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Abstract

We consider the problem of optimal design of experiments for random effects models,
especially population models, where a small number of correlated observations can be taken
on each individual, while the observations corresponding to different individuals can be
assumed to be uncorrelated. We focus on c-optimal design problems and show that the
classical equivalence theorem and the famous geometric characterization of Elfving (1952)
from the case of uncorrelated data can be adapted to the problem of selecting optimal sets
of observations for the n individual patients. The theory is demonstrated in a linear model
with correlated observations and a nonlinear random effects population model, which is
commonly used in pharmacokinetics.
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1 Introduction

It is a common situation in pharmacokinetic trials that only a very small number of measure-

ments can be taken on a single patient, but a larger number of n different patients are available

[Schmelter (2007), Colombo et al. (2006)]. In this situation it is impossible to reliably estimate

parameters of interest for each patient. However, often these individual parameters are not of

primary interest, because it is assumed that the individual parameters are realizations of some

global distribution. Therefore, the main aim of the experiment is the estimation of the mean

and/or variance of this distribution. This results in a random effects model and is called the

population approach [Retout and Mentré (2003)]. Unfortunately, the common random effect

causes measurements an a single patient to be correlated, therefore most of the commonly used

tools of classical optimal design theory are not applicable in this context. Compared to the

uncorrelated case the optimal design problem for dependent data is intrinsically more difficult.

Most authors use asymptotic arguments to determine efficient designs [see Sacks and Ylvisaker

(1968), Bickel and Herzberg (1979), Näther (1985), Dette et al. (2009), Müller and Pázman

(2003) among others]. In particular for the case of dependent data the powerful equivalence the-

orem [Pukelsheim (1993)] and geometric representations [Elfving (1952)] from the uncorrelated

case are not available.

In the present paper we try to fill this gap for the c-optimality criterion, which determines the

design such that the variance of a linear combination of the parameters (specified by the vector

c) is minimal. Note that many commonly used criteria (as designing the experiment for the

estimation of the area under the curve, the maximum concentration or, in dose finding studies,

the minimal effective dose) are special cases of the c-optimality criterion [see Atkinson et al.

(1993)]. In the following sections we show that if the number of available observations is the

same for each patient, the total information of all observations on a single patient, accounting for

correlations, can be expressed as a sum of information matrices in the usual form for uncorrelated

observations. More precisely, if m observations are available for each patient, there exist vector

valued functions f̃l, l = 1, ...,m(m + 1)/2 such that the total Fisher information matrix for the

set of m observations on this patient can be written in the form

I(θ) =

m(m+1)/2∑
l=1

ulf̃lf̃l
T
,(1.1)

where the quantities ul can take the values of −1, 0, 1 only. For this representation we introduce

in addition to the original design space for the individual observations a design space of m

observations for each patient. Using this representation, we can derive an equivalence theorem

for c-optimal designs using the general theory in Pukelsheim (1993) and apply recent results of

Dette and Holland-Letz (2009) to obtain a geometric characterization of c-optimal designs for

the problem of allocating the n available patients to different sets of m individual observations.

As a result we obtain a generalization of the famous result of Elfving to the case of dependent
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data.

The theoretical details are presented in Section 2. In Section 3 we demonstrate the application of

these ideas in two examples, a linear model and a basic nonlinear model taken from population

pharmacokinetics.

2 An Elfving representation for models with correlated

observations

We begin our discussion with the linear case where the results are slightly more transparent.

The nonlinear case can easily be reduced to this situation (see Remark 2.4), while the case of

random effect models is discussed in Section 3. Assume that m observations can be taken each

on a number of n individuals in the linear model

Yij = θTf(xij) + εij; i = 1, ..., n, j = 1, ...,m,(2.1)

where Yij denotes the j−th observation on the i−th individual and xij is the experimental

condition corresponding to this observation, which is chosen from a compact interval X ⊂ R.

We use xi = (xi1, ..., xim) to denote all experimental conditions corresponding to the individ-

ual i. The vector θ = (θ1, ..., θk)
T ∈ Θ ⊂ Rk is the vector of parameters to be estimated,

f(x) = (f1(x), ..., fk(x))T denotes a vector of known functions and εij a random error term with

expectation 0 and variance σ2
j (j = 1, . . . ,m). Observations on the same individual are assumed

to be correlated, with corr(εij, εij∗) = c(xij, xij∗), while data corresponding to different individu-

als are assumed to be independent, i.e. corr(εij, εi∗j) = 0, whenever i 6= i∗. We express the total

covariance matrix of errors as the block diagonal matrix V = diag(V1, . . . , Vn) ∈ (Rm×m)n, with

matrices

Vi = diag(σ1, ..., σm)(c(xir, xis))r,s=1,...,m diag(σ1, . . . , σm) ∈ Rm×m

on the diagonal. We now write Fi = (f(xi1), ..., f(xim)) ∈ Rk×m as the design matrix for

individual i, i = 1, ..., n, define the matrix F = (F1, . . . , Fn) = (f(x11), ..., f(xnm)) ∈ Rk×nm as

the design matrix corresponding to all patients, and denote by vlj(xi) the Element in the position

(l, j) of the matrix V −1
i . The information matrix (inverse covariance matrix) of the weighted

least squares estimate for the parameter θ can be expressed as

M = FV −1F T =
n∑
i=1

FiV
−1
i F T

i .(2.2)

The following arguments demonstrate that this expression can be rewritten in a form closer to

the usual form of information matrices, which is obtained in the case of uncorrelated obser-

vations. We begin with an alternative representation for the individual information matrices
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FiV
−1
i F T

i , i = 1, ..., n. For this purpose we collect all experimental conditions corresponding

to one individual in a vector xi = (xi1, ..., xim) ∈ Rm and consider Xm as design space. An

exact design is characterized by a tuple (xi, ni)
n
i=1, where xi ∈ Xm and ni ∈ N such that∑p

i=1 ni = n. This means that ni of the n patients are treated under the experimental condition

xi = (xi1, ..., xim)T (i = 1, ..., p). Our first result provides the information matrix corresponding

to one observation at the experimental condition xi.

Lemma 2.1 An information matrix of the form FiV
−1
i F T

i can also be expressed as

FiV
−1
i F T

i =

m(m+1)/2∑
l=1

ulf̃l(xi)f̃l(xi)
T ,(2.3)

where the functions f̃l : Xm → Rk and the constants ul ∈ {−1, 0, 1} are defined in equations

(2.7) and (2.8) below, respectively, l = 1, ...,m(m+ 1)/2.

Proof: Let V −1
i = (vlj(xi))

m
l,j=1 denote the inverse of the matrix Vi, then a straightforward

calculation yields

FiV
−1
i F T

i =
m∑
l=1

m∑
j=1

f(xil)f(xij)
Tvlj(xi)

=
m∑
l=1

m∑
j>l

[f(xil) + sgn(vlj(xi))f(xij)][f(xil) + sgn(vlj(xi))f(xij)]
T |vlj(xi)|

+
m∑
l=1

f(xil)f(xil)
T (vll(xi)−

m∑
j 6=l

|vlj(xi)|)

=
m∑
l=1

m∑
j>l

glj(xi)glj(xi)
T +

m∑
l=1

slhl(xi)hl(xi)
T ,

where the functions sl : Xm → {−1, 0, 1} and glj, hl : Xm → Rk are defined by

sl(xi) = sl(xi1, ..., xim) = sgn(vll(xi))−
m∑
j 6=l

|vlj(xi)|), l = 1, . . . ,m(2.4)

glj(xi) = glj(xi1, ..., xim) = (f(xil) + sgn(vlj(xi))f(xij))
√
|vlj(xi)|, l, j = 1, . . . ,m(2.5)

and

hl(xi) = hl(xi1, ..., xim) = f(xil)

√√√√|vll(xi)− m∑
j 6=l

|vlj(xi)||, l = 1, . . . ,m,(2.6)
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respectively. With the notation

f̃l =



hl if l = 1, ...,m

g1,l−m+1 if l = m+ 1, ..., 2m− 1

g2,l−2m+3 if l = 2m, ..., 3m− 3
...

...

gm−1,m if l = m(m+ 1)/2

(2.7)

and

ul =

{
sl if l = 1, ...,m

1 if l = m+ 1, ...,m(m+ 1)/2
(2.8)

we can express the information matrix as

FiV
−1
i F T

i =

m(m+1)/2∑
l=1

ulf̃l(xi)f̃l(xi)
T ,(2.9)

which completes the proof of Lemma 2.1. 2

Using Lemma 2.1 the total information matrix for an exact design of m observations each on n

subjects can therefore be written as

M =
n∑
i=1

m(m+1)/2∑
l=1

ulf̃l(xi)f̃l(xi)
T .(2.10)

Following Kiefer (1974) we define an approximate design as a probability measure ξ on Xm with

finite support. Similarly to (2.10) the information matrix of an approximate design ξ using p

different sets of m single subject measurements (with weights ξ(xi) = ξ(xi1, ..., xim) at the points

xi) can be expressed as

M(ξ) =

p∑
i=1

m(m+1)/2∑
l=1

ulf̃l(xi)f̃l(xi)
T ξ(xi).(2.11)

If ξ puts masses ξi = ξ(xi) at points xi ∈ Xm (i = 1, ..., p,
∑p

i=1 ξi = 1) this means that approx-

imately ni ≈ nξi patients have to be treated under experimental conditions xi = (xi1, ..., xim)

(i = 1, ..., p). In practice the integers ni are obtained by an appropriate rounding procedure from

the quantities nξi [see for example Pukelsheim and Rieder (1992)]. Note that the design space

here is Xm, i.e. the space of all possible m-observation sets.

Recall that for a given vector c ∈ Rk an approximate design ξc is called c-optimal if and only

if c ∈ Range (M(ξc)) and ξc minimizes the expression cTM−(ξ)c, where M−(ξ) denotes the

generalized inverse of the matrix M(ξ) (note that this expression is approximately proportional
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to the variance of the weighted least squares estimate for the linear combination cT θ). We can

now use the representation (2.11) to derive a condition, which can be used to check the optimality

of a given approximate design. In the special case of c-optimal designs, i.e. designs which are

optimal for the estimation of a linear combination cT θ of the parameters (c ∈ Rk), we obtain the

following result.

Theorem 2.1. A design ξc is c-optimal in a regression model with information matrix of the

form (2.11) if and only if there exists a generalized inverse G of the matrix M(ξc) such that the

inequality

(2.12)

m(m+1)/2∑
`=1

u`

(
cTGf̃`(x)

)2

cTM−(ξc, θ)c
≤ 1

holds for all x ∈ Xm. Moreover, there is equality in (2.12) at any support point of the design ξc.

Proof of Theorem 2.1. Let Ξ denote the set of all approximative designs on Xm and let

M = {M(ξ) | ξ ∈ Ξ} ⊂ Rk×k

denote the set of all information matrices of the form (2.11). M is obviously convex and the

information matrix M(ξc) of a locally c-optimal design for which the linear combination cT θ is

estimable [i.e. c ∈ Range (M(ξ))] maximizes the function (cTM−c)−1 in the set M∩Ac, where

Ac = {M(ξ)) ∈M | c ∈ Range(M(ξ))}.

Consequently it follows from Theorem 7.19 in Pukelsheim (1993) that the design ξc is c-optimal if

and only if there exists a generalized inverse, say G, of the matrix M(ξc) such that the inequality

tr(AGccTGT ) ≤ cTM−(ξc)c

holds for all A ∈M, where there is equality for any matrix A ∈M which maximizes (cTM−c)−1

in the set M. Note that the family M is the convex hull of the set
m(m+1)/2∑

`=1

u`f̃`(x)f̃T` (x)

∣∣∣∣x ∈ Xm

 ,

and therefore the assertion of Theorem 2.1 follows by a standard argument of optimal design

theory [see e.g. Silvey (1980)]. 2

If it can be shown that u` ≥ 0 for all ` = 1, ...,m(m + 1)/2 we can use this theorem to apply

Theorem 3.3 of Dette and Holland-Letz (2009) and derive a geometric characterization of c-

optimal designs for models with information matrices of the form (2.11), which generalizes the
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classical result of Elfving (1952) to the case of dependent data. For this purpose we define a

generalized Elfving set by

R(m(m+1)/2) = conv


m(m+1)/2∑

`=1

ε`f̃`(xθ)

∣∣∣∣ x ∈ Xm;

m(m+1)/2∑
`=1

ε2
` = 1

(2.13)

[note that the set R(m(m+1)/2) reduces for m = 1 to the classical Elfving space considered by

Elfving (1952)]. Additionally, we assume that the quantities u` defined in (2.8) are nonnegative

for all ` = 1 . . .m(m+ 1)/2, i.e.

vll(xi)−
m∑
j 6=l

|vlj(xi)| ≥ 0, l = 1, . . . ,m, i = 1, . . . , n.(2.14)

Theorem 2.2 Assume that (2.14) is satisfied. A design ξc = {xr, pr}pr=1 is locally c-optimal in

a model with information matrix of the form (2.11) if and only if there exist constants γ > 0,

ε11, . . . , ε1p, . . . , ε(m(m+1)/2)1, . . . , ε(m(m+1)/2)p satisfying

m(m+1)/2∑
`=1

ε2
`r = 1 ; r = 1, . . . , p,(2.15)

such that the point γc ∈ Rk lies on the boundary of the generalized Elfving set R(m(m+1)/2) defined

in (2.13) and has the representation

γc =

p∑
r=1

pr


(m(m+1)/2)∑

`=1

ε`rf̃`(xr)

 ∈ ∂ R(m(m+1)/2).(2.16)

Proof. From assumption (2.14) it follows that u` ∈ {0, 1} and consequently the information

matrix at the experimental condition x = (x1, . . . , xm) is of the form

I(x) =
∑
{`|u`=1}

f̃`(x)f̃`(x)T .(2.17)

Therefore, the result is a direct consequence of Theorem 3.3 in Dette and Holland-Letz (2009),

which presents a geometric characterization of Elfving type for c-optimal designs in models with

an information matrix of the form (2.17). �

Remark 2.3 If m = 2 observations can be taken for each patient and σ2
1 = σ2

2 = σ2, then

assumption (2.14) is always satisfied, because

V −1
i =

1

σ2|Vi|

(
1 −c(xi1, xi2)

−c(xi1, xi2) 1

)
(2.18)
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and |c(xi1, xi2)| ≤ 1.

Remark 2.4 The results can easily be generalized to nonlinear fixed effects models of the form

Yij = η(xij, θ) + εij i = 1, .., n; j = 1, ...,m,(2.19)

where η denotes a (not necessarily linear) function defined on X × Θ. A rather detailed review

and numerous references on optimal designs for nonlinear models can be found in Atkinson and

Haines (1996). In the situation considered in this paper, standard results on nonlinear regression

models show that the covariance matrix of the nonlinear weighted least squares is asymptotically

given by (2.2) where Fi = (f(xi1), ..., f(xim)) ∈ Rk×m and the vector f is given by

f(t) =
∂

∂θ
η(t, θ)(2.20)

Following Chernoff (1953) we assume that a preliminary guess for the unknown parameter θ is

available. In this case the information matrix in (2.10) is well defined and all results of this section

remain correct for the nonlinear model (2.19) using the identification (2.20). In particular locally

c-optimal designs can be characterized by the appropriately modified equivalence Theorem 2.1

and the geometric characterization in Theorem 2.2.

The concept of locally optimal designs has been criticized due to its sensitivity with respect

to misspecification of the unknown parameter. Robust optimal designs could be obtained us-

ing a Bayesian or minimax approach [see e.g. Chaloner and Verdinelli (1995), Dette (1995),

Müller and Pázman (1998)]. A geometric method of constructing Bayesian optimal designs for

one-parameter models and a two-point prior distribution is given by Haines (1995) for the uncor-

related case, but its generalization to models with more parameters, arbitrary prior distributions

or correlated observations seems to be difficult. A generalization of Elfving’s characterization to

these more sophisticated criteria could be derived along the lines of Dette (1996), who considered

the uncorrelated case, i.e. m = 1. However, these investigations are extremely complicated and

will be devoted to future research.

3 Examples

We will demonstrate the application of the geometric characterization of Elfving type in two

examples, a simple 2 parameter fixed effects polynomial model with intrinsically correlated ob-

servations and a nonlinear population model which is commonly used in pharmacokinetics.

3.1 Quadratic regression

As a linear example we consider a two parameter fixed effects quadratic model, where m obser-

vations are taken for each of the n patients, that is

yij = θ1xij + θ2x
2
ij + εij i = 1, ..., n, j = 1, ...,m.(3.1)
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We begin with the case m = 2 and assume that observations corresponding to the same patients

are correlated with covariance function cov(εi1, εi2) = σ2c(xi1, xi2) = σ2λ|xi1−xi2|, i.e.

V −1
i = σ−2

(
1 λ|xi1−xi2|

λ|xi1−xi2| 1

)−1

=

(
v11(xi) v12(xi)

v21(xi) v22(xi)

)
.

In this situation we have f(x) = (x, x2)T and by Remark 2.3 the assumption (2.14) is satisfied,

which yields u` = 1 (` = 1, 2, 3). Consequently, the information matrix can be written as a sum

of m(m+ 1)/2 = 3 terms using the functions

f̃1(xi1, xi2) = h1(xi1, xi2) = f(xi1)
√
|v11(xi)− |v12(xi)||(3.2)

f̃2(xi1, xi2) = h2(xi1, xi2) = f(x2)
√
|v22(xi)− |v12(xi)||(3.3)

f̃3(xi1, xi2) = g12(xi1, xi2) = (f(xi1) + sgn(v12(xi))f(xi2))
√
|v12(xi)|.(3.4)

For the choice of parameters λ = 0.6, σ2 = 0.04 and the design space X = [0, 2] the corresponding

generalized Elfving set R3 defined by (2.13) is depicted in Figure 1. Every pixel in the figure is

induced by a point measurement set x ∈ Xm (m = 2), where the function f̃` and the quantities

ε` in (2.13) are evaluated at a (dense) grid. Both parts of the figure represent the same Elfving

space, but the coloring in the left part corresponds to potential values of the first measurement

x1 of x = (x1, x2), while the coloring in the right part corresponds to the second measurement

x2 (see the legend of Figure 1).

Suppose we want to estimate the linear combination cT θ defined by the vector c = (−1, 1)T ,

which is marked as the red line in Figure 1. The optimal sets of measurements are those which

can be used to construct the point of the intersection of the boundary of the Elfving space with

the line in the direction of the vector c. This representation may require a single point of the

form

p(x) =

m(m+1)/2∑
`=1

ε`f̃`(x);

m(m+1)/2∑
`=1

ε2` = 1

or several points p(x1), ..., p(xp) of this type, where p ≤ k and k represent the number of param-

eters in the model (here k = 2). Each point xj = (xj1, ..., xjm) ∈ Xm corresponds to a set of

measurements (in the concrete example we have m = 2) per patient. The weights used in the

convex combination yield the weights of the optimal design, i.e. the proportions of total obser-

vations taken at the corresponding point xj. The actual components xj1 and xj2 of the point

xj can be determined from the coloring of the point p(xj) in the left and right part of Figure 1,

respectively. Thus, we can easily determine the support points graphically. For example, from

Figure 1 we observe that two points, say x1 and x2, are required to represent the boundary point

γc, which are marked by two circles. From the left part of the Figure we obtain that the colour
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of x1 is pink, while the colour of the second point is green, and from the legend in the right

upper part of the figure we obtain the values x11 = 0.0 and x21 = 1.2 for the first components of

x1 and x2, respectively. Similarly, the right part of Figure 1 yields the colours blue and red for

the two points, which yields x12 = 0.8 and x22 = 2.0 for the second components of x1 and x2,

respectively. Therefore the locally c-optimal design advises the experimenter to use two different

individual measurement sets, that is:

ξc =

(
(0.0, 0.8) (1.2, 2.00)

0.48 0.52

)
.(3.5)

This means that 48% of the patients are treated at experimental conditions x11 = 0, x12 = 0.8

and 52% are treated at x21 = 1.2 and x22 = 2.0. Note that in concrete applications the value

of the components can be determined from the exact red/green/blue value of the corresponding

pixel of the points in the representation (2.16) using appropriate graphic software.

Alternatively, we can use the figure to determine any hyperplane H supporting the Elfving space

at the point γc. This plane is defined through a vector d = (d1, d2)
T fulfilling dT z = 1 for all

z ∈ H, (γc)Td = 1 and rTd ≤ 1 for all r ∈ R3. The support points are then given as the solution

of the system of equations

max
ε1,...,ε3

3∑
l=1

εlf̃l(x1, x2)d = 1,
3∑
i=1

ε2i = 1

[see the proof of Theorem 3.3 in Dette and Holland-Letz (2009)]. This yields an alternative

derivation of the design (3.5). In both cases the optimality of this design can also be verified by

Theorem 2.1.

We now suppose that m = 3 observations are available for each individual in the quadratic

regression model (3.1). In this case we have m(m+ 1)/2 = 6 and, writing xi = (xi1, xi2, xi3), the

functions f̃l used in the representation (2.10) are given by

f̃1(xi) = h1(xi) = f(xi1)
√
|v11(xi)− |v12(xi)| − |v13(xi)||,

f̃2(xi) = h2(xi) = f(xi2)
√
|v22(xi)− |v21(xi)| − |v23(xi)||,

f̃3(xi) = h3(xi) = f(xi3)
√
|v33(xi)− |v31(xi)| − |v32(xi)||,

f̃4(xi) = g12(xi) = (f(xi1) + sgn(v12(xi))f(xi2))
√
|v12(xi)|,

f̃5(xi) = g13(xi) = (f(xi1) + sgn(v13(xi))f(xi3))
√
|v13(xi)|,

f̃6(xi) = g23(xi) = (f(xi2) + sgn(v23(xi))f(xi3))
√
|v23(xi)|,

where f(x) = (x, x2)T denotes the vector of regression functions and the matrix V −1
i =

(vlk(xi))
3
l,k=1 is defined by

V −1
i = σ−2

 1 λ|xi1−xi2| λ|xi1−xi3|

λ|xi2−xi1| 1 λ|xi2−xi3|

λ|xi3−xi1| λ|xi3−xi2| 1

−1

.
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Figure 1: The Elfving set R3 defined in (2.13) for a quadratic regression model (3.1) with

two observations per patient. The functions f̃1, f̃2 and f̃3 are given by (3.2), (3.3) and (3.4),

respectively. The vector c is depicted by the red line, while the two black circles denote the points

used in the Elfving representation (2.16).

We can verify that assumption (2.14) is satisfied for this correlation structure (note that this is

not the case for all correlation matrices if m > 2).

The corresponding Elfving set is depicted in Figure 2. As m = 3 here, three subfigures are

needed, each corresponding to one of the components xi = (xi1, xi2, xi3). In this case only one

point is used in the Elfving representation (2.16) and we obtain by a similar reasoning as in the

first part of this example that for c = (−1, 1)T the c-optimal design is given by

ξc =

(
(0.0, 1.0, 2.0)

1

)
.

This means that all individuals have to be treated at experimental conditions 0, 1.0 and 2.0.
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Figure 2: The Elfving set R6 defined in (2.13) for the quadratic regression model (3.1) with 3

observations per patient. The vector c is depicted by the red line, while the black circle shows the

point used in the Elfving representation (2.16).

3.2 A nonlinear population model

In order to demonstrate the applicability of the methodology to population pharmacokinetic

models, we consider a generic nonlinear random effects model, i.e.

Yij = η(xij, bi) + εij i = 1, . . . , n, j = 1, . . . ,m,(3.6)

where η : X × Rk → R is a known function and the errors εi = (εi1, ..., εim) for each patient are

normally distributed with mean 0 and covariance matrix Wi ∈ Rm×m, i = 1, ..., n. The quantities

b1, . . . bn ∼ N (θ,Ω) denote k-dimensional independent normally distributed random variables

with mean θ and covariance matrix Ω representing the effect of the corresponding subject under

investigation [see Beatty and Piegorsch (1997), Ette et al. (1995), Cayen and Black (1993)]. We

also assume that the random variables b1, . . . , bn and the vector (ε11, . . . , εnm)T are independent.

Due to the nonlinearity of the model an explicit representation of the corresponding Fisher
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information matrix cannot be derived. Following Retout and Mentré (2003) we propose to use a

first-order Taylor expansion to derive an approximation of this matrix. Assuming differentiability

of the regression function we use the expansion

η(x, b) ≈ η(x, θ) + f(x, θ)(b− θ)T ,(3.7)

where

f(x, b) =
∂η(x, b)

∂b

denotes the gradient of the regression function with respect to b. This means that similarly to the

case of fixed effects nonlinear models (see Remark 2.4) the nonlinear model (3.6) is approximated

by the linear model (3.7). For the construction of the design we assume that knowledge about

the parameter θ is available from previous or similar experiments and consider the determination

of locally optimal designs [see Chernoff (1953)]. As a consequence, the covariance matrix of the

nonlinear least squares estimate in the model (3.6) is approximated by replacing the functions

f in model (2.1) with f(x) = f(x, b)|b=θ. The variance of the random vector Yi = (Yi1, ..., Yim)

now includes the variance caused by the random effect and can be approximated by

Var(Yi) = Vi ≈ F T
i ΩFi +Wi i = 1, . . . , n.

Consider for example the simple first order elimination model with two observations for each

subject (bi = (bi1, bi2))

Yij = bi1e
−bi2xij + εij, xij ∈ X = [0, 2], i = 1, ...n, j = 1, 2 ,(3.8)

which is widely used in pharmacokinetics [see e.g. Rowland (1993)]. We assume that the errors

εij are homoscedastic and uncorrelated with variance σ2 > 0, that is Vi ≈ F T
i ΩFi +σ2Im and for

the parameters we consider the case

θ = (5, 0.8) , Ω = diag(1, 0.1) and σ2 = 0.04.

A straightforward calculation shows that

∂η(x, θ)

∂θ
= (e−θ2x,−θ1xe

−θ2x) .

Therefore, we have f(x) = (e−θ2x,−θ1xe
−θ2x) and the three functions f̃1, f̃2, f̃3 are defined in a

similar manner as illustrated in Example 1. Moreover, it can be easily checked that assumption

(2.14) is satisfied. The detailed calculations are omitted for the sake of brevity.

The corresponding generalized Elfving set is depicted in Figure 3. If we are interested in the

optimal design for estimating the area under the curve, i.e.

AUC =

∫ ∞
0

θ1e
−θ2xdx =

θ1

θ2

,
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it is easy to see that this corresponds to a locally c-optimal design problem for the vector

c = (1/θ2,−θ1/θ
2
2)T , which is marked as the red line in Figure 3. From this Figure it can be seen

that only one point is needed in the Elfving representation (2.16), and we obtain by a similar

reasoning as in Section 3.1 that the locally c-optimal design for the estimation of the area under

the curve is given by

ξc =

(
(0.0, 2.0)

1

)
.

This means that all patients should be treated under experimental conditions x1 = 0 and x2 = 2.

The optimality of this design can also be verified by Theorem 2.1.

Figure 3: The Elfving space R3 defined in (2.13) for the first order elimination model with 2

observations per patient.
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