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Summary

The estimated persistence in various types of GARCH - models

is known to be too large when the parameters of the model un-

dergo structural changes somewhere in the sample. The present

paper adds further insights into this phenomenon for the Baillie and

Chung (2001) minimum distance estimates of the model parame-

ters. While previous research has focused on the effects of changes

in the GARCH- parameters, we investigate here the consequences

of a changing mean.
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1 Introduction and summary

Among the large family of ARCH- and GARCH-models that have been pro-

posed since the seminal paper of Engle (1982), the GARCH(1,1) - specification,

xt = εt + µ (1)

εt = ηtσt

σ2
t = ω + αε2t−1 + βσ2

t−1 ,

where the ηt are iid(0, 1) and independent of past ε’s and σ’s, is still by far

the most popular. Typical applications include stock returns or inflation rates.

However, it is often found in many applications that the estimate of the ”per-

sistence parameter” δ := α+β appears as much too large, and that this upward

bias increases as sample size increases.

It has long been known (see e.g. Diebold 1986) that this upward bias of the

estimated persistence parameter might well be an artifact of structural change,

either in µ or in the GARCH - parameters α, β and ω. Mikosch and Starica

(2004) show that the Whittle-estimator of δ = α + β must tend to 1 for any

given sample size when the structural change increases, and Hillebrand (2005)

proves the same for the ML- estimates for the case of given structural changes

and increasing samples. The present paper considers the Baillie and Chung

(2001) Minimum Distance estimator, extending Krämer and Tameze (2007).

While Krämer and Tameze (2007) were mainly concerned with increasing struc-

tural changes for a given sample, in the vain of Mikosch and Starica (2004), we

focus here on the empirically more relevant case of given changes and increas-

ing samples, and show that the sum of the estimated α and β can likewise be

made arbitrarily close to 1 if there are certain types of structural change in

the xt-process, in particular, structural changes in the expectation µ.

In the context of returns of risky assets, µ is the expected return, and there is

no reason to believe that this remains constant over long stretches of line. The

present analysis can therefore be viewed as an investigation of the consequences

when such changes in expected returns are not properly accounted for.
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2 Structural changes in the mean and sample
autocorrelations

We first explore the relationship between structural change in the mean of

model (1) and the empirical autocorrelations of the ε2t (which are identical to

the estimated autocorrelations of the x2
t ). These empirical autocorrelations are

important because they provide the major input for the Minimum Distance

estimator of α and β which we consider here.

Let therefore in general

zt = γt + ηt (t = 1, ..., T )

be a sequence of random variables where the sequences {γt} and {ηt} are

independent, with zero mean and weakly stationary ηt. If γt = γ is fixed and

nonstochastic, the h-th order autocorrelations ρh of {zt} and {ηt} coincide and

are consistently estimated by the empirical h’th order autocorrelations of the

zt - sequence:

ρ̂h =

∑T−h
t=1 (zt − z̄)(zt+h − z̄)∑T

t=1(zt − z̄)2
. (2)

These estimates can be affected by structural change in γ in various ways.

One possibility, investigated in detail by Diebold and Inoue (2001), is real or

spurious long memory in {γt} (and therefore also in {zt}), as defined by

V ar
( T∑

t=1

zt
)

= O
(
T 2d+1

)
, 0 < d ≤ 1. (3)

It easy to show (see e.g. Hassler 1997) that we must then have

p lim
T→∞

ρ̂h = 1 (4)

for all h whenever the long-memory parameter d is larger than 1/2. Simply

rewrite (2) as

ρ̂h = 1−
∑T

t=T−h+1(zt − z̄)2∑T
t=1(zt − z̄)2

+

∑T−h
t=1 (zt − z̄)(zt+h − zt)∑T

t=1(zt − z̄)2
(5)
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and note that the numerators in the last two expressions are of smaller order

in probability than the denominator:

T∑
t=1

(zt − z̄)2T
P→∞, (6)

whereas both numerators are Op(T ).

Diebold and Inoue (2001) show that behavior of type (3) occurs for instance

whenever γt is stochastic and independent of ηt and displays structural breaks

of the form

γt = γt−1 + νt (7)

νt =

 0 with probability 1− p

ωt with probability p ,

where ωt = i.i.d(0, σ2), and where p may depend on sample size. Since

T∑
t=1

γt = Tv1 + (T − 1)v2 + ...+ vT , (8)

we have

V ar
( T∑
t=1

γt
)

= p σ2

T∑
t=1

t2 = p σ2T (T + 1)(2T + 1)

6
, (9)

so we can have (3) for any d, 0 < d < 1, by letting p vary with sample size

according to

p = c
1

T 2−2d
(0 < c ≤ 1). (10)

A similar way of introducing long memory in {zt} is letting γ takes values γ1

and γ2(γ1 6= γ2) on consecutive intervals of some renewal process (Leipus and

Surgailis 2003). If the renewal distribution has heavy tails, there will be long

memory in {zt}.

Below we focus on a second type of structural change which likewise induces

spurious long memory in {zt}, which is given by r nonstochastic shifts in mean

at

Tqj(qj = p0 + p1 + ..+ pj, pi > 0,
∑

pi = 1), (11)
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so γt = γi whenever Tqi < t ≤ T (qi + 1). There appears to emerge a consensus

in empirical finance that this type of structural change is the predominant one

in the context of squared stock returns (Starica and Granger 2005). With such

nonstochastic changes, it can easily be shown (see e.g. Mikosch and Starica

2004) that, for fixed h and T →∞, we have

ρ̂h
p→

ρhvar(ηt) +
∑r

i,j=0(γi − γj)2

var(ηt) +
∑r

i,j=0(γi − γj)2
, (12)

whereas for given T and increasing structural changes, i.e.
r∑

i,j=0

(γi−γj)2 →∞,

we have

ρ̂h
p→ 1. (13)

The latter relationship is the crucial element in the proof in Mikosch and

Starica (2004) and Krämer and Tameze (2007) that the Whittle and Minimum

Distance estimators of α+β likewise tend to 1 for given T as structural changes

are increasing.

One might question, however, whether such extreme structural changes are

really relevant in applications. As will be shown below, it suffices for the Mini-

mum Distance estimator to tend to one that the limit in (12) remains bounded

away from zero as h→∞:

lim
h→∞

ρhvar(ηt) +
∑r

i,j=0(γi − γj)2

var(ηt) +
∑r

i,j=0(γi − γj)2
=

∑r
i,j=0(γi − γj)2

var(ηt) +
∑r

i,j=0(γi − γj)2
> 0. (14)

3 The Minimum Distance estimator with
structural change

Next we set zt = x2
t and consider the Baillie and Chung (2001) Minimum

Distance estimator of the GARCH - parameters α and β in the model (1),
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given that empirical autocorrelations of the x2
t behave as explained in section

2. This estimator exploits the fact that the ε2t can be written as an ARMA(1,1)

- process

ε2t = ω + (α + β)ε2t−1 + ut − βut−1, (15)

where

ut := ε2t − E(ε2t |ε2t−1, ε
2
t−2, ...) = ε2t − σ2

t (16)

is white noise and uncorrelated with past ε2t ’s, and that theoretical autocorre-

lations of ε2t are therefore known functions of α and β:

ρ1 = α +
α2β

1− 2αβ − β2

ρ2 = (α +
α2β

1− 2αβ − β2
)(α + β)

...

ρh = (α +
α2β

1− 2αβ − β2
)(α + β)h−1 (h > 1). (17)

The Minimum Distance Estimators α̂ and β̂ for α and β are then obtained as

arg min
α,β

[ρ̂− ρ(α, β)]′W [ρ̂− ρ(α, β)], (18)

where W is some suitable positive definite weighting matrix, ρ̂ = (ρ̂1, . . . , ρ̂h)
′

is the vector of estimated autocorrelations and where ρ(α, β) = (ρ1, . . . , ρh)
′ is

the vector-valued function of α and β defined in (17).

Krämer and Tameze (2007) consider the case where the ρ̂i tend to one, i.e

where

ρ̂ = (ρ̂1, . . . , ρ̂h)
′ p→ e := (1, . . . , 1)′, (19)

and show that this implies that α̂ + β̂
P→ 1. From

plim(α̂, β̂) = arg min
α,β

[plim ρ̂− ρ(α, β)]′W [plim ρ̂− ρ(α, β)]

⊆ arg min
α,β

[e− ρ(α, β)]′W [e− ρ(α, β)] , (20)
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one sees that the latter set of minimizing values of α and β is in view of (17)

determined by

α + β = 1 and (21)

α +
α2β

1− 2αβ − β2
= 1, (22)

for which ρ(α, β) = e, so

[e− ρ(α, β)]′W [e− ρ(α, β)] = 0, (23)

which in view of the positive definiteness of W is the minimum value which

can be attained.

The empirical usefulness of this results is rather limited, however. As ρ̂ → e

requires either nonstationary long memory (d > 1/2) as sample size increases

or unlimited structural changes when sample size is fixed, one would rarely

expect this to happen in e.g. financial applications. Much more relevant are

small but persistence structural changes of the type (3), where, in view of (14),

ρ̂h → q (0 < q < 1) (24)

as sample size increases. Next we show that, also in this case, the Minimum

Distance estimator of α + β must by logical necessity tend to 1.

THEOREM:

Whenever the number h of empirical autocorrelations of the xt
2 which is used

for the Minimum Distance estimators α̂ and β̂ of α and β tends to infinity as

sample size increases, the relationship (24) implies p lim(α̂ + β̂) = 1.

PROOF:

The h - dimensional vector ρ(α̂, β̂), with typical element

ρi = (α̂ +
α̂2β̂

1− 2α̂β̂ − β̂2
)(α̂ + β̂)

i
(i = 1, ...h), (25)
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which solves the minimization problem (18) and therefore yields the Minimum

Distance estimator α̂ and β̂, is componentwise geometrically decreasing in i.

Therefore, its final element must eventually obey the restriction

(α̂ +
α̂2β̂

1− 2α̂β̂ − β̂2
)(α̂ + β̂)

h
> q − ε

for any ε > 0. Taking the h-th root on both sides of the inequality yields

(α̂ +
α̂2β̂

1− 2α̂β̂ − β̂2
)1/h(α̂ + β̂) > (q − ε)1/h,

where the right hand side tends to 1 as h→∞. Therefore, the left hand side

must tend to one as well, which in turn implies α̂ + β̂
p→ 1.

Another line of reasoning, different from ours, which also leads to δ̂
p→ 1, is due

to Hillebrand (2005): If the model (1) is estimated by Maximum Likelihood,

we must have

σ̂2
t = ω̂ + α̂ε̂2

t−1 + β̂σ̂2
t−1 (t = 1, · · · , T ), (26)

where the σ̂2
t and ε̂t are fitted values obtained from the ML-estimator for ω, α

and β and some starting values ε2
0 and σ2

0. If there are in addition only a fixed

number of regimes, with regime-specific expectations E(σ2)(i) = E(ε2
t )(i) =: Ei

and with regime-specific sample sizes increasing, one obtains under certain

conditions on the estimators that

σ̂2
(i)

p→ E(i), ε̂2
(i)

p→ E(i), (27)

so

E(i) − E ≈ (α̂ + β̂)(E(i) − E) (28)

where E is the sample mean of the σ̂2. Therefore α̂ + β̂ must likewise tend

to 1. This argument however depends crucially on the validity of the limiting

relationship in (27) and is different from the one advanced in the present paper.
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4 Some finite sample simulations

This section reports on various Monte Carlo simulations to check the finite

sample relevance of the above results. In a first series of experiments, we keep

the number of changes fixed at times [Tq1][Tq2], ..., [Tqk] where 0 < d1 < d2 <

...dr < 1, along the lines of Starica and Granger (2005), and Hillebrand (2005).

Figure 1 reports the first 35 empirical autocorrelations of a GARCH(1,1)-

process with α = 0.2, β = 0.4, ω = 0.001, ηt ∼ n.i.d(0, 1) where r = 1, d1 =

1/2, and where a shift in µ of size 0.8 occurs in the middle of the sample. The

figures are averages over 1000 replications. The figure also indicates the limit

q from equation (24) and shows that the limit is approached quick rapidly as

h increases, also for modest values of T.

Table 1 shows the resulting estimates of δ̂ = α̂ + β̂, also for a wider range of

sample sizes and structural breaks. It is seen that the estimated persistence

likewise tends to 1 quite rapidly as the sample size increases, at least if the

structural change is large enough, and that δ̂ is biased downwards in small

samples if there is no structural change. This downward bias vanishes very

slowly as sample size increases. Similar results were also obtained for other

values of r, d1, d2, ..., dr and α and β and can be obtained from the authors

upon request.

In a second series of experiments, we let µ change according to the Diebold

and Inoue (2001)–scheme from equation (7). Figure 2 shows the resulting first

35 empirical autocorrelations of the xt
2 for the case where ωt ∼ n.i.d(0, 1) and

the switching probability is p = 0.05. It is seen that sample autocorrelations

tend to a constant as sample size increases.

Table 2 gives the persistence in a GARCH(1,1)-model derived from these em-

pirical autocorrelations for a wider range of switching probabilities where

νt ∼ n.i.d(0, 1) and sample sizes . Again, it is seen that δ̂ approaches 1

quite rapidly, and similar results were obtained for different parameters of

the GARCH-model as well.
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5 Conclusion

The present paper confirms the conventional wisdom that overly large esti-

mated persistence in GARCH-models is not necessarily due to a large real

persistence. Rather, it might as well be structural changes in the model pa-

rameters. Extending previous work which was mostly concerned with changes

in the GARCH -parameters, we show here how changes in this expectation

might likewise bias the estimated persistence towards unity.

10



References

Baillie, R. T. and H. Chung (2001): ‘Estimation of GARCH models from the

autocorrelations of the squared of a process’. Journal of Time Series Analysis

22(6), 631–650.

Diebold, F. (1986): ‘Modeling the persistence of the conditional variances: a

comment.’. Econometric Reviews (5), 51–56.

Diebold, F. and A. Inoue (2001): ‘Long Memory and Regime Switching’. Jour-

nal of Econometrics (105), 139–159.

Engle R. (1982): ‘Autoregressive Conditional Heterokedasticity with estimates

of the variance of the United Kingdom Inflation’. Econometrica (50), 987–

1007.

Hassler, U. (1997): ‘Sample autocorrelations of nonstationary fractionally in-

tegrated series’. Statistical Papers (38), 43–62.

Hillebrand, E. (2005): ‘Neglecting parameter changes in GARCH models’.

Journal of Econometrics (129), 121–138.
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Figure 1: Sample autocorrelations in the context of a nonstochastic change

in mean in the middle of the sample

(a) T=500 (b) T=1000

(c) T=2000 (d) T=4000
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Figure 2: Sample autocorrelations in the context of a stochastic change and

switching probability of p = 0.05

(e) T=500 (f) T=1000

(g) T=2000 (h) T=4000
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Table 1: Expected values of δ̂ = α̂ + β̂ for various changes in mean and

sample size

∆µ
T

0 0.2 0.4 0.6 0.8 1 1.2 1.4

a) α = 0.2, β = 0.4

500 0.5754 0.8514 0.9304 0.9681 0.9842 0.9907 0.9950 0.9953

1000 0.5825 0.8638 0.9507 0.9853 0.9929 0.9959 0.9981 0.9983

2000 0.5912 0.8903 0.9767 0.9943 0.9972 0.9984 0.9989 0.9992

4000 0.5976 0.9374 0.9878 0.9977 0.9992 0.9994 0.9995 0.9996

b) α = 0.4, β = 0.2

500 0.5634 0.7849 0.8949 0.9482 0.9792 0.9873 0.9917 0.9932

1000 0.5762 0.8009 0.9241 0.9711 0.9872 0.9930 0.9935 0.9978

2000 0.5892 0.8593 0.9577 0.9868 0.9929 0.9966 0.9969 0.9990

4000 0.5947 0.9037 0.9728 0.9939 0.9975 0.9991 0.9984 0.9994

c) α = 0.3, β = 0.3

500 0.5714 0.8115 0.9059 0.9629 0.9839 0.9882 0.9907 0.9932

1000 0.5796 0.8405 0.9420 0.9763 0.9895 0.9917 0.9960 0.9974

2000 0.5883 0.8871 0.9709 0.9887 0.9954 0.9969 0.9988 0.9991

4000 0.5964 0.9093 0.9840 0.9953 0.9986 0.9994 0.9995 0.9996
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Table 2: Expected values of δ̂ = α̂ + β̂ for various switching probabilities

and sample size

p
T

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

a) α = 0.2, β = 0.4

500 0.572 0.754 0.858 0.931 0.971 0.982 0.986 0.994 0.995 0.996 0.996

1000 0.584 0.784 0.884 0.954 0.968 0.989 0.995 0.996 0.997 0.997 0.998

2000 0.594 0.790 0.936 0.982 0.995 0.998 0.997 0.998 0.998 0.998 0.999

4000 0.597 0.857 0.962 0.984 0.997 0.998 0.998 0.999 0.999 0.999 0.999

a) α = 0.4, β = 0.2

500 0.563 0.700 0.795 0.906 0.946 0.967 0.973 0.992 0.993 0.992 0.993

1000 0.574 0.739 0.858 0.923 0.980 0.982 0.992 0.995 0.997 0.997 0.998

2000 0.589 0.755 0.919 0.953 0.965 0.990 0.993 0.998 0.997 0.998 0.999

4000 0.595 0.756 0.938 0.980 0.996 0.997 0.997 0.998 0.998 0.999 0.999

c) α = 0.3, β = 0.3

500 0.573 0.706 0.823 0.928 0.943 0.975 0.976 0.985 0.994 0.996 0.996

1000 0.581 0.726 0.922 0.961 0.964 0.983 0.995 0.997 0.997 0.998 0.998

2000 0.589 0.743 0.933 0.969 0.980 0.996 0.996 0.998 0.998 0.998 0.999

4000 0.596 0.829 0.953 0.984 0.995 0.997 0.998 0.998 0.999 0.999 0.999
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