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Summary

We propose a new test against a change in the probability of mul-

tivariate tail events. The test is based on partial sums of a suitably

defined indicator function and detects abrupt changes in joint tail

probabilities better than a previously suggested competitor.
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1 Introduction and Summary

In 2008, all major stock markets in the world fell by roughly 40%. The exact

figures are: DJIA -33.8%, S&P 500−38.1%, CAC40 -42.6%, FTSE 100−28.7%,

DAX -40.2% and the MSCI world Index -40.6%. In fact, the only markets to

go up in 2008 were Ghana, Tunisia and Ecuador. The year before, there were

likewise some extreme events, with China for instance growing by 96%, but the

dependence among markets appeared to be much weaker. Even when focussing

on downturns in the market, the joint behavior of stocks in 2008 appears to be

unique in recent history. For instance, even though Germany went down even

further in 2002 (by −44%), this downturn was not then shared by others to

the same extent. The question therefore arises whether this can be explained

by chance or whether there was a structural change in joint tail probabilities

sometime in between.

It is important to distinguish two issues here. The first is a possible asymmetry

of dependence in the upper and lower tails of a joint distribution. It has by

now been firmly established that joint stock returns exhibit larger dependence

in the lower than in the upper tail (Ang & Chen (2002), Fortin & Kuzmicz

(2002), Vaz de Melo Mendez (2005), Sun et al. (2008), among others). This

implies that joint downside moves are more probable than joint upside moves

even when there is no structural change at all. The second issue is a change in

the dependence structure itself, as for instance investigated by Campbell et al.

(2002) and Forbes & Rigobon (2002). And it is this problem which we address

in the present paper.

Following Busetti & Harvey (2008), we base our test on joint exceedences of

certain quantiles of the marginal distributions. Instead of using sum of squares

of a normalized indicator function, we propose two alternative test statistics.

The first is based on the maximum of cumulative sums of the indicator variables

(in the spirit of Ploberger & Krämer (1992)). The second test statistic uses

the range of the cumulative sums. We show via Monte Carlo simulation that

no test is uniformly superior to the other. While the sum of squares version is

more likely to detect gradual or continuous changes in probabilities, the range
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test is more successful with abrupt changes. None of the tests requires prior

knowledge as to when a structural change occurs.

2 The test and its asymptotic null distribution

Following Busetti & Harvey (2008), we let ξ(τ) denote the τ -quantile of some

univariate probability distribution. To avoid unnecessary notational complica-

tions, we consider continuous distributions only, so ξ(τ) is uniquely defined.

For a bivariate series y1t and y2t, t = 1, . . . , T , let ξ̃(τ1) and ξ̃(τ2) denote the

respective empirical quantiles, and let CT (τ1, τ2) be the proportion of observa-

tion where both y1t and y2t are less than or equal to ξ̃(τ1) or ξ̃(τ2), respectively.

CT (τ1, τ2) is an estimator of p := P (y1t ≤ ξ(τ1), y2t ≤ ξ(τ2)), which is assumed

constant under our null hypothesis. For simplicity, we let τ1 = τ2 = τ from

now on.

In applications, one is usually interested mostly in negative tail events, so

typical values of τ or 1% or 5%. Of course, the whole analysis extends to

positive tail events, by reversing the inequality signs, and by taking τ = 95%

or τ = 99%, and even more generally, to any changes in the copula of y1 and

y2. In fact, our test may be viewed as a procedure to check the constancy of

a copula at a particular point. For concreteness, we stick to the lower tail in

the present paper, which is what practitioners are mostly concerned about.

The basic input of our test is what Busetti & Harvey (2008) call the τ -bi-

quantic, defined as

BIQτ (t) = CT (τ, τ)− I(y1t ≤ ξ̃1(τ), y2t ≤ ξ̃2(τ)), t = 1, . . . , T, (1)

where I(.) is the indicator function of the event in parentheses. By definition,

the BIQτ (t) add to zero, and partial sums should not deviate too much from

zero if P (y1t ≤ ξ̃(τ), y2t ≤ ξ̃(τ)) remains constant across the sample. On the

other hand, if this probability changes at t = t∗, say, then the BIQτ (t) will

tend to be positive up to t∗ when the probabilities decreases, and the BIQτ (t)

will tend to be negative when the probability increases. In both cases, the
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cumulated sum of the BIQτ (t) will move away from zero farther than can be

expected under the null hypothesis. This motivates our choice of test statistic,

which is a suitably normalized version of

Bτ (T ) := max
t=1,...,T

∣∣∣∣∣
t∑

i=1

BIQτ (i)

∣∣∣∣∣ . (2)

We show below that, under the null and whenever the events (y1t ≤ ξ(τ), y2t ≤
ξ(τ)) and (y1s ≤ ξ(τ), y2s ≤ ξ(τ)) are independent for all t 6= s, the stochastic

process

BT (s) :=
1√

TCT (τ, τ)(1− CT (τ, τ))

[
Ts∑
i=1

BIQτ (i)

]
(0 ≤ s ≤ 1) (3)

tends in distribution to a Brownian Bridge as T → ∞, so the limiting null

distribution of

1√
TCT (τ, τ)(1− CT (τ, τ))

Bτ (T ) (4)

is identical to that of the Kolmogorov-Smirnov test (see Ploberger & Krämer

(1992)). Some useful critical values are 1,22 (α=10%), 1,36 (α=5%) and 1,63

(α=1%) where α denotes the significance level. The assumption of indepen-

dence can be relaxed, as is also shown below.

An alternative test statistic can be derived by examining the range of the

BIQτ (t), in the spirit of Krämer & Schotman (1992). In that case, the asymp-

totic null distribution of the test statistic

1√
TCT (τ, τ)(1− CT (τ, τ))

[
max

t=1,...,T

t∑
i=1

BIQτ (i)− min
t=1,...,T

t∑
i=1

BIQτ (i)

]

is given by

P (X ≤ x) = 1 + 2
∞∑

k=1

(
1− 4k2x2

)
exp(−2(kx)2)

(see e.g. Kennedy (1976)). Some useful critical values are 1.620 (α = 10%),

1.747 (α = 5%) and 2.001 (α = 1%).

Of course, other functionals of the BIQτ (t) such as the sum of absolute values

might also be used as test statistics, but we focus here on the performance of
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the maximum and the range statistic (compared to the sum of squares statistic

proposed by Busetti & Harvey (2008)).

The convergence in distribution to a Brownian Bridge of Bτ (s) is probably

best seen by first considering

B̃IQτ (t) = p− I (y1t < ξ1(τ), y2t < ξ2(τ)) . (5)

This is an i.i.d. sequence with zero expectation and finite higher moments of

all orders and variance σ2 = p(1− p), so, by standard results from probability

theory (see e.g. Billingsley (1986))

∼
BT (s) :=

1√
Tσ2

Ts∑
i=1

B̃IQ(i) (6)

tends in distribution to a standard Wiener Process, and

B∗
T (s) :=

∼
BT (s)− 1√

Tσ2

T∑
i=1

∼
BIQ(i) (7)

tends in distribution to a Brownian Bridge. The convergence to a Brownian

Bridge of BT (s) then follows from the fact that CT (τ, τ)(1− CT (τ, τ)) is con-

sistent for σ2 = p(1− p) and

max
t=1,...,T

∣∣∣∣∣
t∑

i=1

BIQτ (i)−
t∑

i=1

∼
BIQτ (i)

∣∣∣∣∣
p→ 0 (8)

as T →∞.

In empirical applications, when y1t and y2t are for instance stock returns,

the events (y1t < ξ(τ), y2t < ξ(τ)) and (y1s < ξ(τ), y2s < ξ(τ)) are in general

not independent. In particular, given that (y1t < ξ(τ), y2t < ξ(τ)) has oc-

curred, with τ in the range of 1% − 5%, the conditional probability of

(y1,t+1 < ξ(τ), y2,t+1 < ξ(τ)) will in general be larger than its unconditional

probability due to the well known GARCH-effect.

One way to get around this problem is to replace the variance estimator

σ̂2 = CT (τ, τ)(1− CT (τ, τ)) (9)
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by some autocorrelation-consistent version (see e.g. Busetti & Harvey (2008,

p13)) and to invoke the weak dependence of the joint tail events to show that

BT (s), properly adjusted, still tends to Brownian Bridge. Another probability

is to first fit a GARCH-model to y1t and y2t separately and then apply our test

to the standardized innovations obtained from these models.

3 Some finite sample Monte Carlo evidence

Following Busetti & Harvey (2008), we examine the performance of the pro-

posed test statistics using simulated values from the Gaussian and the Clayton

copula. We explicitly analyze the effect of multiple breaks in the copula pa-

rameter. The results in this section and the subsequent section are generated

using Ox (see Doornik (2005)) and the G@ARCH package of Laurent & Peters

(2006).

Suppose that there are m breakpoints denoted by t1, . . . , tm. Let θj denote

copula parameter on segment j = 1, . . . , m + 1. The bivariate time series y1t

and y2t, t = tj−1 + 1, . . . , tj are drawn from a bivariate Gaussian distribution

with correlation θj or a Clayton copula C(u, v; θj) with dependence parameter

θj.

In our base case scenario, we simulate 50000 replications of time series consist-

ing of 3000 observations. In the simulation we restrict the number of copula

parameters such that θ1 ≡ θ2k+1 and θ2 ≡ θ2k, k = 0, 1, . . .. Intuitively, the

series consist of periods of low dependence and periods of high dependence.

Finally, we apply the test statistics to the 0.05, 0.1, 0.25 and 0.50 quantile.

In the Gaussian simulation θ1 equals 0.5 and θ2 takes respectively the values

0.1, 0.25, 0.5, 0.75 and 0.9. Table 2 shows that the test proposed by Busetti &

Harvey (2008) slightly outperforms our test statistics if there is a single break

in the copula parameter. However, the power of our test statistics is higher

in case of two structural breaks. The statistic based on the range outperforms

the statistic based on the maximum value. Notice also that the maximum and
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range test are conservative; the power remains in the lower quantiles below

0.05 if the copula is constant.

We also examined the sensitivity of our results by reducing the number of

observations and by altering the time point of the structural break. For smaller

samples the range statistic retains some power if the break in the correlation

parameter is sufficiently high. Reducing the length of the second segment also

reduces the power of the test statistics. Finally, the test statistics do not have

much power at the 1% quantile. For sake of brevity we excluded the results of

our sensitivity analysis.

The Clayton copula takes the values θ1 = 1 and θ2 = 1, 2.5, 7.5 and 15,

respectively. Table 3 shows the simulation results. Again the proposed test

statistics outperform the test statistic of Busetti & Harvey (2008) if there are

multiple breaks in the series. The results of the sensitivity analysis are in line

with the results of the Gaussian simulation.

4 An application to stock returns

We examine daily observations from the Kuala Lumpur stock exchange in

Malaysia and the Hang-Seng index in Hong-Kong. The data has been obtained

from Econstats and consists of daily observations from December, 7, 1993

trough May, 18, 2009. The corresponding return series is calculated as yt =

log(xt/xt−1) × 100, where xt denotes the index at time t = 1, . . . , T . In the

analysis below we only keep the dates at which both return series are observed.

For each series we estimated an AR(1)-GARCH(1,1) model where the errors

are Student-t distributed. Therefore, the model specification becomes

yt = µ + φµt−1 + εt

εt = ztσt

σ2
t = ω + αε2

t−1 + βσ2
t−1

where zt is student distributed with υ degrees of freedom.
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Subsequently, the different tests are applied to the standardized innovation

series. Since the standardized residuals still contain serial correlation, we re-

placed the variance of the BIC series by a long-run estimator with 36 lags.

The number of lags is based on the bandwidth rule b = 4(T/100)1/4. Table

1 shows that only the range-test is able to reject the null-hypothesis for the

0.1 quantile (using a 5% significance level). Furthermore, only the square test

does not reject H0 for the 0.75 quantile. Finally, all tests do reject the null

hypothesis for the median.

Table 1: Test statistics based on standardized innovations of the AR(1)-

GARCH-t(1,1) model.

standard variance (36 lags)

τ Squares Maximum Range Squares Maximum Range

0.05 0.3360 1.1810 1.8438(b) 0.2884 1.0943 1.7084(c)

0.10 0.3672(c) 1.1270 1.9766(b) 0.3197 1.0516 1.8443(b)

0.25 0.2545 1.3861(b) 1.8244(b) 0.2047 1.2431(c) 1.6361(c)

0.50 0.5670(b) 1.5278(b) 2.0420(a) 0.4906(b) 1.4212(b) 1.8995(b)

0.75 0.7588(a) 2.0686(a) 2.4876(a) 0.4546(c) 1.6011(b) 1.9254(b)

0.90 0.1564 1.1789 1.7389(c) 0.1158 1.0143 1.4962

0.95 0.1925 0.9007 1.5315 0.1440 0.7788 1.3243

Table shows test statistics using standard variance estimate of BIC series and a long run

variance estimate based on 36 lags. Significance is denoted by the superscripts 1% (a), 5%

(b) and 10% (c).

To examine the stability of our results we also calculated the results using

b = 0 (i.e. standard variance of BIC series). In that case only the range test

rejects the null hypothesis at the 0.05 and 0.1 quantile, while only the square

test is not able to reject the null hypothesis at the 0.25 quantile. Finally, all

tests reject the null hypothesis for the median and the 0.75 quantile.
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Table 2: Gaussian Copula with structural breaks in correlation: simulated re-
jection frequencies (T=3000, Rep = 50000, θ1 = 0.5)

m test τ θ2 0.10 0.25 0.50 0.75 0.90

0.05 0.68 0.35 0.05 0.46 0.93
1 Squares 0.10 0.90 0.53 0.05 0.65 0.99

0.25 0.98 0.71 0.05 0.80 1.00
0.50 0.95 0.63 0.05 0.76 1.00

0.05 0.65 0.31 0.04 0.44 0.93
1 Maximum 0.10 0.90 0.51 0.04 0.64 0.99

0.25 0.98 0.71 0.05 0.80 1.00
0.50 0.96 0.63 0.05 0.76 1.00

0.05 0.48 0.20 0.03 0.31 0.84
1 Range 0.10 0.80 0.37 0.04 0.50 0.97

0.25 0.95 0.57 0.04 0.68 1.00
0.50 0.91 0.49 0.04 0.63 1.00

0.05 0.14 0.09 0.05 0.07 0.32
2 Squares 0.10 0.23 0.11 0.05 0.13 0.57

0.25 0.44 0.15 0.05 0.20 0.79
0.50 0.37 0.13 0.05 0.18 0.74

0.05 0.19 0.11 0.04 0.11 0.39
2 Maximum 0.10 0.34 0.16 0.05 0.19 0.64

0.25 0.56 0.23 0.05 0.28 0.84
0.50 0.49 0.20 0.05 0.26 0.81

0.05 0.31 0.14 0.04 0.27 0.78
2 Range 0.10 0.64 0.27 0.04 0.42 0.93

0.25 0.89 0.45 0.04 0.59 0.99
0.50 0.82 0.40 0.04 0.53 0.98

0.05 0.19 0.10 0.05 0.13 0.36
3 Squares 0.10 0.33 0.15 0.05 0.19 0.55

0.25 0.52 0.22 0.05 0.26 0.75
0.50 0.43 0.19 0.05 0.24 0.72

0.05 0.16 0.09 0.04 0.12 0.38
3 Maximum 0.10 0.35 0.15 0.05 0.19 0.61

0.25 0.58 0.22 0.05 0.28 0.81
0.50 0.49 0.20 0.05 0.26 0.78

0.05 0.12 0.06 0.03 0.09 0.29
3 Range 0.10 0.26 0.10 0.04 0.14 0.53

0.25 0.50 0.17 0.04 0.22 0.78
0.50 0.41 0.15 0.04 0.20 0.75
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Table 3: Clayton Copula with structural breaks in dependence: simulated re-
jection frequencies (T=3000, Rep = 50000, θ1 = 1)

m test τ θ2 1 2.5 7.5 15

0.05 0.05 0.41 0.76 0.83
1 Squares 0.10 0.05 0.65 0.96 0.98

0.25 0.05 0.89 1.00 1.00
0.50 0.05 0.87 1.00 1.00

0.05 0.04 0.39 0.75 0.83
1 Maximum 0.10 0.04 0.64 0.96 0.99

0.25 0.05 0.89 1.00 1.00
0.50 0.05 0.87 1.00 1.00

0.05 0.04 0.27 0.62 0.71
1 Range 0.10 0.04 0.50 0.91 0.96

0.25 0.05 0.80 1.00 1.00
0.50 0.05 0.78 1.00 1.00

0.05 0.05 0.07 0.17 0.20
2 Squares 0.10 0.05 0.13 0.42 0.53

0.25 0.05 0.27 0.89 0.96
0.50 0.05 0.25 0.97 1.00

0.05 0.04 0.11 0.24 0.28
2 Maximum 0.10 0.04 0.19 0.51 0.61

0.25 0.05 0.37 0.92 0.97
0.50 0.05 0.35 0.98 1.00

0.05 0.04 0.22 0.54 0.62
2 Range 0.10 0.04 0.42 0.86 0.92

0.25 0.04 0.71 1.00 1.00
0.50 0.05 0.68 1.00 1.00

0.05 0.05 0.12 0.24 0.27
3 Squares 0.10 0.05 0.19 0.45 0.53

0.25 0.05 0.34 0.84 0.92
0.50 0.05 0.32 0.94 0.99

0.05 0.04 0.11 0.24 0.29
3 Maximum 0.10 0.04 0.19 0.49 0.59

0.25 0.05 0.37 0.89 0.95
0.50 0.05 0.35 0.96 1.00

0.05 0.04 0.08 0.18 0.22
3 Range 0.10 0.04 0.15 0.41 0.51

0.25 0.04 0.30 0.87 0.95
0.50 0.05 0.28 0.97 1.00
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