesis in terms of H̄0 as it is equivalent to σ2(t, x) = θ|x|2, but
nevertheless it gives a reasonable impression on how well the bootstrap approximation works

for testing hypotheses of the form (2.3).

[INSERT TABLE 5 HERE]

We observe from the results in Table 5 that even though the rate of convergence in Theorem

2 is worse than in Theorem 1, there is no substantial di�erence in the approximation of the

nominal level by the bootstrap test for both types of hypotheses: The nominal level is slightly

overestimated, but in general the parametric bootstrap yields to a satisfactory and reliable

approximation of the nominal level.

Finally, Table 6 contains the rejection probabilities of the bootstrap test under the alternative.

The null hypothesis is given by H0 : σ2(t, x) = θ|x|2 and two alternatives, namely σ2(t, x) =

1 and σ2(t, x) = 1 + |x|, and one alternative coming from a stochastic volatility model is

considered. For this case we chose the Heston model, i.e.

Xt = X0 +

∫ t

0

(µ− νs/2) ds+

∫ t

0

σs dWt with νt = ν0 + δ

∫ t

0

(α− νs) ds+ γ

∫ 1

0

ν1/2
s dBs,

where νt = σ2
t and Corr(W,B) = η and the parameters were chosen as µ = 0.05/252, δ =

5/252, α = 0.04/252, γ = 0.05/252 and ρ = −0.5.

[INSERT TABLE 6 HERE]

We observe from the results depicted in Table 6 that the bootstrap test indicates in all cases

that the null hypothesis is not satis�ed. It is also remarkable that it is more di�cult to detect

the alternatives σ2(t, x) = 1 and σ2(t, x) = 1 + |x| than the one coming from the Heston model.

In the latter case, the rejection probabilities are extremely large even for a small sample size,

in contrary to the �rst two situations.

7 Appendix: Proof of Theorem 1 and 2

Before we come to the proof of the two theorems, we start with a typical localisation argument,

which allows us to assume that several of the quantities and processes involved are bounded.

Recall �rst that a and σ are locally bounded by assumption, from which is follows that X is
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locally bounded as well. Thus we can conclude along the lines of Jacod [16] that we may assume

without loss of generality that each of these processes is actually bounded. Since further each

σ2
i is continuous and because U has a compact support, we may conclude that both (s,Xt)

and (s, X̂ k
n
) (for arbitrary s, t, k and n) are living on a compact set, and thus σ2

i (s,Xt) and

σ2
i (s, X̂ k

n
) are also bounded, the latter one uniformly in n. Similar results hold for the �rst two

derivatives of σ2
i as well as for any of the functions σ̄i. Constants are denoted by K throughout

this section.

7.1 Some preparations

The proofs of Theorem 1 and 2 are based on several preliminary results, which will be presented

and proved in this subsection. We start with two results determining the rate of convergence

of the quantities B̂i
t − Bi

t and D̂ij −Dij de�ned in (2.7) and (2.6), respectively. The following

result ensures that the (conditional) variance in a limit theorem for N̂t − Nt will not depend

on B̂i
t and D̂ij, since the rate of convergence will be n

− 1
4 . Thus, we will focus in the following

on the behavior of Ĉi and B̂
0
t .

Theorem 3 Under the assumptions from Section 3 we have

B̂i
t −Bi

t = op(n
− 1

4 ), for i = 1, . . . , d, (7.1)

D̂ij −Dij = op(n
− 1

4 ), for i, j = 1, . . . , d, (7.2)

where the �rst result holds uniformly with respect to t ∈ [0, 1].

Proof of Theorem 3: For a proof of the �rst estimate (7.1) we use for a �xed index i the

decomposition

B̂i
t −Bi

t =
1

n

bntc−mn∑
k=1

(
σ2
i (
k

n
, X̂ k

n
)− σ2

i (
k

n
,X k

n
)
)

+
( 1

n

bntc−mn∑
k=1

σ2
i (
k

n
,X k

n
)−

∫ t

0

σ2
i (s,Xs) ds

)
.

Regarding the �rst term in this sum, note that

X̂ k
n
−X k

n
=

1

mn

mn∑
j=1

U k+j
n

+
1

mn

mn∑
j=1

(X k+j
n
−X k

n
)

=
1

mn

mn∑
j=1

(
U k+j

n
+

∫ k+j
n

k
n

σs dWs

)
+Op(n

− 1
2 ),

and thus X̂ k
n
−X k

n
= Op(n

− 1
4 ). Hence a Taylor expansion gives

σ2
i (
k

n
, X̂ k

n
)− σ2

i (
k

n
,X k

n
) =

∂

∂y
σ2
i (
k

n
,X k

n
) (X̂ k

n
−X k

n
) +

∂2

∂y2
σ2
i (
k

n
, ξk,n) (X̂ k

n
−X k

n
)2
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for some random variables ξk,n with |ξk,n −X k
n
| ≤ |X̂ k

n
−X k

n
|. As noted before, we have that

∂2

∂y2
σ2
i (

k
n
, ξk,n) is bounded for all k and n which yields

1

n

bntc−mn∑
k=1

(
σ2
i (
k

n
, X̂ k

n
)− σ2

i (
k

n
,X k

n
)
)

=
1

n

bntc−mn∑
k=1

∂

∂y
σ2
i (
k

n
,X k

n
) (X̂ k

n
−X k

n
) +Op(n

− 1
2 ).

Hence, with

Ak,n =
1

mn

mn∑
j=1

∂

∂y
σ2
i (
k

n
,X k

n
)
(
U k+j

n
+

∫ k+j
n

k
n

σs dWs

)
it su�ces to prove that

1

n

bntc−mn∑
k=1

Ak,n = op(n
− 1

4 ). (7.3)

However, we have E[Ak,nAl,n] = O(n−
1
2 ) for arbitrary k and l as well as E[Ak,nAk+l,n] = 0 for

l ≥ mn by conditioning on F k+l
n
. This yields

E
[
(
1

n

bntc−mn∑
k=1

Ak,n)2
]

=
1

n2

bntc−2mn∑
k=mn

mn∑
l=−mn

E[Ak,nAk+l,n] +O(
mn

n2
) = O(

1

n
),

and (7.3) follows. For the second term in the decomposition of B̂i
t −Bi

t it holds that

1

n

bntc−mn∑
k=1

σ2
i (
k

n
,X k

n
)−

∫ t

0

σ2
i (s,Xs) ds

=

bntc∑
k=1

∫ k
n

k−1
n

(
σ2
i (
k − 1

n
,X k−1

n
)− σ2

i (s,Xs)
)
ds+Op(n

− 1
2 )

=

bntc∑
k=1

∫ k
n

k−1
n

(
σ2
i (
k − 1

n
,X k−1

n
)− σ2

i (s,X k−1
n

) + σ2
i (s,X k−1

n
)− σ2

i (s,Xs)
)
ds+Op(n

− 1
2 ).

Since by assumption ∣∣∣σ2
i (
k − 1

n
,X k−1

n
)− σ2

i (s,X k−1
n

)
∣∣∣ < Kn−1

for k−1
n
≤ s ≤ k

n
and by a similar expansion as above the claim follows. The result on D̂ij−Dij

can be shown in the same way. �

The following result speci�es the convergence of the �nite dimensional distributions of the

processes, which are used for the construction of {N̂t}t∈[0,1]. Below we use the notation Gn
Dst−→

G to indicate stable convergence of a sequence of random variables (Gn) to a limiting variable

G, which is de�ned on an appropriate extension (Ω′,F ′, (F ′t)t∈[0,1], P
′) of the original probability

space (Ω,F , (Ft)t∈[0,1], P ). For details on stable convergence see Jacod and Shiryaev [18].
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Theorem 4 De�ne for any �xed t1, . . . , tk ∈ [0, 1] the (k + d)× (k + d) matrix

Σt1,...,tk(s,Xs) = γ2
s `(s,Xs)`

T (s,Xs)

where `(s,Xs) = (1[0,t1](s), . . . , 1[0,tk](s), g
T (s,Xs))

T and the vector g(s,Xs) and γ2
s are de�ned

by (4.8) and (4.9), respectively. Then we have

n
1
4

(
B̂0
t1
−B0

t1
, . . . , B̂0

tk
−B0

tk
, Ĉ1 − C1, . . . , Ĉd − Cd

)T Dst−→
∫ 1

0

Σ
1
2
t1,...,tk

(s,Xs) dW
′
s,

where W ′ is another Brownian motion, which is independent of the σ-algebra F .

Proof of Theorem 4: Observe �rst that Ĉi can be decomposed as follows:

Ĉi =
1

κψ2

n−
1
2

n−mn∑
k=1

σ2
i (
k

n
,X k

n
)
(
|Zn

k |2 − n−
1
2
ψ1

κ
ω2
)

+
ψ1

κ2ψ2

n−1

n−mn∑
k=1

σ2
i (
k

n
,X k

n
) (ω2 − ω̂2

n)

+
1

κψ2

n−
1
2

n−mn∑
k=1

(
σ2
i (
k

n
, X̂ k

n
)− σ2

i (
k

n
,X k

n
)
) (
|Zn

k |2 − n−
1
2
ψ1

κ
ω2
)

+
ψ1

κ2ψ2

n−1

n−mn∑
k=1

(
σ2
i (
k

n
, X̂ k

n
)− σ2

i (
k

n
,X k

n
)
)

(ω2 − ω̂2
n).

Since ω2 − ω̂2
n = Op(n

− 1
2 ), the second and the fourth term in this sum are of the same order.

Moreover, we �nd from similar arguments as given in the proof of Theorem 3 that the third

term is of order op(n
− 1

4 ) and thus asymptotically negligible as well. Therefore we are left to

focus on

Fin =
1

κψ2

n−
1
2

n−mn∑
k=1

σ2
i (
k

n
,X k

n
)
(
|Zn

k |2 − n−
1
2
ψ1

κ
ω2
)
.

Due to the dependence structure of the summands in Fin it will be convenient to use a "small-

blocks-big-blocks"-technique as in Jacod et al. [17] in order to prove Theorem 4. To this end

we choose an integer p, which later will go to in�nity, and partition the n observations into

several subsets: We de�ne

bk(p) = k(p+ 1)mn and ck(p) = k(p+ 1)mn + pmn

and de�ne jn(p) to be the largest integer k such that ck(p) ≤ n − mn holds, which gives the

identity

jn(p) =
⌊ n

(p+ 1)mn

⌋
− 1. (7.4)
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Moreover, we use the notation in(p) = (jn(p) + 1)pmn, and introduce for each 0 ≤ k ≤ jn(p)

and any p the following random variables:

G(k, p)n1 =
1

κψ2

n−
1
2σ2

i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

(
|Zn

j |2 − n−
1
2
ψ1

κ
ω2
)
,

G(k, p)n2 =
1

κψ2

n−
1
2σ2

i (
ck(p)

n
,X ck(p)

n

)

bk+1(p)−1∑
j=ck(p)

(
|Zn

j |2 − n−
1
2
ψ1

κ
ω2
)
.

The remainder terms are gathered in

G(p)n3 = n−
1
2

1

κψ2

n−mn∑
j=in(p)

σ2
i (
in(p)

n
,X in(p)

n

)
(
|Zn

j |2 − n−
1
2
ψ1

κ
ω2
)
.

Note that each of these quantities depends on i, although it does not appear in the notation.

The main intuition behind these quantities is that the terms G(k, p)n1 are de�ned on non-

overlapping intervals, which means that the intervals on which each Z
n

j within G(k, p)n1 lives

are disjoint from any Z
n

j within any other G(l, p)n1 . This is su�cient to ensure some type

of conditional independence, which will be used in order to prove Theorem 4. The variables

G(k, p)n2 and G(p)n3 are �lling the gaps between G(k, p)n1 and G(l, p)n1 and can be shown to be

asymptotically negligible.

An important tool will be the following decomposition of |Zn

j |2. We set

V j
s =

∫ j
n

+s

j
n

gn(u− j

n
) au du+

∫ j
n

+s

j
n

gn(u− j

n
) σu dWu,

and obtain from the representation of X
n

j as in (3.6) and by an application of Ito's formula

|Xn

j |2 =

∫ j+mn
n

j
n

2V j
s gn(s− j

n
) as + g2

n(s− j

n
) σ2

s ds+ 2

∫ j+mn
n

j
n

V j
s gn(s− j

n
) σs dWs.

Thus,

|Zn

j |2 = |Xn

j |2 + |Un

j |2 + 2X
n

j U
n

j

= 2

∫ j+mn
n

j
n

V j
s gn(s− j

n
) as ds+ 2

∫ j+mn
n

j
n

V j
s gn(s− j

n
) σs dWs

+

∫ j+mn
n

j
n

g2
n(s− j

n
) σ2

s ds+ |Un

j |2 + 2U
n

j

∫ j+mn
n

j
n

gn(s− j

n
) as ds

+ 2U
n

j

∫ j+mn
n

j
n

gn(s− j

n
) σs dWs =:

6∑
l=1

D(j)nl , (7.5)
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where the last identity de�nes the quantities D(j)nl in an obvious manner.

For bk(p) ≤ j < ck(p) we introduce further

D̃(k, j, p)n2 = 2σ2
bk(p)

n

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) dWu

)
gn(s− j

n
) dWs,

D̃(k, j, p)n6 = 2σ bk(p)

n

U
n

j

∫ j+mn
n

j
n

gn(s− j

n
) dWs

as approximations for the quantities D(j)n2 and D(j)n6 . Additionally, we set

H(k, p)n = σ2
i (
bk(p)

n
,X bk(p)

n

) Y (k, p)n,

where

Y (k, p)n =
1

κψ2

n−
1
2

ck(p)−1∑
j=bk(p)

{
D̃(k, j, p)n2 + D̃(k, j, p)n6 +

(
D(j)n4 − n−

1
2
ψ1

κ
ω2
)}
. (7.6)

Finally, we de�ne

χ(p)nk =
(
E
[(

sup
s,t∈[

bk(p)

n
,
ck(p)

n
]

|as − at|+ |σs − σt|
)2 ∣∣∣F bk(p)

n

]) 1
2
.

We start with two auxiliary results which specify the asymptotic properties of Fin and prove

the �rst assertion in detail.

Lemma 1 We have

lim
p→∞

lim sup
n→∞

n
1
4

{( jn(p)∑
k=0

(G(k, p)n1 +G(k, p)n2 ) +G(p)n3 − Ci
)
−

jn(p)∑
k=0

H(k, p)
}

= 0.

Proof of Lemma 1: The proof goes through a rather large number of steps and makes

extensive use of the decomposition in (7.5). We will show �rst that the in�uence of the random

variables D(j)n1 and D(j)n5 within G(k, p)n1 is asymptotically negligible, that is

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

(D(j)n1 +D(j)n5 ) = 0. (7.7)

Completely analogous results hold for the corresponding results on G(k, p)n2 and G(p)n3 as well.

For a proof of (7.7), assume without loss of generality that bk(p) ≤ j < ck(p), and thus we have

the decomposition D(j)n1 = D′(j)n1 +D′′(j)n1 with

D′(j)n1 = 2

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) au du

)
gn(s− j

n
) as ds,

D′′(j)n1 = 2

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) σu dWu

)
gn(s− j

n
) as ds.
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Obviously, we have E
[
|D′(j)n1 |

∣∣∣F bk(p)

n

]
≤ Kn−1, which allows us to focus on the second term

only. Using the decomposition

D′′(j)n1 = 2a bk(p)

n

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) σu dWu

)
gn(s− j

n
) ds

+ 2

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) σu dWu

)
gn(s− j

n
)(as − a bk(p)

n

) ds,

the martingale property of a stochastic integral with respect to Brownian motion and the

Cauchy-Schwarz inequality we derive that∣∣∣E[D′′(j)n1 ∣∣∣F bk(p)

n

]∣∣∣ ≤ K n−
3
4 χ(p)nk .

Thus with the notation δ(k, p)n1 =
∑ck(p)−1

j=bk(p) D
′′(j)n1 , we conclude that∣∣∣E[δ(k, p)n1 ∣∣∣F bk(p)

n

]∣∣∣ ≤ K p n−
1
4 χ(p)nk .

For the same reasons we have

E
[(
δ(k, p)n1

)2 ∣∣∣F bk(p)

n

]
=

ck(p)−1∑
j,l=bk(p)

E
[
D′′(j)n1 D

′′(l)n1

∣∣∣F bk(p)

n

]
≤ K p2 n−

1
2 ,

and with k > l it follows∣∣∣E{σ2
i (
bk(p)

n
,X bk(p)

n

) σ2
i (
bl(p)

n
,X bl(p)

n

) δ(l, p)n1 E
[
δ(k, p)n1

∣∣∣F bk(p)

n

]}∣∣∣ ≤ K p2 n−
1
2 χ(p)nk .

Finally, we obtain

E
[(
n−

1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

D′′(j)n1

)2]

= n−
1
2

jn(p)∑
k=0

E
[
σ4
i (
bk(p)

n
,X bk(p)

n

) (δ(k, p)n1 )2
]

+ 2n−
1
2

jn(p)∑
k>l

E
[
σ2
i (
bk(p)

n
,X bk(p)

n

) σ2
i (
bl(p)

n
,X bl(p)

n

) δ(k, p)n1 δ(l, p)
n
1

]

≤ K
(
p n−

1
2 +

jn(p)∑
k>l

p2 n−1 E[χ(p)nk ]
)
.

From Lemma 5.4. in Jacod et al. [17] it follows that limn→∞ n
− 1

2

∑jn(p)
k=1 E[χ(p)nk ] = 0 for any p,

which gives that the �rst term in the sum (7.7) converges to 0. For a proof of a corresponding



Model checks for the volatility 26

statement for the second term, we de�ne

δ(k, p)n5 =

ck(p)−1∑
j=bk(p)

D(j)n5

and obtain from the independence of X and U that

E
[
δ(k, p)n5

∣∣∣F bk(p)

n

]
= 0 and E

[
(δ(k, p)n5 )2

∣∣∣F bk(p)

n

]
≤ K p2 n−

1
2 .

Hence, a standard martingale argument gives

E
[(
n−

1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

) δ(k, p)n5

)2]
≤ K p n−

1
2 ,

which �nishes the proof of (7.7).

The next step is devoted to the analysis of the term D(j)n2 . We prove

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

(
D(j)n2 − D̃(k, j, p)n2

)
= 0 (7.8)

as well as

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

σ2
i (
ck(p)

n
,X ck(p)

n

)

bk+1(p)−1∑
j=ck(p)

D(j)n2 = 0, (7.9)

lim
p→∞

lim sup
n→∞

n−
1
4 σ2

i (
in(p)

n
,X in(p)

n

)
n−mn∑
j=in(p)

D(j)n2 = 0. (7.10)

Set bk(p) ≤ j < ck(p) again and observe the decomposition D(j)n2 = D′(j)n2 +D′′(j)n2 , where

D′(j)n2 = 2

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) au du

)
gn(s− j

n
) σs dWs,

D′′(j)n2 = 2

∫ j+mn
n

j
n

(∫ j
n

+s

j
n

gn(u− j

n
) σu dWu

)
gn(s− j

n
) σs dWs.

From

E
[
D′(j)n2

∣∣∣F bk(p)

n

]
= 0 and E

[
|D′(j)n2 D′(l)n2 |

∣∣∣F bk(p)

n

]
≤ K n−

3
2

we conclude

lim
p→∞

lim sup
n→∞

E
[(
n−

1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

D′(j)n2

)2]
= 0
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from a similar martingale argument as in the previous paragraph and may thus focus on D′′(j)n2 .

We have

E
[
D′′(j)n2

∣∣∣F bk(p)

n

]
= 0 and E

[
|D′′(j)n2D′′(l)n2 |

∣∣∣F bk(p)

n

]
≤ K n−1,

thus (7.10) follows easily. For (7.9), note that E[(
∑bk+1(p)−1

j=ck(p) D′′(j)n2 )2] ≤ K, which gives (recall

the de�nition of jn(p), bk(p) and ck(p))

n−
1
2

jn(p)∑
k=0

E
[
σ4
i (
ck(p)

n
,X ck(p)

n

)
( bk+1(p)−1∑

j=ck(p)

D′′(j)n2

)2]
≤ K n−

1
2
n

1
2

p
= K

1

p
,

which converges to zero as p tends to in�nity. We are thus left to prove

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

(
D′′(j)n2 − D̃(k, j, p)n2

)
= 0.

This time, we have E[D′′(j)n2 − D̃(k, j, p)n2 |F bk(p)

n

] = 0 and

E
[∣∣∣(D′′(j)n2 − D̃(k, j, p)n2

) (
D′′(l)n2 − D̃(k, l, p)n2

)∣∣∣ ∣∣∣F bk(p)

n

]
≤ K n−1 (χ(p)nk)2.

Thus

E
[{
n−

1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

(
D(j)n2 − D̃(k, j, p)n2

)}2]

= n−
1
2

jn(p)∑
k=0

E
[
σ4
i (
bk(p)

n
,X bk(p)

n

)
( ck(p)−1∑
j=bk(p)

(
D(j)n2 − D̃(k, j, p)n2

))2]

≤ K n−
1
2

jn(p)∑
k=0

ck(p)−1∑
j,l=bk(p)

E
[(
D′′(j)n2 − D̃(k, j, p)n2

) (
D′′(l)n2 − D̃(k, l, p)n2

)]

≤ K n−
3
2

jn(p)∑
k=0

ck(p)−1∑
j,l=bk(p)

(χ(p)nk)2 ≤ K p2 n−
1
2

jn(p)∑
k=0

E
[
(χ(p)nk)2

]
.

With a similar argument as in the proof of (7.7) we are done. Proving that D(j)n6 can be

replaced by D̃(k, j, p)n6 works analogously, thus we �nish the proof of Lemma 1 showing

lim
p→∞

lim sup
n→∞

n
1
4

{ 1

κψ2

n−
1
2

( jn(p)∑
k=0

(
σ2
i (
bk(p)

n
,X bk(p)

n

)

ck(p)−1∑
j=bk(p)

D(j)n3 (7.11)

+ σ2
i (
ck(p)

n
,X ck(p)

n

)

bk+1(p)−1∑
j=ck(p)

D(j)n3

)
+

n−mn∑
j=in(p)

D(j)n3

)
− Ci

}
= 0.
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We start with the following proposition:

lim
p→∞

lim sup
n→∞

n
1
4

{( jn(p)∑
k=0

(∫ ck(p)

n

bk(p)

n

σ2
i (
bk(p)

n
,X bk(p)

n

) σ2
s ds (7.12)

+

∫ bk+1(p)

n

ck(p)

n

σ2
i (
ck(p)

n
,X ck(p)

n

) σ2
s ds

)
+

∫ 1

in(p)
n

σ2
i (
in(p)

n
,X in(p)

n

) σ2
s ds

)
− Ci

}
= 0.

As in the proof of Theorem 3 we obtain∫ ck(p)

n

bk(p)

n

(
σ2
i (s,Xs)− σ2

i (
bk(p)

n
,X bk(p)

n

)
)
σ2
s ds

=

∫ ck(p)

n

bk(p)

n

(
σ2
i (s,Xs)− σ2

i (s,X bk(p)

n

) + σ2
i (s,X bk(p)

n

)− σ2
i (
bk(p)

n
,X bk(p)

n

)
)
σ2
s ds

=

∫ ck(p)

n

bk(p)

n

∂

∂y
σ2
i (s,X bk(p)

n

)
(∫ s

bk(p)

n

σu dWu

)
σ2
s ds+Op

(p2m2
n

n2

)
=: δ′(k, p)n3 + δ′′(k, p)n3 +Op

(p2m2
n

n2

)
, (7.13)

where

δ′(k, p)n3 = σ3
bk(p)

n

∫ ck(p)

n

bk(p)

n

∂

∂y
σ2
i (s,X bk(p)

n

)
(∫ s

bk(p)

n

dWu

)
ds

and δ′′(k, p)n3 is de�ned implicitly by equation (7.13). From

E
[
δ′(k, p)n3

∣∣∣F bk(p)

n

]
= 0 and E

[
(δ′(k, p)n3 )2

∣∣∣F bk(p)

n

]
≤ K p3 n−

3
2

we conclude

lim
p→∞

lim sup
n→∞

n
1
2E
[( jn(p)∑

k=0

δ′(k, p)n3

)2]
= 0.

For δ′′(k, p)n3 we have E[|δ′′(k, p)n3 | |F bk(p)

n

] ≤ K p
3
2 n−

3
4 χ(p)nk as usual, thus

lim
p→∞

lim sup
n→∞

n
1
4

jn(p)∑
k=0

E
[
|δ′′(k, p)n3 |

]
≤ lim

p→∞
lim sup
n→∞

K p
3
2 n−

1
2

jn(p)∑
k=0

E
[
χ(p)nk

]
= 0.

The corresponding results for the other summands in (7.12) can be shown analogously.
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To �nish the proof of Lemma 1 we have to show

lim
p→∞

lim sup
n→∞

n
1
4

{ jn(p)∑
k=0

(
σ2
i (
bk(p)

n
,X bk(p)

n

)
( 1

κψ2

n−
1
2

ck(p)−1∑
j=bk(p)

D(j)n3 −
∫ ck(p)

n

bk(p)

n

σ2
s ds

)

+ σ2
i (
ck(p)

n
,X ck(p)

n

)
( 1

κψ2

n−
1
2

bk+1(p)−1∑
j=ck(p)

D(j)n3 −
∫ bk+1(p)

n

ck(p)

n

σ2
s ds

))

+ σ2
i (
in(p)

n
,X in(p)

n

)
( 1

κψ2

n−
1
2

n−mn∑
j=in(p)

D(j)n3 −
∫ 1

in(p)
n

σ2
s ds

)}
= 0.

The last term in the sum is negligible. For the other terms we �x k for a moment and observe

that

1

κψ2

n−
1
2

ck(p)−1∑
j=bk(p)

D(j)n3 =

∫ bk+1(p)

n

bk(p)

n

hn,p

(
s− bk(p)

n

)
σ2
s ds, (7.14)

1

κψ2

n−
1
2

bk+1(p)−1∑
j=ck(p)

D(j)n3 =

∫ bk+1(p)+mn

n

ck(p)

n

h̄n,p

(
s− ck(p)

n

)
σ2
s ds (7.15)

with

hn,p(s) = h1
n,p(s) 1[0,mn

n
)(s) + h2

n,p 1[mn
n
, pmn
n

)(s) + h3
n,p(s) 1

[ pmn
n

,
(p+1)mn

n
)
(s),

h̄n,p(s) = h1
n,p(s) 1[0,mn

n
)(s) + h3

n,p(s) 1[mn
n
, 2mn
n

)(s) and

h1
n,p(s) =

1

κψ2

n−
1
2

mn−1∑
j=0

j+1∑
i=1

(gni )21[ j
n
, j+1
n

)(s),

h2
n,p =

1

κψ2

n−
1
2

mn∑
i=1

(gni )2 = 1 +O(n−
1
2 ),

h3
n,p(s) =

1

κψ2

n−
1
2

mn−1∑
j=0

mn∑
i=j+2

(gni )21[ j
n
, j+1
n

)(s).

Thus, ∣∣∣n 1
4

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

)

∫ ck(p)

n

bk(p)+mn
n

(
hn,p

(
s− bk(p)

n

)
− 1
)
σ2
s ds

∣∣∣ ≤ K n−
1
4 .

Other integrals than those between bk(p)+mn
n

and ck(p)
n

occur in the following way:∫ bk(p)+mn
n

bk(p)

n

{
σ2
i (
bk(p)

n
,X bk(p)

n

)
(
h1
n,p

(
s− bk(p)

n

)
− 1
)

+ σ2
i (
ck−1(p)

n
,X ck−1(p)

n

) h3
n,p

(
s− ck−1(p)

n

)}
σ2
s ds,
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where the �rst term and the second term in the integrand come from (7.14) and (7.15), re-

spectively. A similar result holds for the integral from bk(p)+mn
n

to ck(p)
n

. By de�nition, we

have

h1
n,p

(
s− bk(p)

n

)
+ h3

n,p

(
s− ck−1(p)

n

)
= h2

n,p

for bk(p)
n
≤ s ≤ bk(p)+mn

n
, and hence it is enough to prove that

n
1
4

jn(p)∑
k=0

∫ bk(p)+mn
n

bk(p)

n

h3
n,p

(
s− bk(p)

n

) (
σ2
i (
bk(p)

n
,X bk(p)

n

)− σ2
i (
ck(p)

n
,X ck(p)

n

)
)
σ2
s ds

converges to zero in the usual way. Again, this follows from a Taylor expansion and a similar

argument as in the �rst part of the proof of (7.11). �

Lemma 2 We have

lim
p→∞

lim sup
n→∞

n
1
4

{
Fin −

( jn(p)∑
k=0

(G(k, p)n1 +G(k, p)n2 ) +G(p)n3

)}
= 0.

Proof of Lemma 2: Without loss of generality is su�ces to show

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

ck(p)−1∑
j=bk(p)

(
σ2
i (s,Xs)− σ2

i (
bk(p)

n
,X bk(p)

n

)
) (
|Zn

j |2 − n−
1
2
ψ1

κ
ω2
)

= 0.

From another Taylor expansion we have

σ2
i (s,Xs)− σ2

i (
bk(p)

n
,X bk(p)

n

) =
∂

∂y
σ2
i (
bk(p)

n
,X bk(p)

n

)

∫ s

bk(p)

n

σu dWu +Op

(pmn

n

)
,

thus we are left to prove

lim
p→∞

lim sup
n→∞

n−
1
4

jn(p)∑
k=0

ck(p)−1∑
j=bk(p)

∂

∂y
σ2
i (
bk(p)

n
,X bk(p)

n

)
(∫ s

bk(p)

n

σu dWu

) (
|Zn

j |2 − n−
1
2
ψ1

κ
ω2
)

= 0.

However, this result follows from similar arguments as in the proof of Lemma 1. �

Note that we have completely analogous results for a decomposition of B̂
′0
t −B0

t . Thus, we end

up with

lim
p→∞

lim sup
n→∞

n
1
4

{
(B̂
′0
t −B0

t )−
jn(p)∑
k=0

Y (k, p)1{ ck(p)

n
≤t}

}
= 0, (7.16)

lim
p→∞

lim sup
n→∞

n
1
4

{
(Ĉ ′i − Ci)−

jn(p)∑
k=0

σ2
i (
bk(p)

n
,X bk(p)

n

) Y (k, p)
}

= 0,
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where Y (k, p) was de�ned in (7.6). Since n E[(Y (k, p))2|F bk(p)

n

] = p κ γ2
bk(p)

n

+ op(1) and

E[Y (k, p)|F bk(p)

n

] = 0 as in Jacod et al. [17], we conclude

lim
p→∞

lim
n→∞

n
1
2

jn(p)∑
k=0

E
[
Y (k, p)21{ ck(p)

n
≤ti∧tj}

∣∣∣F bk(p)

n

]
=

∫ 1

0

γ2
s 1[0,ti∧tj ](s) ds

lim
p→∞

lim
n→∞

n
1
2

jn(p)∑
k=0

E
[
Y (k, p)21{ ck(p)

n
≤ti}

σ2
i (
bk(p)

n
,X bk(p)

n

)
∣∣∣F bk(p)

n

]
=

∫ 1

0

γ2
s 1[0,ti](s) σ

2
j (s,Xs) ds

lim
p→∞

lim
n→∞

n
1
2

jn(p)∑
k=0

E
[
Y (k, p)2σ2

i (
bk(p)

n
,X bk(p)

n

)σ2
j (
bk(p)

n
,X bk(p)

n

)
∣∣∣F bk(p)

n

]
=

∫ 1

0

γ2
s σ

2
i (s,Xs) σ

2
j (s,Xs) ds

Theorem 4 follows now from Theorem IX 7.28 in Jacod and Shiryaev [18], since the missing

conditions can be shown in the same way as in Jacod et al. [17]. �

7.2 Proof of Theorem 1

The convergence of the �nite dimensional distributions follows from the delta method for stably

converging sequences, since we have

n
1
4 (N̂t1 −Nt1 , . . . , Ntk −Ntk)

T Dst−→ Y

∫ 1

0

Σ
1
2
t1,...,tk

(s,Xs) dWs,

where the k × (d+ k)-dimensional matrix Y has the form

Y =
(
Ik×k −Y ∗

)
, Y ∗ =

B
T
t1
D−1

...

BT
tk
D−1

 .

A straightforward calculation shows that the conditional covariance coincides with the condi-

tional covariance of the �nite dimensional distributions of the process de�ned in (4.1). Thus we

are left to prove the tightness of the process n
1
4 (N̂t−Nt). We have the uniform decomposition

n
1
4 (N̂t −Nt) = n

1
4 (B̂0

t −B0
t ) + n

1
4BT

t D
−1(Ĉ ′ − C) + op(1)

and will prove the tightness of each of the two sequences on the right hand side separately. To

this end, we use Theorem VI. 4.5 in Jacod and Shiryaev [18], which says (in a special case)

that a family of processes (Xn
t )t≤1 living on the same probability space (Ω,F , (Ft)t, P ) is tight,

as long as the following two conditions are satis�ed:
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(i) For all ε > 0 there exists some n0 ∈ N and K > 0 such that

P
(

sup
t≤1
|Xn

t | > K
)
< ε (7.17)

for all n > n0.

(ii) For all ε > 0 we have

lim
η↓0

lim sup
n→∞

sup
R,S∈T ;R≤S≤R+η

P (|Xn
R −Xn

S | > ε) = 0, (7.18)

where T denotes the set of all stopping times bounded by 1.

For the �rst sequence note that (7.17) and (7.18) follows easily from Theorem 4, since it yields

the stable convergence n
1
4 (B̂0

t −B0
t )
Dst−→

∫ t
0
γs dW

′
s, and the process (γt) is bounded.

The proof of the tightness of the second sequence is slightly more involved. Note �rst that

Cramér's rule gives D−1 = adj(D)/ det(D), where adj(D) denotes the adjoint matrix of D.

From the boundedness of the functions σ2
i we conclude that each entry of adj(D) is bounded as

well, and thus (3.8) yields E[|D−1
ij |β] < K for all i and j and some β > 0. Moreover, we have

|Bi
t| < K uniformly in t, and using Markov's and Hölder's inequality we conclude for any ε > 0

and arbitrary 1 ≤ i, j ≤ d:

P
(∣∣∣n 1

4D−1
ij (Ĉ ′j − Cj)

∣∣∣ > K
)
≤ K−

β
2 n

β
8 E

[
|D−1

ij |
β
2 |Ĉ ′ − C|

β
2

]
≤ K−

β
2 E

[
|D−1

ij |β
] 1

2
E
[
|n

1
4 (Ĉ ′ − C)|β

] 1
2
.

From the proof of the previous theorem we know that the latter expectation is bounded (uni-

formly in n) as well. Thus, for all ε > 0 there exists some K > 0 such that

P
(

sup
t≤1

∣∣∣n 1
4BT

t D
−1(Ĉ ′ − C)

∣∣∣ > K
)
< ε,

for all n > n0. This gives (7.17). Note for the same reasons that

lim
η↓0

lim sup
n→∞

P (|n
1
4 η D−1

ij (Ĉ ′j − Cj)| > ε) = 0

for all ε > 0, and since we have |Bi
R − Bi

S| ≤ K · η for all such stopping times R, S with

R ≤ S ≤ R + η (7.18) follows and we are done. �

7.3 Proof of Theorem 2

For most parts the proof works in the same way as the ones for the preceding results. However,

since x 7→ |x| is not di�erentiable, we cannot use Ito's formula to obtain a decomposition of |Zn

k |
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and have to proceed in a slightly di�erent manner in order to prove a result, which is similar

to Theorem 4. To this end, we de�ne the sequences bk(p), ck(p), in(p) and jn(p) completely

analogous, but with mn replaced by ln.

Note �rst that we have E
[
|Un

k |
]
≤ K 1√

ln
= Op(n

−( 1
4

+ δ
2

)), from which we conclude

Ŝi =
1

µ1

√
ρψ2

n−( 3
4

+ δ
2

)

n−ln∑
k=1

σ̄i(
k

n
, X̂ k

n
)|Xn

k |+ op(n
−( 1

4
− δ

2
)),

due to the constraint δ > 1
6
. Furthermore, we have

n−( 3
4

+ δ
2

)

n−ln∑
k=1

σ̄i(
k

n
, X̂ k

n
)|Xn

k | = n−( 3
4

+ δ
2

)

n−ln∑
k=1

σ̄i(
k

n
,X k

n
)|Xn

k |+Op(
ln
n

)

as in Theorem 3. Suppose bk(p) ≤ j < ck(p). This yields

σ̄i(
j

n
,X j

n
)− σ̄i(

bk(p)

n
,X bk(p)

n

) =
∂

∂y
σ̄i(

j

n
,X bk(p)

n

)

∫ j
n

bk(p)

n

σs dWs +Op

(pln
n

)
once again and we end up with

lim
p→∞

lim sup
n→∞

n−( 1
2

+δ)

jn(p)∑
k=0

ck(p)−1∑
j=bk(p)

(
σ̄i(

j

n
,X j

n
)− σ̄i(

bk(p)

n
,X bk(p)

n

)
)
|Xn

j | = 0

for the same reasons as in the proof of Theorem 4. Moreover, we obtain from similar arguments

as in the proof of Theorem 3 in Podolskij and Vetter [22]

lim
p→∞

lim sup
n→∞

n−( 1
2

+δ)

jn(p)∑
k=0

ck(p)−1∑
j=bk(p)

σ̄i(
bk(p)

n
,X bk(p)

n

)
(
|Xn

j | − σ bk(p)

n

|W n

j |
)

= 0.

On the other hand we have

lim
p→∞

lim sup
n→∞

n
1
4
− δ

2

{
Si −

jn(p)∑
k=0

(∫ ck(p)

n

bk(p)

n

σ bk(p)

n

σ̄i(
bk(p)

n
,X bk(p)

n

) ds

−
∫ bk+1(p)

n

ck(p)

n

σ ck(p)

n

σ̄i(
ck(p)

n
,X ck(p)

n

) ds
)
−
∫ 1

in(p)
n

σ in(p)
n

σ̄i(
in(p)

n
,X in(p)

n

) ds
}

= 0

as before. Mimicing the proof of Theorem 4 we conclude

lim
p→∞

lim sup
n→∞

n
1
4
− δ

2

{
(R̂0

t −R0
t )−

jn(p)∑
k=0

Ỹ (k, p)1{ ck(p)

n
≤t}

}
= 0,

lim
p→∞

lim sup
n→∞

n
1
4
− δ

2

{
(Ŝi − Si)−

jn(p)∑
k=0

σ̄i(
bk(p)

n
,X bk(p)

n

) Ỹ (k, p)
}

= 0,
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where

Ỹ (k, p) =
1

µ1

√
ρψ2

n−( 3
4

+ δ
2

)σ bk(p)

n

ck(p)−1∑
j=bk(p)

(|W n

j | − E[|W n

j |]).

We have

E
[( ck(p)−1∑

j=bk(p)

(|W n

j | − E[|W n

j |])
)2]

= 2

ck(p)−1∑
j=bk(p)

ln∑
i=0

(E[|W n

j W
n

i+j|]− E[|W n

j |]2) +Op(
l3n
n

)

= 2 p ln

ln∑
i=0

(E[|W n

0 W
n

i |]− E[|W n

0 |]2) +Op(
l3n
n

)

and

E[|W n

0 W
n

i |]− E[|W n

0 |]2 = ρψ2 n
− 1

2
+δ(E[|N0 Ni|]− µ2

1) + op(n
− 1

2
+δ)

with N0, Ni ∼ N (0, 1) and E[N0 Ni] =
φ2( i

ln
)

ψ2
. From µ2

1 = 2
π
and Wellner and Smythe [26] we

conclude E[|N0 Ni|] − µ2
1 = f

(
φ2( i

ln
)

ψ2

)
with f as de�ned in Theorem 2, thus a Riemann sum

argument gives

E[(Ỹ (k, p))2|F bk(p)

n

] =
2 Ξ

µ2
1

σ2
bk(p)

n

pl2n
n2

+ op(
pl2n
n2

).

Theorem 2 can now be derived easily and the details are omitted for the sake of brevity. �
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ω 0.01 0.0025 0.000625
H

HHH
HHHθ

α
.025 .05 .1 .025 .05 .1 .025 .05 .1

1 .01 .02 .038 .023 .058 .104 .024 .047 .101

.75 .004 .01 .02 .004 .009 .022 .003 .007 .015

.5 .003 .006 .013 .002 .004 .014 .000 .000 .002

.25 .002 .004 .015 .001 .002 .003 .001 .003 .004

0 .000 .005 .019 .003 .006 .015 .004 .007 .016

Table 1: Simulated level of the test (1.2) for various choices of ω and θ, where the true

volatility function is σ2(t, x) = θ + (1 − θ)x2 and the noise terms U are normally distributed

with mean zero and variance ω2. In all cases the sample size is given by n = 16384.

n 256 1024
HH

HHH
HHω

α
.025 .05 .1 .025 .05 .1

.001 .033 .062 .111 .333 .415 .512

.002 .158 .243 .324 .810 .862 .907

.004 .392 .518 .650 .993 .996 .998

.005 .497 .628 .742 .991 .994 .998

.01 .596 .754 .873 .987 .998 .999

Table 2: Simulated level of the bootstrap test proposed by Dette and Podolskij [10], where the

volatility function equals H0 : σ2(t, x) = θx2, but the observations are corrupted with normally

distributed noise having variance ω2.

HHH
HHHHn

α
.025 .05 .1

256 .008 .022 .058

1024 .007 .023 .062

4096 .013 .029 .079

16384 .017 .038 .077

Table 3: Simulated nominal level of the test, which rejects the null hypothesis of homoscedas-

ticity for a large value of sup
∣∣∣An(t)

ŝt

∣∣∣, using the critical values from the asymptotic theory [see

(6.1)]. The variance of the noise process is de�ned by nω2 = 0.1024.
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σ2
1(t, x) 1 x2

H
HHH

HHHn

α
.025 .05 .1 .025 .05 .1

256 .019 .046 .113 .03 .066 .118

1024 .02 .049 .099 .034 .07 .119

Table 4: Simulated level of the bootstrap test based on the standardised Kolmogorov-Smirnov

functional of (N̂t) for various hypotheses. The variance of the noise process is de�ned by

nω2 = 0.1024.

HHH
HHHHn

α
.025 .05 .1

256 .040 .076 .136

1024 .032 .057 .119

Table 5: Simulated level of the bootstrap test based on the standardised Kolmogorov-Smirnov

functional of (M̂t) for σ(t, x) = θ|x|. The variance of the noise process is de�ned by nω2 =

0.1024.

alt 1 1 + |x| Heston
HH

HHH
HHn

α
.025 .05 .1 .025 .05 .1 .025 .05 .1

256 .057 .128 .237 .073 .152 .263 .722 .870 .941

1024 .170 .230 .329 .224 .326 .465 .975 .980 .985

Table 6: Simulated rejection probabilities of the bootstrap test based on the standardised

Kolmogorov-Smirnov functional of (N̂t) for various alternatives. The data is simulated with

σ2(t, x) = θ|x|2 and the variance of the noise process is de�ned by nω2 = 0.1024.



 



 




