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Abstract

We propose a new test for constant correlation. It bases on successively estimated cor-

relations and compares these with the estimated correlation of the whole data set. In

contrast to existing tests for this problem, our test does not require that possible change

points are known or that there is normality in the data. To derive the asymptotic null

distribution, we develop a generalized delta-method on function spaces. Here, the consid-

ered random function is not multiplied by a scalar, but by another function. To achieve

this, we generalize the concept of Hadamard differentiability. We show analytically that

the test has non-trivial power against local alternatives. A simulation study confirms our

analytical findings.
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1 Introduction

This paper presents a new fluctuation test for the null hypothesis of constant correlation in a

bivariate sample. Many existing tests for this problem look for a change point in the correlation

which is assumed to be known. The time series is separated into several parts and one assumes

that the correlation is constant in these parts. Hence, one obtains different χ2-tests, see Tang

(1995), Jennrich (1970) and Pearson und Wilks (1933) for example.

Fischer (2007) uses another approach. He tests whether the correlations change according to

special trigonometric functions. This approach is more flexible but the author does not calcu-

late the (exact or asymptotic) distribution of his test statistics.

In this paper, we propose a fluctuation test for constant correlation with a test statistic whose

asymptotic distribution we can calculate exactly. The basic idea is to reject the null hypothesis

if the empirical correlations fluctuate too much. A comparable approach was used in Ploberger

et al. (1989) or Sen (1980), albeit for the parameters in the linear regression model. Our as-

sumptions are weaker than the assumptions proposed by Fischer (2007), Tang (1995), Jennrich

(1970) or Pearson und Wilks (1933). We do not need that possible change points are known,

we allow for m-dependence in the data and the variances need not be constant. Additionally,

the test is non-parametric, especially the normality assumption is not needed.

The asymptotic null distribution is the distribution of the maximum of the absolute value of a

one-dimensional Brownian bridge. To derive it, we extend the concept of the delta-method on

function spaces to the case where the considered random function is not multiplied by a scalar

but by another function. For this, we develop a generalization of Hadamard differentiability.

To our knowledge, these generalizations have not been proposed in the literature before.

One possible field of application is econometrics. The question here is whether one can confirm

the often discussed diversification meltdown - the fact that correlations are higher in bear mar-

kets than in bull markets - empirically. This question is very relevant for the portfolio theory

basing on Markowitz (1952). Since the normality assumption is not needed, we can apply the
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test e.g. on data from a t-distribution which is very popular to model stock returns.

There is a broad literature concerning this problem. Longin und Solnik (1995) find empirical

evidence for the diversification meltdown examining stock indices from seven countries for the

period 1960 to 1990. Ragea (2003) gets a different result. He looks at daily returns for the

period 1999 to 2002. Despite hectic on the markets (e.g. because of september 11th) the cor-

relations seem to be constant. King et al. (1994) point out that changes in correlation between

markets are driven mostly by movements in unobservable variables.

The next section presents the test statistic and its asymptotic null distribution. The third

section analyzes the local power. The fourth section presents a simulation study and in the

fifth section, we apply the test to stock returns. All proofs are deferred to the appendix.

2 The test statistic and its asymptotic null distribution

Let (Xi, Yi)
′
, i ∈ {1, . . . , T}, be bivariate random vectors with finite (4 +α∗)th moments for an

α∗ > 0. We want to test whether the correlation between Xi and Yi,

ρi =
Cov(Xi, Yi)√

V ar(Xi)
√
V ar(Yi)

,

is constant for all i:

H0 : ρi = ρ0∀ i ∈ {1, . . . , T} vs. H1 : ∃i ∈ {1, . . . , T − 1} with ρi 6= ρi+1

for a constant ρ0 ∈ (−1, 1). Let

τ(z) = [2 + z(T − 2)], z ∈ [0, 1], X̄k =
1

k

k∑
i=1

Xi, Ȳk =
1

k

k∑
i=1

Yi,

(X2)k =
1

k

k∑
i=1

X2
i , (Y 2)k =

1

k

k∑
i=1

Y 2
i , (XY )k =

1

k

k∑
i=1

XiYi,

ρ̂k =

∑k
i=1(Xi − X̄k)(Yi − Ȳk)√∑k

i=1(Xi − X̄k)2

√∑k
i=1(Yi − Ȳk)2

. (1)

Expression (1) describes the empirical correlation coefficient, calculated from the first k obser-

vations. The test statistic is defined as

QT (X, Y ) = c max
2≤j≤T

j√
T
|ρ̂j − ρ̂T |,
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where c is a constant which is used to derive the asymptotic null distribution in explicit form.

It is cumbersome to write down, for the case of independence it can be found in appendix A.1.

The test rejects the null hypothesis of constant correlation if the empirical correlations

fluctuate too much. This fluctuation is expressed in the term max2≤j≤T |ρ̂j − ρ̂T |. Because of

the weighting factor j√
T

, deviations at the beginning are tied down compared to deviations in

the end. This compensates for the fact that ρ̂j tends to fluctuate more at the beginning where

it is calculated from fewer observations.

We impose the following assumptions:

(A1) The random variables Xi and Yi, i ∈ {1, . . . , T}, are defined on a common probability

space (Ω,A,P).

(A2) E(Xi) = E(Yi) = 0 ∀ i ∈ {1, . . . , T}.

(A3) Let

Ui :=

(
X2
i − E(X2

i ) Y 2
i − E(Y 2

i ) Xi Yi XiYi − E(XiYi)

)′
and Sj :=

∑j
i=1 Ui, then

lim
T→∞

E
(

1

T
STS

′
T

)
= lim

min(k,T )→∞
E
(

1

T
(Sk+T − Sk)(Sk+T − Sk)′

)
= plimT→∞

1

T
STS

′
T =: D1 >L 0,

where >L 0 means that D1 is positive definite.

(A4) The (2 +α)th moments of the components of Ui are uniformly bounded for an α > 0, the

quadratic components of Ui are uniformly integrable.

(A5) The random vectors (Xi, Yi) and (Xi+n, Yi+n) are independent for all i and n > m for a

number m ∈ N, thus they are m-dependent.

(A6) Under H0, for f(i) ∈ {E(X2
i ),E(Y 2

i ),E(XiYi)} it holds f(i) = cf + dfi with

lim
T→∞

1√
T

τ(z)∑
i=1

dfi = lim
T→∞

1

T

T∑
i=1

d2
fi = 0
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for every z ∈ [0, 1] and

cE(X2
i ) =: σ2

x, cE(Y 2
i ) =: σ2

y, cE(XiYi) =: σxy.

With this assumption,

1

T

T∑
i=1

f(i)− cf = o(
1√
T

).

In addition, we assume that all these moments are uniformly bounded.

(A7) For j ∈ {0, . . . ,m} and

g(i, j) ∈{Cov(X2
i , X

2
i+j), Cov(X2

i , Y
2
i+j), Cov(X2

i , Xi+jYi+j),

Cov(Y 2
i , Y

2
i+j), Cov(Y 2

i , Xi+jYi+j), Cov(XiYi, Xi+jYi+j)}

we have

lim
T→∞

1

T

T∑
i=1

g(i, j) = cgj ∀j ∈ {0, . . . ,m− 1}.

In addition, we assume that all these moments are uniformly bounded.

Because of assumption (A4), E(X4+α∗

i ) < ∞, E(Y 4+α∗

i ) < ∞ ∀ i ∈ {1, . . . , T} for an α∗ > 0,

there is no assumption on the fifth moments. Assumption (A6) does not restrict these moments

to be asymptotically equal but that the moments may not fluctuate too much. The assumption

can be weakened to

(A8) For a bounded function g that is not identically zero and that can be approximated by

step functions,

E(X2
i ) = a2 + a2

1√
T
g

(
i

T

)
E(Y 2

i ) = a3 + a3
1√
T
g

(
i

T

)
E(XiYi) = a1 + a1

1√
T
g

(
i

T

)
.
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This a situation in which the variances fluctuate in a similar way; this is realistic for the

modeling of stock returns. A typical example for the function g is

g(z) =


0, z ≤ z0,

g0, z > z0.

This assumption does not contradict the other ones except of (A6). It is violated because

Cov(Xi, Yi) = σxy + di with

lim
T→∞

1√
T

τ(z)∑
i=1

di = lim
T→∞

1

T

τ(z)∑
i=1

g

(
i

T

)
=

∫ z

0

g(u)du 6= 0

for at least one z ∈ [0, 1].

We rewrite the test statistic as sup0≤z≤1 |KT (z)| with

KT (z) = c
τ(z)√
T

(ρ̂τ(z) − ρ̂T ). (2)

Our main result is

Theorem 2.1. Under H0 and assumptions (A1) - (A7) or (A1) - (A5), (A7) and (A8),

sup
0≤z≤1

|KT (z)| →d sup
0≤z≤1

|B(z)|.

Here, B is the one-dimensional Brownian bridge. The limit distribution is called Kolmogorov-

Smirnov-(KS-)distribution and has a distribution function with an explicit functional form, see

Billingsley (1968, p. 85). For the proof of theorem 2.1 which is given in appendix A.2, we

consider different function spaces, either D[ε, 1] for ε ≥ 0, or a product space in which each

component is either D[ε, 1] or D+[ε, 1], the space of càdlàg-functions whose values are bounded

away from zero. We always use the supremum norm together with the σ-field generated by the

open balls, see Davidson (1994, p. 435), Gill (1989) or Pollard (1984, chapter 4).

3 Local power

In this section, we consider local alternatives of the form

ρi,T = ρ0 +
1√
T
g

(
i

T

)
(i ∈ {1, . . . , T})
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with constant variances, i.e. we introduce

(A9) For g as in (A8),

E(X2
i ) = σ2

x

E(Y 2
i ) = σ2

y

E(XiYi) = σxy +
1√
T
g

(
i

T

)
.

All assumptions from section 2 except (A6) remain, especially assumption (A7) remains, maybe

with other limits. We get

Theorem 3.1. Under assumptions (A1) - (A5), (A7) and (A9),

sup
z∈[0,1]

∣∣∣∣cτ(z)√
T

(ρ̂τ(z) − ρT )

∣∣∣∣→d sup
z∈[0,1]

|B(z) + C(z)|,

where C(z) is a deterministic function.

The proof is in appendix A.4.

For local alternatives the supremum is now taken over the absolute value of a Brownian bridge

plus a deterministic function C(z). Its distribution is rather unwieldy, but we get a result for

the local power for arbitrarily large g. For this, we rewrite assumption (A9) to g(z) = Mh(z)

for a function h and a constant M . It follows

Corollary 3.2. Let PH1(M) be the rejection probability for given M if the alternative is true.

Let ε > 0 and h arbitrary but not constant. Then there is a M0 so that

lim
T→∞

PH1(M) > 1− ε

for all M > M0.

4 Some finite sample simulations

Next, we examine the finite sample null distribution for bivariate normal and bivariate t5-

distributions, each with constant variance V ar(Xi) = V ar(Yi) = 1. We use a theoretical level
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of 0.05 and generate 5000 repetitions. The motivation for the t5-distribution is that the t-

distribution is popular to model stock returns and that we need finite (4 + α∗)th moments for

the test.

The results are listed in table 1. In general, the test keeps the size; the lower |ρ|, the lower is

the size. For the t5-distribution, the test is rather conservative, especially for ρ = 0.

Table 1: Empirical level for the normal and t5-distribution under the null hypothesis

T ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

a) Normal distribution

200 0.105 0.048 0.043 0.052 0.093

500 0.059 0.041 0.038 0.045 0.063

1000 0.052 0.048 0.043 0.050 0.052

b) t5-distribution

200 0.095 0.053 0.031 0.049 0.093

500 0.062 0.040 0.034 0.044 0.059

1000 0.049 0.039 0.032 0.036 0.053

We compare the finite sample power for 5 different alternatives for bivariate t5-distributions,

each with constant variance V ar(Xi) = V ar(Yi) = 1 and 5000 replications (table 2). Here, we

assume that the covariance changes according to the principle in (A9).

(B1) ρi = 0.5, i ≤ T
2
, and ρi = 0.7, i > T

2
,

(B2) ρi = 0.5, i ≤ T
4
, and ρi = 0.7, i > T

4
,

(B3) ρi = −0.5, i ≤ T
2
, and ρi = 0.5, i > T

2
,

(B4) ρi = −0.5, i ≤ T
4
, and ρi = 0.5, i > T

4
,

(B5) ρi = 0.5, i ≤ T
4
, and ρi = 0.7, T

4
< i ≤ 3

4
T , and ρi = 0.5, i > 3

4
.

Table 2 shows that for higher T , the power increases for all alternatives.
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Table 2: Empirical power of the test for 5 different alternatives and the t5-distribution

Alternative T = 200 T = 500 T = 1000

(B1) 0.310 0.565 0.815

(B2) 0.258 0.455 0.689

(B3) 0.971 0.995 0.999

(B4) 0.926 0.991 0.997

(B5) 0.113 0.197 0.382

The differences between the different alternatives are underlined with an analysis of the different

functions C1 from theorem 3.1. It holds

(B1) C1(z) =


− 1

10

√
Tz, z ≤ 1

2
,

1
10

√
Tz − 1

10

√
T , z > 1

2
.

(B2) C1(z) =


− 3

20

√
Tz, z ≤ 1

4
,

1
20

√
Tz − 1

20

√
T , z > 1

4
.

(B3) C1(z) =


−1

2

√
Tz, z ≤ 1

2
,

1
2

√
Tz − 1

2

√
T , z > 1

2
.

(B4) C1(z) =


−3

4

√
Tz, z ≤ 1

4
,

1
4

√
Tz − 1

4

√
T , z > 1

4
.

(B5) C1(z) =



− 1
10

√
Tz, z ≤ 1

4
,

1
10

√
Tz − 1

20

√
T , 1

4
< z ≤ 3

4
,

− 1
10

√
Tz + 1

10

√
T , z > 3

4
.

The first four functions are triangle functions, the fifth one is a jagged function. The order of

the absolute maximums is listed in table 3, we can see that this order corresponds to the order
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of the empirical power. This makes sense because a higher absolute maximum leads more likely

to a rejection of the null hypothesis, see the shape in theorem 3.1. The fact that the maximums

are multiples of
√
T is reflected by the increase of the empirical power for higher T .

Table 3: Maximums of the power functions

Alternative (B3) (B4) (B1) (B2) (B5)

Maximum 1
4

√
T 3

16

√
T 1

20

√
T 3

80

√
T 1

40

√
T

5 Application to stock returns

We apply the fluctuation test to daily returns of Bank of America and McDonalds stocks for

the period 2003 to 2008. The data source is http://de.finance.yahoo.com/, the calculations

were made with R, version 2.8.0, on an Intel Core 2 Duo machine. Following the diversification

meltdown, the correlations should not be constant but become higher in the time of the financial

crisis. We have T = 1511 and we suppose that all assumptions are fulfilled. To simplify the

calculation, we assume the random vectors to be independent, hence we use the test statistic

with the constant ciid. The value of the test statistic is 3.328 and the p-value smaller than

0.001, thus the null hypothesis of constant correlation is clearly rejected. Figure 1 shows the

behavior of

PT (j) := c
j√
T
|ρ̂j − ρ̂T |

for all dates. The maximal value is taken on september 23rd, 2008, one week after september,

15th, the day on which Lehman Brothers announced insolvency. Since this day was the climax

of the worldwide financial crisis up to now, we can conclude that in this time, the correlations

changed structurally. Indeed, the estimated correlation in the time before september 23rd is

0.306 and 0.666 after it. With a test basing on known change points like Jennrich (1970), we

would not have been able to detect the change point.
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Figure 1: Behavior of PT for all dates
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A Appendix section

A.1 The constant from the test statistic

Lemma A.1. If the random vectors (Xi, Yi) are i.i.d., the standardizing factor ciid is given by

ciid =

√
F̂1D̂3,1 + F̂2D̂3,2 + F̂3D̂3,3

where

(
F̂1 F̂2 F̂3

)
=


D̂3,1Ê11 + D̂3,2Ê21 + D̂3,3Ê31

D̂3,1Ê12 + D̂3,2Ê22 + D̂3,3Ê32

D̂3,1Ê13 + D̂3,2Ê23 + D̂3,3Ê33



′

,
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Ê11 =
1

T

T∑
i=1

X4
i −

(
1

T

T∑
i=1

X2
i

)2

,

Ê12 = Ê21 =
1

T

T∑
i=1

X2
i Y

2
i −

1

T

T∑
i=1

X2
i

1

T

T∑
i=1

Y 2
i ,

Ê13 = Ê31 =
1

T

T∑
i=1

X3
i Yi −

1

T

T∑
i=1

X2
i

1

T

T∑
i=1

XiYi,

Ê22 =
1

T

T∑
i=1

Y 4
i −

(
1

T

T∑
i=1

Y 2
i

)2

,

Ê23 = Ê32 =
1

T

T∑
i=1

XiY
3
i −

1

T

T∑
i=1

Y 2
i

1

T

T∑
i=1

XiYi,

Ê33 =
1

T

T∑
i=1

X2
i Y

2
i −

(
1

T

T∑
i=1

XiYi

)2

,

D̂3,1 = −1

2

σ̂xy
σ̂y
σ̂−3
x , D̂3,2 = −1

2

σ̂xy
σ̂x

σ̂−3
y , D̂3,3 =

1

σ̂xσ̂y

where

σ̂2
x = (X2)T − (X̄T )2, σ̂2

y = (Y 2)T − (ȲT )2, σ̂xy = (XY )T − X̄T ȲT .

Proof. See the discussion before lemma A.4.

A.2 Proof of theorem 2.1 with assumptions (A1) - (A7)

For the proof of theorem 2.1 with assumptions (A1) - (A7), we need several lemmas as auxiliary

results. At first, we just consider the interval [ε, 1] for arbitrary ε > 0. The first lemma is

Lemma A.2. On D[ε, 1]5,

1√
T

τ(·)∑
i=1



X2
i − σ2

x

Y 2
i − σ2

y

Xi

Yi

XiYi − σxy


=
τ(·)√
T



(X2)τ(·) − σ2
x

(Y 2)τ(·) − σ2
y

X̄τ(·)

Ȳτ(·)

(XY )τ(·) − σxy


=: U(·)→d D

1
2
1 W5(·),

12



where W5(·) is a 5-dimensional Brownian motion and

D1 = D′1 = lim
T→∞

1

T

T∑
j=1

T∑
i=1

Cov(X2
i , X

2
j ) Cov(X2

i , Y
2
j ) Cov(X2

i , Xj) Cov(X2
i , Yj) Cov(X2

i , XjYj)

· Cov(Y 2
i , Y

2
j ) Cov(Y 2

i , Xj) Cov(Y 2
i , Yj) Cov(Y 2

i , XjYj)

· · Cov(Xi, Xj) Cov(Xi, Yj) Cov(Xi, XjYj)

· · · Cov(Yi, Yj) Cov(Yi, XjYj)

· · · · Cov(XiYi, XjYj)


.

Proof.

1√
T

τ(z)∑
i=1



X2
i − σ2

x

Y 2
i − σ2

y

Xi

Yi

XiYi − σxy


=

1√
T

τ(z)∑
i=1



X2
i − E(X2

i )

Y 2
i − E(Y 2

i )

Xi

Yi

XiYi − E(XiYi)


+

1√
T

τ(z)∑
i=1



E(X2
i )− σ2

x

E(Y 2
i )− σ2

y

0

0

E(XiYi)− σxy


=: A1 + A2.

Consider the first component of A2:

A2,1(z) =
1√
T

τ(z)∑
i=1

(
E(X2

i )− σ2
x

)
.

With assumption (A6), A2,1 converges to 0 for every fixed z ∈ [ε, 1]. Because of τ(z) ≥ Tε− 2,

the convergence is uniform on [ε, 1], i.e. A2,1 converges to 0 in probability in the supremum

norm. Analoguely, all other components of A2 converge to 0, hence A2.

The sum in A1 can be separated into one sum from i = 1 to [Tz] called A3 and one sum from

[Tz + 1] to [Tz + (1 − z)2], called A4. We show that A4 converges in probability to the zero

function in the supremum norm. For this, we first show that for fixed z, A4 converges to 0 in

probability. If

[Tz + (1− z)2] < [Tz + 1],

13



A4 is equal to 0. For

[Tz + (1− z)2] ≥ [Tz + 1]

our argument builds on the Markov inequality. A4 consists of two summands at most so that

for the expectation of the first component A41,

E

∣∣∣∣∣∣
 1√

T

[Tz+(1−z)2]∑
i=[Tz+1]

(X2
i − E(X2

i ))

∣∣∣∣∣∣
 ≤ 1√

T
2 sup

i∈N
E(|X2

i − E(X2
i )|).

Since the second moment of the Xi is uniformly bounded (Assumption (A4)), supi∈N E(|X2
i −

E(X2
i )|) is finite. Thus, the right hand side converges to 0 for T → ∞. With the Markov

inequality it holds for arbitrary ε > 0

P

∣∣∣∣∣∣
 1√

T

[Tz+(1−z)2]∑
i=[Tz+1]

(X2
i − E(X2

i ))

∣∣∣∣∣∣ > ε


≤ 1

ε

1√
T

2 sup
i∈N

E(|X2
i − E(X2

i )|)→ 0 (T →∞).

The same argument holds for the other components of A4.

Consequently, all finite-dimensional distributions converge in probability and therefore in dis-

tribution to 0. We show the tightness of the process similarly to the method on page 138 in

Billingsley (1968). At first, we show the tightness of every single component (exemplarily for

the first one); with this, the tightness of the whole vector follows.

B := E
(
|A41(t)− A41(t1)|1+α

2 · |A41(t2)− A41(t)|1+α
2

)
≤ 1

T 1+α
2

4C

for ε ≤ t1 ≤ t ≤ t2 ≤ 1 and a constant C because of the uniform boundedness. If [Tt2]− [Tt1] =

0, then B = 0. If [Tt2]− [Tt1] ≥ 1, we get

1

T 1+α
2

4C ≤ ([Tt2]− [Tt1])
1+α

2
1

T 1+α
2

4C = 4C

(
[Tt2]− [Tt1]

T

)1+α
2

and the condition of theorem 15.6 in Billingsley (1968) is fulfilled. Thus, A4 converges as a

process in distribution (and also in probability) to the zero function. On A3, we apply the

multivariate invariance principle from Philipps und Durlauf (1986, p. 475) which bases on a

univariate invariance principle from McLeish (1975). With the continuous mapping theorem,

CMT, see van der Vaart (1998, p. 259), the lemma follows.

14



Lemma A.3. On D[ε, 1],

τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d D3D2D
1
2
1 W5(·),

where

ρ∗0 =
σxy
σxσy

,

D2 =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 and

D3 =

(
−1

2

σxy
σy
σ−3
x −1

2

σxy
σx
σ−3
y

1
σxσy

)
.

Proof. We apply the generalized delta-method that is described in appendix A.3 two times on

U(·). At first, we have

f1 : D[ε, 1]5 → D[ε, 1]3

f1(x1, x2, x3, x4, x5) =


x1 − x2

3

x2 − x2
4

x5 − x3x4


with the generalized Hadamard-differential for θ =

(
θ1 θ2 θ3 θ4 θ5

)′
∈ D[ε, 1]5,

f ′1,θ : D[ε, 1]5 → D[ε, 1]3,

f ′1,θ(h) = f ′θ(h1, h2, h3, h4, h5) =


1 0 −2θ3 0 0

0 1 0 −2θ4 0

0 0 −θ4 −θ3 1

 ·



h1

h2

h3

h4

h5


.

Here, MT (z) (see appendix A.3) is

MT (z) =

(
(X2)τ(z) (Y 2)τ(z) X̄τ(z) Ȳτ(z) (XY )τ(z)

)′
.
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Second, we have

f2 : D+[ε, 1]2 ×D[ε, 1]→ D[ε, 1]

f2(x1, x2, x3) =
x3√
x1x2

with the generalized Hadamard-differential for θ =

(
θ1 θ2 θ3

)′
∈ D+[ε, 1]2 ×D[ε, 1]

f ′2,θ : D+[ε, 1]2 ×D[ε, 1]→ D[ε, 1]

f ′2,θ(h) = f ′θ(h1, h2, h3) =

(
−1

2
θ3√
θ2
θ
− 3

2
1 −1

2
θ3√
θ1
θ
− 3

2
2

1√
θ1θ2

)
·


h1

h2

h3

 .

Here, MT (z) is

MT (z) =

(
(X2)τ(z) − (X̄τ(z))

2 (Y 2)τ(z) − (Ȳτ(z))
2 (XY )τ(z) − X̄τ(z)Ȳτ(z)

)′
.

Now, one can show that

(D3D2D1D
′
2D
′
3)
− 1

2
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·),

on D[ε, 1], where W1 is a one-dimensional Brownian motion. (D3D2D1D
′
2D
′
3)
− 1

2 has to be

estimated consistently. This number is a continuous composition of moments of Xi and Yi that

appear in the matrices D3 and

E =


E11 E12 E13

E21 E22 E23

E31 E32 E33

 := D2D1D
′
2

= lim
T→∞

1

T

T∑
i=1

T∑
j=1


Cov(X2

i , X
2
j ) Cov(X2

i , Y
2
j ) Cov(X2

i , XjYj)

Cov(X2
i , Y

2
j ) Cov(Y 2

i , Y
2
j ) Cov(Y 2

i , XjYj)

Cov(X2
i , XjYj) Cov(Y 2

i , XjYj) Cov(XiYi, XjYj)

 .

16



We show the estimation procedure for E12.

E12 = lim
T→∞

1

T

T∑
i=1

Cov(X2
i , Y

2
i ) + 2

m∑
j=1

lim
T→∞

1

T

T∑
i=1

Cov(X2
i , Y

2
i+j).

Let j be fixed, w.l.o.g. 1. With assumption (A7),

lim
T→∞

1

T

T∑
i=1

Cov(X2
i , Y

2
i+1) = lim

T→∞

1

T

T∑
i=1

(E(X2
i Y

2
i+1)− E(X2

i )E(Y 2
i+1))

= lim
T→∞

1

T

T∑
i=1

E(X2
i Y

2
i+1)− lim

T→∞

1

T

T∑
i=1

E(X2
i )E(Y 2

i+1)

=: k1 + k2.

k1 can be estimated consistently by k̂1 = 1
T

∑T−1
i=1 X

2
i Y

2
i+1, using a law of large numbers, see

Davidson (1994, theorem 19.2). With assumption (A7) and the Cauchy-Schwarz-inequality for

the last summand, k2 is equal to

cXcY + cX lim
T→∞

1

T

T∑
i=1

dY i + cY lim
T→∞

1

T

T∑
i=1

dXi + lim
T→∞

1

T

T∑
i=1

dXidY i

= cXcY = lim
T→∞

1

T

T∑
i=1

E(X2
i ) lim

T→∞

1

T

T∑
i=1

E(Y 2
i ).

Analogue to k1, a consistent estimator is k̂2 = 1
T

∑T
i=1X

2
i

1
T

∑T−1
i=1 Y

2
i . With the CMT, we get

the estimator c (compare lemma A.1).

Now, we extend the convergence result to the interval [0, 1].

Lemma A.4. On D[0, 1],

WT (·) := c
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·).

Proof. We define the following functions:

W ε
T (z) =


WT (z), z ≥ ε

0 z < ε

,

W ε(z) =


W1(z), z ≥ ε

0 z < ε

.
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It holds with the previous lemmas

W ε
T (·)→d W

ε(·)

for T →∞ on D[0, 1] and also

W ε(·)→d W1(·)

for rational ε→ 0 on D[0, 1].

The convergence of WT (·) on D[0, 1] follows with theorem 4.2 in Billingsley (1968) if we can

show that

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,1]

|W ε
T (z)−WT (z)| ≥ η) = lim

ε→0
lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0

for all η > 0. Now,

sup
z∈[0,ε]

|WT (z)|

= sup
z∈[0,ε]

∣∣∣∣∣∣
1√
T

∑τ(z)
i=1 (Xi − X̄τ(z))(Yi − Ȳτ(z))− ρ0√

T

√
1

τ(z)

∑τ(z)
i=1 (Xi − X̄τ(z))2 1

τ(z)

∑τ(z)
i=1 (Yi − Ȳτ(z))2√

1
τ(z)

∑τ(z)
i=1 (Xi − X̄τ(z))2 1

τ(z)

∑τ(z)
i=1 (Yi − Ȳτ(z))2

∣∣∣∣∣∣
=: sup

z∈[0,ε]

∣∣∣∣D1(z)

D2(z)

∣∣∣∣ .
By a strong law of large numbers, see Davidson (1994, theorem 19.5), and the CMT, D2 goes

to σxσy almost surely for fixed z > 0 for T → ∞. The same holds for X̄T and ȲT with the

limit 0. Let now δ > 0 be arbitrary. By Egoroff’s Theorem, see Davidson (1994, theorem 18.4),

there is a set Ωδ ⊂ Ω with P(Ωδ) ≥ 1− δ and a number M(δ) > 0 so that |D1(z)− σxσy| < δ,

|X̄τ(z)| < δ and |Ȳτ(z)| < δ on Ωδ for τ(z) ≥M(δ). Hence, for z ≥ M(δ)
T

, for large enough T ,

sup
z∈[

M(δ)
T

,ε]

∣∣∣∣ 1

D2(z)

∣∣∣∣ ≤ 1

σxσy − δ
<∞.

Straightforward calculation yields

sup
z∈[

M(δ)
T

,ε]

|D1(z)| ≤ C1(δ) sup
z∈[

M(δ)
T

,ε]

D3(z)
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for a constant C1(δ), whereD3(z) is the sum of finitely many functionsDi
3(z) with sup

z∈[
M(δ)
T

,ε]
|Di

3(z)| →d

supz∈[0,ε] |W1(z)|.

We have

sup
z∈[0,

M(δ)
T

]

|WT (z)| ≤ C2(δ)√
T

for a constant C2(δ); this goes to 0 for T →∞.

Since W (0) = 0 P-almost everywhere, it holds

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0

on Ωδ. Since δ > 0 was arbitrary, the lemma follows.

Lemma A.5.

BT (·) := c
τ(·)√
T

(ρ̂τ(·) − ρT )→d B(·)

on D[0, 1], where B(·) is a one-dimensional Brownian bridge.

Proof. Define

WT (·) := c
τ(·)√
T

(ρ̂τ(·) − ρ∗0)

and

BT (z) = WT (z)− τ(z)

T
WT (1) =: h

(
WT (z),

τ(z)

T

)
.

Since τ(z)
T

converges to z, the lemma follows with the CMT and the definition of the Brownian

bridge.

Applying the CMT another time proofs theorem 2.1.

A.3 Generalized Delta-method

Define

G1 := H1 × . . .×Hk(k-times, k ≥ 1,Hi ∈ {D[ε, 1], D+[ε, 1], ε ≥ 0})

G2 := H1 × . . .×Hl(l-times, l ≥ 1,Hi ∈ {D[ε, 1], D+[ε, 1], ε ≥ 0})
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and the supremum norms corresponding to these spaces, || · ||G1 and || · ||G2 .

Definition A.6 (Generalized Hadamard-differentiability). Let θ ∈ G1. A function f : G1 →

G2 is generalized Hadamard-differentiable in θ if there exists a continuous, linear map f ′θ :

G1 → G2 (the generalized Hadamard differential) so that

lim
T→∞

∥∥∥∥f(θ+rT hT )−f(θ)
rT

− f ′θ(h)

∥∥∥∥
G2

= 0

for all rT ∈ D[ε, 1] with rT (z) 6= 0∀z ∈ [ε, 1]∀T , hT , h ∈ G1 with ||rT ||D[ε,1] → 0 and

||hT − h||G1 → 0 so that θ + rThT ∈ G1 for all T .

Theorem A.7 (Generalized Delta-method). Let the assumptions of definition A.6 be fulfilled

so that f : G1 → G2 is generalized Hadamard-differentiable in θ. Let MT : Ω→ G1 be random

functions so that

rT · (MT − θ)→d M

as T → ∞ for a sequence rT ∈ D[ε, 1] with || 1
rT
||D[ε,1] → 0, rT (z) 6= 0 ∀z,∀T, and a random

function M in G1. Then,

rT · (f(MT )− f(θ))→d f
′
θ M

where f ′θ is the generalized Hadamard-differential of f at θ.

Proof. For each T , we define a function

gT (h) = rT ·
(
f(θ +

1

rT
h)− f(θ)

)
on GT := {h : θ + 1

rT
h ∈ G1}. Since f is generalized Hadamard-differentiable, it holds

lim
T→∞

||gT (hT )− f ′θ(h)||G2 = 0

for each sequence hT with ||hT − h||G1 → 0 and h ∈ G1. With the CMT, it follows

rT · (f(MT )− f(θ)) = gT (rT · (MT − θ))→d f
′
θ M.
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The main difference to the Delta-method from van der Vaart (1998, p. 297) is that here, rT

is an element from D[ε, 1] and not just a sequence of real numbers. Hence, we need the stronger

assumption that rT goes to 0 in the supremum norm on D[ε, 1]. We need this in the proof of

the asymptotic null distribution to separate ρ̂τ(z) and ρ∗0 - here, τ(z) cannot be written in the

vector as a factor.

Straightforward calculation of definition A.6 gives us the Hadamard differentials used in lemma

A.3. We make use of the fact that in these special cases the differentials are the same as they

were for the analogue functions not applied on function spaces but on Rk. During the calculation

for f2 used in lemma A.3, we have to ensure that an expression like rT√
θ1θ2

for functions θ1 and

θ2 tends to 0 in the supremum norm. For this, it is necessary that the values of θ1 and θ2

are bounded away from 0, hence that they are in D+[ε, 1]. To make this clear, we distinguish

between D[ε, 1] and D+[ε, 1].

A.4 Proofs of the local power

Proof of theorem 3.1

Transferring the proof of lemma A.2, we obtain that U(·) converges to D
1
2
1 W5(·) + A with

A =

(
0 0 0 0

∫ z
0
g(u)du

)′
. This lies in the fact that A2 equals to

A2 =
1√
T

τ(z)∑
i=1

(
0 0 0 0 1√

T
g( i

T
)

)′
.

The fifth component converges as a process to the deterministic function
∫ ·

0
g(u)du.

Also all other proofs can be transferred and it holds

τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d D3D2D
1
2
1 W5(·) +D3D2A

L
= (D3D2D1D

′
2D
′
3)

1
2W1(·) +D3D2A
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and

(D3D2D1D
′
2D
′
3)
− 1

2
τ(·)√
T

(ρ̂τ(·) − ρ∗0)→d W1(·) + (D3D2D1D
′
2D
′
3)
− 1

2D3D2A

L
= W1(·) + (D3D2D1D

′
2D
′
3)
− 1

2 ·
∫ ·

0
g(u)du

σxσy
.

The constant c converges in probability to (D3D2D1D
′
2D
′
3)
− 1

2 . Thus,

c
τ(·)√
T

(ρ̂τ(·) − ρT )→d B(·) + C(·),

where

C(z) =
(D3D2D1D

′
2D
′
3)
− 1

2

σxσy

(∫ z

0

g(u)du− z
∫ 1

0

g(u)du

)
,

a deterministic function depending on z.

Proof of corollary 3.2

Analogously to the proof of theorem 3.1, it holds

sup
z∈[0,1]

∣∣∣∣cτ(z)√
T

(ρ̂τ(z) − ρT )

∣∣∣∣→d sup
z∈[0,1]

|B(z) +MC1|

= M sup
z∈[0,1]

∣∣∣∣B(z)

M
+ C1

∣∣∣∣ ,
where C1 6= 0 for at least one z. Hence,

M sup
z∈[0,1]

∣∣∣∣B(z)

M
+ C1

∣∣∣∣ ≥MC2

for a constant C2. Thus, the test statistic becomes arbitrarily large, especially larger than every

quantile of the distribution under H0.

It is necessary that h is not constant because the test statistic would equal to supz∈[0,1] |B(z)|

otherwise. Since we integrate Mh from 0 to 1, asymptotically also late structural changes are

detected if M is sufficiently large.
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A.5 Proof of theorem 2.1 with assumptions (A1) - (A5), (A7) and

(A8)

Analogously to A.4, we transfer the proof of lemma A.2 with

A2 =
1√
T

τ(z)∑
i=1

(
a2

1√
T
g( i

T
) a3

1√
T
g( i

T
) 0 0 a1

1√
T
g( i

T
)

)′
.

Straightforward calculation yields that C(z) then equals to 0.

References

P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

J. Davidson. Stochastic Limit Theory. Oxford University Press, 1994.

M. Fischer. Are correlations constant over time? Sonderforschungsbereich 649: ”Okonomisches

Risiko 12 (SFB 649 Papers), 2007.

R.D. Gill. Non- and semi-parametric maximum likelihood estimators and the von mises method

- part 1. Scandinavian Journal of Statistics, 16:97–128, 1989.

R.I. Jennrich. An asymptotic chi-square test for the equality of two correlation matrices. Journal

of the American Statistical Association, 65:904–912, 1970.

M. King, E. Sentana, und S. Wadhwani. Volatility and links between national stock markets.

Econometrica, 62(4):901–933, 1994.

F. Longin und B. Solnik. Is the correlation in international equity returns constant: 1960-1990?

International Money and Finance, 14(1):3–26, 1995.

H.M. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

D.L. McLeish. Invariance principles for dependent variables. Zeitschrift für Wahrscheinlichkeit-

stheorie und verwandte Gebiete, 32:165–178, 1975.

23



E.S. Pearson und S.S. Wilks. Methods of statistical analysis appropriate for k samples of two

variables. Biometrika, 25:353–378, 1933.

P.C.B. Philipps und S.N. Durlauf. Multiple time series regression with integrated processes.

Review of Economic Studies, 53:473–495, 1986.
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