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Abstract
In this paper we derive locally D- and EDp-optimal designs for the exponential,

log-linear and three parameter EMAX-model. We show that for each model the
locally D- and EDp-optimal designs are supported at the same set of points, while
the corresponding weights are di�erent. This indicates that for a given model, D-
optimal designs are e�cient for estimating the smallest dose which achieves 100p%
of the maximum e�ect in the observed dose range. Conversely, EDp-optimal designs
also yield good D-e�ciencies. We illustrate the results using several examples and
demonstrate that locally D- and EDp-optimal designs for the EMAX-, log-linear and
exponential model are relatively robust with respect to misspeci�cation of the model
parameters.
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1 Introduction
The EMAX, log-linear and exponential models are widely used in various applications,
especially in modeling the relationship between response and a given dose. These three
models re�ect di�erent potential response shapes. For example, one may assume that
the dose-response relationship of a drug is increasing and has a maximum e�ect which is
achieved asymptotically at large dose levels. This is re�ected by the EMAX model

f(x, θ) = θ0 +
θ1x

x + θ2

,

where x denotes the dose, θ0 the placebo e�ect at dose d = 0, θ1 the asymptotic maximum
treatment bene�t over placebo and θ2 the dose that gives half of the asymptotic maximum
e�ect. In particular, the Emax can be justi�ed on the relationship of drug-receptor interac-
tions and therefore deduced from the chemical equilibrium equation [1].
The log-linear model describes the relationship between the dose of a drug and its e�ect,
where the e�ect increases linearly in the logarithm of dose, that is

f(x, θ) = θ0 + θ1 log(x + θ2).

Here θ0 denotes the placebo e�ect and θ1 de�nes the increase of log(x + θ2), where θ2 is an
additive constant to avoid di�culties with the logarithm when the placebo response is zero.
A di�erence between the EMAX and the log-linear model is that the latter produces an
unbounded e�ect, as dose approaches in�nity. For example, [24] used the log-linear model
to relate the synthesis rate of prothrombin complex activity to the plasma concentration
of warfarin; see [22] for further applications.
Relationships of dose and e�ect, which have a sublinear or convex structure, are described
by the exponential model

f(x, θ) = θ0 + θ1 exp (x/θ2)

where θ0 denotes the placebo e�ect, θ1 the slope of the curve and θ2 determines the rate of
e�ect increase. We refer to [13] and [25] for application of this model in quantitative risk
assessment and clinical dose �nding studies, respectively.
Because of the broad applicability of these models, especially in the development of a new
compound, such as a drug or a fertilizer, the availability of e�cient experimental designs
employing the EMAX, log-linear and exponential model is important. Good designs can
substantially improve the e�ciency of statistical analyses. Optimal designs for the EMAX
model with two parameters (i.e. E0 = 0) have been discussed by numerous authors [see for
example Dunn (1988), Rasch (1990), Song andWong (1998), Dette and Biedermann (2003),
Dette, Melas and Pepelyshev (2003), Lopez-Fidalgo and Wong (2002) among others]. D-
optimal designs for the exponential model have been discussed by Dette and Neugebauer
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(1997), Han and Chaloner (2003) and Dette, Martinez Lopez, Ortiz Rodriguez and Pepely-
shev (2006) among others. It appears there is scant literature on optimal designs for the
log-linear model [see for example Dette, Bretz, Pepelyshev and Pinheiro (2008)]. In this pa-
per we discuss similarities between optimal designs for these three models, when the design
space is given by an interval. We consider locally optimal design problems [see Cherno�
(1953)], which require initial best guesses of the unknown model parameters. Typically,
optimal designs of this type are used as benchmarks in many applications. However in
some cases, such as in clinical trials, relatively good initial/upfront information about the
model parameter is available [see e.g. Bretz et al. (2005, 2008)]. Moreover, locally opti-
mal designs are often needed for the construction of experimental designs with respect to
more sophisticated optimality criteria, such as Bayesian or standardized maximin-optimal
designs [see e.g. Chaloner and Verdinelli (1995), Dette and Neugebauer (1997), Braess
and Dette (2007), Dette (1997), Müller and Pazman (1998) or Imhof (2001) among many
others].
In Section 2 we motivate the methods described in this paper with an example of a clinical
dose �nding study. In Section 3 we brie�y introduce the necessary notation. In Section
4 we determine locally D-optimal designs for the three parameter EMAX and log-linear
model. For the exponential model these designs have been found in Dette and Neugebauer
(1997), Han and Chaloner (2003) and Dette, Martinez Lopez, Ortiz Rodrguez and Pepely-
shev (2006). In Section 5 we consider locally optimal designs for estimating the EDp for
the three models, where the EDp is de�ned as the smallest dose achieving 100p% of the
maximum e�ect in the observed dose range. We demonstrate that in each of the three
models the locally D- and EDp-optimal designs are supported at the same points: the
two boundary points of the design interval and one interior point depending on the model
under consideration. Interestingly, the support points of locally D- and EDp-optimal de-
signs coincide with the interior support points of the locally optimal design for estimating
the minimum e�ective dose (MED), if this design is supported at three points [see Dette,
Bretz, Pepelyshev and Pinheiro (2008)]. This indicates that D-optimal designs are rela-
tively e�cient for estimating the MED and EDp in the EMAX, log-linear and exponential
model and vice versa. This is con�rmed by several examples in Section 6. There we also
demonstrate that locally optimal designs are relatively sensitive with respect to misspeci-
�cation of the underlying model. On the other hand, if a given model can be justi�ed (for
example by previous trials or pharmacokinetic data) we demonstrate that locally D- and
EDp-optimal designs are robust with respect to misspeci�cation of the model parameters.

2 A clinical dose �nding study
To illustrate and motivate the methods described in this paper, we consider a clinical dose
�nding study for an anti-anxiety drug (Pinheiro et al., 2006). The primary endpoint is the
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Table 2.1: Dose response models with corresponding parameter values. All models are
normalized such that the maximum e�ect is 0.4.

Model f(x, θ) θ = (θ0, θ1, θ2)
EMAX θ0 + θ1

x
x+θ2

(0.0, 0.467, 25)
Log-linear θ0 + θ1 log(x + θ2) (0.0, 0.0797, 1)

Exp θ0 + θ1 exp (x/θ2) (-0.08265, 0.08265, 85)

change from baseline in an anxiety scale score at study end. A homoscedastic normal model
is assumed. Without loss of generality it is also assumed that the placebo e�ect is θ0 = 0

and the maximum treatment e�ect within the dose range [a, b] = [0mg, 150mg] under
investigation is 0.4. Furthermore, we assume that all dose levels within the investigated
dose range are safe, so that e�cacy is the primary interest. The main goal of the study
is to estimate the smallest dose achieving 100p% of the maximum e�ect in the observed
dose range with p = 0.5. Based on discussions with the clinical team prior to the start
of the study, di�erent candidate models were identi�ed to potentially describe the true
underlying dose response pro�le.

ED0.5
log-lin ED0.5

EMAX 50 ED0.5
exp xmax=150

dose

0.1

0.5 fHxmax,ΘL

0.3

fHxmax,ΘL

response

EMAX

log-lin

exp

Figure 2.1: Dose response curves corresponding to the models in Table 2.1. The EDp for
p = 0.5 is marked for each model.
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Table 2.1 shows these candidate models with initial parameter estimates obtained from
previous studies, as described in Pinheiro et al. (2006). Note that all models are normalized
such that the maximum response value is given by 0.4. The maximum e�ect within the
dose range under investigation is attained at the maximum dose level xmax = 150mg. The
corresponding curves are depicted in Figure 2.1. This Figure shows also the EDp with
p = 0.5 for the three models. We will use these models and corresponding parameter
values to motivate and illustrate later the methodological developments of this paper.
The remaining key questions at the design stage involve the determination of the necessary
number of di�erent dose levels, the location of the dose levels within the dose range, and
the proportions of patients to be allocated to each of the dose levels, such that the EDp can
be estimated e�ciently for any of the candidate models. In addition, we derive D-optimal
designs for each of the models from Table 2.1.
The original considerations for the example study led to a design with dose levels 0, 10,
25, 50, 100, and 150mg and a total sample size of 300 patients equally allocated to each
of the six parallel treatment groups. This design corresponds to current pharmaceutical
practice, which typically employs an equal allocation of the patients to the dose levels under
investigation. The dose levels themselves are often chosen such that they are approximately
equidistributed on a logarithmic scale, that is, a given dose level is approximately twice
as large as the next lower dose level. Throughout this paper we call this the �standard
design�. Designs of this type can be improved when using the methods proposed in this
paper.

3 Notation
The three di�erent nonlinear dose-response regression models described in the Introduction
can be written in the general form

(3.1) E(Y |x) = f(x, θ) = θ0 + θ1f
0(x, θ2) ,

where Y is the observation at experimental condition x, θ = (θ0, θ1, θ2)
T denotes the vector

of unknown parameters and the expected response E(Y |x) is at a given x

f1(x, θ) = θ0 + θ1x/(x + θ2),(3.2a)
f2(x, θ) = θ0 + θ1 log(x + θ2),(3.2b)
f3(x, θ) = θ0 + θ1 exp(x/θ2).(3.2c)

We assume the explanatory variable x varies in the interval V = [a, b], where 0 ≤ a < b

and normally distributed observations are available at each x ∈ V with mean f(x, θ) and
variance σ2 > 0. The non-linear regression function f is either f1, f2 or f3 and the
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observations are assumed to be independent.
An experimental design ξ is a probability measure with �nite support de�ned on the set
V [see Kiefer (1974)]. The information matrix of an experimental design ξ is de�ned by

(3.3) M(ξ, θ) =

∫

V
g(x, θ)gT (x, θ)dξ(x),

where

(3.4) g(x, θ) =
∂

∂θ
f(x, θ)

denotes the gradient of the expected response with respect to the parameter θ. If N obser-
vations are available and the design ξ concentrates masses wi at the points xi, i = 1, . . . , n,
the quantities wiN are rounded to integers such that

∑n
j=1 ni = N [see Pukelsheim and

Rieder (1992)], and the experimenter takes ni observations at each point xi, i = 1, . . . , n. If
the sample size N approaches in�nity, then (under appropriate regularity assumptions) the
covariance matrix of the maximum likelihood estimator for the parameter θ is proportional
to the matrix (σ2/N)M−1(ξ, θ), provided that the inverse of the information matrix exists
[see Jennrich (1969)]. An optimal experimental design maximizes or minimizes an appro-
priate functional of the information matrix or its inverse. There are numerous optimality
criteria which can be used to discriminate between competing designs [see Silvey (1980)
and Pukelsheim (1993)]. In this paper we investigate (i) the D-optimality criterion, which
maximizes the determinant of the inverse of the information matrix with respect to the
design ξ (Section 4) and (ii) the EDp-optimality criterion, which is a special case of the
c-optimality (Section 5). It is remarkable that for the three models considered here the
locally D- and EDp-optimal designs on the design space V = [a, b] have the same structure,
that is

(3.5) ξ∗ =

(
a x∗ b

w1 w2 1− w1 − w2

)
,

where the point x∗ depends on the regression model but not on the optimality criterion.
While the D-optimal designs are equally weighted (i.e. w1 = w2 = w3), EDp-optimal
designs are not; their weights are given in Section 5.
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4 Locally D-optimal designs
In this section we study D-optimal designs. For the non-linear regression models (3.2a),
(3.2b) and (3.2c) the vectors of the partial derivatives are given by

g1(x, θ) =

(
1,

x

x + θ2

,− θ1x

(x + θ2)2

)T

(4.1a)

g2(x, θ) =

(
1, log(x + θ2),

θ1

x + θ2

)T

(4.1b)

g3(x, θ) =

(
1, exp(x/θ2),−θ1x exp(x/θ2)

θ2
2

)T

(4.1c)

respectively. The following result yields the general structure of the locally D-optimal
designs. The explicit designs are given in Theorem 4.2.

Theorem 4.1 The locally D-optimal design ξ∗D on the design space V = [a, b] for the
EMAX, log-linear and the exponential model is supported by exactly three points, where
two of the support points are the boundary points of the design space.

Proof: We only present the proof for the case of the EMAX model, because the other
cases can be treated similarly. Let ξ∗D = { x∗i

wi
}n

i=1 denote a locally D-optimal design for the
EMAX model with design space V = [a, b]. First, we show that n = 3. Next, we will show
that the locally D-optimal design contains the boundary points a and b. This completes
the proof.
Obviously, we have n ≥ 3, because the information matrix M(ξ∗D, θ) of a locally D-optimal
design is nonsingular. The gradient of the regression function (3.2a) with respect to the
parameter θ = (θ0, θ1, θ2) is given by (4.1a), which yields the variance function

(4.2) dD(x, ξ, θ) =

(
1,

x

x + θ2

,− θ1x

(x + θ2)2

)
M−1(ξ, θ)

(
1,

x

x + θ2

,− θ1x

(x + θ2)2

)T

,

at the experimental condition x ∈ V . This function has the form

dD(x, ξ, θ) =
1

(x + θ2)4

(
α1x

4 + α2x
3 + α3x

2 + α4x + α5

)
,

with some coe�cients α1, . . . , α5. The speci�c relation between the coe�cients αi and the
parameters is not of interest in the following discussion. Because the diagonal elements of
M−1(ξ∗D, θ) are positive, the leading coe�cient α1 is also positive. Using the equivalence
theorem for D-optimality [see Kiefer and Wolfowitz (1960)] it follows that a design ξ∗D is

7



locally D-optimal if and only if

dD(x, ξ∗D, θ) ≤ 3 for all x ∈ [a, b](4.3a)
dD(x∗i , ξ

∗
D, θ) = 3 for all i = 1, . . . , n and x∗i ∈ [a, b].(4.3b)

When multiplying (4.3a) and (4.3b) by (x + θ2)
4, the required constraints on the variance

function can be reformulated as

P4(x) ≤ 0 for all x ∈ [a, b](4.4a)
P4(x

∗
i ) = 0 for all i = 1, . . . , n and x∗i ∈ [a, b],(4.4b)

where P4(x) is an appropriate polynomial of degree 4 with positive leading coe�cient.
Assume that n > 3 holds, i.e. the design has more than 3 support points on the design
space V = [a, b]. Then the polynomial P4(x) has at least 4 roots in the interval [a, b].
�From the characteristics of P4(x) mentioned in (4.4a) and (4.4b) and the positivity of the
leading coe�cient, the polynomial P4(x) has at least two zeros of order 1 and two zeros of
order 2, which contradicts to the fact that the degree of P4(x) is 4.
Next we show that the locally D-optimal design contains the boundary points a and b.
For this purpose we assume the contrary, i.e. a is not a support point of the design. Then
the polynomial P4(x) has two roots in the interior of the interval [a, b] and one root equals
b or it has three roots in the interior of [a, b]. A polynomial with three roots satisfying
the constraints (4.4a) and (4.4b) has at least two zeros of order 2 and one zero of order 1,
which again leads to a contradiction. Similar arguments hold for the boundary point b. ¤

The following result shows that the D-optimal designs for the three models are equally
weighted. In addition, we present the explicit expressions for the interior support point x∗

for each of the three models.

Theorem 4.2 The locally D-optimal design ξ∗D on the design space V = [a, b] is of the
form (3.5) and has equal weights on its support points. The interior support point x∗ is
given by

(4.5) x∗Emax =
b(a + θ2) + a(b + θ2)

(a + θ2) + (b + θ2)

for the EMAX model (3.2a),

(4.6) x∗log−lin = (b + θ2)(a + θ2)
log(b + θ2)− log(a + θ2)

b− a
− θ2
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for the log-linear model (3.2b) and

(4.7) x∗exp =
(b− θ2) exp(b/θ2)− (a− θ2) exp(a/θ2)

exp(b/θ2)− exp(a/θ2)

for the exponential model (3.2c).

Proof: We only present the proof for the EMAX model, because the other two cases can
be treated similarly. �From Theorem 4.1 we know that a locally D-optimal design for the
EMAX model is supported at three points, including the two boundary points a and b of
the design space. It is easy to see that a locally D-optimal design has equal weights on its
support points, i.e. wi = 1/3 for i = 1, 2, 3 [see Silvey (1980)]. Thus, we need to prove that
the interior support point has the form (4.5). Based on the de�nition of the information
matrix (3.3) it follows

M(ξ, θ) =
1

3

3∑
j=1

g1(xj, θ)g
T
1 (xj, θ),

where g1(x, θ) is given in (4.1a). Straightforward calculation yields the determinant of the
information matrix

T (x, θ) := |M(ξ, θ)| = θ2
1θ

4
2(a− x)2(a− b)2(x− b)2

27(a + θ2)4(x + θ2)4(b + θ2)4
.

In order to maximize T (x, θ) we determine the roots of the derivative

∂T

∂x
(x, θ) =

2θ2
1θ

4
2(a− x)(a− b)2(x− b)(−ax + 2ab− bx + θ2a− 2θ2x + θ2b)

27(a + θ2)4(x + θ2)5(b + θ2)4

and obtain

x1 = a, x2 =
b(a + θ2) + a(b + θ2)

(a + θ2) + (b + θ2)
and x3 = b

as possible extrema of the function T (x, θ). Obviously, we have T (a, θ) = 0, T (b, θ) = 0

and T (x, θ) ≥ 0 for all x ∈ V . Hence, there are global minima in x1 = a and x3 = b. If
p = θ2+b

2θ2+a+b
, it follows that x2 = ap + b(1 − p) and p ∈ [0, 1] and therefore a < x2 < b.

Furthermore, T (x, θ) is strictly increasing on the interval [a, x2] and strictly decreasing on
the interval [x2, b]; hence, there is a local maximum at the point x2. ¤
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5 Locally EDp-optimal designs
The EDp, 0 < p < 1, is the smallest dose achieving 100p% of the maximum e�ect in the
observed dose range [a, b] (Bretz et al. (2008)). Let h(x, θ) = f(x, θ) − f(a, θ), where
f(x, θ) is a parameterisation of the form (3.1). The EDp can be de�ned as

(5.1) EDp = argminx∈(a,b]{h(x, θ)/h(xmax, θ) ≥ p}.

Here , xmax denotes the dose at which the maximum expected response is observed. Because
f(x, θ) is increasing for the models under consideration we have xmax = b, which does not
depend on the parameters θ0 and θ1. Using (5.1) we can express the EDp in terms of the
underlying model parameter, that is

EDp = (f 0)−1(f 0(a, θ2) + p(f 0(b, θ2)− f 0(a, θ2))) =: β(θ)

Evidently, if θ̂ denotes the maximum likelihood estimate for the parameter θ, the statistic
β(θ̂) is an estimator for EDp with asymptotic variance

var(β(θ̂)) ≈ 1

n
cT (θ)M−(ξ, θ)c(θ) +O(

1

n
),

where c(θ) = ∂
∂θ

β(θ) denotes the gradient of the function β with respect to θ and M−(ξ, θ)

denotes a generalized inverse of the information matrix M(ξ, θ) de�ned in (3.3). Hence,
an appropriate choice of an optimality criterion for a precise EDp estimation is given by

(5.2) ΨEDp(ξ) = cT (θ)M−(ξ, θ)c(θ).

A locally EDp-optimal design minimizes the function ΨEDp in the class of all designs for
which c(θ) is estimable, that is c(θ) ∈ Range(M(ξ, θ)). Note that for the three models under
consideration the gradient does not depend on the parameters θ0 and θ1 and consequently
the vector c(θ) has the form

cT (θ) =
∂

∂θ
β(θ)(0, 0, γ)

for some constant γ. The following results give the locally EDp-optimal designs for three
models under consideration.

Theorem 5.1 For the EMAX, log-linear and exponential model the locally EDp-optimal
design ξ∗EDp

on the design space V = [a, b] is supported by exactly three points, where two
of the support points are the boundary points of the design space.

Proof: We restrict the proof to the EMAX model, because the other cases can be treated
similarly. The EMAX model is of the form (3.2a) and the gradient of the regression
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function f(x, θ) with respect to the parameter θ = (θ0, θ1, θ2) is given by (4.1a). In order
to determine the number of support points of the locally EDp-optimal design, we �rst show
that the functions {

1, x
x+θ2

,− θ1x
(x+θ2)2

}

constitute a Chebychev-system [see Karlin and Studden (1966)]. This property holds be-
cause for all y1, y2, y3 ∈ V = [a, b] ⊆ R≥0 with y1 < y2 < y3 we have

∣∣∣∣∣∣∣

1 1 1
y1

y1+θ2

y2

y2+θ2

y3

y3+θ2

− θ1y1

(y1+θ2)2
− θ1y2

(y2+θ2)2
− θ1y3

(y3+θ2)2

∣∣∣∣∣∣∣
= −θ1θ

2
2(y1 − y2)(y1 − y3)(y2 − y3)

(y1 + θ2)2(y2 + θ2)2(y3 + θ2)2
6= 0.

Because the regression function f(x, θ) is strictly increasing, xmax = b and the EDp is
given by

EDp = (f 0)−1(f 0(a, θ2) + p(f 0(b, θ2)− f 0(a, θ2)))

=
ab + θ2((1− p)a + pb)

θ2 + pa + (1− p)b
= β(θ2).

Therefore, it follows that
cT (θ2) =

∂β(θ)

∂θ
= γ(0, 0, 1)

with

(5.3) γ =
(1− p)p(a− b)2

(θ2 + p(a− b) + b)2
.

On the other hand, we have
∣∣∣∣∣∣∣

1 1 0
y1

y1+θ2

y2

y2+θ2
0

− θ1y1

(y1+θ2)2
− θ1y2

(y2+θ2)2
γ

∣∣∣∣∣∣∣
= γ

θ2(y2 − y1)

(y1 + θ2)(y2 + θ2)
6= 0,

and it follows from Studden (1968) that the EDp-optimal design is supported at exactly
three points. Moreover, it also holds that

1 ∈ span

{
1,

x

x + θ2

,− θ1x

(x + θ2)2

}
.

Hence, based on a result from Karlin and Studden (1966), the support points are given by
three points including the boundary points of the design space. ¤
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In the following we present the explicit expressions for the interior support point x∗ and
the weights for each of the three models.

Theorem 5.2 The locally EDp-optimal design ξ∗EDp
on the design space V = [a, b] is of

the form (3.5) with weight w2 = 1/2. The interior support point x∗ and the weight w1 of
the left boundary point of the design space are given by

x∗EMAX =
b(a + θ2) + a(b + θ2)

(a + θ2) + (b + θ2)
(5.4)

w1 =
1

4

for the EMAX model (3.2a),

x∗log−lin = (b + θ2)(a + θ2)
log(b + θ2)− log(a + θ2)

b− a
− θ2(5.5)

w1 =
log

(
x∗log−lin+θ2

b+θ2

)

2 log
(

a+θ2

b+θ2

)

for the log-linear model (3.2b) and

x∗exp =
(b− θ2) exp(b/θ2)− (a− θ2) exp(a/θ2)

exp(b/θ2)− exp(a/θ2)
(5.6)

w1 =
exp(x∗exp/θ2)− exp(b/θ2))

2(exp(a/θ2)− exp(b/θ2))

for the exponential model (3.2c).

Proof: Again, only a proof for the EMAX model is given. The corresponding results for
the log-linear and exponential model are shown similarly. According to Theorem 5.1 the
locally EDp-optimal design ξ∗EDp

on the design space V = [a, b] has exactly three support
points, where two of them are the boundary points a and b of the design interval.
Next, we use Elfving's theorem [see Elfving (1952)] to determine the weights w1, w2 and
w3 (note that the EDp-optimality is a special case of c-optimality). For this purpose we
de�ne the Elfving set by

R = conv({ g1(x, θ)|x ∈ V } ∪ { −g1(x, θ)|x ∈ V })

= conv

({ (
1,

x

x + θ2

,− θ1x

(x + θ2)2

)
|x ∈ V

}
∪

{ (
−1,− x

x + θ2

,
θ1x

(x + θ2)2

)
|x ∈ V

})
,

where conv (A) denotes the convex hull of a set A. It follows from Elfving's Theorem that
the design ξ∗EDp

is locally EDp-optimal and minimizes cT (θ)M−(ξ, θ)c(θ), if and only if
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there are constants εi ∈ {−1, 1}, i = 1, 2, 3, and a scaling factor ρ(c), such that

1. The vector ρ(c)−1c(θ2) is a boundary point of the Elfving set R,

2. ρ(c)−1c(θ2) =
∑3

i=1 εiwig1(xi, θ).

Figure 5.2: The Elfving set for the EMAX model with parameters θ0 = 0, θ1 = 1, θ2 = 25
and design space [a, b] = [0, 150].

In our case cT (θ2) = (0, 0, γ), where the constant γ is de�ned by (5.3). A typical situation
for the Elfving set is depicted in Figure 5.2 for the case θ0 = 0 θ1 = 1, θ2 = 25 and
[a, b] = [0, 150]. Hence, the following system of equations has to be solved.

0 = ω1ε1 + ω2ε2 + ω3ε3(5.7)

0 = ω1ε1
a

a + θ2

+ ω2ε2
x

x + θ2

+ ω3ε3
b

b + θ2

(5.8)

Choosing ε1 = ε3 = 1 and ε2 = −1 and replacing w3 by 1 − w1 − w2 leads to w2 = 1/2

because of (5.7). Inserting ω2 into (5.8) results in

ω1
a

a + θ2

− 1

2

x

x + θ2

+

(
1

2
− ω1

)
b

b + θ2

= 0.

Hence the weight ω1 is given by

(5.9) ω1 =
(a + θ2)(b− x)

2(b− a)(θ2 + x)

13



and with ω3 = 1− ω1 − ω2 it follows that

(5.10) ω3 =
(b + θ2)(x− a)

2(b− a)(θ2 + x)
.

In order to calculate the remaining support point x∗EMAX , we insert these weights in the

criterion function
ΨEDp(ξ) = cT (θ2)M

−(ξ, θ)c(θ2)

and minimize it. Using a straightforward calculation, this function can be simpli�ed to

ΨEDp(ξ) = cT (θ2)M
−1(ξ, θ)c(θ2) = γ2 4(a + θ2)

2(x + θ2)
4(b + θ2)

2

θ2
1θ

2
2(a− x)2(x− b)2

.

The derivative of this criterion with respect to x is given by

∂

∂x
ΨEDp(ξ) = γ2−8(θ2 + a)2(θ2 + x)3(θ2 + b)2(−(ax) + 2ab− xb + θ2(a− 2x + b))

θ2
1θ

2
2(a− x)3(x− b)3

,

which has the roots
x̃ = −θ2, x̄ =

b(a + θ2) + a(b + θ2)

(a + θ2) + (b + θ2)
.

The point x̃ is not an element of the design space V = [a, b] and therefore not admissible.
Hence, x̄ is the point where ΨEDp is minimal, because the criterion function is convex on
the design space. Letting p = θ2+b

2θ2+a+b
, it follows that x̄ = ap + b(1− p) which implies that

a < x̄ < b. Therefore, the remaining support point is given by x̄ = x∗EMAX and inserting
x̄ in (5.9) and (5.10) gives the corresponding weights

ω1 = ω3 =
1

4
and ω2 =

1

2
.

Consequently, by Elfving's Theorem, the design with masses w1 = 1/4, w2 = 1/2 and
w3 = 1/4 at the points a, x∗EMAX and b, respectively, is locally EDp-optimal. ¤

6 Examples and e�ciency considerations
In this section we �rst use the results from Sections 4 and 5 to compute D- and EDp-
optimal designs for the three models described in the example in Section 2. Then we
analyse the robustness of the locally optimal designs with respect to misspeci�cation of
the model or model parameters. We further investigate the EDp-e�ciency of a locally D-
optimal design and vice versa. Furthermore we compare the standard design from Section
2 with the locally optimal designs.
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The D-e�ciency of a design ξ is de�ned by

(6.1) effD(ξ) =

( |M(ξ, θ)|
|M(ξ∗D, θ)|

)1/3

,

where ξ∗D denotes the locally D-optimal design. Accordingly, the EDp-e�ciency is de�ned
by

(6.2) effEDp(ξ) =
ΨEDp(ξ

∗
EDp

)

ΨEDp(ξ)
=

cT (θ)M−1(ξ∗EDp
, θ)c(θ)

cT (θ)M−1(ξ, θ)c(θ)

where cT (θ) = γ(0, 0, 1) and ξ∗EDp
denotes the locally EDp-optimal design (note that

effEDp(ξ) does not depend on γ). In the following we investigate the D- and EDp-e�ciencies
for the three dose response models from Table 2.1.
In order to investigate the loss of e�ciency caused by a misspeci�cation of the underlying
model, we compare the e�ciency of the locally D- and EDp-optimal designs provided that
one speci�c model is the �true� one. Using the results from Sections 4 and 5, the locally D-
and EDp-optimal designs with respect to the parameters speci�ed in Table 2.1 are given
by

(6.3) ξ∗D,EMAX =

(
0 18.75 150
1
3

1
3

1
3

)
and ξ∗EDp,Emax =

(
0 18.75 150
1
4

1
2

1
4

)

for the EMAX-model, by

(6.4) ξ∗D,log−lin =

(
0 4.0507 150
1
3

1
3

1
3

)
and ξ∗EDp,log−lin =

(
0 4.0507 150

0.3386 1
2

0.1614

)

for the log-linear model and by

(6.5) ξ∗D,exp =

(
0 95.9927 150
1
3

1
3

1
3

)
and ξ∗EDp,exp =

(
0 95.9927 150

0.2837 1
2

0.2163

)

for the exponential model.
Table 6.1 shows the e�ciency of the locally D-optimal designs for the three models under
di�erent �true� models. The second column shows the D-e�ciency of the designs ξ∗D,log−lin

and ξ∗D,exp if the EMAX model with parameters θ1 = 0.467 and θ2 = 25 is the true dose
response model. For example, the D-e�ciency of the locally optimal design for the log-
linear model is 66.7% under a true EMAX model. The other columns in Table 6.1 are
interpreted similarly. In general, we note that D-optimal designs are very sensitive with
respect to the model assumptions. The e�ciency is particularly poor if a locally D-optimal
design for the log-linear model is used under a true exponential model. The EDp-e�ciencies
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Table 6.1: E�ciency of locally D-optimal designs for the EMAX, log-linear and exponential
model with design space [0, 150] and parameters given in Table 2.1.

effD,EMAX effD,log−lin effD,exp

ξ∗D,EMAX 1 0.8220 0.4066
ξ∗D,log−lin 0.6671 1 0.1462
ξ∗D,exp 0.4233 0.3121 1

with respect to model misspeci�cation are given in Table 6.2, and vary between 0.23% to

Table 6.2: E�ciency of locally EDp-optimal designs for the EMAX, log-linear and expo-
nential model with design space [0, 150] and parameters given in Table 2.1.

effEDp,EMAX effEDp,log−lin effEDp,exp

ξ∗EDp,EMAX 1 0.4751 0.0521
ξ∗EDp,log−lin 0.2418 1 0.0023
ξ∗EDp,exp 0.0557 0.0170 1

47.5%. These results show that locally EDp- and D-optimal designs are not robust with
respect to model misspeci�cation.
Beside studying the robustness properties of the derived designs with respect to model
misspeci�cation, we also investigate the relative performance of designs commonly used in
practice. A common approach in practice is to approximately double the next larger dose,
resulting in the standard design

(6.6) ξS =

(
0 10 25 50 100 150
1
6

1
6

1
6

1
6

1
6

1
6

)

from Section 2. We compare this standard design with the optimal designs ξ∗• for the three
di�erent models by computing their e�ciencies; see Table 6.3 and 6.4 for the results under
the log-linear model. As the results for the other two models are similar, they are omitted.

The last column of Table 6.3 (respectively Table 6.4) shows the e�ciencies of the
standard design ξS for di�erent values of θ1 and θ2. It is remarkable that the e�ciency
depends only on the parameter θ2 and varies from 66% to 72% for the D-optimality criterion
and from 38% to 51% for the EDp-optimality criterion. Because the information matrix
M(ξ, θ) does not depend on θ0, the criteria functions are linear in θ1 and the vector c(θ) is
independent of θ0 and θ1, and so is the e�ciency independent of θ0 and θ1.

An additional question involves the robustness of the locally optimal designs under
variation of the optimality criterion: How e�cient is a locally EDp-optimal design under

16



Table 6.3: Locally D-optimal designs for the log-linear model with design space [0, 150].
The last row presents the e�ciency of the standard design ξS de�ned by (6.6).

θ1 θ2 x1 x2 x3 effD(ξS, θ)
0.0797 0.6 0 2.7285 150 0.6587
0.0797 1 0 4.0507 150 0.6984
0.0797 1.4 0 5.2180 150 0.7237
0.0997 1 0 4.0507 150 0.6986
0.0897 1 0 4.0507 150 0.6986

Table 6.4: Locally EDp-optimal designs for the log-linear model with design space [0, 150].
The last row presents the e�ciency of the standard design ξS de�ned by (6.6).

θ1 θ2 x1 x2 x3 effEDp(ξS, θ)
0.0797 0.6 0 2.7285 150 0.3833
0.0797 1 0 4.0507 150 0.4562
0.0797 1.4 0 5.2180 150 0.5098
0.0997 1 0 4.0507 150 0.4562
0.0897 1 0 4.0507 150 0.4562

the D-optimality criterion and vice versa? In Table 6.5 the e�ciencies are presented for
the EMAX model; for the other two models the values are similar. We observe that the
two designs are relatively robust with respect to the choice of the optimality criterion.
The EDp-e�ciency of the locally D-optimal design is 89% and 95% vice versa. This is
because for the models under consideration the EDp-optimality criterion reduces to the
D1-optimality criterion (a criterion for precise estimation of θ2), i.e.

γ−2ΨD1(ξ) = γ−2 |M̃(ξ, θ)|
|M(ξ, θ)| = γ−2(0, 0, 1)M−(ξ, θ)(0, 0, 1)T = ΨEDp(ξ),

where M̃(ξ, θ) denotes the matrix obtained from M(ξ, θ) by deleting the last row and
column. Consequently, minimizing ΨEDp (or maximizing |M(ξ, θ)|) produces large (small)
values of |M(ξ, θ)| (or ΨEDp(ξ)).

Finally, we investigate the robustness of locally optimal designs under parameter mis-
speci�cation: How does the e�ciency of a design change if the initial parameters estimates
di�er from the true parameter values? In Figure 6.1 a contourplot shows the e�ciency of
a design with parameters θ1 ∈ [0.2, 0.7] and θ2 ∈ [10, 35] under the assumption that the
true parameters are θ1 = 0.467 and θ2 = 25. The underlying model is the EMAX-model,
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Table 6.5: EDp-e�ciency of the locally D-optimal design and D-e�ciency of the locally
EDp-optimal design in the EMAX model with parameters θ1=0.467 and θ2=25.

ξ∗ effD effEDp

ξ∗D 1 0.8889
ξ∗EDp

0.9449 1

0.2 0.3 0.4 0.5 0.6 0.7
Θ1

15

20

25

30

35

Θ2

1

0.9709

0.9873

0.9572

0.9391
0.9287

0.9870

0.2 0.3 0.4 0.5 0.6 0.7
Θ1

15

20

25

30

Θ2

1

0.9607

0.9088

0.8635

0.8091

0.7657

0.9597

Figure 6.1: The e�ciency of the locally optimal designs in the EMAX model under mis-
speci�cation of the initial parameters. Left panel: D-optimality criterion; right panel EDp-
optimality criterion.

but the results for the two other models are similar. Remarkably, the D-e�ciency does not
change substantially and the EDp-e�ciency remains in a relatively wide area greater than
80%. In other words, the locally D- and EDp-optimal designs are robust with respect to
(moderate) misspeci�cations of the unknown parameters.

7 Conclusions
This article focused on the derivation of locally D- and EDp-optimal designs for a class of
common non-linear regression models (exponential, log-linear and three parameter EMAX-
model). These models are often applied in dose �nding studies conducted in the devel-
opment of a new compound, such as a medicial drug or a fertilizer. We derived optimal
designs, which, under a particular model, (i) minimize the asymptotic variance of the EDp

estimate or (ii) maximize the determinant of the inverse of the information matrix. We
showed that for each model the locally D- and EDp-optimal designs are supported at the
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same set of points, while the corresponding weights are di�erent.
We used a real clinical dose �nding study to investigate the properties of these designs. As
expected by the theoretical results, D-optimal designs are e�cient for estimating the EDp

under a given model, and conversely EDp-optimal designs also yield good D-e�ciencies.
We further showed that the derived designs are moderately robust with respect to an initial
misspeci�cation of the model parameters. The sensitivity of the optimality results to the
prespeci�ed dose response model is apparently more severe. If in practice the knowledge
about the underlying model is limited, Bayesian or standardized maximin-optimal de-
signs may be considered, which robustify the locally optimal designs considered here with
respect to model and parameter misspeci�cation, see Dette et al. (2008) for an application.
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