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This paper presents a framework for comparing bivariate distri-
butions according to their degree of regression dependence. We in-
troduce the general concept of a regression dependence order (RDO)
and provide two examples of RDOs. In addition, we define a new
nonparametric measure of regression dependence and study its prop-
erties. Beside being monotone in the new RDOs, the measure takes
on its extreme values precisely at independence and almost sure func-
tional dependence, respectively. Finally, a consistent nonparametric
estimator of the new measure is constructed.

1. Introduction and motivation. There is an extensive body of liter-
ature on the problem of ordering and measuring the dependence of two ran-
dom variables. Almost all of the research in this area is concerned with the
concept of positive dependence. Orders of positive dependence were consid-
ered by many authors, e.g., Lehmann [13], Esary et al. [5] and Schriever [20];
see also Scarsini and Shaked [19] for a detailed survey. Axiomatic approaches
to orders and measures of positive dependence were introduced by Kimeldorf
and Sampson [11] and Scarsini [18], respectively. The abundance of notions
of positive dependence contrasts, however, with the silence concerning re-
gression dependence, with the exception of the work of Dabrowska [1, 2] and
the measure suggested by Hall [9].

This paper presents a new approach to the problem of ordering and mea-
suring regression dependence in the bivariate case. The terms “order” and
“ordering” are used in the sense of a preorder, i.e., a reflexive and transi-
tive relation. We drop the requirement of antisymmetry in order to allow
for an arbitrary functional form of the regression. For convenience, an order
for random variables and the corresponding relations for distributions and
distribution functions are used synonymously. Also, we do not strictly dis-
criminate between distribution functions and distributions; the notation is
the same.

Let (X,Y) be a random vector with marginal distribution functions Fx
and Fy, respectively, and joint distribution function Fxy. Since regression
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dependence is a directional relationship, it is first necessary to specify the
direction of interest. Without loss of generality, we study the dependence
of Y on X. The fundamental idea behind regression is predictability—the
more predictable Y is from X, the more regression dependent they are. It
is straightforward to single out the two extreme cases: independence and
almost sure functional dependence, when there exists a Borel measurable
function g such that Y = ¢g(X) with probability one; see Lancaster [12]. In
the former case, X provides no information about Y, whereas in the latter
case there is perfect predictability of Y from X.

Apart from the two extreme cases, however, there exists a variety of in-
termediate ones with a certain degree of regression dependence in a sense
yet to be specified. The essence of our approach is the fact that the pre-
dictability of Y from X is intrinsically related to the variability of the con-
ditional distributions Fy|x—, of ¥ given X = z. More precisely, the less
variable Fy|x—,, the more predictable Y from X, and thus the more regres-
sion dependent (X,Y'). For example, perfect predictability, i.e. almost sure
functional dependence of Y on X, is equivalent to the degeneracy of Fy|x—,
for almost all z. Unless otherwise stated “almost” is used in the sense of the
respective probability measure, which is clear from the context. It follows
that, if ()? , }7) is another pair of random variables, then the general idea is
to consider (X,Y") less regression dependent than ()~( , }7) if Fy|x—, is more
variable than F)~,| b for almost all . Therefore, a bivariate regression de-
pendence order is associated to a univariate variability order, and different
variability orders could lead, in general, to different regression orders.

This approach, however, is not applicable unless X and X have the same
distribution. Moreover, it is even necessary that Y and Y are identically
distributed because, otherwise, their different variability will affect the vari-
ability of Fy|x and F3~/| 5 and, in this way, the degree of regression de-
pendence. For this reason, a comparison of two bivariate random vectors
with arbitrary marginals is possible only after their transformation to the
same Fréchet class. If the marginals are continuous, it is natural to con-
sider the probability integral transformations (U, V) = (Fx(X), Fy(Y)) and
(U, V) = (F )?(f( ),F;(f/)), which have uniform marginal distributions. In
this case, we regard (X,Y) less regression dependent than (X,Y) if Fyjr—y
is more variable than F‘~/|l~]:u for almost all w.

It should be noted, however, that while lower variability of the conditional
distributions is a necessary condition for defining a regression dependence
order, it is not sufficient. As the details will be given later in Section 3, we
only mention here that the choice of the variability order cannot be arbitrary,
but should take into account the two extremes of regression dependence,
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namely, independence and almost sure functional dependence. We will show
that the most common variability orders lead indeed to regression orders.

In Section 4 we introduce a new nonparametric measure of regression
dependence, study its properties and demonstrate its advantages over the
correlation ratio. Beside being monotone in the new regression orders, the
measure possesses several appealing properties. For instance, it takes on its
minimum if and only if X and Y are independent, and its maximum if and
only if Y is almost surely (a.s.) a Borel function of X.

A sample version of the new dependence measure is addressed in the final
Section 5 where we construct a consistent estimator.

2. Notation and preliminaries. This section introduces the notation
and states some technical facts which will be needed in the sequel. Except
for the results on univariate variability orders, attention is restricted to
the set § of all bivariate distribution functions with continuous marginal
distribution functions, as well as the set X of all bivariate random vectors
with distribution functions in §. For (X,Y) € X, Fxy € § denotes its
joint distribution function with marginal distribution functions F'x and Fy,
respectively, while Fy|x_, denotes the conditional distribution function of
Y given X = z. For the probability integral transformations of (X,Y) € X
we shall write

U:=Fx(X)and V :=Fy(Y).

Thus, U and V' have uniform distributions on the closed unit interval [0, 1],
which will be denoted by I. The notation Fyy and Fy |y, is clear.

The first result describes the two extreme cases of regression dependence
for (X,Y) in terms of (U, V).

PROPOSITION 2.1.  For any (X,Y) € X, the following are true:

(i) X and Y are independent if and only if U and V are independent.
(ii) U and V are independent if and only if Fy\y—, = Fv for almost all u.
(iii) Y is a.s. a Borel function of X if and only if V' is a.s. a Borel function
of U.
(iv) V is a.s. a Borel function of U if and only if Fyy—, is degenerate for
almost all u.

PROOF. (i) and (ii) are obvious. As for (iii), since Fx is continuous,
Y = foX as. implies Y = foF)zloFXoX a.s., so that V.=go U a.s.
with the measurable function g := Fy o f o F)Zl; conversely, if V= go U
we set f 1= Fy 1o g o Fx. Finally, (iv) follows from the observation that
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V = f(U) is equivalent to the fact that the graph of f is measurable and
has probability one, i.e.,

1= /12 1y f(u,v) dFyy (u,v) = /I/Ilgrf(u,v) dFV|U:u(U) dFy(u).

This is equivalent to Fy—, being degenerate for almost all w. O

Since we work with the probability integral transformations, the concept
of copulas is tailored for our approach. Formally, a bivariate copula (or
briefly, a copula) is the restriction to I? of a bivariate distribution function
with uniform marginals on I. In fact, the unique copula Cxy of (X,Y) €
X coincides with Fyy on [ 2. In particular, the copula corresponding to
independent variables is the product copula P(u,v) = uv.

Denote by € the set of all copulas, and by 0;C' the partial derivative of
C € € with respect to the i-th variable. The following properties of copulas
are easy consequences of the definition; for a proof see, e.g., [15].

PROPOSITION 2.2.  For any C € €, the following statements are true:

(i) C is Lipschitz continuous; more precisely, for all (uy,v1), (ug,vo) € I?
we have

|C (ug,v2) — C(u1,v1)| < |ug — ui| + |va — v1].

(ii) For each v € I, 01C(u,v) exists for almost all u € I; similarly, for
each u € I, 0oC(u,v) exists for almost all v € 1. Moreover, the partial
derivatives satisfy

0<9,C<1

for i = 1,2 wherever they are defined.

REMARK 2.3. (i) Note that the Lipschitz continuity implies that a
copula is absolutely continuous in each argument, so that it can be
recovered from any of its partial derivatives by integration.

(ii) In fact, we have 0 < 0;C <1 for i = 1,2 Lebesgue almost everywhere
(a.e.) on I? since, as Lipschitz continuous functions, copulas are dif-
ferentiable Lebesgue a.e. in view of Rademacher’s Theorem; see [6].
Moreover, by [6, Thm. 5.8.4], we also have 9;C € LP(I? R) with p > 1.
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There is a relationship between the conditional distribution Fy;—, and
the corresponding copula Cx y, which is given by

(2.1) Fy—u(v) = B:Cx y (u,0)

wherever the partial derivative exists; see [15]. Moreover, we have the fol-
lowing result related to Proposition 2.1.

PROPOSITION 2.4.  For any (X,Y) € X, the following are true:

(1) X andY are independent if and only if 01Cx y (u,v) = v for Lebesgue
almost all (u,v) € I?.

(it) Y is a.s. a Borel function of X if and only if 01Cx y (u,v) € {0,1} for
Lebesgue almost all (u,v) € I

PRrROOF. The first statement follows from Remark 2.3 (i), while the second
is a consequence of [3, Thm. 11.1] and [22, Thm. 4.2]. O

Since our approach to ordering regression dependence employs the vari-
ability of the conditional distribution functions, the rest of this section deals
with stochastic orders that compare the variability or dispersion of two ar-
bitrary random variables X and Y (or their univariate distributions Fx
and Fy); we refer to [14] and [21] for a detailed study of stochastic orders.

Probably the most common variability order is the convex order. X is
smaller than Y in the convex order (denoted as X <. Y) if

(2.2) E[p(X)] < E[p(Y)]

for all convex functions ¢ : R — R, provided the expectations exist. De-
pending on the context, i.e., whether working with random variables or dis-
tribution functions, we write X <. Y or Fx <. Fy. This order reflects the
intuitive idea that convex functions take on their (relatively) larger values
over regions of the form (—oo,a)U (b, 00) for a < b. Therefore, if (2.2) holds,
Y is more variable (or more dispersed) than X. The next result is a direct
consequence of (2.2).

PrOPOSITION 2.5. Let X and Y be two random variables. If X <. Y,
then E[X] = E[Y] and Var[X] < VarY].

As can be seen from Proposition 2.5, only random variables with the same
expectations can be compared. When X and Y have finite expectations, we
can use the convex order to define a location-free variability order. Namely,
we call X smaller than Y in the dilation order (denoted as X <g3 Y) if

(2.3) X —E[X] <x Y — E[Y].
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COROLLARY 2.6. Let X and Y be two random variables. If X <z Y ,
then Var{X] < Var[Y].

Another important location-free variability order is the dispersive order.
Fx is smaller than Fy in the dispersive order (denoted as Fx <gisp Fy) if

(2.4) Fi'(b) — Fx'(a) < Fy ' (b) — Fy ' (a)

for all 0 < a < b < 1. As noted in [21], it is conceptually clear that this
order compares the variability of F'x and Fy because it requires the differ-
ence between any two quantiles of F'x to be smaller than the corresponding
quantiles of Fy.

The next result shows the relation between the orders <gis, and <gj;
compare [21, Thm. 3.B.16].

PROPOSITION 2.7. Let X and Y be two random wvariables with finite
expectations. Then X <y Y implies X <gy Y.

3. Regression dependence orders. The fundamental idea to intro-
duce an order of regression dependence on X (respectively §) is to compare
the variability of the conditional distributions, since low and high dispersion
is tantamount to high and low predictability, respectively. However, as dis-
cussed in the introduction, a comparison of two elements of X with arbitrary
marginals is possible only after their transformation to the same Fréchet
class which can be accomplished using the probability integral transforma-
tions. Essentially, a random vector (X,Y) € X is less regression dependent
than another random vector (X,Y) € X if F‘~/|l~]:u is less variable (in some
univariate variability order) than Fy =, for almost all u. More precisely,
we adopt the following definition.

DEFINITION 3.1. A relation < on X (or §) is a regression dependence
order (RDO) if it is reflexive and transitive, and satisfies the following:

(01) (X,Y) = (X,Y) implies F\7|5:u <o Fyjy=y for almost all u € I,
where <4 is a univariate variability order;

(02) If Y is a.s. a Borel function of X, and if (X,Y) < (X,Y), then Y is
a.s. a Borel function of )Z';

(03) If X and Y are independent, and if ()?,}N/) < (X,Y), then X and Y

are independent.

Property (O1) indicates that an RDO is always associated to a given
variability order. Therefore, a relation < satisfying (O1) with respect to the
univariate variability order <, will be denoted by <,.
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Conditions (O2) and (O3) deal with the two extreme cases. Since al-
most sure functional dependence is equivalent to perfect predictability of Y
from X, the corresponding distribution must have the greatest regression
dependence possible. Consequently, any distribution which is more depen-
dent must also correspond to almost sure functional dependence; hence (O2).
Similarly, the least dependent situation is given when X and Y are indepen-
dent. Hence, any less dependent distribution must be again the distribution
of independent random variables, which is expressed in (O3).

In view of condition (O1), probably the easiest way to construct an RDO
is to choose some variability order <,, define (X,Y) < (X,Y) if and only if
Fm Ty Se Fyju=y for almost all u € I, and check whether conditions (02)
and (03) are satisfied. In fact, since no distribution is less dispersed than a
degenerate one, (0O2) should always be satisfied in view of Proposition 2.1,
and it remains to prove (O3).

It is important to note that an RDO corresponding to a variability order
which is not location-free (e.g., the convex order < ) is unnecessarily re-
strictive, for then only distributions with the same regression function can
be compared. However, since we want to compare the strength of regression
dependence with respect to possibly different regression functions, we will
consider location-free orders only. Amongst them, the dilation order <gj
and the dispersive order <gisp, are the most important and common ones.
The next result states that the corresponding relations <4y and <gisp are
indeed RDOs.

THEOREM 3.2.  The relations <q; and <qsp are RDOs.

PROOF. In view of Proposition 2.7 we need only prove (O2) and (O3) for
the relation <qy. It is clear from Corollary 2.6 that <4y satisfies (02). In
order to prove (O3) we may, in view of Proposition 2.1, restrict to consid-
ering U and V instead of X and Y. Assuming that (U, V) <an (U, V) with
independent U and V', we conclude from Corollary 2.6 that

_ 1
(3.1) Var[V|U = u] > Ir

for almost all u. By the law of total variance, we obtain equality in (3.1), as
well as

~ ~ 1
(3.2) E[VIU =u] =E[V] = 3
for almost all u. From (3.2) and (3.1) it follows that, for almost all w,
Fyjr=u <ex F\N/\ﬁ:u with equal variances. But then both distributions are the
same; see [21, Thm. 3.A.42]. This proves (O3), and hence the theorem. [
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4. Measures of regression dependence. We now turn to the subject
of how to measure the degree of regression dependence in the set X (or §).
It is clear that without specifying an RDO any discussion of measures of
regression dependence is problematic. We adopt the following definition.

DEFINITION 4.1.  Let < be an arbitrary RDO. A function p: X — [0,1]
is a measure of regression dependence (MRD) with respect to < if it satisfies
the following conditions:

(M1) (X,Y) < (X,Y) implies p(X,Y) < p(X,Y);
(M2) n(X,Y)=11if and only if Y is a.s. a Borel function of X;
(M3) w(X,Y) =0 if and only if X and Y are independent.

REMARK 4.2. Alternatively, pu can also be defined as a functional on §,
and we sometimes write u(Fx y) instead of u(X,Y).

Condition (M1) is the usual monotonicity property required by any mea-
sure of dependence. (M2) and (M3) concern the two extreme cases of re-
gression dependence. We point out how strong both conditions are—in fact,
a measure of dependence satisfying (M2) and (M3) has not yet been pro-
posed in the literature. For instance, (M2) is much stronger than Rényi’s
corresponding postulate in [17], according to which a measure of dependence
should take on its maximal value 1 if one of X and Y is a.s. a function of the
other. What is more, Rényi mentioned that it is natural to pose an “only if”
requirement, but since the condition was rather restrictive, it was better to
leave it out. With respect to (M3), we point out that the well-known cor-
relation ratio is not a MRD in the sense of Definition 4.1 because it attains
its minimum at 0 not only when X and Y are independent; examples are
presented later in this section.

We now turn to the construction of a nonparametric MRD. The following
is the main result in this section.

THEOREM 4.3.  The function r : X — [0, 1] defined by

(4.1) r(X,Y) = 6/01 /01 Fyy—u(v)? dvdu — 2

is a MRD concurring with both <4y and <g;sp -
REMARK 4.4. Note that in view of (2.1), we have

r(X,Y) =6[|0:Cx.y |3 — 2
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where || - |2 denotes the L?-norm on 2. By Remark 2.3 (ii), this shows that
r is indeed well defined. Moreover, r can also be viewed as a functional on
the set of copulas €, and we write r(Cxy) = r(X,Y).

In order to prove Theorem 4.3 we make use of the following result.

LEMMA 4.5. For any Cxy € €, we have ||01Cx vy |5 € [1/3,1/2]. More-
over, the following assertions hold:
(i) |01Cx.y |3 = 1/3 if and only if X and Y are independent.
(ii) |101Cx v |3 = 1/2 if and only if Y is a.s. a Borel function of X.

PRrROOF. (i) Consider the inequality

1 1 11
0< / / (1 Cx.y (u,v) —v)? dudv = / / (1 Cxy (u,v))? dudv — é
0 JoO 0 Jo

Hence, [|0:Cx.y||3 > 1/3 with equality if and only if 01Cxy(u,v) = v
Lebesgue a.e. on I?, which by Proposition 2.4 (i) is equivalent to the inde-
pendence of X and Y.

(i) By Theorem 2.2 (ii) we have 0 < 9,Cxy < 1 and thus (9,Cxy)? <
01Cx y, with equality if and only if 0;Cx y € {0,1}. Consequently,

1 1 1
”alCX’Y”%S/o /0 &1 Coxy () dudv =

with equality if and only if &Cxy € {0,1} Lebesgue a.e. in I%, which by
Proposition 2.4 (ii) is equivalent to Y being a.s. a Borel function of X. [

We will also make use of the following representation formula for univari-
ate distribution functions whose support is contained in 1.

LEMMA 4.6. Let F be a univariate distribution function with support
i I. Then

2/01/OPF_1(t)dtdp—/OIF_l(t)dt:/OlF(v)de—/OlF(v)dv.

PRrOOF. Using integration by parts for Lebesgue-Stieltjes integrals (see,
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g., [10, Thm. 21.67]) we obtain

/OlF(v)2dv—/01F(v)dv

— /1@2 — 1 dF\()
0

:—2/011&F_1(t)dt+/1F_1
— 9 /1F_ dt—//F s)ds dt) /F
_2//F £) dt dp — /F t)dt.

We now turn to the proof of the theorem.

PROOF OF THEOREM 4.3. The property 0 < r(X,Y) <1, as well as the
conditions (M2) and (M3), are immediately implied by Lemma 4.5.

It remains to show the monotonicity condition (M1); in view of Proposi-
tion 2.7, it suffices to prove it for the RDO =<4;. Ramos and Sordo showed
n [16, Thm. 2.1] that two univariate distribution functions F' and G with
finite expectations satisfy F' <qj G if and only if, for all v € [0, 1],

(4.2) /OUF1(t)dt—v/01F1(t)dtZ/OUG1(t)dt—v/OlG1

Now assume that (X,Y) <4 ()N(, }7) so that FV|5 <dil Fv|y=y for almost

all w € I. Then, integrating (4.2) over v we obtain

1 v
/ FZL (t)dtdv - f/ dt >
0 0 VlU u V|U u
1 1
FoL _ (t)dtd _7/ Fol  (t)dt
/0/0 Viv=u(t) dt dv 2 Jo Viv=u(?)

for almost all u € I. Applying Lemma 4.6 we find that, for almost all u,

1
/()F‘N/‘ﬁ 2) / V|ﬁ d’U>
1
/DFV\Uzu(U)QdU_/O Fyjy=u(v) dv
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Integrating this over u € I, substituting 01 Cx y (u, v) for Fyy—,(v) by (2.1),
and using fol fol hCxy(u,v)dvdu =1/2 for all Cxy € €, we obtain

H@lC~ H2—/ / 81C'~~ (u,v))? dv du >
/0 /0(alcx,y(u,v)ﬁdvdu:||ach,Y||g.

Since, by Remark 4.4, 7(X,Y) = 6[|01Cx.y||3 — 2, this proves (M1) and
hence the theorem. O

ProrosiTIiON 4.7. If f,g : R — R are strictly monotone functions then
r(f(X),9(Y)) =r(X,Y).

PRrOOF. We distinguish four different cases. If f and g are both increasing,
it is well known [15, Theorem 2.4.3] that

Crx)g(v) = Cxy s
which immediately implies 7(f(X),¢(Y)) = r(X,Y). If f is increasing and
g is decreasing, then
Crx)g0v)(wsv) =u—Cxy(u,1 —v);

see [15, Theorem 2.4.4]. Therefore, we conclude [|01Cy(x) gv) 13 = 101Cx v |3,
which again implies 7(f(X),g(Y)) = r(X,Y). If f is decreasing and g is in-
creasing, the result follows from interchanging f and ¢ in the previous case.
The final case when f and g are both decreasing can be shown similarly. [J

We now turn attention to another quantity that might seem a natural
choice for an MRD, namely the correlation ratio of the probability integral
transformations. Define the functional 77 : X — R by

_ Var[E[V|U]] E[Var[V|U]]
4.3 X, Y u,v — =1
(43) X Y) = (U V) = Var[V] Var[V]
Since Var[V] = 1/12, it follows that
7(X,Y)? = 12Var[E[V|U]] .

In fact, the ordering of regression dependence suggested in [1, Sec. 3.1]
is an ordering by correlation ratios and therefore is not consistent with
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1 1

0 1 0 1
(a) Support of the distribution of (b) Support of the distribution of
(U,V) in Example 4.8 (U, V) in Example 4.9

FiG 1. Examples of n(X,Y) = 0 where X and Y are not independent

our approach to RDOs. Moreover, neither the correlation ratio of Y on X
nor the related measure 7j(X,Y)? are MRDs in the sense of Definition 4.1,
because (M3) will not be satisfied. Indeed, it follows from Propositions 2.7
and 2.5 that 77 is monotone with respect to both <qisp and <qi1; in addition,
n(X,Y) =11if and only if Y is a.s. a Borel function of X. However, 77 does
not satisfy condition (M3) because there are random variables X and Y
with 77(X,Y) = 0, which are not independent; we give two such examples.

ExaMpPLE 4.8. Consider X and Y whose probability integral transfor-
mations U and V have the singular distribution with the support depicted
in Figure 1(a). The support is the union of the main and secondary diago-
nal in 12, so that probability mass 1/2 is uniformly distributed on each line
segment. For every u € I, the resulting conditional distribution Fy y—, is a
two-point distribution at v = uw and v = 1 —w and, thus, E[V|U = u] = 1/2.
Consequently, the conditional expectation E[V|U] is degenerate and its vari-
ance Var[E[V|U]] vanishes, which means that n(U,V) = 7(X,Y) = 0. How-
ever, U and V and, thus, X and Y are not independent.

EXAMPLE 4.9. Another situation where 77(X,Y) = 0 but X and Y are
not independent is given when F'x y is the circular uniform distribution. It is
well known that in this case the ordinary correlation ratio n(X,Y’) vanishes.
The same is true for the related measure 7j(X,Y’) since in this case Fyy
is a degenerate distribution whose support is given in Figure 1(b); see [15,
Sec. 3.1.2]. The arguments are analogous to those in the previous example.
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5. Nonparametric estimation of . In this final section, we present
a sample version of the MRD

T(X, Y) = T(CX’y) = 6”610)(’}/”% —2.

As pointed out in Remark 4.4, r is a function of the copula Cx y alone. Cx y
can be consistently estimated by the empirical copula; see Deheuvels [4] and
Fermanian et al. [7]. However, the empirical copula is locally constant and,
thus, the estimation of r is more involved since it requires the estimation
of the copula’s partial derivative. The need for differentiability calls for a
smooth (differentiable) estimation of the copula, e.g., with a kernel-based
technique.

In the following we present the nonparametric approach given in Ferma-
nian and Scaillet [8], who introduced a kernel estimator of the partial deriva-
tive of a copula, which provides a basis for developing a sample analogue
of r. Assuming that the joint distribution Fxy of (X,Y) € X is absolutely
continuous, the marginal density fx at x will be estimated from a sample

of size N by
— 1 N r—X;
= — k

where the kernel kx : R — R is symmetric and bounded with [%0_kx(z) dz =
1 and the bandwidth hx is a positive function of N such that Ax — 0 when
N — oo. The estimator ]/“3\/ of fy with corresponding kernel ky and band-
width hy is defined analogously. In order to estimate the joint density fxy
we use a two-dimensional kernel which, for the sake of simplicity, is the
product of kx and ky. Thus we have

P () = 7, hkaX< S ()

Hence, an estimator of F'x at some point = is obtained as

= /_zoo f;\((s) ds

while an estimator of the joint distribution function F'xy is obtained as

F/’X\y(x Y) / / ny s,t)dsdt.

Fermanian and Scaillet [8] suggest to estimate Cxy by a simple plug-in
method, which in view of the identity

Cxy(u,v) = Fxy(Fyx'(u), Fy''(v)),
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yields

—

e —
(5.1) Cxy(u,v) = Fxy(Fx

(), Fy (v)),

where 1/7';_1 and F;/_l stand for the respective quantile functions of 1/7;
and }/7;/ Under some technical conditions, the authors establish the asymp-
totic normality of the estimator defined in (5.1).

Moreover, the kernel-based approach has the advantage of providing a
smooth (differentiable) reconstruction of C'x y. Thus, it is natural to consider

an estimator of 0;Cx y based on the differentiation of 6);/ with respect to
the first variable:

(5.2) 01Cxy (u,v) = 1 Cx.y (u,v).

In view of (5.2), we suggest to estimate the MRD r by replacing the

unknown partial derivative 0;Cxy by 81/0;3/. Thus, a kernel estimator
of r is given by

(5.3) F(X,Y) = F(Cxy) = 6]0:Cxy|3 - 2.

Under suitable assumptions on the kernel, the asymptotic behaviour of the
bandwith, the regularity of the densities, and some mixing property of the
data generating process [8, Assumptions 3 and 4], the estimator 7 is con-
sistent since, in this case, for any (u1,v1), ..., (ug,vq) € (0,1)2, the random
vector

(Nhx)2((0:Cxy — iCxy)(ur,v1), ..., (F1Cxy — OiCx,y)(ud, va))
tends weakly to a centered Gaussian vector; see [8, Thm. 4].
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