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Abstract

We consider the problem of estimating the slope of the expected response in non-
linear regression models. It is demonstrated that in many cases the optimal designs
for estimating the slope are either on k or k − 1 points, where k denotes a number
of unknown parameters in the model. It is also shown that the support points and
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1 Introduction

A common tool in statistical inference are nonlinear regression models, which are widely used

to describe the dependencies between a response and an explanatory variable [see e.g. Seber

and Wild (1989), Ratkowsky (1983) or Ratkowsky (1990)]. In these models the problem

of experimental design has found considerable interest. Many authors have discussed the

problem of determining optimal designs for parameter estimation in nonlinear regression

models [see for example Chernoff (1953), Melas (1978) for early references and Ford et al.

(1992), He et al. (1996), Dette et al. (1999) for more recent references on local optimal

designs]. Robust design strategies have been proposed by Pronzato and Walter (1985) and

Chaloner and Larntz (1989), Dette (1995), Müller and Pázman (1998) using a Bayesian or

minimax approach. Most of the literature concentrates on optimal designs (independent of

the particular approach) maximizing a functional of the Fisher information matrix for the

parameters in the model. This approach is somehow related to the problem of estimating the

response function most precisely. However in many experiments differences in the response

will often be of more importance than the absolute response. In such case, in particular, if

one is interested in a difference at two points close together, a precise estimation of the slope

is of particular interest and often one of the main objectives of the statistical inference in

the experiment.

The present paper is devoted to the problem of optimal designing experiments for estimating

the slope of the expected response in a nonlinear regression model. Pioneering work in this

direction has been done by Atkinson (1970) and the problem has subsequently been taken

up by many other authors [see e.g. Ott and Mendenhall (1972), Murty and Studden (1972),

Myres and Lahoda (1975), Hader and Park (1978), Mukerjee and Huda (1985), Mandal and

Heiligers (1992), Pronzato and Walter (1993) and Melas et al. (2003)]. While most of these

papers consider linear regression models, the present paper takes a closer look at design

problems of this type in the context of nonlinearity. In particular we consider the problem

of constructing locally optimal designs for a class of nonlinear regression models of the form

(1.1) Y = η(t, a, b) + ε =
k∑

i=1

aiϕ(t, bi) + ε ,

where ϕ is a known function, the explanatory variable t varies in an interval I ⊂ R, ε denotes

a random error with mean zero and constant variance and λ = (a1, . . . , ak, b1, . . . , bk)T ∈
R2k denotes the vector of unknown parameters in the model. The problem of designing

experiments for models of the form (1.1) has been studied by Melas (1978), Dette et al.

(2006) and Biedermann et al. (2007), who considered the case of exponential models, that is

(1.2) ϕ(t, bi) = exp(bit) .

These models have numerous applications in environmental and ecological experiments, tox-

icology and pharmacokinetics [see for example Landaw and DiStefano (1984), Becka and
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Urfer (1996) or Becka et al. (1993), among many others]. For the choice

(1.3) ϕ(t, λ) =
1

bi + t
,

one obtains a class of rational regression models, which are very popular because they have

appealing approximation properties [see Petrushev and Popov (1987) for some theoretical

properties and Dudzinski and Mykytowycz (1961), Ratkowsky (1983), p.120 for an applica-

tion of this model]. Optimal design problems for parameter estimation of the coefficients

a1, . . . , ak have been discussed in Imhof and Studden (2001), who assumed that the nonlinear

parameters b1, . . . , bk are known and do not have to be estimated. Optimal design problems

for estimating the full vector of parameters a1, . . . , ak, b1, . . . , bk have been determined in

Dette et al. (2004a).

While all papers cited in the previous paragraph have their focus on the estimation of param-

eters, which is related to the estimation of the expected response, the present work considers

the problem of designing experiments for the estimation of the slope of the expected response

in models of the form (1.1) at a given point x. In Section 2 we introduce the necessary nota-

tion and present some general results about designing experiment for estimating the slope,

if the components of the gradient of the expected response (with respect to the unknown

parameters) form a Chebyshev system. It is shown that the support points and weights of

the locally optimal designs in the regression model (1.1) are analytic functions of the point

x where the slope has to be estimated. This result is used to provide a Taylor expansion

for the weights and support points as functions of the point x, which can easily be used for

the numerical calculation of the optimal designs. Section 3 considers the case, where the

function ϕ is given by (1.2), while the rational functions are discussed in Section 4. We use

the general method to determine numerically the optimal design for estimating the slope and

study their properties as functions of the unknown parameters and of the point, where the

slope has to be estimated. In particular, it is shown that the optimal designs for estimating

the slope of the expected response at the point x have either 2m or 2m− 1 support points,

and this property changes with the value of x. On the other hand, the locally optimal designs

are rather robust with respect to changes in the nonlinear parameters.

2 Optimal designs for estimating the slope

Consider the regression model defined by (1.1), where the design space is given by the interval

T = [0, T1], where T1 ∈ (0,∞). We assume that - in principle - for each t ∈ T an observation

Y could be made, where different observations are assumed to be independent with the same

variance, say σ2 > 0. Following Kiefer (1974) we call any probability measure

(2.1) ξ =

(
t1 . . . tn−1 tn
ω1 . . . ωn−1 ωn

)
,
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with finite support t1, . . . , tn ∈ T, ti 6= tj(i 6= j) and masses ωi > 0,
∑n

i=1 ωi = 1 an

experimental design. If N experiments can be performed a rounding procedure is applied

to obtain the samples sizes Ni ≈ wiN at the experimental conditions ti, i = 1, 2, . . . , n such

that
∑

i=1 nNi = N [see e.g. Pukelsheim (1993)]. The information matrix of a design ξ for

the model (1.1) is defined by

(2.2) M(ξ, λ) =

∫ ∞
0

f(t, λ)fT (t, λ)dξ(t) ,

where

(2.3) f(x, λ) =
η(t, λ)

∂λ
= (f1(t, λ), . . . , f2m(t, λ))T

is the vector of partial derivatives of the response function with respect to the parameter

λ = (a1, . . . , ak, b1, . . . bk)T . It has been shown by Jennrich (1969) that for uncorrelated

observations (obtained from approximate design using an appropriate rounding procedure)

the covariance matrix of the least squares estimator for the parameter λ is approximately

proportional to the inverse of the information matrix. Consequently, an optimal design

maximizes (or minimizes) an appropriate concave (or convex) function of the information

matrix or its inverse, and there are numerous optimality criteria which can be used to

discriminate among competing designs [see Silvey (1980) or Pukelsheim (1993)].

Most of these criteria, reflect the problem of efficient parameter estimation. If the estimation

of the slope η′(x, λ) is of interest, a common estimate is given by

η̂ = η′(x, λ̂),

where λ̂ denotes the nonlinear least squares estimate. A straightforward application of the

delta method now shows that the variance of this estimate is approximately proportional to

Var(η̂) =
σ2

N

(
∂

∂λ
η′(x, λ)

)
M−(ξ, λ)

∂

∂λ
η′(x, λ) · (1 + o(1))

=
σ2

N
(f ′(x, λ))

T
M−(ξ, λ)f ′(x, λ) · (1 + o(1)) ,

where it is assumed that the vector f ′(x, λ) = (f ′1(x, λ), . . . , f ′2m(x, λ))T is estimable by the

design ξ, i.e. f ′(t, λ) ∈ Range (M(ξ, λ)), and

(2.4) f ′(x, λ) =
∂

∂x
f(x, λ)

denotes the derivative of the vector f with respect to x. Throughout this paper we define

(2.5) Φ(x, ξ, λ) =

{
(f ′(x, λ))TM−(ξ, λ)f ′(x, λ) if f ′(x, λ) ∈ Range (M(ξ, λ)),

∞ else.
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as the term depending on the design ξ in this expression and call a design ξ∗ minimizing

Φ(x, ξ, λ) in the class of all (approximate) designs satisfying f ′(x, λ) ∈ Range (M(ξ, λ)) op-

timal for estimating the slope of expected response in model (1.1). Note that the criterion

(2.5) corresponds to a c-optimal design problem in the linear regression model θTf(t, λ),

which has found considerable interest in the literature [see e.g. Studden (1968), Ford et al.

(1992), Studden (2005) among many others]. Moreover, the criterion depends on the param-

eter λ and following Chernoff (1953), we assume that a preliminary guess for this parameter

is available. This corresponds to the concept of locally optimal designs, which are used as

benchmarks of commonly applied designs and form the basis for many optimal designs with

respect to more sophisticated optimality criteria.

Throughout this paper we assume that the functions f1, . . . , fm constitute a Chebyshev

system on the interval T [see Karlin and Studden (1966)]. Recall that a set of functions

g1, . . . , gm : T → R is called a weak Chebyshev system (on the interval T ) if there exists an

ε ∈ {−1, 1} such that

(2.6) ε ·

∣∣∣∣∣∣∣
g1(t1) . . . g1(tm)

...
. . .

...

gm(t1) . . . gm(tm)

∣∣∣∣∣∣∣ ≥ 0

for all t1, . . . , tm ∈ I with t1 < t2 < . . . < tm. If the inequality in (2.6) is strict, then

{g1, . . . , gm} is called Chebyshev system. It is well known [see Karlin and Studden (1966),

Theorem II 10.2] that if {g1, . . . , gm} is a weak Chebyshev system, then there exists a unique

function

(2.7)
m∑

i=1

c∗i gi(t) = c∗Tg(t),

with gT (t) = (g1(t), . . . , gm(t)) and the following properties

(i) |c∗Tg(t)| ≤ 1 ∀ t ∈ T
(2.8)

(ii) there exist m points s1 < . . . < sm such that c∗Tg(si) = (−1)i i = 1, . . . ,m.

The function c∗Tg(t) is called Chebyshev polynomial, the points s1, . . . , sm are called Cheby-

shev points and need not to be unique. They are unique if 1 ∈ span{g1, . . . , gm},m ≥ 1 and

I is a bounded and closed interval, where in this case s1 = minx∈I x, sm = maxx∈I x. It is well

known [see Studden (1968)] that in many cases c-optimal designs are supported at Chebyshev

points. Recall that the functions g1(x), . . . , gm(x) generate an extended Chebyshev system

of order 2 on the set Z = [a, b] ∪ [a′, b′] if and only if

U∗

(
1 . . . m

x1 . . . xm

)
> 0

5



for all x1 ≤ · · · ≤ xm (xj ∈ X ; j = 1, . . . ,m) where equality occurs at most at 2 consecutive

points xj, the determinant U∗ is defined by

U∗

(
1 . . . m

x1 . . . xm

)
= det(g(x1), . . . , g(xm))

and the two columns g(xi), g(xi+1) are replaced by g(xi), g
′(xi+1) if the points xi and xi+1

coincide. Note that under this assumption any linear combination

m∑
i=1

αigi(x)

(α1, . . . , αm ∈ R,
∑m

i=1 α
2
i 6= 0) has at most m − 1 roots, where multiple roots are counted

twice [see Karlin and Studden (1966), Ch. 1]. We begin with a result which shows that the

optimal design for estimating the slope in the nonlinear regression model (1.1) only depends

on the “nonlinear” parameters b1, b2 . . . , bm of the model.

Lemma 2.1 In the nonlinear regression model (1.1) the optimal design for estimating the

slope of the expected response at a point x does not depend on the parameters a1, . . . , am.

Proof. With the notation λ1 = (1, b1, 1, b2, . . . , 1, bm)T we obtain, observing the definition

of the vectors f(x, λ) and f ′(x, λ) in (2.3) and (2.4),

f(x, λ) = Laf(x, λ1) , f ′(x, λ) = Laf
′(x, λ1),

where the matrix La is given by

La =


1 0 0 0 · · · 0 0

0 a1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 am

 .

By the definition of the information matrix this yields for f ′(x, λ) ∈ Range (M(ξ, λ))

Φ(x, ξ, λ) = (f ′(x, λ))TM−(ξ, λ)f ′(x, λ) = (f ′(x, λ1))TLT
a (LT

a )−M−(ξ, λ1)L−a Laf
′(x, λ1)

= (f ′(x, λ1))TM−(ξ, λ1)f ′(x, λ1) = Φ(x, ξ, λ1),

which proves the assertion of the Lemma. 2

Our next result specifies the number of support points of the locally optimal design for

estimating the slope of the expected response in the nonlinear regression model (1.1). A

similar result was recently derived in a paper of Dette et al. (2009) and the following proof

is obtained by exactly the same arguments.
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Theorem 2.1 Assume that the functions f1, . . . , f2m defined in (2.3) form an extended

Chebyshev system of second order on the interval T , then the number of support points

of any optimal design for estimating the slope of the expected response in the nonlinear re-

gression model (1.1) is at least 2m − 1. Moreover, if the number of support points is 2m,

then these points must be Chebyshev points defined by (2.8). In this case at least one of

these points coincides with a boundary of the design interval. If the constant function is an

element of span{f1, . . . , f2m} then the number of support points is at most 2m .

Remark 2.1 If the design has 2m support points it follows by standard arguments of opti-

mal design theory [see for example Pukelsheim and Torsney (1991)] that the weights at the

support points are given by

ω∗i =
|eT

i F
−1f ′(x, λ)|∑2m

i=1 |eT
i F
−1f ′(x, λ)|

, i = 1, . . . , 2m

where the matrix F is given by F = (f(s1, λ), . . . , f(s2m, λ)) and s1, . . . , s2m denote the

support points of the optimal design (i.e. the Chebyhev points of the system f1, . . . , f2m).

Moreover, it is also worthwhile to mention that in this case if follows from Theorem 2.1 that

the support points do not depend on the particular point x, where the estimation of the

slope has to be performed.

For the construction of the locally optimal designs for estimating the slope we use the

functional approach, which is described in Melas (2006) and allows us to calculate support

points and weights of the optimal design ξ∗x for estimating the slope as a function of the

point x, where the estimate of the slope of the regression is required. To be precise, we

assume that the number of support points of the design ξ∗x is constant, say n ∈ N, the

smallest support point, say t1, is equal to the left boundary of the design interval T and

the largest support point, say tn, is an interior point of the design space, if x is contained

in some interval, say [a∗, b∗) ⊆ [0,∞). All other cases can be considered in a similar way.

We collect the information of the design ξ∗x given by its support points t∗i (x) and its weights

ω∗i (x) (i = 1, . . . , n) in a vector valued function

Θ∗(x) = (t∗2(x), . . . , t∗n(x), ω∗1(x), . . . , ω∗n−1(x))T ,

and consider a system of equations

(2.9)
∂Φ(x, ξ, λ)

∂Θ
= 0.

From the necessary conditions for an extremum it follows that the vector valued function

Θ∗(x) corresponding to the optimal design ξ∗x for estimating the slope in the nonlinear

7



regression (1.1) is a solution of the system (2.9). The Jacobi matrix of this system is given

by

(2.10) J(x, ξ) =

(
∂2

∂Θi∂Θj

Φ(x, ξ, λ)

)2n−2

i,j=1

∈ R(2n−2)×(2n−2).

If the Jacobi matrix is nonsingular, for some point x0, then we obtain by a straightforward

application of the implicit function theorem [see e.g. Gunning and Rossi (1965)] that in a

neighbourhood of this point there exists an analytic function Θ∗(x), which is a solution of

system (2.9) and corresponds to the locally optimal design for estimating the slope in the

nonlinear regression model. Moreover, if one is able to find a solution Θ∗(x0) of this system

at a particular point x = x0, then one can construct a Taylor expansion for the support

points and weights of Θ∗(x) of the optimal design for all x in a neighborhood of point x0.

The coefficients of this expansion can be determined recursively as stated in the following

theorem, which has been proved by Dette et al. (2004b).

Theorem 2.2 If the Jacobi matrix defined in (2.10) is a nonsingular matrix at some point

x0 ∈ (−∞,∞), then the coefficients Θ∗(j, x0) of the Taylor expansion of the vector valued

function

Θ∗(x) = Θ∗(x0) +
∞∑

j=1

1

j!
·Θ∗(j, x0)(x− x0)j

can be obtained recursively in the neighborhood of point x0, that is

Θ∗(s+ 1, x0) = −J−1(x0, ξ
x
x0

)

(
d

dx

)s+1

h(Θ̃∗(s)(x), x) |x=x0 , s = 0, 1, 2, . . .

where the polynomial Θ̃∗(s)(x) of s-th degree is defined by

Θ̃∗(s)(x) = Θ∗(x0) +
s∑

j=1

Θ∗(j, x0)(x− x0)j

and the function h is given by

h(Θ̃, x) =
∂

∂Θ
Φ(x, ξ, λ) |Θ=Θ̃ .

In the following result we will prove that the Jacobi matrix of the system (2.9) is nonsingular

if the number of support points of the locally optimal design for estimating the slope in the

regression model (1.1) is 2m − 1 or 2m. Note that there always exists an optimal design

for estimating the slope of the expected response with at most 2m support points [see for

example Pukelsheim (1993), p. 190], and consequently by Theorem 2.1 there exist optimal

designs with 2m− 1 or 2m support points. As a consequence, the coefficients in the Taylor

expansion of the function Θ∗(x), which represents the support points and weights of the

locally optimal design for estimating the slope of the expected response at the point x, can

be obtained by the recursive formulas stated in the previous theorem.
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Theorem 2.3 Consider the nonlinear regression model (1.1) with corresponding system

(2.9). The Jacobi matrix of this system is nonsingular, whenever the optimal design for

estimating the slope in the nonlinear regression model (1.1) on the design space T = [a, b],

where a < b are arbitrary numbers, has n = 2m or 2m− 1 support points.

Proof. We only consider the case n = 2m− 1, t∗1 = a, the other cases are treated similarly.

An application of Cauchys inequality yields

Φ(x, ξ, λ) = f ′(x, λ)TM−(ξ, λ)f ′(x, λ) = sup
q∈R2m

(qTf ′(x, λ))2

qTM(ξ, λ)q
=

(q∗(ξ)Tf ′(x, λ))2

q∗(ξ)TM(ξ, λ)q∗(ξ)
,

where the last identity defines the vector q∗ in an obvious manner and we put without loss

of generality q∗2m = 1.

Let us introduce the notation

Ψ(x, q, ξ, λ) =
qTM(ξ, λ)q

(qTf ′(x, λ))2
, q ∈ R2m

Θ̂ = (q1, . . . , q2m−1, t2(x), . . . , t2m−1(x), ω2(x), . . . , ω2m−1(x))T ,

Θ = (t2(x), . . . , t2m−1(x), ω2(x), . . . , ω2m−1(x))T .

(note that we consider the case where the point a is a support point of the optimal design).

Note that Φ(x, ξ, λ) = Ψ(x, q, ξ, λ), where q = q∗(ξ). Denote by J the Jacobi matrix of the

system of equations

(2.11)
∂Φ(x, ξ, λ)

∂Θ
= 0.

and by Ĵ the Jacobi matrix of the system

(2.12)
∂Ψ(x, q, ξ, λ)

∂Θ̂
= 0.

Note that the non-singularity of J follows from the non-singularity of Ĵ . More precisely, we

have by the formula for the derivative that

J = GT ĴG,

where GT = (I
...R) ∈ R4m−4×6m−5, I is the identity matrix of size (4m− 4)× (2m− 4) and R

is a (4m− 4)× (2m− 1) matrix. Note that both matrices J and Ĵ are nonnegative definite

(since they correspond to a local maximum of the determinant of the information matrix).

Suppose that J is a singular matrix. Then there exists a vector c 6= 0 such that cTJc = 0,

and due to the above formula, there exists vector b = Gc 6= 0 and such bT Ĵb = 0. Therefore

it follows that if the matrix Ĵ is nonsingular then the matrix J is also nonsingular.
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In order to prove that the matrix Ĵ is nonsingular we use the formulas

∂2

∂x2

(
U(x, y)

V (x)

)
=

∂2U(x,y)
∂x2

V (x)
− 2

∂U(x,y)
∂x

∂V (x)
∂x

V (x)2
+ 2

U(x, y)
(

∂V (x)
∂x

)2

V (x)3
−
U(x, y)∂2V (x,y)

∂x2

V (x)2

∂

∂x

(
U(x, y)

V (x)

)
=

∂U(x,y)
∂x

V (x)
−
U(x, y)∂V (x)

∂x

V (x)2

∂2

∂x∂y

(
U(x, y)

V (x)

)
=

∂2U(x,y)
∂x∂y

V (x)
−

∂U(x,y)
∂y

∂V (x)
∂x

V (x)2
.

With the notation U(q,Θ) = qTM(ξ, λ)q, V (q) = (qTf ′(x, λ))2, c1 = (V (q∗(ξ∗)))−1, c2 =

U(q∗(ξ∗),Θ∗)c1 we obtain observing the condition

∂

∂q

(
U(q,Θ)

V (q)

) ∣∣∣∣
q=q∗

= 0

the identity

∂2

∂q2

(
U(q,Θ)

V (q)

)
|q=q∗ =

∂2U(q,Θ)
∂q2

V (q)
−
U(q,Θ)∂2V (q,Θ)

∂q2

V (q)2

∣∣∣∣
q=q∗

.

Similarly, the condition

∂

∂Θ

(
U(q,Θ)

V (q)

) ∣∣∣∣
Θ=Θ∗

=
∂U(q,Θ)

∂Θ

V (q)

∣∣∣∣
Θ=Θ∗

= 0

yields
∂2

∂q∂Θ

(
U(q,Θ)

V (q)

) ∣∣∣∣
Θ̂=Θ̂∗

= c1
∂2U(q,Θ)

∂q∂Θ

∣∣∣∣
Θ̂=Θ̂∗

The derivatives can now be easily calculated, that is

∂2

∂q2

(
U(q,Θ)

V (q)

) ∣∣∣∣
Θ̂=Θ̂∗

= c1M(ξ∗, λ)− c2c1f
′(x)f ′(x)T .

We now prove that this matrix is nonnegative definite. For this purpose note that we have

for any vector p, such that p 6= q∗(ξ∗) and pTf ′(x)f ′(x)Tp 6= 0:

pT (c1M(ξ∗, λ)− c2c1f
′(x)f ′(x)T )p = c1(pTf ′(x))2

(
pTM(ξ∗, λ)p

(pTf ′(x))2
− c2

)
> 0

In particular, if p = q∗(ξ∗) then it follows, that

c1q
∗(ξ∗)TM(ξ∗, λ)q∗(ξ∗)− c2c1(q∗(ξ∗)Tf ′(x))2 = c2 − c2 = 0.
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Consequently, the Jacobi Matrix is given by

Ĵ =

 D c1B
T
1 c1B

T
2

c1B1 c1E 0

c1B2 0 0

 ,

where D is obtained from the matrix D̂ = c1(M(ξ∗, λ) − c2f
′(x)f ′(x)T ) ≥ 0 deleting the

last column and row and matrices B1, B2 and E are the same as in Dette et al. (2004b),

p.208, formula (3.18). In that paper a polynomial regression is considered, but all arguments

require only the Chebyshev properties of polynomials.

Repeating the arguments from that paper we obtain that the matrix Ĵ is a nonsingular

matrix. Consequently the assertion of the Theorem follows. 2

If the assumptions of Theorem 2.2 and Theorem 2.3 are satisfied, the functional approach can

be easily used for constructing any optimal design for estimating the slope in the nonlinear

regression model (1.1). In the following sections we will illustrate this concept in two concrete

examples.

3 Optimal designs for estimating the slope in exponen-

tial regression models

For the special choice (1.2) the nonlinear regression model reduced to the exponential re-

gression model

(3.1) Y = η1(t, λ) + ε =
m∑

i=1

ai exp(bi t) + ε,

where λ = (a1, b1, a2, b2, . . . , am, bm)T denotes the vector of unknown parameters and the

explanatory variable varies in the interval T = [0, T1]. It is easy to see that this model

satisfies the assumptions of Theorem 2.3. In order to illustrate the general procedure we

have considered the model (3.1) for m = 2 and have constructed locally optimal designs

for estimating the slope in this model by the functional approach, which was described in

previous section. The vector of parameters is given by λ = (1, 0.5, 1, 1)T and the design

interval is T = [0, 1]. As it was pointed out in the previous section, there exist two types of

optimal designs, namely a design with four support points including the boundary points of

the design space, i.e.

ξ∗(x) =

(
0 t∗2(x) t∗3(x) 1

ω∗1(x) ω∗2(x) ω∗3(x) ω∗4(x)

)
,
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where 0 < t∗2(x) < t∗3(x) < 1 and the weights are described in Remark 2.1. The design of the

second type has only three support points and is of the form

ξ∗(x) =

(
t∗1(x) t∗2(x) t∗3(x)

ω∗1(x) ω∗2(x) ω∗3(x)

)
,

where 0 ≤ t∗1(x) < t∗2(x)) < t∗3(x) ≤ 1. In a first step we have to find the optimal design for

the estimation of the slope in the exponential regression model (3.1) at a particular point,

and we chose x0 = 0 for this purpose. The optimal design is of the first type and given by

ξ∗(0) =

(
0 0.3011 0.7926 1

0.3509 0.4438 0.1491 0.0562

)
.

By Theorem 2.2 the design is of this form in a neighbourhood of the point x0, where the

support remains unchanged. Therefore, we can use the representation of the weights in

Remark 2.1 to determine the point, where the type of the design changes. To be precise we

determine the minimal point x1 > x0 = 0 such that one of the equations

ω∗i (x) =
|eT

i F
−1f ′(x, λ)|∑m

i=1 |eT
i F
−1f ′(x, λ)|

= 0,

(i = 1, . . . , 4) is satisfied, which yields x1 = 0.1457165222. In the interval I0 = [x0, x1)

the Jacobi matrix of the system (2.11) is non-singular and therefore we can use the for-

mulas from the Theorem 2.2 to determine the coefficients in the Taylor expansion of the

function Θ∗(x). Note that there exists an interval I1 = (x1, x2) such that for x ∈ I1, the

optimal design for estimating the slope in the exponential regression model (3.1) at the

point x is of type 2 and has only three support points. The points and weights are now

obtained by a further Taylor expansion and the procedure is continued for the other in-

tervals. The weights and points are depicted in Figure 3 as a function of the point x,

where the slope has to be estimated. We observe that the type of design changes several

times, when x varies in the interval [0, 2.7]. In particular it is of type one if and only if

x ∈ [0, 0.1457165222] ∪ [0.500137, 0.587461] ∪ [0.9092241459, 2.7]

In the previous example the vector of parameters required for the calculation of the locally

optimal design was fixed and we have varied the point x, where the estimation of the slope

should be performed. In order to study the sensitivity of the locally optimal design with

respect to the choice of the initial parameters we next construct optimal designs on the

interval [0, 1] for estimating the slope of the expected response in the nonlinear regression

model (3.1) at the point x = 1, where the parameter b1 varies in the interval [0.1, 4] and

the parameter b2 = 1 is fixed such that (b1 6= b2). The weights and points of the locally

12



Figure 1: The points (left) and weights (right) of the optimal design for estimating the slope

of the expected response in the nonlinear regression model (3.1) at the point x ∈ [0, 2.7]. The

design interval is given by [0, 1], m = 2, and vector of parameters is λ = (1, 0.5, 1, 1)T .

optimal design for estimating the slope of the expected response in the nonlinear regression

model (3.1) at the point x = 1 are depicted in Figure 2. We observe that the locally optimal

designs are rather robust with respect to changes in the initial parameter b1. In particular

the weights are nearly not changing, while there appear small changes in the interior support

points.

The D-optimal design is efficient for estimating the parameters. By the famous equivalence

theorem of Kiefer and Wolfowitz (1960) it is also (minimax-) efficient for estimating the

expected response. Therefore, it is of particular interest to investigate the efficiency of the

this design for estimating the slope of the expected response. To be precise, we define the

function

(3.2) eff(x, ξ1, ξ2, λ) =
Φ(x, ξ2, λ)

Φ(x, ξ1, λ)
,

which is called the efficiency of the design ξ1 relative to the design ξ2 for estimating the slope

of the expected response in the nonlinear regression model (1.1). Note that these efficiencies

will depend on the particular point x, where the estimation of the slope is performed, and

on the nonlinear parameters in the model. We first fix the vector of parameters, say λ =

(1, 0.5, 1, 1)T and vary the point x. The corresponding efficiencies of the D-optimal design

13



Figure 2: The points (left) and weights (right) of the optimal design for estimating the slope

of the expected response in the nonlinear regression model (3.1) at the point x = 1. The

design interval is given by [0, 1], m = 2, and vector of parameters is λ = (1, b1, 1, 1)T , where

b1 varies in the interval [0.1, 4].

for estimating the slope of the expected response in the regression model (3.1) are depicted

in Figure 3. We observe that the efficiency is first decreasing to values smaller than 55%, but

for larger x the D-optimal design is rather efficient for estimating the slope of the expected

response in the regression model (3.1). It is interesting to note that the lowest efficiencies

are obtained for those values of x, where the design moves (as a function of x) from a

type one design to a type two design. Corresponding results for a fixed x = 0 and various

combinations of the nonlinear parameters (b1, b2) are shown in Table 1. We observe that the

efficiencies are approximately given by 72% and do not change substantially with (b1, b2).

4 Optimal designs for estimating the slope in rational

regression models

For the special choice (1.3) the nonlinear regression model (1.1) reduces to the rational

regression model, that is

(4.1) Y = η2(t, λ) + ε =
m∑

i=1

ai

t+ bi
+ ε,
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Figure 3: The efficiency of the D-optimal design relative to the optimal design for estimating

the slope of the expected response in the regression model (3.1) at the point x ∈ [0, 2.7].

The design interval is given by [0, 1], m = 2, and the vector of parameters is given by

λ = (1, 0.5, 1, 1).

where λ = (a1, b1, a2, b2 . . . , am, bm)T are the unknown parameters and the explanatory vari-

able varies in the interval T = [0, T1]. This model satisfies the assumptions of Theorem 2.3.

Again we consider the model of second order, i.e. m = 2, and construct locally optimal

designs for estimating the expected response using the functional approach. The design in-

terval is given by [0, 1]. The locally optimal designs are either three or four point designs,

where in the latter case observations have to be taken at the boundary of the design interval.

For the vector λ = (1, 0.5, 1, 1)T and the point x = 0 the locally optimal design for estimating

the slope of the expected response in the model (4.1) is given by

ξ∗(0) =

(
0 0.09519 0.47065 1

0.35088 0.44128 0.14785 0.05999

)
If x < 0.0574321 the optimal design is of the same structure, but for x > 0.0574321 a

three point design is optimal as long as x < 0.1973301. The weights and points of the

optimal design for estimating the slope in the rational regression model (4.1) are depicted

in Figure 4. We observe that the type of design (3 or 4 support points) is changing several

times. In particular the optimal design for estimating the slope in the expected response of

the rational regression model (4.1) is supported at 4 points, whenever x ∈ [0, 0.0574321] ∪
[0.1973301, 0.2801163] ∪ [0.69737, 3.01762] ∪ [4.478661,∞).

Next we study the sensitivity of the locally optimal design for estimating the slope on the

initial parameters b1 and b2. Similarly as in the exponential case we fix the point where the

slope has to be estimated, i.e. x = 0, and vary the parameter b1 in the interval [0.1, 4]. The

weights and support points of the optimal design for estimating the slope of the expected
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b1/b2 0.1 0.2 0.3 0.4 0.5 1 1.5 2 5

0.1 - 0.7234 0.7235 0.7233 0.7233 0.7230 0.7223 0.7212 0.7015

0.2 0.7228 - 0.7226 0.7233 0.7232 0.7235 0.7230 0.7222 0.7049

0.3 0.7233 0.7241 - 0.7238 0.7239 0.7239 0.7238 0.7232 0.7071

0.4 0.7232 0.7233 0.7234 - 0.7220 0.7243 0.7245 0.7241 0.7102

0.5 0.7231 0.7235 0.7237 0.7261 - 0.7248 0.7251 0.7251 0.7126

1 0.7230 0.7235 0.7239 0.7244 0.7248 - 0.7282 0.7295 0.7240

1.5 0.7224 0.7230 0.7238 0.7244 0.7252 0.7281 - 0.7328 0.7287

2 0.7212 0.7222 0.7232 0.7241 0.7251 0.7295 0.7333 - 0.7163

5 0.7015 0.7049 0.7072 0.7102 0.7126 0.7240 0.7287 0.7163 -

Table 1: The efficiency of the D-optimal design relative to the optimal design for estimating

the slope of the expected response in the regression model (3.1) at the point x = 0 . The design

interval is given by [0, 1], m = 2, and various combinations of the nonlinear parameters

(b1, b2) are considered.

response in the rational regression model (4.1) are depicted in Figure 4. We observe again

that the design is rather stable with respect to the changes in the parameter b1.

Finally we consider the efficiency of the D-optimal design for estimating the slope of the

expected response in the regression model (4.1). First we fix the vector of parameters

λ = (1, 0.5, 1, 1)T and consider the efficiency of the D-optimal design for estimating the

slope in the rational regression at the point x ∈ [0, 6.2]. These efficiencies are depicted in

Figure 6. For values of x, where the design changes from type one to type two, the efficiencies

are smaller than 50%, while the largest efficiencies are approximately 80%. The efficiencies

of the D-optimal design for estimating the slope of the expected response at the point x = 0

for various values of the parameters b1 and b2 are shown in Table 2. We observe again

that there are no substantial changes in the efficiencies for different parameters (b1, b2). All

efficiencies vary between 70% and 75%.
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Figure 4: The points (left) and weights (right) of the optimal design for estimating the slope

of the expected response in the nonlinear regression model (4.1) at the point x ∈ [0, 7]. The

design interval is given by [0, 1], m = 2, and vector of parameters is λ = (1, 0.5, 1, 1)T .

Figure 5: The points (left) and weights (right) of the optimal design for estimating the slope

of the expected response in the nonlinear regression model (4.1) at the point x = 0. The

design interval is given by [0, 1], m = 2, and vector of parameters is λ = (1, b1, 1, 1)T , where

b1 varies in the interval [0.1, 4].
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Figure 6: The efficiency of the D-optimal design relative to the optimal design for estimating

the slope of the expected response in the regression model (4.1) at the point x ∈ [0, 6.2].

The design interval is given by [0, 1], m = 2, and the vector of parameters is given by

λ = (1, 0.5, 1, 1).

b1/b2 0.1 0.2 0.3 0.4 0.5 1 1.5 2 5

0.1 - 0.7422 0.7491 0.7531 0.7451 0.7243 0.7155 0.7107 0.7008

0.2 0.7422 - 0.7573 0.7502 0.7450 0.7301 0.7234 0.7196 0.7116

0.3 0.7491 0.7573 - 0.7462 0.7424 0.7313 0.7261 0.7230 0.7162

0.4 0.7531 0.7502 0.7462 - 0.7399 0.7314 0.7272 0.7246 0.7188

0.5 0.7451 0.7448 0.7425 0.7402 - 0.7311 0.7275 0.7253 0.7203

1.0 0.7244 0.7301 0.7314 0.7314 0.7311 - 0.7270 0.7260 0.7231

1.5 0.7155 0.7234 0.7261 0.7272 0.7276 0.7273 - 0.7256 0.7239

2.0 0.7107 0.7196 0.7230 0.7245 0.7253 0.7259 0.7259 - 0.7239

5.0 0.7008 0.7115 0.7162 0.7188 0.7203 0.7231 0.7239 0.7239 -

Table 2: The efficiency of the D-optimal design relative to the optimal design for estimating

the slope of the expected response in the regression model (4.1) at the point x = 0. The design

interval is given by [0, 1], m = 2, and the vector of parameters is given by λ = (1, 0.5, 1, 1).
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