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Abstract

We propose a test for symmetry of a regression function with a bivariate predictor based on

the L2 distance between the original function and its reflection. This distance is estimated by

kernel methods and it is shown that under the null hypothesis as well as under the alternative

the test statistic is asymptotically normally distributed. The finite sample properties of a

bootstrap version of this test are investigated by means of a simulation study and a possible

application in detecting asymmetries in gray-scale images is discussed.

1 Introduction

Symmetric structures play an important role in many contexts in science, art and the real world

(see e.g. Weil, 1952, Rosen, 1995 or Conway et al., 2008). Most parts of the human body are nearly

symmetric, for example, the right hand is more or less symmetric to the left hand. By modeling

this mathematically the problems reduce to symmetry of functions. For example, a symmetric

grey-scale image is a symmetric function of the pixel location taking values between 0 and 1 or a

distribution of some characteristics in a population modeled as random variables is symmetric if

the underlying density is symmetric. So, most models of this kind can be reduced to symmetry of

regression functions or densities and the problem of testing for symmetry is of particular interest

for these functions. There exists already some work on tests for symmetry of densities. Hušková

(1984) proposes a test for symmetry of the common distribution of two p-dimensional random

vectors. Hollander (1988) gives an overview of several tests for symmetry of distribution or density

functions. In Ahmad and Li (1997) a test for symmetry of a density function based on kernel

methods is proposed. A test based on transformed empirical processes is given in Cabaña and
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sitätsstraße 150, 44780 Bochum, Germany, e-mail: melanie.birke@rub.de,Fon: +49/234/32–23286, Fax:

+49/551/32–14559
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Cabaña (2000), while Dette, Kusi-Appiah and Neumeyer (2002) develop a test for symmetry of the

error distribution in regression models.

In the present paper we discuss the problem of testing for symmetry of a regression function,

which is of similar importance as the problem of testing for symmetry of density functions. Our

work is motivated by some applications in thermographic image analysis, where abnormalities such

as malignancies, inflammation and infection cause localized increases in temperature which show

as asymmetrical patterns in an infrared thermogram [see for example Gratt et. al (1995), Jones

(1998), Kruganti and Qi (2002) among many others]. In such cases – besides the visual inspec-

tion of the images – statistical tests for the symmetry of the regression function are of interest to

detect asymmetries at a controlled significance level. A typical application will be given in Sec-

tion 4.2. Moreover, such tests can also be used generally in image analysis to test, whether an

underlying object is symmetric with respect to some (known) axis or has some symmetric compo-

nents. Additionally, the knowledge of symmetry is for example of advantage in image compression

or reconstruction.

There already exist various methods in the literature addressing the issue of symmetry of objects

or functions. They can generally be classified in two groups. One group consists of methods for

determining a symmetry axis in images or functions or, more general, for fixing regions of (local)

symmetries in two-dimensional objects. We mention here the work of Atallah (1985), Friedberg

(1986), Marola (1989), Kiryathi and Gofman (1998), Loy and Zelinsky (2003) or Xiao et al. (2005)

among others. In most of these articles it is assumed, that the regression function or image is

observed without any stochastic errors. The second group is concerned with the question if, given

an image or data, an object or regression function is symmetric with respect to some known or

unknown axis. Recently, Bissantz, Holzmann and Pawlak (2009) propose tests for reflection sym-

metry and rotational invariance of two-dimensional regression functions or images based on Zernike

polynomials. On the other hand statistical tests based on kernel regression estimates do not exist

so far, especially in multivariate settings. On the one hand such methods are attractive because

of their simplicity - they are usually based on a direct comparison of the functions estimating the

images. On the other hand statistical tests based on kernel regression estimates also provide, beside

the result of a statistical test, an estimate of a simply interpretable measure for the deviation from

the null hypothesis. For example, if symmetry with respect to the y-axis has to be tested, the test

proposed in this paper will be based on a kernel estimate of the quantity

I =

∫

A

(m(x, y) − m(−x, y))2 d(x, y) , (1.1)

and the null hypothesis of symmetry is rejected for large values of the corresponding estimate. The

L2-distance I can be considered as a measure for asymmetry and further statistical inference could

be performed using estimates of this quantity. Moreover, as pointed out by Rosenblatt (1975) or
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Ghosh and Huang (1991) kernel based tests are usually powerful with respect to local alternatives

of the form

m(x, y) = m(−x, y) + βnω

(

x − c1

ηn

,
y − c2

ηn

)

(1.2)

where βn, ηn → 0, c1, c2 ∈ R (see Remark 1 in Section 3).

In the present paper we propose a test for symmetry of a regression function with a two dimensional

predictor based on kernel regression estimates. Although there are various characterizations of sym-

metry of a function, we investigate the fundamental one, which is motivated by several applications

in thermographic image analysis, i.e.

H0 : m(−x, y) = m(x, y) for all x, y . (1.3)

Note that we assume that the axis of symmetry is known. If this is not the case, it has to be

estimated first. Then, the general case can be easily traced back to the case investigated below.

The remaining part of this paper is organized as follows. In Section 2 we define the test statistic

and give a heuristic motivation. In Section 3 the asymptotic properties of the test statistic are

investigated under the nullhypothesis and the alternative, and we also show the consistency of

the test which rejects the null hypothesis (1.3) for large values of the estimate for the L2-distance

defined in (1.1). The applicability of the test is demonstrated in Section 4 where we show some

simulation results and apply the procedure to an example from image analysis. The proofs are all

deferred to the Appendix.

2 The test statistic and basic assumptions

We consider the nonparametric regression model with a bivariate predictor

Zi = m(Xi, Yi) + σ(Xi, Yi)εi i = 1, . . . , n . (2.1)

Throughout this paper we restrict ourselves to the situation of symmetry with respect to the y-axis

and assume that observations are available on the set A = [−1, 1]2. The hypotheses are

H0 : m(x, y) = m(−x, y) for almost all (x, y)T ∈ [−1, 1]2,

H1 : there exists a set B ⊂ [−1, 1]2 with positive Lebesgue measure such that m(x, y) 6= m(−x, y)

for all (x, y)T ∈ B.

All methods can be easily modified for testing symmetry with respect to the x axis or even with

respect to any other axis. If the true regression function m is symmetric in the first component,
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then this should also hold approximately for any consistent estimator m̂ of m. Therefore we propose

to estimate the distance I in (1.1) by

În =

∫

A

[m̂(x, y) − m̂(−x, y)]2d(x, y) (2.2)

and to reject the null hypothesis for large values of this test statistic, where m̂ is an estimator of

the regression function. If the null hypothesis of symmetry is true, the statistic În converges in

probability to 0 as long as m̂ is uniformly consistent, which intuitively explains why this procedure

should yield a consistent test. In principle any consistent estimate could be used in this procedure

but for the sake of brevity, we restrict ourselves to the Nadaraya-Watson and the local linear

estimate in the following discussion. The Nadaraya-Watson estimate is defined by

m̂NW (x, y) =
1

na1a2f̂n(x, y)
k
(Xi − x

a1

,
Yi − y

a2

)

Zi

with

f̂n(x, y) =
1

na1a2

n
∑

i=1

k
(Xi − x

a1

,
Yi − y

a2

)

,

and if this estimate is used in (2.2), the resulting statistic will be denoted by ÎNW
n in the following

discussion. Similarly the two-dimensional local linear estimator for a kernel k and a bandwidth

(a1, a2)
T is defined by

m̂0,1(x, y) =
[

(S2,0(x, y)S0,2(x, y) − S2
0,2(x, y))T0,0(x, y)

+(S1,0(x, y)S1,1(x, y) − S0,1(x, y)S2,0(x, y))T0,1(x, y)(S0,1(x, y)S1,1(x, y) − S0,2(x, y)S1,0(x, y))T1,0(x, y)
]

×
[

2S0,1(x, y)S1,0(x, y)S1,1(x, y) − S0,2(x, y)S2
1,0(x, y) − S0,0(x, y)S2

1,1(x, y) − S2
1,0(x, y)S2,0(x, y)

+S0,0(x, y)S0,2(x, y)S2,0(x, y)
]−1

,

where

Sj,k(x, y) =
n

∑

i=1

k
(Xi − x

a1

,
Yi − y

a2

)

(Xi − x)j(Yi − y)k

Tj,k(x, y) =
n

∑

i=1

k
(Xi − x

a1

,
Yi − y

a2

)

(Xi − x)j(Yi − y)kZi.

and the resulting statistic in (2.2) is denoted by

În,0,1 =

∫

A

(m̂0,1(x, y) − m̂0,1(−x, y))d(x, y)
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throughout this paper. For the sake of transparency, we assume for the asymptotic considerations

in the following that a1 = a2 = h and k(u, v) = k1(u)k2(v) where k1 and k2 are univariate kernels.

However, all results presented here remain valid in the general case with an additional amount

of notation. Obviously critical values can only be obtained by asymptotic considerations, which

require knowledge of the asymptotic distribution of the statistic In under the null hypothesis and

under the alternative. Roughly speaking, it will be shown in the next section that an appropriately

scaled version of the statistic In is asymptotically normally distributed under the null hypothesis

and the alternative, where different rates appear in both cases. We conclude this section with a

statement of the necessary assumptions for these asymptotic results.

Assumption 1

1. The random variables (Xi, Yi), i = 1, . . . , n are independent and identically distributed with

density f whose support contains the set

Aδ = {z ∈ R
2| inf

a∈A
||z − a|| ≤ δ}.

2. The error variables εi, i = 1, . . . , n are independent and identically distributed with E[εi] = 0,

E[ε2
i ] = 1 and existing finite fourth moment µ4 = E[εi] and independent of the sequence

{(Xi, Yi)}n
i=1.

Assumption 2

1. The regression function m and the density f are two times continuously differentiable with

uniformly continuous second derivative.

2. The function σ : Aδ → R
+ of the standard deviation of Zi is continuous.

Assumption 3

1. The symmetric kernels k1 and k2 are of order 2 and have compact support, say [−1, 1].

2. The bandwidth h is proportional to the optimal bandwidth for two-dimensional regression

estimation, that is h = Cn−1/6.

3 Weak convergence under the null hypothesis and alter-

native

For the construction of an asymptotic level α test based on the statistic În in (2.2) we need the

(1 − α)-quantile of the asymptotic distribution of the test statistic În under the null hypothesis.
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Our first theorem states that in this case the test statistic converges weakly with rate nh to a

normal distribution. Throughout this paper g1 ∗ g2 denotes the convolution of the functions g1 and

g2, and for a function g the symbol ∂jg denotes the partial derivative of g with respect to the j-th

component.

Theorem 1 Let the assumptions 1 - 3 stated in Section 2 be fulfilled. Then

τ−1
n

(

ÎNW
n − µn

)

D→ N (0, 1), (3.1)

where µn = E[Sn],

τn =

(

4

n2h2
α1 +

16h4

n
α2

)1/2

Sn =

∫

A

[m̂NW (x, y) − m̂NW (−x, y)]2f̂ 2
n(x, y)f̂ 2

n(−x, y)

E[f̂n(x, y)]2 E[f̂n(−x, y)]2
d(x, y)

α1 = 2

∫

[(k ∗ k)(u, v)]2 d(u, v)

∫

A

σ2(x, y)
[σ2(x, y)

f 2(x, y)
+

σ2(−x, y)

f(x, y)f(−x, y)

]

d(x, y),

α2 =

∫

A

σ2(x, y)γ2(x, y)

f 3(x, y)f 2(−x, y)
d(x, y)

and

γ(x, y) =

∫ 1

−1

k1(u)u2du[f(−x, y)∂1f(x, y) − f(x, y)∂1f(−x, y)]∂1m(x, y)

+

∫ 1

−1

k2(v)v2dv[f(−x, y)∂2f(x, y) − f(x, y)∂2f(−x, y)]∂2m(x, y),

The proof of this result is complicated and therefore deferred to the Appendix. If m and f are

at least three times continuously differentiable, the bias term simplifies substantially, that is µn in

(3.1) can be replaced by

µ̃n =
1

nh2

∫

A

(σ2(x, y)

f(x, y)
+

σ2(−x, y)

f(−x, y)

)

d(x, y)

∫

k2(u, v)d(u, v) + h4

∫

A

( γ(x, y)

f(x, y)f(−x, y)

)2

d(x, y).

If the alternative H1 : I 6= 0 holds, then we observe a different asymptotic behavior of the test

statistic Tn. For a statement of the precise result we introduce the following notation

Tn =
1

h2

∫

A

[Zi − m(x, y)]k1

(

Xi−x
h

)

k2

(

Yi−y
h

)

[m(x, y) − m(−x, y)]

E[f̂n(x, y)]
d(x, y)

τ 2 =

∫

A

σ2(u, v)(m(u, v) − m(−u, v))2

f(u, v)
d(u, v)

(3.2)
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Theorem 2 Let the assumptions of Theorem 1 be fulfilled. If the regression function m is not

symmetric then √
n(ÎNW

n − I − 4bn)
D→ N (0, τ 2), (3.3)

where bn = E[Tn].

If the regression and density function are at least three times continuously differentiable, the bias

term bn in (3.3) can be replaced by

b̃n = h2
(

κ2(k1)(∂
2
1m(x, y)f(x, y) − ∂1m(x, y)∂1f(x, y)) + κ2(k2)(∂

2
2m(x, y)f(x, y) − ∂2m(x, y)∂2f(x, y))

)

×m(x, y) − m(−x, y)

f(x, y)
.

From Theorem 1 and 2 the asymptotic distribution of the test statistic under the null hypothesis

and the alternative the following result can easily be obtained.

Corollary 1 Under the assumptions of Theorem 2 the test which rejects the null hypothesis of

symmetry for large values of the statistic ÎNW
n is consistent.

Remark 1 It can be shown by similar arguments as given in the Appendix, that for alternatives

of the form (1.2) with a square integrable twice continuously differentiable function ω and

βn =
1√

nh1+2δ
ηn = hδ

(δ > 1/2) the statistic on the left hand side of (3.1) is also asymptotically normally distributed with

variance 1 and mean proportional to
∫

w2(x)dx. Because the size of the integral

∫ c1

−∞

∫ c2

−∞

βnw((x − c1)η
−1
n , (y − c2)η

−1
n )dydx

is of order

βnη
2
n = n−1/2h(1+2δ)/2h2δ = n−1/2hδ−1/2 = n−1/2n−(δ−1/2)/6,

the test proposed in this paper has greater power against such local alternatives than tests based

on empirical processes [see Rosenblatt (1975) or Ghosh and Huang (1991) for more details].

Remark 2

(A) By Theorem 1 an asymptotic and consistent level α test for the hypothesis of symmetry is

obtained by rejecting the null hypothesis if ÎNW
n − µ̂n > τ̂nz1−α, where µ̂n, τ̂n are appropriate
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(consistent) estimates of µn and τn, respectively, and z1−α denotes the (1 − α) quantile of the

standard normal distribution. It now follows from Theorem 2 that the power of this test can be

approximated by

P (H0 rejected | H1 is true) ≈ 1 − Φ
(

−√
n(I + 4bn)/τ +

√
n(µn + τnz1−α)/τ

)

. (3.4)

where µn, τn and bn are defined in Theorem 1 and 2, respectively. This formula provides also

information about the behavior of the power function, which depends (asymptotically) on the

particular alternative only through the three quantities bn, I and τ 2.

(B) Note that the quantity I defined in (1.1) can be interpreted as a measure of symmetry of the

regression function. From Theorem 2 we obtain under the alternative

ÎNW
n − 4bn +

τ̃nz1−α√
n

as an upper (asymptotic) (1−α) confidence bound for the parameter I, where τ̃ 2
n is an appropriate

(consistent) estimator of the asymptotic variance given in Theorem 2.

(C) A further important application of Theorem 2 arises from the fact that in practice - in particular

when analyzing thermal images - perfect symmetry will usually never be observed. The more

realistic question in this context is, if there exists approximately symmetry. Therefore we propose

to investigate the so called precise hypotheses [see Berger and Delampady (1987)]

H0 : I > ε versus H1 : I ≤ ε , (3.5)

where I is the measure defined by (1.1) and ε > 0 is a prespecified constant for which the exper-

imenter agrees to accept the image as symmetric. An asymptotic α-level test for the hypothesis

(3.5) is obtained by rejecting the null hypothesis, whenever

√
n(ÎNW

n − ε − 4bn) < τ̂nz1−α .

We conclude this section with the corresponding statements for the local linear case. Note that the

discussion presented in Remark 1 and 2 is also valid for this type of estimate.

Theorem 3 If the assumptions of Theorem 1 are satisfied, we have under the null hypothesis

nhα
−1/2
0,1 (În,0,1 − EX [În,0,1])

D→ N (0, 1), (3.6)

where EX denotes the conditional expectation with respect to X = {(X1, Y1), . . . , (Xn, Yn)} and

α0,1 = 2

∫

(k ∗ k)2(u, v)d(u, v)

∫

A

σ2(x, y)
[σ2(x, y)

f 2(x, y)
+

σ2(−x, y)

f(x, y)f(−x, y)

]

d(x, y).
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Under the alternative I > 0 it follows that

√
nτ−1/2(În,0,1 − EX [În,0,1])

D→ N (0, 1), (3.7)

where τ is defined in Theorem 2. If m is at least three times continuously differentiable, the centering

term EX [În,0,1] in (3.6) and (3.7) can be replaced by

1

nh2

∫

A

(σ2(x, y)

f(x, y)
+

σ2(−x, y)

f(−x, y)

)

d(x, y)

∫

k2(u, v)d(u, v)

and

I + h2

∫

A

(κ2(k1)∂
2
1m(x, y) + κ2(k2)∂

2
2m(x, y))(m(x, y) − m(−x, y))d(x, y),

respectively.

4 Finite sample properties and a data example

In this section we study the finite sample behavior of the test based on the L2-distance by means

of a simulation study and an application.

4.1 Simulated examples

Although Theorem 1 and 3 specify the asymptotic behavior of the statistics ÎNW
n and În,0,1, we have

so far no information about the size and power of the test in finite samples. One typical problem

in the application of tests based on an L2-distance between nonparametric regression estimates is,

that the asymptotic distribution still depends on certain parameters of the data generating process,

which are often difficult to estimate. Moreover, even if the asymptotic variance and bias in Theorem

1 can be estimated the approximation of the nominal level is usually rather poor [see e.g. Fan and

Linton (2003)]. Hence, we propose to use a wild bootstrap version of the test which is often used

in heteroscedastic regression models [see e.g. Wu (1986) or Härdle and Mammen (1993)]. For this

purpose we form a bootstrap sample (X1, Y1, Z
∗
1), . . . , (Xn, Yn, Z

∗
n) from (X1, Y1, Z1) . . . , (Xn, Yn, Zn)

with

Z∗
i = m̂S(Xi, Yi) + Ciε̂i, i = 1, . . . , n.

In this definition we use the symmetrized regression estimator

m̂S(x, y) =
m̂(x, y) + m̂(−x, y)

2
,

the estimated residuals

ε̂i = Zi − m̂(Xi, Yi), i = 1, . . . , n

9
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Figure 1: Contour plots of the regression functions m1, m2 and m3 with a = 0 (from left to right).

and independent identically distributed random variables Ci which are independent of the sample

(X1, Y1, Z1), . . . , (Xn, Yn, Zn) and are drawn from the distribution which puts mass (
√

5 + 1)/2
√

5 at

the point (1 −
√

5)/2 and mass (
√

5 − 1)/2
√

5 at the point (1 +
√

5)/2. From this bootstrap sample

we calculate the bootstrap version Î∗
n of the test statistic. After B repetitions of the bootstrap

procedure we obtain a sample

Î∗
n,1, . . . , Î

∗
n,B

of the test statistics, which can be used to estimate the (1−α)-quantile of the distribution under the

null hypothesis by the ⌊(1−α)B⌋-th order statistic, say Î∗
n,(⌊(1−α)B⌋). Therefore the null hypothesis

of symmetry is rejected if

În > Î∗
n,(⌊(1−α)B⌋). (4.1)

The consistency of this bootstrap procedure follows by similar arguments as presented in the proof

of Theorem 1 (see the Appendix) along the lines given in Härdle and Mammen (1993) or Dette and

Neumeyer (2001), who prove consistency of the wild bootstrap in the context of testing parametric

assumptions and comparing regression curves.

We restrict the investigations of the finite sample properties to the local linear estimator because of

its advantages with respect to boundary effects. We use least squares cross validation to determine

the bandwidth for the estimation of the regression function in the test statistic În,0,1 and the errors

ε̂i. For the symmetric estimate m̂s required in the construction of the bootstrap sample we use a

slightly larger bandwidth to ensure a correct estimation of the bias.

For our simulation study we consider the following regression functions

m1(x, y) = (1 − x2)2

m2(x, y) = (1 − xy)2

m3,a(x, y) = sin((x − a)2 + y2), a = 0, 0.005, 0.0075, 0.01.
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Table 1: Size and power of the test (4.1) for the symmetry of the regression functions m1 and m2

estimated from 500 simulation runs for α = 0.05 and α = 0.1.

(a) Size for m1

n = 50 n = 100

α 0.05 0.1 0.05 0.1

σ

0.05 0.073 0.107 0.05 0.1

0.1 0.056 0.11 0.054 0.094

(b) Power for m2

n = 50 n = 100

α 0.05 0.1 0.05 0.1

σ

0.05 1 1 1 1

0.1 1 1 1 1

The first regression function is symmetric and the second one is not symmetric. The third one is

symmetric with respect to the y axis for a = 0. For a = 0.005, 0.0075 and 0.01, it is shifted to

the right and therefore not symmetric with respect to the y axis. Contour plots of these functions

are presented in Figure 1. We consider a uniform design on [−1, 1]2, normally distributed errors

with different standard deviations σ and different α. The sample sizes are n = 50 and 100 while

the number of bootstrap replications in each simulation run is B=200. The size and power of the

test is estimated from 500 simulation runs. The results for the three different regression functions

are presented in Tables 1 and 2 for the regression functions m1 and m2, respectively. We observe

that for the regression function m1 the nominal level is approximated very well in both cases

σ = 0.05 and σ = 0.1. For the function m2, which is not symmetric with respect to the y-axis,

the simulated power is 100% in all cases. For a more detailed investigation of the behaviour of the

test under alternatives we consider the function m3 for different values of a. The simulation results

are presented in Table 2. We see that a small shift (a = 0.005) is harder to detect than a larger

shift (a = 0.0075 or a = 0.01), especially for larger standard deviations. But in all cases where the

regression function m3 is not symmetric to the y-axis, the simulated power is considerably higher

than the size of the test. The simulations also show (as expected), that the power is smaller for a

higher standard deviation of the errors.

4.2 Testing gray-scale images for symmetry

Gray-scale images can be understood as a two dimensional regression problem. Every pixel is defined

by its horizontal position xi and its vertical position yi in the picture and has a value Zi ∈ [0, 1]

defining its scale of gray. Without loss of generality we may assume, that the coordinates (xi, yi),

i = 1, . . . , n of every pixel are located in the set [−1, 1]2 so that the origin of the coordinate system

11



Table 2: Size and power of the test (4.1) for the symmetry of the regression function m3,a estimated

from 500 simulation runs for α = 0.05 and α = 0.1.

n = 50 n = 100

α 0.05 0.1 0.05 0.1

σ

a = 0

0.05 0.066 0.1 0.05 0.1

0.1 0.052 0.08 0.042 0.078

a = 0.005

0.05 0.602 0.708 0.994 0.998

0.1 0.16 0.25 0.616 0.732

n = 50 n = 100

α 0.05 0.1 0.05 0.1

σ

a = 0.0075

0.05 0.952 0.976 1 1

0.1 0.4 0.538 0.958 0.976

a = 0.01

0.05 0.998 1 1 1

0.1 0.68 0.78 1 1

is located in the center of the image. In many cases the images are disturbed by error terms εi.

Therefore the image of a symmetric object usually does not show perfect symmetry. Only knowing

the image of an object, this evokes the question if the real object can be symmetric with respect to

the vertical or horizontal axis.

We now illustrate the application of the new test in the context of analyzing thermographic images,

which are used in medicine to detect diseases, especially inflammations in parts of the human body

[see for example Gratt et. al. (1995), Jones (1998) or Kuruganti and Qi (2002)]. While most parts of

the human body are nearly symmetric concerning the thermographical characteristics (e.g. left and

right hand/arm/leg etc.) an inflammation e.g. of a finger violates this symmetry between the left

and right hand. In Figure 2 we show two thermographic images of a right hand and its reflection.

The image in Figure 2(a) exhibits symmetry. The image in 2(b) has a small modification which

violates the symmetry. We now use the new bootstrap test to check the symmetry with respect

to the centered vertical axis in both cases. For the image in Figure 2(a), the p-value of the test is

0.232 and therefore the null hypothesis is not rejected at significance level α = 0.05. On the other

hand for the image in Figure 2(b) the p-value is 0 and therefore the test rejects the null hypothesis.

Thus the asymmetry is clearly detected.
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(a) (b)

Figure 2: Thermographic image of a hand: (a) duplicated and mirrowed image of a right hand

(perfect symmetry) disturbed with errors. (b) duplicated and mirrowed image of a right hand with

modification in the right part of the image (small deviation from symmetry) disturbed with errors.

5 Concluding Remarks

In this paper we have developed a consistent test for symmetry of a bivariate regression function

with respect to a known axis using kernel methods. As natural application we showed an example

from image analysis with a more or less continuous change of grey scales. This assumption is not

always plausible for all images because there are often edges where colours change abruptly. Then

the standard kernel estimates do not provide useful estimates and modifications like e.g. in Gijbels,

Lambert and Qiu (2007), Hall, Qiu and Rau (2008) or wavelet estimators might provide better

results.

Image analysis can always be seen as inverse problem and testing for symmetry of the true regression

function is then of special interest if the point spread function is not symmetric. Topics of current

research are therefore testing for symmetry with respect to an unknown axis and in inverse problems.
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A Appendix: Proofs

For the sake of brevity we restrict ourselves to a proof of Theorem 1 and 2. The results in Theorem

3 can be derived by similar arguments. In the following discussion we use the notation În = ÎNW
n .

A.1 Proof of Theorem 1

The proof of this theorem is similar to that of Theorem 4 in Hall (1984), who investigated the asymp-

totic properties of the L2-distance between the Nadaraya-Watson estimate and the true regression

function. In a first step we decompose În into

În = In + Ĩn (4.2)

with

In =

∫

A

[κn(x, y)f(−x, y) − κn(−x, y)f(x, y)]2

f̂ 2
n(x, y)f̂ 2

n(−x, y)
d(x, y), (4.3)

Ĩn = 2

∫

A

1

f̂ 2
n(x, y)f̂ 2

n(−x, y)

{

κ2
n(x, y)[f̂ 2

n(−x, y) − f 2(−x, y)]

−κn(x, y)κn(−x, y)[f̂n(x, y)f̂n(−x, y) − f(x, y)f(−x, y)]
}

d(x, y), (4.4)
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where κn(x, y) = m̂(x, y) − m(x, y)f̂n(x, y) and show, that Ĩn gives the asymptotic distribution. In

a second step we prove that Tn is asymptotically negligible. The details are stated in the following

two theorems.

Theorem 4 Under the assumptions of Theorem 1 we have

(

4

n2h2
α1 +

16h4

n
α2

)−1/2
(

In − E[S[I]
n ]

)

D→ N (0, 1),

where

S[I]
n =

∫

A

{κn(x, y)f(−x, y) − κn(−x, y)f(x, y)}2

E[f̂n(x, y)]2 E[f̂n(−x, y)]2
d(x, y).

Theorem 5 Under the assumptions of Theorem 1 we have

(

4

n2h2
α1 +

16h4

n
α2

)−1/2

(Ĩn − E[S̃n]) = op(1),

where

S̃n = 2

∫

A

κ2
n(x, y)[f̂ 2

n(−x, y) − f 2(−x, y)] − κn(x, y)κn(−x, y)[f̂n(x, y)f̂n(−x, y) − f(x, y)f(−x, y)]

E[f̂n(x, y)]2 E[f̂ 2
n(−x, y)]2

d(x, y).

Proof of Theorem 4 Let us first consider a slightly modified L2-distance

Īn := Īn(vn) :=

∫

A

[κn(x, y)f(−x, y) − κn(−x, y)f(x, y)]2vn(x, y)d(x, y), (4.5)

where vn is a stochastic weight function which is symmetric and positive and converges in probability

to a bounded deterministic function v (finally we choose vn(x) = 1/f̂ 2
n(x, y)f̂ 2

n(−x, y)). We introduce

the notation

κn(x, y)f(−x, y) − κn(−x, y)f(x, y) =
1

nh2

n
∑

i=1

H(Xi, Yi, x, y)[Zi − m(x, y)]

with

H(Xi, Yi, x, y) =
{

k1

(Xi − x

h

)

f(−x, y) − k1

(Xi + x

h

)

f(x, y)
}

k2

(Yi − y

h

)

.

Substituting this in the definition of Īn yields the decomposition

Īn = In1 + In2 + In3 + In4

17



where

In1 =
1

n2h4

n
∑

i=1

[Zi − m(Xi, Yi)]
2

∫

A

H2(Xi, Yi, x, y)vn(x, y)d(x, y)

In2 =
2

n2h4

∑

1≤i<j≤n

[Zi − m(Xi, Yi)][Zj − m(Xj, Yj)]

∫

A

H(Xi, Yi, x, y)H(Xj, Yj, x, y)vn(x, y)d(x, y)

In3 =
2

nh2

n
∑

i=1

[Zi − m(Xi, Yi)]

∫

A

H(Xi, Yi, x, y)gn(x, y)vn(x, y)dxdy

In4 =

∫

A

g2
n(x, y)vn(x, y)dxdy

and

gn(x, y) =
1

nh2

n
∑

i=1

[m(Xi, Yi) − m(x, y)] H(Xi, Yi, x, y).

In this decomposition, the function H takes the role of the kernel K in Hall (1984). The main

difference in the estimation of In1 to In4 here, compared to Hall (1984) is, that H is not necessarily

positive. In what follows, we will show that In2 and In3 give the asymptotic normal distribution

while In1 and In4 form the bias of the test statistic. We begin with the consideration of In1. Similar

steps as in Birke (2008) lead to

(

nh2

2

)4

EX

[

{In1 − EX [In1]}2
]

= Op(nh4)

and applying the Markov inequality gives for any sequence λn → ∞ for n → ∞

P(|In1 − EX [In1]| >
λn

n3/2h2
|X1, Y1, . . . , Xn, Yn) ≤ 1

λ2
n

Op

(

n3h4nh4

n4h8

)

−→
n→∞

0.

Therefore we have

In1 = EX [In1] + Op

(

1

n3/2h2

)

= EX [In1] + op

(

1

nh

)

(4.6)

with

EX [In1] =
1

n2h4

n
∑

i=1

σ2(Xi, Yi)

∫

A

H2(Xi, Yi, x, y)vn(x, y)d(x, y). (4.7)

Let us now turn to the random variable In2. We introduce the notations

Wnij =

∫

A

H(Xi, Yi, x, y)H(Xj, Yj, x, y)vn(x, y)d(x, y)

= 2

∫

A

H̃(Xi, Yi, x, y)vn(x, y)d(x, y), (4.8)

W̃nij = 2

∫

A

H̃(Xi, Yi, x, y)v(x, y)d(x, y), (4.9)
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where

H̃(Xi, Yi, x, y) =

[

k1

(

Xi − x

h

)

f(−x, y) − k1

(

Xi + x

h

)

f(x, y)

]

×k2

(

Yi − y

h

)

k1

(

Xj − x

h

)

f(−x, y)k2

(Yj − y

h

)

and

Zni = {Zi − m(Xi, Yi)}
i−1
∑

j=1

{Zj − m(Xj, Yj)}Wnij

and apply the central limit theorem for martingale difference arrays (see Hall and Heyde, 1980) to

the statistic
n2h4

2
In2 =

n
∑

i=2

Zni.

The conditional variance yields

V 2
n =

n
∑

i=2

σ2(Xi, Yi)
i−1
∑

j=1

{Zj − m(Xj, Yj)}2W̃ 2
nij(1 + op(1)),

which converges to

ᾱ1 = 2

∫

[(k ∗ k)(u, v)]2 d(u, v)

∫

A

(σ2f 2v2)(x, y)f 2(−x, y)[σ2(x, y)f(−x, y)+σ2(−x, y)f(x, y)]d(x, y)

and a standard but tedious calculation shows that the Lindeberg condition

1

n2h6

n
∑

i=2

EX [Z2
ni1{|Zni| > εnh3}] P→ 0

is fulfilled (see Stahljans, 2007, for details). Now the central limit theorem yields

nh

2
ᾱ
−1/2
1 In2

D→ N (0, 1).

In addition it can be shown, that In2 is asymptotically independent of any sequence of events An

contained in the σ-algebra Fn0 generated by X1, . . . , Xn.

The term In3 can be decomposed into

In3 = 4Jn1 + 4Jn2 (4.10)

with

Jnj =
1

nh2

n
∑

i=1

{Zi − m(Xi, Yi)}
∫

A

k1

(

Xi − x

h

)

k2

(

Yi − y

h

)

aj(x, y)vn(x, y)f(−x, y)d(x, y)
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and a1(x, y) = γn(x, y) = E[gn(x, y)], a2(x, y) = gn(x, y) − γn(x, y). We will show that Jn1 is

asymptotically normal and that Jn2 is asymptotically negligible. To this end we define

Zni := {Zi − m(Xi, Yi)}Z̃ni,

where

Z̃ni =

∫

A

k1

(

Xi − x

h

)

k2

(

Yi − y

h

)

f(−x, y)γn(x, y)vn(x, y)d(x, y),

and write

Jn1 =
1

nh2

n
∑

i=1

Zni. (4.11)

Therefore, conditionally on Fn0, Jn1 is a centered sum of independent random variables and its

asymptotic normality follows from the following lemma.

Lemma 1 Under the assumptions of Theorem 1 we have

1

nh8
EX [{

n
∑

i=1

Zni}2]
P→ ᾱ2,

where

ᾱ2 =

∫

A

(σ2γ2v2f)(x, y)f 2(−x, y)d(x, y).

Moreover, for all ε > 0 the Lindeberg condition

1

nh8

n
∑

i=1

EX [Z2
ni1{|Zni| > ε

√
nh4}] P→ 0

is fulfilled.

The proof of this Lemma follows the structure of the corresponding one in Hall (1984) where we

replace the kernel K by the function H defined above. For details see again Stahljans (2007). Again

the limiting random variable in (4.11) is independent of Fn0. This yields, together with the results

for In2, that
(

4

n2h2
ᾱ1 +

16h4

n
ᾱ2

)−1/2

(In2 + Jn1)
D→ N (0, 1).

Similar methods as in Birke (2008) yield for the term Jn2 in (4.10).

Jn2 = op

(

1

nh

)

.

So far, we have used the more general weight function vn(x, y). We now substitute it by vn(x, y) =

1/[f̂ 2
n(x, y)f̂ 2

n(−x, y)] and (4.5) yields the statistic Ĩn. This weight function is positive, symmetric
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and converges in probability to 1/[f 2(x, y)f 2(−x, y)]. Below, we give a representation of the remain-

ing stochastic terms EX [In1] and In4 whose dominating parts form the bias of Ĩn. To overcome the

problem of the stochastic part in the denominator of vn we use the following two Taylor expansions

of 1/x2 in a neighbourhood of the point E[f̂n(x, y)] E[f̂n(−x, y)], that is

(f̂n(x, y)f̂n(−x, y))−2 = (E[f̂n(x, y)] E[f̂n(−x, y)])−2

+OP (1)|f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]| (4.12)

(f̂n(x, y)f̂n(−x, y))−2 = (E[f̂n(x, y)] E[f̂n(−x, y)])−2

−2
f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]

(E[f̂n(x, y)] E[f̂n(−x, y)])3

+OP (1)(f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)])2. (4.13)

The order of the remainders in both expansions can be determined by using the uniform convergence

rates for multivariate density estimators given in Giné and Guillou (2002),

sup |f̂n(x, y) − E[f̂n(x, y)]| = Op

(

log n

nh2

)1/2

, (4.14)

and the decomposition
∣

∣

∣
f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]

∣

∣

∣
≤ |f̂n(x, y) − E[f̂n(x, y)]||f̂n(−x, y)|

+|E[f̂n(x, y)]||f̂n(−x, y) − E[f̂n(−x, y)]|

= Op

(

log n

nh2

)1/2

.

This gives for EX [In1] with the Taylor expansion (4.13)

EX [In1] =
1

n2h4

n
∑

i=1

σ2(Xi, Yi)

∫

A

H2(Xi, Yi, x, y)

(E[f̂n(x, y)] E[f̂n(−x, y)])2
d(x, y) + op

(

1

nh
+

h2

√
n

)

.

Since the variance of the first term is of order O(1/n3h4) = o(1/n2h2) we can substitute this term

by its expectation which yields

EX [In1] =
1

n2h4

n
∑

i=1

∫

A

E[σ2(Xi, Yi)H
2(Xi, Yi, x, y)]

(E[f̂n(x, y)] E[f̂n(−x, y)])2
d(x, y) + op

(

1

nh
+

h2

√
n

)

.

Now it remains to find a representation for In4. This time we use the Taylor expansion (4.12) and

obtain

In4(ṽn) =

∫

A

g2
n(x, y)

(E[f̂(x, y)] E[f̂(−x, y)])2
d(x, y)

+Op(1)

∫

A

g2
n(x, y)|f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]|d(x, y)

= I
[1]
n4 + I

[2]
n4 .
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The variance of I
[1]
n4 is of order o(1/n2h2) and therefore I

[1]
n4 can be replaced by its expectation. An

application of the Cauchy-Schwarz inequality to I
[2]
n4 and a straight forward calculation yields

∫

A

g4
n(x, y)d(x, y) = OP

(

1

n2
+ h8

)

and by again using the uniform rates in (4.14) it follows that
∫

A

{f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]}2d(x, y) = OP

(

log n

nh2

)

.

This means that

I
[2]
n4 = OP

(

1

n2
+ h8

)1/2

OP

(

log n

nh2

)1/2

= oP

(

1

nh

)

,

and

In4 =

∫

A

E[g2
n(x, y)]

(E[f̂(x, y)] E[f̂(−x, y)])2
d(x, y),

which completes the proof of Theorem 4. 2

Proof of Theorem 5 With the Taylor expansion in (4.12) it follows

Ĩn =

∫

A

κ2
n(x, y)[f̂n(−x, y) − f(−x, y)][f̂n(−x, y) + f(−x, y)]

(E[f̂n(x, y)] E[f̂n(−x, y)])2
d(x, y)

−
∫

A

κn(x, y)κn(−x, y)[f̂n(−x, y) − f(−x, y)]f̂n(x, y)

(E[f̂n(x, y)] E[f̂n(−x, y)])2
d(x, y)

+Op(1)

∫

A

κ2
n(x, y)[f̂n(−x, y) − f(−x, y)][f̂n(−x, y) + f(−x, y)]

×|f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]|d(x, y)

−Op(1)

∫

A

κn(x, y)κn(−x, y)[f̂n(−x, y) − f(−x, y)]

×|f̂n(x, y)f̂n(−x, y) − E[f̂n(x, y)] E[f̂n(−x, y)]|d(x, y)

= Op

(

log n

nh2

)1/2 ∫

A

κ2
n(x, y)d(x, y) − Op

(

log n

nh2

)1/2 ∫

A

κn(x, y)κn(−x, y)d(x, y)

+Op

(

log n

nh2

)
∫

A

κ2
n(x, y)d(x, y) − Op

(

log n

nh2

)
∫

A

κn(x, y)κ(−x, y)d(x, y)

= Op

(

log n

nh2

)1/2 ∫

A

κ2
n(x, y)d(x, y) − Op

(

log n

nh2

)1/2 ∫

A

κn(x, y)κn(−x, y)d(x, y).

Jensen’s inequality yields

Var
(

∫

A

κ2
n(x, y)d(x, y)

)

≤
∫

A
E[κ4

n(x, y)]d(x, y) = o
( 1

n log n

)

,
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and therefore we have

1

2
|Tn| = OP

(

log n

nh2

)1/2 ∫

A
E[κ2

n(x, y)]d(x, y)

−OP

(

log n

nh2

)1/2 ∫

A
E[|κn(x, y)κn(−x, y)|]d(x, y) + oP

( 1

nh

)

.

For the expectations we obtain analogously
∫

A E[κ2
n(x, y)]d(x, y) = o((n log n)−1/2), which results in

Ĩn = oP ((nh)−1). The calculations for the term E[S̃n] are very similar and therefore omitted at this

place. For details we refer to Stahljans (2007). 2

A.2 Proof of Theorem 2

The test statistic can be decomposed into

În =

∫

A

[m̂(x, y) − m(x, y)]2d(x, y) +

∫

A

[m̂(−x, y) − m(−x, y)]2d(x, y)

−2

∫

A

[m̂(x, y) − m(x, y)][m̂(−x, y) − m(−x, y)]d(x, y)

+2

∫

A

[m̂(x, y) − m(x, y)][m(x, y) − m(−x, y)]d(x, y)

−2

∫

A

[m̂(−x, y) − m(−x, y)][m(x, y) − m(−x, y)]d(x, y) +

∫

A

[m(x, y) − m(−x, y)]2d(x, y)

= 2

∫

A

[m̂(x, y) − m(x, y)]2d(x, y) − 2

∫

A

[m̂(x, y) − m(x, y)][m̂(−x, y) − m(−x, y)]d(x, y)

+4

∫

A

[m̂(x, y) − m(x, y)][m(x, y) − m(−x, y)]d(x, y) + I

The first two terms are, due to Theorem 4 in Hall (1984), of order OP (1/nh) = oP (1/
√

n). For the

estimation of the second term we also use the Cauchy-Schwarz inequality. The deterministic part

I is an additional bias and is subtracted for the asymptotic consideration. Therefore, it remains to

show that the third term is asymptotically normal with rate
√

n. Note that

∫

A

[m̂(x, y) − m(x, y)][m(x, y) − m(−x, y)]d(x, y) =
n

∑

i=1

µi +
n

∑

i=1

(µ̃i − µi), (4.15)

where µi is defined in (3.2) and

µ̄i =
1

nh2

∫

A

[Zi − m(x, y)]k1

(

Xi−x
h

)

k2

(

Yi−y
h

)

[m(x, y) − m(−x, y)]

f̂n(x, y)
d(x, y).
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We get for the variance of
∑n

i=1 µi

Var
(

n
∑

i=1

µi

)

=
1

nh4 E
[(

∫

A

σ(X1, Y1)ε1k1

(

X1−x
h

)

k2

(

Y1−y
h

)

(m(x, y) − m(−x, y))

E[f̂(x, y)]
d(x, y)

)2]

+ o
( 1

n

)

=
1

n

∫

A

σ2(u, v)(m(u, v) − m(−u, v))2

f(u, v)
d(u, v) + o

( 1

n

)

Since the random variables µi, i = 1, . . . , n are independent, we can prove asymptotic normality

showing Ljapunov’s condition. For this purpose note that

n2
E[(µi − E[µi])

4] ≤ 8n2
E[µ4

i ] + 8n2(E[µi])
4.

A straight forward calculation yields

E[µi] =
1

n

∫

A

[m(x, y) − m(−x, y)]

E[f̂n(x, y)]

×
∫

L

[m(x + hu, y + hv) − m(x, y)]k1(u)k2(v)f(x + hu, y + hv)d(u, v)d(x, y)

= O
(h2

n

)

and

E[µ4
i ] =

1

n4h8 E
[(

∫

A

[Zi − m(x, y)]k1

(

Xi−x
h

)

k2

(

Yi−y
h

)

[m(x, y) − m(−x, y)]

E[f̂n(x, y)]
d(x, y)

)4]

= O
( 1

n4

)

.

This results in

n2

n
∑

i=1

E[(µi − E[µi])
4] = O

(h8

n
+

1

n

)

= o(1).

Therefore the Ljapunov condition is satisfied and we have with the notation of (3.2) the asymptotic

normality
√

n
n

∑

i=1

(µi − E[µi]) =
√

n(Tn − E[Tn])
D→ N (0, σ2).

We conclude the proof by showing that the term
∑n

i=1(µ̃i−µi) in (4.15) is asymptotically negligible.

A Taylor expansion of g(f̂n(x, y)) with g(z) = 1/z in a neighbourhood of the point E[f̂n(x, y)] and

an application of the uniform convergence rates for density estimates gives

√
n

n
∑

i=1

(µ̄i − µi) = OP

((log n)1/2

nh3

)

n
∑

i=1

Mi,n
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with

Mi,n =

∫

A

[Zi − m(x, y)][m(x, y) − m(−x, y)]k1

(Xi − x

h

)

k2

(Yi − y

h

)

d(x, y).

A straight forward calculation now yields

n
∑

i=1

Mi,n =
n

∑

i=1

E[Mi,n] + OP (n1/2h2) = O(nh4) + OP (n1/2h2) = oP

( nh3

(log n)1/2

)

and therefore the proof of Theorem 2 is complete. 2
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