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Abstract

We consider a nonparametric location scale model and propose a new test for ho-
moscedasticity (constant scale function). The test is based on an estimate of a deterministic
function which vanishes if and only if the hypothesis of a constant scale function is satisfied
and an empirical process estimating this function is investigated. Weak convergence to a
scaled Brownian bridge is established, which allows a simple calculation of critical values.
The new test can detect alternatives converging to the null hypothesis at a rate n−1/2 and
is robust with respect to the presence of outliers. The finite sample properties are investi-
gated by means of a simulation study, and the test is compared with some non-robust tests
for a constant scale function, which have recently been proposed in the literature.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) denote a bivariate sample of independent identically distributed ob-

servations with conditional distribution function F (y|x) = P (Y1 ≤ y|X1 = x) where F is of the
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form

(1.1) F (y|x) = F0

(
y −m(x)

σ(x)

)
with a fixed (but unknown) distribution function F0 with corresponding density f0. The function

m is called location or regression function, while σ is denoted as scale function. Often m(x)

and σ2(x) are viewed as expectation and variance of the conditional distribution of Y1 given

X1 = x. In this context the importance of being able to detect heteroscedasticity has been widely

recognized because under the additional assumption of a constant scale function the statistical

analysis can be simplified substantially. Early work on this problem considering parametric

specifications for the regression and scale function can be found in Harrison and McCabe (1979),

Breusch and Pagan (1979), Cook and Weisberg (1983) and Diblasi and Bowman (1997) among

others. The problem of testing for heteroscedasticity in the classical nonparametric regression

model with conditional expectation m and conditional variance σ2 has been considered in Dette

and Munk (1998), Dette (2002), Liero (2003), Dette and Hetzler (2009) Francisco-Fernández

and Vilar-Fernández (2005), Dette et al. (2007) or Dette and Hetzler (2009). Similar testing

problems in semiparametric models have been considered by You and Chen (2005). However, all

these references assume the existence of the second moment of the conditional distribution. For

this reason these methods may not be robust with respect to outliers in the data. Koenker and

Bassett (1981) proposed a robust test for heteroscedasticity in a quantile regression model with a

parametrically specified location and scale function, but the problem of testing this assumption in

a nonparametric location scale model has – to the knowledge of the authors – not been considered

in the literature so far.

It is the purpose of the present paper to develop a robust test for a constant scale function in

the location-scale model (1.1), that is

H0 : σ(x) = σ(1.2)

for some constant σ > 0. We will develop a test which can detect alternatives of scale functions

converging to the null hypothesis with the rate n−1/2 and is additionally robust with respect

to outliers in the data. In Section 2 we introduce the necessary notation and review some re-

sults about robust nonparametric estimation of the regression function m. We also introduce a

functional which allows a characterization of the hypothesis (1.2). Section 3 contains our main

results. We propose a stochastic process which is the basis for our robust test of homoscedas-

ticity. Weak convergence of this process is proved under the null hypothesis, fixed and local

alternatives. Moreover, consistency is established and the finite sample properties of the new

test are investigated by means of a simulation study in Section 4. Here we also compare the

performance of the new test with some tests which have been recently proposed in the litera-

ture (assuming existence of a second moment of the conditional distribution) in the presence of

outliers.
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2 Notation and a preliminary result

We consider an equivalent formulation of model (1.1), i.e.

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(2.1)

where (X1, Y1), . . . , (Xn, Yn) are i.i.d, the errors ε1, . . . , εn are independent and have density f0

and distribution function F0, respectively, where f0 is symmetric (but not necessarily has existing

moments). We define the density of the conditional distribution F (Y |X) by f(y|x) and denote

by g the marginal density of X, which is assumed to have compact support, say supp(g) = [0, 1]

(note that this implies that g is positive on [0, 1]). The corresponding distribution function is

denoted by G. In order to construct a robust estimate of the regression function m we consider

a root of the equation

Hn(x, ϑ) =
n∑
i=1

K

(
x−Xi

h

)
ψ(Yi − ϑ)(2.2)

with respect to ϑ, where K denotes a kernel function with compact support, say supp(K) =

[−1, 1], satisfying ∫
K(u)du = 1 ,

∫
uK(u)du = 0.(2.3)

h is a bandwidth converging to 0 with increasing sample size and ψ is a strictly monotone,

antisymmetric and bounded function having (a.e.) two continuous bounded derivatives with

ψ′(0) > 0. Note that the solution of (2.2) defines a robust nonparametric regression estimate

as considered by Härdle (1984), Härdle and Gasser (1984) or Stützle and Mittal (1979) among

others. Let m̂n(x) denote a root of the equation (2.2) where we assume that the kernel K has

been appropriately modified in order to address for boundary effects. We define the stochastic

process

T̂t =
1

n

n∑
i=1

I{Xi ≤ t}ψ2 (Yi − m̂n(Xi))− Ĝn(t) · 1

n

n∑
i=1

ψ2 (Yi − m̂n(Xi)) ,(2.4)

where t ∈ [0, 1], and

Ĝn(t) =
1

n

n∑
j=1

I{Xj ≤ t}(2.5)

denotes the empirical distribution function of the explanatory variables. A heuristic argument

(which will be made rigorous in the following section) shows that for any t ∈ [0, 1]

T̂t
P→ Tt,(2.6)
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where the deterministic process (Tt)t∈[0,1] is defined by

Tt =

∫ t

0

g(x)

∫
R
ψ2 (σ(x)ω) f0(ω)dωdx−G(t)

∫ 1

0

g(x)

∫
R
ψ2(σ(x)ω)f0(ω)dωdx.(2.7)

The following Lemma shows that (Tt)t∈[0,1] vanishes if and only if the hypothesis of homoscedas-

ticity is satisfied.

Lemma 2.1. If the function ψ is strictly increasing and antisymmetric, then Tt = 0 a.e. on

[0, 1] if and only if the hypothesis (1.2) of a constant scale function is satisfied.

Proof. If σ(x) = σ for all x ∈ [0, 1], then, by Fubini’s theorem Tt = 0 a.e. on the interval [0, 1].

To prove the converse note that a constant process (Tt)t∈[0,1] implies

0 = T ′t = g(t)

∫ 1

0

g(x)

∫
R

(
ψ2 (σ(t)ω)− ψ2 (σ(x)ω)

)
f0(ω)dωdx.

Because supp(g) = [0, 1] it follows∫ 1

0

g(x)

∫
R

(
ψ2 (σ(t)ω)− ψ2 (σ(x)ω)

)
f0(ω)dωdx = 0(2.8)

for a.e. t ∈ [0, 1]. If there would exist t1 6= t2 such that 0 < σ(t1) < σ(t2) then

0 =

∫ 1

0

g(x)

∫
R

(
ψ2 (σ(t1)ω)− ψ2 (σ(x)ω)

)
f0(ω)dωdx

−
∫ 1

0

g(x)

∫
R

(
ψ2 (σ(t2)ω)− ψ2 (σ(x)ω)

)
f0(ω)dωdx

=

∫
R

(
ψ2 (σ(t1)ω)− ψ2 (σ(t2)ω)

)
f0(ω)dω.(2.9)

Now, if ω > 0 it follows that ψ2(σ(t1)ω) < ψ2(σ(t2)ω) by strict monotonicity of ψ. Similarly, if

ω < 0 we have ψ2(σ(t1)(−ω)) < ψ2(σ(t2)(−ω)) and by antisymmetry ψ2(σ(t1)ω) < ψ2(σ(t2)ω).

Consequently we obtain the inequality

0 =

∫
R

(
ψ2 (σ(t1)ω)− ψ2 (σ(t2)ω)

)
f0(ω)dω < 0

which yields a contradiction. Therefore the proof of Lemma 2.1 is completed. 2

From Lemma 2.1 it follows that the hypothesis (1.2) can be tested using the Kolmogorov-Smirnoff

or Cramér-von Mises statistic, that is

K̂ = sup
t∈[0,1]

|T̂t| ; Ĉ =

∫ 1

0

T̂ 2
t dĜn(t),(2.10)

respectively. In the following section we will investigate the asymptotic properties of the process

(T̂t)t∈[0,1] in order to derive (asymptotic) critical values for tests based on the statistic K̂ and Ĉ.
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3 Asymptotic properties of the process (T̂t)t∈[0,1]

Consider the process (T̂t)t∈[0,1] defined by (2.4). For our asymptotic results we require the fol-

lowing conditions on the sequence of bandwidths used in (2.2)

nh2 → ∞(3.1)

nh5 → 0(3.2)

Moreover, we assume that the conditional density

f(y|x) has a continuous bounded second derivative w.r.t. the variable x,(3.3)

for the density g of the marginal distribution of the random variable X

0 < c0 ≤ g(x) ≤ c1 ∀ x ∈ [0, 1](3.4)

∂2

∂2x
g(x) exists a.e. on [0, 1](3.5)

and for the regression function

m is twice continuously differentiable.(3.6)

Throughout this paper D[0, 1] denotes the set of cadlag functions on the interval [0, 1] [see

Billingsley (1999)]. The following result establishes weak convergence of the process
√
n(T̂t−Tt).

Note that it does not require that the null hypotheses (1.2) of a constant scale function is satisfied.

This case is considered in Corollary 3.2 below.

Theorem 3.1. If the assumptions stated in Section 2 and (3.1) - (3.6) are satisfied, then the

stochastic process

{
√
n(T̂t − Tt)}t∈[0,1]

converges weakly in D[0, 1] to a centered Gaussian process {A(t)}t∈[0,1] with covariance kernel

k(t1, t2) =

∫ 1

0

g(x)γ4(x) (I{x ≤ t1} −G(t1)) (I{x ≤ t2} −G(t2)) dx(3.7)

−
∫ 1

0

g(x)γ2(x) (I{x ≤ t1} −G(t1)) dx

∫ 1

0

g(x)γ2(x) (I{x ≤ t2} −G(t2)) dx,

where for j = 1, 2 the constant γj(x) is given by

γj(x) = E[ψj (σ(x)ε1) | X1 = x] =

∫
R
ψj (σ(x)ω) f0(ω)dω.(3.8)
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Proof. Use the decomposition

T̂t = T̂
(1)
t − T̂

(2)
t ,(3.9)

where the processes (T̂
(1)
t )t∈[0,1] and (T̂

(2)
t )t∈[0,1] are defined by

T̂
(1)
t =

1

n

n∑
i=1

I{Xi ≤ t}ψ2 (Yi − m̂n(Xi)) ,

T̂
(2)
t = Ĝn(t) · 1

n

n∑
i=1

ψ2 (Yi − m̂n(Xi)) .

For the first term we obtain by means of a Taylor expansion

T̂
(1)
t =

1

n

n∑
i=1

I{Xi ≤ t}ψ2 (σ(Xi)εi) +D1 +D2,(3.10)

where the random variables D1 and D2 are given by

D1 =
1

n

n∑
i=1

I{Xi ≤ t} (m(Xi)− m̂n(Xi))
(
ψ2
)′

(σ(Xi)εi)(3.11)

D2 =
1

n

n∑
i=1

I{Xi ≤ t} (m(Xi)− m̂n(Xi))
2 (ψ2)

′′
(ξi)

2
(3.12)

and the random variables ξi satisfy |ξi−σ(Xi)εi| ≤ |m̂n(Xi) − m(Xi)|. Because the second

derivative of ψ is bounded we obtain by similar arguments as in Härdle (1984) or Härdle and

Gasser (1984) that the bias and variance of m̂n(x) are of order O(h2) and O( 1
nh

) (uniformly with

respect to x ∈ [0, 1]), respectively, where it is assumed that the estimates have been modified at

the boundary to address for boundary effects. This yields

D2 = Op

(
h4 +

1

nh

)
= op

(
1√
n

)
.(3.13)

From a more extensive calculation given in the Appendix it also follows that

D1 = op

(
1√
n

)
.(3.14)

A straightforward calculation yields for the expectation of the second term in (3.9)

E

[
G(t)

n

n∑
i=1

ψ2 (Yi −m(Xi))

]
= G(t)

∫ 1

0

g(x)γ2(x)dx,(3.15)

and a similar argument as used in the derivation of (3.10) shows

Ĝn(t)

n

n∑
i=1

ψ2 (Yi − m̂n(Xi)) =
G(t)

n

n∑
i=1

ψ2 (σ(Xi)εi) + op

(
1√
n

)
.(3.16)
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Summarizing (3.10), (3.13), (3.14) and (3.16) now yields

T̂t = T̂
(1)
t − T̂

(2)
t = T̃t + op

(
1√
n

)
,(3.17)

where the process T̃t is defined by

T̃t =
1

n

n∑
i=1

I{Xi ≤ t}ψ2(σ(Xi)εi)−
G(t)

n

n∑
i=1

ψ2(σ(Xi)εi).(3.18)

Obviously we have E[T̃t] = Tt and consequently the assertion of Theorem 3.1 follows if the weak

convergence of the process

An(t) :=
√
n
(
T̃t − E

[
T̃t

])
=
√
n
(
T̂t − Tt

)
+ op(1),(3.19)

can be established. For this purpose we define the random variables

Zi,t = Li,t − E [Li,t]

Li,t = ψ2 (σ(Xi)εi) (I{Xi ≤ t} −G(t)) ,

and obtain the representation

An(t) =

√
n

n

n∑
i=1

Zi,t.(3.20)

Note that the random variables Zi,t are i.i.d. with E[Zi,t] = 0. In order to determine the

covariance Cov(An(t1), An(t2)) we note

E [Li,t] =

∫ 1

0

g(x)γ2(x) (I{x ≤ t} −G(t)) dx,(3.21)

E [Li,tLi,s] =

∫ 1

0

g(x)γ4(x) (I{x ≤ t} −G(t)) (I{x ≤ s} −G(s)) dx,

which yields by a straightforward calculation

Cov (An(t1), An(t2)) = k(t1, t2),(3.22)

where the kernel k is defined by (3.7). In order to prove asymptotic normality we use the Cramér-

Wold device and the central limit theorem (note that the random variables Zi,t are bounded)

and obtain

(An(t1), . . . , An(tk))
T D−→ (A(t1), . . . , A(tk))

T ,(3.23)

where (A(t))t∈[0,1] denotes a Gaussian process with covariance kernel k defined in (3.7).
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According to Theorem 13.5 in Billingsley (1999) the assertion of the theorem now follows if the

condition

E
[
(An(t)− An(s))2 (An(r)− An(t))2] ≤ C(r − s) ∀ 0 ≤ s < t < r ≤ 1(3.24)

for some constant C > 0 can be established, which implies tightness of the process (3.20). In

order to prove (3.24) we calculate

hn(s, t, r) = E
[
(An(t)− An(s))2 (An(r)− An(t))2] .

A straightforward calculation yields

hn(s, t, r) ≤ E
[
(Li,s,t − E [Li,s,t])

2 (Li,t,r − E [Li,t,r])
2]+ E

[
(Li,s,t − E [Li,s,t])

2]E [(Li,t,r − E [Li,t,r])
2]

+2E2 [(Li,s,t − E [Li,s,t]) (Li,t,r − E [Li,t,r])]

= E
[
L2

1,s,tL
2
1,t,r

]
− 2E

[
L2

1,s,tL1,t,r

]
E [L1,t,r]− 2E

[
L1,s,tL

2
1,t,r

]
E [L1,s,t]

+E
[
L2

1,s,t

]
E
[
L2

1,t,r

]
+ 2E2 [L1,s,tL1,t,r]

where the random variables Li,j, l are defined by

Li,j, l = ψ2(σ(Xi)εi) (I{j < Xi ≤ l} − (G(l)−G(j))) .

Using this definition and the notation (3.8) it follows

hn(s, t, r) ≤ (G(r)−G(t))2

∫ t

s

g(x)γ8(x)dx+ (G(t)−G(s))2

∫ r

t

g(x)γ8(x)dx

+ (G(t)−G(s))2 (G(r)−G(t))2

∫
g(x)γ8(x)dx

+4 (G(r)−G(t))

(∫ t

s

g(x)γ6(x)dx+ (G(t)−G(s))2

∫
g(x)γ6(x)dx

)(∫ r

t

g(x)γ2(x)dx

)
+4

(
2 (G(t)−G(s)) (G(r)−G(t))

∫ t

s

g(x)γ6(x)dx+ (G(t)−G(s))2

∫ r

t

g(x)γ6(x)dx

)
×
(

(G(r)−G(t))

∫
g(x)γ2(x)dx

)
+

(∫ t

s

g(x)γ4(x)dx+ (G(t)−G(s))2

∫
g(x)γ4(x)dx

)
×
(∫ r

t

g(x)γ4(x)dx+ (G(r)−G(t))2

∫
g(x)γ4(x)dx

)
+4

(
(G(t)−G(s))

∫ t

s

g(x)γ4(x)dx

)(
(G(r)−G(t))

∫ r

t

g(x)γ4(x)dx

)
+2

(
(G(t)−G(s)) (G(r)−G(t))

∫
g(x)γ4(x)dx

− (G(r)−G(t))

∫ t

s

g(x)γ4(x)dx− (G(t)−G(s))

∫ r

t

g(x)γ4(x)dx

)2

.
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which yields (3.24) by the mean value theorem. Consequently, tightness and convergence of the

finite dimensional distributions imply the assertion of Theorem 3.1. 2

Recall that by Lemma 2.1 the null hypothesis is satisfied if and only if Tt = 0 a.e. on [0, 1]. In

this case Theorem 3.1 simplifies substantially, and the process
√
n{T̂t}t∈[0,1] converges to a scaled

Brownian Bridge.

Corollary 3.2. If the assumption of Theorem 3.1 and the null hypothesis (1.2) are satisfied,

then

{
√
nT̂t}t∈[0,1] ⇒

√
m4{B ◦G}t∈[0,1],(3.25)

on D[0, 1] where B denotes a Brownian bridge and m4 =
∫

R ψ
4 (σω) f0(ω)dω.

Proof. If σ(x) = σ it follows by Fubini’s theorem that

k(t1, t2) =

∫ 1

0

g(x)

∫
R
ψ4 (σω) f0(ω)dω (I{x ≤ ti} −G(ti)) (I{x ≤ tj} −G(tj)) dx

−
(∫ 1

0

g(x)

∫
R
ψ2 (σω) f0(ω)dω (I{x ≤ ti} −G(ti)) dx

)
×
(∫ 1

0

g(x)

∫
R
ψ2 (σω) f0(ω)dω (I{x ≤ tj} −G(tj)) dx

)
=

∫
R
ψ4 (σω) f0(ω)dω (G(ti ∧ tj)−G(ti)G(tj)) ,

which proves the assertion of Corollary 3.2. 2

Similar calculations as used in the proof of Theorem 3.1 show that a consistent estimate of m4

is given by

m̂4 =
1

n

n∑
i=1

ψ4(Yi − m̂n(Xi)) ,(3.26)

and consequently it follows from the continuous mapping and Slutzky’s theorem that under the

null hypothesis (1.2)

√
nK̂√
m̂4

D−→ sup
t∈[0,1]

|B(t)| ;
√
nĈ

m̂4

D−→
∫ 1

0

B2(t)dt.

If k1−α and c1−α denote the corresponding (1 − α) quantiles of the distributions on the right

hand side, respectively, it follows that rejecting the null hypothesis of a constant scale function

if

√
nK̂ > k1−α

√
m̂4(3.27)
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or if

√
nĈ > c1−αm̂4(3.28)

yields an asymptotic level α test. The consistency of this test follows from Theorem 3.1 and

Lemma 2.1 which show that under the alternative
√
nK̂

P−→∞;
√
nĈ

P−→∞.

Remark 3.3. From similar arguments as given in the proof of Theorem 3.1 it follows that the

test for the hypothesis of a constant scale function based on the process {
√
nT̂t}t∈[0,1], can detect

local alternatives of the form

σn(x) = σ + n−1/2h(x),(3.29)

where h : [0, 1]→ R denotes a fixed function, such that the variance function σn(x) is nonnegative

for all x ∈ [0, 1]. To be precise, recall that the stochastic approximation in (3.17) is also valid

under local alternatives. Therefore a Taylor expansion of ψ2((σ + n−1/2h(x))εi) yields

√
nT̂t =

1√
n

n∑
i=1

(I{Xi ≤ t} −G(t))ψ2 (σεi)

+
1

n

n∑
i=1

(I{Xi ≤ t} −G(t))h(Xi)εi
(
ψ2
)′

(σεi) + op(1).

If the first moment of h(Xi)εi (ψ
2)
′
(σεi) exists the last term converges almost surely. Conse-

quently, the process {
√
nT̂t}t∈[0,1] converges weakly to{

√
m4(B ◦G) +

∫ 1

0

(I{x ≤ t} −G(t))h(x)g(x)dx

∫
R
ω
(
ψ2
)′

(σω)f0(ω)dω

}
t∈[0,1]

.

In the remaining part of this section we will briefly discuss a corresponding result under the

assumption of a fixed design. More precisely, we consider the model

Yi,n = m(xi,n) + σ(xi,n)εi,n(3.30)

where {εi,n, . . . , εn,n} denotes a triangular array of independent random variables with symmetric

density f0 and the design points xi,n, . . . , xn,n satisfy the condition

i− 0.5

n
=

∫ xi,n

0

g(t)dt,(3.31)

where g denotes a positive density on the interval [0, 1] [see Sacks and Ylvisaker (1966) or Sacks

and Ylvisaker (1968)]. The process T̂t is defined as in (2.4), where the random variables Xj are
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replaced by the deterministic quantities xj,n (j = 1, . . . , n). The following results show that weak

convergence also holds in the case of a fixed design, but with a different limiting process.

Theorem 3.4. Consider the nonparametric regression model (3.30). If the assumptions stated

in Section 2 and (3.1) - (3.6) are satisfied, then the process

{
√
n
(
T̂t − Tt

)
}t∈[0,1]

(with the obvious modifications for the fixed design assumption) converges weakly in D[0, 1] to a

centered Gaussian process {Ā(t)}t∈[0,1] with covariance kernel

k̄(t1, t2) =

∫ 1

0

g(x)γ4(x) (I{x ≤ t1} −G(t1)) (I{x ≤ t2} −G(t2)) dx

−
∫ 1

0

g(x)γ2
2(x) (I{x ≤ t1} −G(t1)) (I{x ≤ t2} −G(t2)) dx(3.32)

Corollary 3.5. If the assumptions of Theorem 3.4 and the null hypothesis (1.2) are satisfied,

then

{
√
nT̂t}t∈[0,1] ⇒

√
m4 −m2

2{B ◦G}t∈[0,1],(3.33)

on D[0, 1] where B denotes a Brownian bridge and mj =
∫

R ψ
j (σω) f0(ω)dω for j = 2, 4.

A comparison of Corollary 3.2 and 3.5 shows that in the case of a fixed design the limiting

process under the null hypothesis of a constant scale function has a smaller variance. The larger

variance in Corollary 3.2 is caused by the additional randomness of the explanatory variables.

4 Finite sample properties

In this section we will study the finite sample properties of the Cramér-von Mises test (3.28) and

will also compare the new test with two alternative methods, which are similar in spirit with the

present method.

Following Dette and Munk (1998) we have considered the three models

(I) m(x) = 1 + sin(x) σ(x) = 0.5 exp (cx),

(II) m(x) = 1 + x σ(x) = 0.5 (1 + c sin(x))2,

(III) m(x) = 1 + x σ(x) = 0.5 (1 + cx)2,

where the case c = 0 corresponds to a constant scale function, the choices c = 0.5 and 1 to two

alternatives. We consider a fixed design of the form (3.31) with g(x) = 1. The results for the
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random design are similar and not depicted for the sake of brevity. The null hypothesis of a

constant scale function is rejected if

√
n

Ĉ

m̂4 − m̂2
2

> c1−α ,(4.1)

where Ĉ denotes the Cramer-von Mises statistic defined in (2.10), the estimate m̂4 is defined in

(3.26) (with an obvious modification for the fixed design), c1−α denotes the (1 − α) quantile of

the random variable
∫ 1

0
B2(t)dt and

m̂2 =
1

n

n∑
i=1

ψ2(Yi − m̂(xi)) .

For the errors in model (2.1) we used a standard normal distribution with a 0%, 10% and 20%

contamination by a t-distribution with 4 degrees of freedom. The robust test proposed in this

paper requires the specification of the function ψ and we used the function

(4.2) ψ(x) = max{−κ,min{u, κ}}

with κ = 1. Further, a bandwidth is needed which we calculated according to a robust cross-

validation method proposed by Leung (2005). For each scenario 1000 simulation runs have been

performed to calculate the rejection probabilities. In Table 1 and 2 we show the simulated level

of the new test (4.1) for sample sizes n = 50 and 100. We observe a rather precise estimation

of the nominal level. The table also contains the corresponding results for the test of Dette and

Munk (1998) and Dette and Hetzler (2009). While the level of the L2-test of Dette and Munk

(1998) is slightly affected by the presence of outliers, the test of Dette and Hetzler (2009) is

more sensitive in such situations, and the nominal level is underestimated between 10% − 50%

or 25% − 90% if the contamination rate is 10% or 20%, respectively. On the other hand the

test proposed in this paper yields a good approximation of the nominal level in all cases under

consideration.

In Table 3 and 4 we present the rejection probabilities of the test (4.1) in model (I), (II) and

(III) for the alternatives c = 0.5 and c = 1. We observe reasonable rejection probabilities but a

loss in power of up to 40% in the presence of 10% outliers and up to 60% for a contamination

rate of 20%. For the sake of comparison we show in Table 5 and 6 the corresponding results

of the test of Dette and Hetzler (2009) and Dette and Munk (1998) in the case c = 0.5. These

results are directly comparable with Table 3. We observe that the test of Dette and Munk (1998)

yields a small loss of power in the presence of outliers [see Table 6], while the power of the test

of Dette and Hetzler (2009) is strongly affected by outliers [see Table 5]. Here a loss of power of

more than 50% can be observed in many cases. Moreover, some of the clear advantages of the

test of Dette and Hetzler (2009) against the test of Dette and Munk (1998) cannot be observed

in the case of contaminated errors. On the other hand the new test (4.1) yields larger rejection
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probabilities in nearly all cases under investigation. Only in model II for sample size n = 50

and n = 100 the test of Dette and Munk (1998) yields the best results. On the other hand for

the sample size n = 200 the asymptotic advantages of the new test (4.1) are again observable

[note that the test of Dette and Munk (1998) can only detect alternatives converging to the null

hypothesis with rate n−1/4 while the test of Dette and Hetzler (2009) and the test proposed in

this paper can detect alternatives converging to the null with rate n−1/2]. The results for the

alternatives with c = 1 show similar advantages of the test (4.1) and are not displayed for the

sake of brevity.
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5 Appendix: Proof of the estimate (3.14)

Note that it follows from a Taylor expansion of the function Hn(x, m̂n(x)) defined in (2.2) at the

point m(x)

m̂n(x)−m(x) =
Hn(x)

Dn(x)
,

where

Hn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
ψ(Yi −m(x))

and

Dn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
ψ′(Yi −m(x) + ωi(m̂n(x)−m(x)))

with ωi ∈ (0, 1) [see Härdle (1984)]. We define

c(x) = E

[
1

h
K

(
x−Xi

h

)
ψ′(Yi −m(x))

]
,

then

D1 =
1

n

n∑
k=1

I{Xk ≤ t}Hn(Xk)

c(Xk)
(ψ2)′(σ(Xk)εk)

+
1

n

n∑
k=1

I{Xk ≤ t}Hn(Xk)

(
1

Dn(Xk)
− 1

c(Xk)

)
(ψ2)′(σ(Xk)εk)

=: D11 +D12,
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where the last identity defines D11 and D12 in an obvious manner. For the variable D11 we note

that

E[D11] =
K(0)

nh

∫ t

0

g(x)

c(x)

∫
R
ψ(σ(x)ω)(ψ2)′(σ(x)ω)f0(ω)dωdx = O

(
1

nh

)
.

Because of the antisymmetry of the function ψ(σ(x)ω)((ψ2)′(σ(x)ω))2f0(ω) (with respecht to ω)

we obtain by a tedious calculation

E[D2
11] =

1

n
E

[
I{X1 ≤ t}H

2
n(X1)

c2(X1)
((ψ2)′(σ(X1)ε1))

2

]
+
n− 1

n
E

[
I{X1 ≤ t,X2 ≤ t}Hn(X1)Hn(X2)

c(X1)c(X2)
(ψ2)′(σ(X1)ε1)(ψ

2)′(σ(X2)ε2)

]
=

n− 1

n3h2

∫ t

0

g(x)

c2(x)
E

[
K2

(
x−Xi

h

)
ψ2(Yi −m(x))

]
E
[
((ψ2)′(σ(x)ε1))

2
]
dx

+
1

n3h2
K2(0)

∫ t

0

g(x)

c2(x)
E
[
ψ2(σ(x)ε1)((ψ

2)′(σ(x)ε1))
2
]
dx

+
n− 1

n3h2

∫ t

0

∫ t

0

g(x1)g(x2)

c2(x1)c2(x2)
K2

(
x1 − x2

h

)
E
[
ψ(m(x2)−m(x1) + σ(x2)ε2)(ψ

2)′(σ(x2)ε2)
]

×E
[
ψ(m(x1)−m(x2) + σ(x1)ε1)(ψ

2)′(σ(x1)ε1)
]
dx1dx2

+
n− 1

n3h2
K2(0)

(∫ t

0

g(x)

c2(x)
E
[
ψ(σ(x)ε1)(ψ

2)′(σ(x)ε1)
]
dx

)2

= o

(
1

n

)
,

which yields D11 = op(n
−1/2). For the derivation of a corresponding estimate we note that

D12 ≤
1

n

n∑
i=k

I{Xk ≤ t} | m̂n(Xk)−m(Xk) | ·
∣∣∣∣c(Xk)−Dn(Xk)

c(Xk)

∣∣∣∣ · | (ψ2)′(σ(Xk)εk) |

≤ max
1≤k≤n

| m̂n(Xk)−m(Xk) | max
1≤k≤n

∣∣∣∣c(Xk)−Dn(Xk)

c(Xk)

∣∣∣∣ · 1

n

n∑
k=1

I{Xk ≤ t} | (ψ2)′(σ(Xk)εk) | .

A Taylor expansion of the function in Dn(Xk) yields
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| Dn(Xk)− c(Xk) | ≤

∣∣∣∣∣ 1

nh

∑
i 6=k

K

(
Xk −Xi

h

)
ψ′(Yi −m(Xk))− c(Xk)

∣∣∣∣∣
+

1

nh

n∑
i=1

∣∣∣∣K (Xk −Xi

h

)
ψ′′(Yi −m(Xk))

∣∣∣∣ωi | m̂n(Xk)−m(Xk) |

+
1

nh

n∑
i=1

∣∣∣∣K (Xk −Xi

h

)
ψ′′′ (Yi −m(Xk) + ω̃i (m̂n(Xk)−m(Xk)))

∣∣∣∣
×ω

2
i

2
(m̂n(Xk)−m(Xk))

2 +Op

(
1

nh

)
where ω̃i ∈ (0, ωi). Obviously

E

[
1

nh

∑
i 6=k

K

(
Xk −Xi

h

)
ψ′(Yi −m(Xk))− c(Xk)

]
= O

(
1

n

)
and

Var

(
1

nh

∑
i 6=k

K

(
Xk −Xi

h

)
ψ′(Yi −m(Xk))− c(Xk)

)

=
n− 1

n2
E

[
1

h2
K2

(
Xk −Xi

h

)
(ψ′)2(Yi −m(Xk))

]
− 2

n− 1

n2
E2

[
1

h
K

(
Xk −Xi

h

)
ψ′(Yi −m(Xk))

]
= O

(
1

n

)
.

Therefore | Dn(Xk) − c(Xk) |= op
(
n−1/4

)
+ Op

(
1
nh

)
+ Op(h

2) uniformly with respect to k =

1, . . . , n and D12 = Op (h4) = op
(
n−1/2

)
, which completes the proof. 2
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Dette/Munk Dette/Hetzler (4.1)

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .028 .050 .098 .167 .027 .038 .068 .148 .025 .050 .106 .196

10% II .035 .054 .100 .179 .020 .031 .064 .133 .023 .048 .092 .181

III .031 .051 .088 .169 .026 .044 .073 .147 .025 .052 .107 .203

I .029 .048 .084 .158 .013 .026 .047 .119 .023 .044 .089 .198

20% II .028 .049 .087 .159 .019 .030 .053 .119 .024 .055 .108 .214

III .030 .050 .088 .165 .014 .024 .049 .122 .020 .047 .102 .194

I .032 .058 .106 .192 .052 .080 .138 .235 .024 .053 .111 .229

0% II .038 .054 .102 .183 .067 .092 .147 .236 .027 .051 .100 .223

III .031 .051 .092 .185 .057 .086 .136 .241 .033 .054 .106 .225

Table 1: Rejection probabilities of the test (4.1) for a constant scale factor. The sample size

is n = 50 and the constant c in model (I)-(III) is given by c = 0, which corresponds to the null

hypothesis of a constant scale factor.

Dette/Munk Dette/Hetzler (4.1)

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .031 .053 .095 .174 .015 .023 .051 .123 .023 .043 .095 .200

10% II .029 .050 .087 .171 .014 .025 .056 .149 .023 .044 .106 .191

III .032 .052 .092 .169 .014 .025 .061 .120 .026 .043 .087 .208

I .020 .042 .075 .155 .012 .022 .053 .141 .014 .033 .077 .182

20% II .026 .046 .084 .154 .003 .015 .052 .144 .010 .030 .083 .157

III .027 .041 .078 .147 .006 .017 .051 .131 .018 .031 .069 .165

I .031 .051 .091 .192 .041 .063 .123 .206 .028 .056 .112 .225

0% II .029 .052 .094 .189 .037 .066 .114 .213 .030 .054 .118 .223

III .031 .054 .096 .187 .028 .059 .107 .210 .031 .055 .108 .216

Table 2: Rejection probabilities of the test (4.1) for a constant scale factor. The sample size is

n = 100 and the constant c in model (I)-(III) is given by c = 0, which corresponds to the null

hypothesis of a constant scale factor.
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n = 50 n = 100 n = 200

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .100 .151 .228 .357 .166 .256 .371 .517 .420 .540 .659 .783

10% II .089 .168 .327 .582 .195 .424 .716 .933 .825 .963 .999 1

III .218 .298 .426 .563 .433 .556 .680 .807 .799 .860 .916 .967

I .064 .112 .192 .326 .119 .198 .310 .444 .316 .409 .538 .668

20% II .062 .113 .234 .465 .112 .245 .472 .805 .496 .765 .951 .996

III .144 .216 .322 .466 .381 .481 .615 .748 .699 .777 .870 .930

I .133 .226 .343 .480 .280 .385 .518 .651 .552 .669 .773 .868

0% II .082 .172 .402 .762 .318 .616 .899 .992 .983 1 1 1

III .293 .409 .537 .643 .574 .686 .800 .890 .907 .951 .974 .992

Table 3: Rejection probabilities of the test (4.1) for a constant scale factor. The constant c in

model (I)-(III) is given by c = 0.5, which corresponds to an alternative.

n = 50 n = 100 n = 200

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .317 .411 .546 .688 .617 .726 .815 .896 .938 .969 .989 .994

10% II .112 .272 .512 .844 .627 .881 .985 .999 1 1 1 1

III .532 .625 .735 .823 .806 .886 .938 .967 .993 1 1 1

I .205 .310 .446 .593 .479 .595 .717 .825 .868 .923 .961 .987

20% II .080 .176 .397 .727 .336 .635 .893 .988 .970 .994 1 1

III .382 .501 .622 .746 .704 .803 .885 .943 .974 .985 .993 .997

I .419 .529 .655 .770 .766 .833 .904 .946 .979 .995 .997 1

0% II .136 .341 .723 .966 .827 .983 1 1 1 1 1 1

III .572 .663 .771 .869 .891 .938 .974 .989 .999 1 1 1

Table 4: Rejection probabilities of the test (4.1) for a constant scale factor. The constant c in

model (I)-(III) is given by c = 1, which corresponds to an alternative.
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n = 50 n = 100 n = 200

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .071 .108 .167 .291 .103 .153 .234 .359 .189 .257 .369 .514

10% II .096 .135 .203 .319 .103 .153 .241 .423 .113 .217 .359 .592

III .198 .274 .376 .514 .312 .419 .528 .645 .527 .630 .730 .810

I .055 .089 .152 .246 .065 .104 .166 .273 .080 .126 .218 .354

20% II .062 .091 .150 .251 .059 .106 .178 .307 .064 .125 .219 .411

III .138 .188 .217 .391 .167 .255 .380 .496 .303 .403 .498 .628

I .169 .251 .352 .499 .252 .342 .481 .625 .510 .626 .750 .836

0% II .146 .189 .275 .420 .174 .259 .406 .617 .357 .529 .769 .948

III .301 .432 .566 .725 .527 .667 .799 .892 .902 .941 .976 .989

Table 5: Rejection probabilities of the test of Dette and Hetzler (2009) for a constant scale factor.

The constant c in model (I)-(III) is given by c = 0.5, which corresponds to an alternative.

n = 50 n = 100 n = 200

p model 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

I .050 .085 .128 .210 .053 .082 .134 .241 .069 .105 .170 .392

10% II .170 .244 .348 .491 .295 .380 .489 .639 .551 .461 .668 .794

III .068 .104 .173 .272 .104 .149 .233 .331 .151 .213 .316 .450

I .044 .071 .127 .214 .046 .066 .114 .222 .061 .083 .139 .240

20% II .179 .245 .339 .486 .294 .390 .498 .618 .397 .485 .641 .754

III .066 .115 .166 .265 .090 .126 .188 .285 .115 .173 .244 .376

I .041 .066 .134 .234 .061 .101 .153 .246 .078 .121 .185 .302

0% II .186 .264 .381 .520 .333 .432 .551 .705 .553 .654 .770 .882

III .068 .106 .174 .286 .092 .148 .232 .367 .169 .234 .359 .491

Table 6: Rejection probabilities of the test of Dette and Munk (1998) for a constant scale factor.

The constant c in model (I)-(III) is given by c = 0.5, which corresponds to an alternative.
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