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Summary

We show that some care should be exercised when inferring true

unconditional correlations from observed conditional correlations,

which is a frequent problem in empirical finance and elsewhere.

We give a general formula for the relationship between the two

and demonstrate its importance in the context of the bivariate t-

distribution.
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1 The problem

Figure 1 shows 2524 daily stock returns (from 1998 to 2008) of Daimler-

Chrysler and Deutsche Bank. Panel (a) shows the unconditional empirical

distribution, with a correlation coefficient ρ̂ = 0.61, and panel (b) shows the

conditional distribution, given that Daimler-Chrysler returns are larger than 2

percent in absolute value. Here, the empirical correlation coefficient is ρ̂ = 0.71.

(a) (b)

Figure 1: Daily returns of Daimler-Chrysler and Deutsche Bank

This change in empirical correlation, given certain conditions like the one

above, has been the subject of quite some debate in empirical finance recently

(Longin and Solnik 1995, Boyer et al. 1997, Forbes and Rigobon 2002, Camp-

bell et al. 2008, among many others). As a result, it has become clear that

considerable care should be taken when inferring true population correlations

from observed conditional ones. Another example, different from the one we

consider here, occurs when comparing correlations of returns and other quanti-
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ties in volatile and tranquil periods, see Solnik et al. (1996) or Bautista (2006),

who presents an application to exchange rate-interest differentials. For bivari-

ate normal random variables X and Y with unconditional correlation ρ, it is

well known (Johnson and Kotz 1972, Boyer et al. 1999) that the conditional

correlation of X and Y , given X ∈ A, 0 < P (A) < 1, is

ρXY |X∈A =
ρ√

ρ2 + (1− ρ2)
σ2

X

σ2
X|X∈A

. (1)

This implies that |ρA| > |ρ| if σ2
X|X∈A > σ2

X , which for instance occurs

whenever one conditions on large absolute values of X.

As neither uni- nor multivariate normality can safely be assumed for

the returns of risky assets, there is some interest in extending this formula

to more realistic distributions. This is done here, with an application to the

bivariate t-distribution, following Campbell et al. (2008). However, other than

Campbell et al., we do not construct bivariate t-variables from independent

marginals.

2 A general theorem

For ease of notation, we will write ρXY ;A instead of ρXY |X∈A, σ2
X;A instead of

σ2
X|X∈A and so on.

Now, let X and Y be any two random variables with finite second moments

and correlation ρXY = σXY /σXσY , where, without loss of generality, we assume

E(X) = E(Y ) = 0 and σY = 1. Y can then be expressed as

Y =
ρXY
σX

X +
√

1− ρ2
XYZ,
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where Z is a random variable with unit variance computed from X and Y such

that Z is uncorrelated with X:

Z = − ρ√
1− ρ2

X

σX
+

1√
1− ρ2

Y.

The conditional correlation ρXY ;A of X and Y , given X ∈ A, 0 < P (A) < 1,

now hinges crucially on the behaviour of this auxiliary variable Z, given X ∈ A.

Theorem: If X and Z remain uncorrelated given X ∈ A, i.e. if σXZ;A = 0, we

have

ρXY ;A =
ρXY√

ρ2
XY +

(1−ρ2
XY )σ2

Xσ
2
Z;A

σ2
X;A

. (2)

Proof :

ρXY ;A =
σXY ;A

σX;AσY ;A

=
Cov

(
X, ρXY

σX
X +

√
1− ρ2

XYZ;A
)

σX;A

√
Var
(
ρXY

σX
X +

√
1− ρ2

XYZ;A
)

=

ρXY

σX
σ2
X;A + 0

σX;A

√
ρ2

XY

σ2
X
σ2
X;A + (1− ρ2

XY )σ2
Z;A

=

ρXY

σX√
ρ2

XY

σ2
X

+
(1−ρ2

XY )σ2
Z;A

σ2
X;A

=
ρXY√

ρ2
XY +

(1−ρ2
XY )σ2

Xσ
2
Z;A

σ2
X;A

.
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The crucial condition σXZ;A = 0 is satisfied for instance whenever the joint

density of X and the auxiliary variable Z is symmetric with respect to the

x-axis. As X and Z are uncorrelated by construction, this is guaranteed for

instance for all spherical distributions, in particular for bivariate uncorrelated

t-variables as defined in section 3.

3 Application to the bivariate t-distribution

There is no unique definition of multivariate t-distributions. For an overview see

Kotz and Nadarajah (2004). Most often, a bivariate random variable (X, Y )′

is said to be t-distributed with ν degrees of freedom, mean vector µ= (µx, µy)
′

and correlation matrix

R =

 1 ρXY

ρXY 1


(in shorthand : (X, Y )′ ∼ BV Tν (µ,R)) if its joint density is given by

f(x, y) =
1

2π
√

1− ρ2
XY[

1 +
(x− µx)2 − 2ρXY (x− µx)(y − µy) + (y − µy)2

1− ρ2
XY

](−ν/2−1)

.

In the following, we assume µ = 0 and ν > 2 so that the first two

moments exist. The bivariate t-distribution is spherical if ρXY = 0 and el-

liptical otherwise. The marginal densities of a BV Tν-variable are univariate tν .

From Kotz and Nadarajah (2004, p.15), we know in addition that for

(X, Y )′ ∼ BV Tν (0, R) and some scalar nonsingular (2x2)-matrix C,

C

 X

Y

 ∼ BV Tν (0, CRC ′) .

5



Taking

C =

 1 0

− ρ√
1−ρ2

1√
1−ρ2

 , (3)

we have CRC ′ = I, so

C

 X

Y

 :=

 X

Z

 ∼ BV T (0, I)

where

Z = − ρ√
1− ρ2

X +
1√

1− ρ2
Y.

The joint density of X and Z is spherical and therefore symmetric with respect

to the x-axis, so our theorem applies, and, in view of Var(X)=Var(Y )=1, our

expression (2) simplifies to

ρXY ;A =
ρXY√

ρ2
XY +

(1−ρ2XY )σ2
Z;A

σ2
X;A

. (4)

This differs from (1) which for instance is used by Campbell et al. (2008). The

latter formula gives the true correlation of X and

Y = ρX +
√

1− ρ2Z

whenever X and the auxiliary variable Z are independent. However, when X

and Z are independent t-variables, (X, Y )′ is not bivariate t! In fact, Y is not

even univariate t, as shown in figure 2.

Figure 3 considers joint distributions and plots 5000 observations each of a

BV T5 (0, I) (panel (a)) and a bivariate vector (X,Z)′ with independent t5-

variables (panel (b)). It is obvious from panel (b) that the joint distribution of

X and Y is not spherical for independent marginals. In fact, it is well known
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Figure 2: Density estimations of a t5-Variable and a convex combination of two

independent t5-variables

that the multivariate normal distribution is the only one where independence

and a spherical density go together (see e.g. Bilodeau and Brenner 1999).

Figure 4 plots the respective bivariate distributions of X and Y obtained from

multiplying (X,Z)′ with the matrix C from (3), using ρ = 0.6. Again, it is

obvious from panel b that the joint distribution of X and Y is not bivariate t

if Y is computed from independent X and Z. Or, to put it differently: While

Campbell et al. pretend to evaluate conditional correlations for random vec-

tors with joint distribution as in panel (a), what they really do is evaluate

conditional correlation for random vectors with joint distribution as in panel

(b).
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(a) (b)

Figure 3: Joint distribution of uncorrelated(a) and independent (b) t5-Variables

(a) (b)

Figure 4: Joint distribution of correlated t5-Variables
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4 Some numerical examples

In practice, ρXY is estimated via the empirical counterpart of ρXY ;A. Solving

equations (1) and (4) yields

ρXY,1 = sgn(ρXY ;A)
σX√

σ2
X − σ2

X;A

(
1− 1

ρXY ;A

) (5)

and

ρXY,2 = sgn(ρXY ;A)
σZ;A√

σ2
Z;A − σ2

X;A

(
1− 1

ρXY ;A

) . (6)

Applying (5) in the context of a bivariate t-distribution leads to an underesti-

mation of the absolute values of ρXY whenever σZ;A > σX . This is the case for

conditions such as A = {X|X > C} or A = {X||X| > C} with C > 0.

For certain degrees of freedom, exact expressions for σ2
X;A and σZ;A can be

derived and, therefore, the difference of (6) and (5) can be calculated exactly.

For a BV T5-distribution for instance it is straightforward to show that

EX2;A = 5/6
(5 + C2)

2
π + 10

√
5C − 2

√
5C3 − 2 (5 + C2)

2
arctan

(
C/
√

5
)

Pπ (5 + C2)2 (7)

and

σ2
Z;A = 5/6

5π − 10 arctan
(
C/
√

5
)
− 2 arctan

(
C/
√

5
)
C2 + π C2 − 2

√
5C

Pπ (5 + C2)

where

P = 1/2− 10/3

√
5C

π (5 + C2)2 −
√

5C

π (5 + C2)
−

arctan
(
C/
√

5
)

π
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(a) (b)

Figure 5: ρXY,1 − ρXY,2 depending on ρXY ;A

is a normalization constant. The unconditional variance is 5/3. From (7) we

can calculate σ2
X;A for one-sided truncations via

EX;A =
50
√

5

3Pπ(5 + C2)2
,

while for two-sided truncations EX;A = 0 and σ2
X;A = EX2;A.

Figure 5 plots the bias if (5) is used instead of (6) for a BV T5-distribution

as a function of ρXY ;A. It shows that, for positive values of ρ, the application

of (5) leads to an underestimation of ρXY . This is especially serious for true

correlations in the range of 0.4-0.7, as shown in figure 5, which is very common

when dealing with correlations of financial returns, and for large values of the

threshold C. The largest value C = 2 examined here corresponds to roughly

10% (5%) of the observations for the two-sided (one-sided) truncation

The difference in correlations will eventually vanish for increasing degrees of

freedom since the bivariate t-distribution then approaches the bivariate normal

distribution.
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