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Abstract

We discuss design issues for pharmacokinetic and pharmacodynamic (PK/PD)
models and provide closed form descriptions for locally optimal designs for esti-
mating individual parameter in two frequently used models. We propose standard-
ized maximin optimal designs that remove dependence on the particular param-
eter of interest by maximizing the minimal efficiency across all parameters. Fur-
ther, robust designs are proposed to overcome the dependence on the parameters
of interest and the nominal values of the parameters. We compare performance
of these optimal designs with designs used in four real studies from the pharma-
cokinetic/pharmacodynamic literature and show that our proposed designs provide
definite advantages over those used in practice.

Keywords: Pharmacokinetic/dynamic experiments, approximate design, D-optimal
design, equivalence theorem, maximin optimal design, nominal value, robust design.
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1 Introduction

Pharmacokinetic-pharmacodynamic modeling is a recognized tool in drug development.

The pharmacokinetic (PK) model describes the relationship between systematic drug

concentration and time. The pharmacodynamic (PD) model describes the relationship

between effect and systematic drug concentration. There is increasing interest to study

pharmacokinetic and pharmacodynamic of a drug by combining the PK and PD models

and estimate model parameters simultaneously.Current research in this area focuses on

model formulation and estimating issues for a PK/PD model and only a couple of papers

discussed design issues for such models. One example is Fang and Hedayat (2008) where

they studied locally D-optimal design for PK/PD models from a theoretical viewpoint.

Others compared several designs strategies via simulation.

A motivation for our paper is that research work in the pharmaceutical literature do not

usually justify or discuss the choice of the study design; see examples in Section 6. In

subsequent analysis, the researchers estimated model parameters and specific functions

of the parameters. The research question is whether the sampling time points employed

in the design affected the precision of the estimates and whether one could have used a

more efficient design. Efficiency here could mean requiring fewer time points and/or fewer

subjects for the same precision of the estimates at lower cost.

In this paper we study design issues for two commonly used PK/PD models: the Emax/mono-

and the Emax/effect-compartment models. We construct three types of optimal designs

for these models: locally optimal designs, standardized maximin optimal designs and ro-

bust optimal designs. The latter two types of designs are new and therefore have not

found their way into the pharmaceutical literature. Our aim is to introduce them for

application to PK/PD models, show how they are constructed using two exemplary mod-

els and compare their performance with designs used in practice. Our results suggest

that the proposed maximin optimal designs and robust designs can serve as compelling

alternatives and complementary designs in drug studies.

When a model has been specified, locally optimal designs are the oldest and the simplest

to determine. They were proposed by Chernoff (1953). When the model is nonlinear,

as it is the case here, these designs require nominal values for the parameters be avail-

able before they can be implemented. Nominal values typically come from pilot studies,

experts’ opinion or related studies from the literature. Locally optimal designs usually

represent an intermediate step in a sequential experimentation and they frequently are

used as tools to build more complex designs, as we exemplify in Section 3. A locally

optimal design can be verified to be optimal using an equivalence theorem. Equivalence

theorems are available when the design criterion is a convex of the information matrix

(Pukelsheim, 1993) and allows one to easily verify a design optimality by plotting the

3



directional derivative of the criterion evaluated at that design over the design interval.

Huang and Wong (1998), and Zhu, Zeng and Wong (2000) gave illustrative examples with

such plots in bio-pharmaceutical studies.

It is well known that locally optimal designs can depend on the nominal values sensi-

tively. This means that small mis-specification in the nominal values can result in very

different optimal designs. Consequently, a locally optimal design constructed under one

set of nominal values can become inefficient when another set of nominal values is as-

sumed. Standardized maximin optimal designs were introduced by Dette (1995) and

Müller and Pázman (1997) as another way to avoid the dependence on the nominal val-

ues. In the simplest case, they maximize the minimum of efficiencies that may arise from

mis-specification of the nominal values. Equivalently, minimax optimal designs seek to

minimize the worst possible loss from mis-specification of the nominal values. In either

the minimax or maximin approach, we need to specify a plausible region for all possible

values of the model parameters so that we may optimize within this region. This is usu-

ally accomplished by specifying a plausible interval for each parameter. Our experience is

that this is easier for practitioners to do than having them specify a single best guess or

a prior distribution for the values of the parameters of interest. Consequently, maximin

or minimax optimal designs can be appealing in practice. However, the construction of

minimax or maximin optimal design for nonlinear models is notoriously difficult and they

defy analytical description, except for the simplest problems. Wong (1992) provided an

overview of theoretical design issues for minimax optimality criteria and Dette (1995)

provided yet another compelling rationale for use of such optimal designs in practice.

The paper is organized as follows. In Section 2 we discuss two popular PK/PD models

and in Section 3, we formally define our two maximin design criteria. The first maximin

approach begins by assigning an index to each model parameter of interest to form an

index set, say J . Ordinarily, J = {1, 2, 3, . . . , k} if all the k model parameters are of

interest. For a given set of nominal values, we define a standardized maximin optimal

design as one that maximizes the minimum of efficiencies over the index set J . In practice,

for a given set of parameters of interest, we first determine the locally optimal design

for estimating each of the parameters in the index set J and the variances of all these

parameter estimators. The standardized maximin optimal design sought is the one that

provides the maximal minimum of efficiencies among a class of all designs on the design

interval.

In many experiments, we may be constrained to use only a fixed maximal number of time

points. This may arise because it is impractical to sample at a new time point or simply

because of budget limits. This means that if we are only allowed s time points, then

we must search within the class of designs with s points. We call the resulting design a

s-point standardized maximin optimal design. Such designs are typically easier to find
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numerically than standardized maximin optimal designs.

The standardized maximin optimal design still depends on the nominal values. One may

extend the above optimization by specifying a plausible interval for each parameter. This

is our second maximin approach and is a clear natural extension of the first. The plausible

region now comprises (i) the set J and (ii) the plausible interval for each parameter.

The resulting optimal design is called a robust design because the design maximizes the

minimum of the set of efficiencies of estimated parameters in the set J and, for each

parameter, over each of its possible values in the plausible interval.

We consider the Emax/mono-compartment model in Section 4 and present locally opti-

mal designs for estimating each parameter in the model, standardized maximin optimal

designs and robust designs. We also report efficiencies of the commonly used locally

D-optimal design relative to our proposed designs. Section 5 presents corresponding op-

timal designs for the Emax/effect-compartmental model. In Section 6, we evaluate the

efficiencies of some designs used in practice relative to the designs proposed in this paper.

Conclusions are offered in Section 7 and technical justifications for our results are given

in the Appendix.

2 PK/PD Models

We consider the common nonlinear regression model given by

yi,j = η(ti,j, θ) + εi,j, i = 1, . . . , n, j = 1, . . . , ni (1)

where yi,j is an observation from the ith subject at time ti,j ∈ [0, T ], errors εi,j are

independent and identically distributed random variable with zero mean and variance

σ2 > 0 and N =
∑

i ni denotes the total sample size. In the present paper we study the

fixed-effect model. Design issues for some nonlinear random-effect models can be found

in Mentre et al. (1997), Dette et al. (2009) among others. The last named authors also

discuss designs for correlated errors.

A PK/PD model is obtained by composing a PK-model and a PD model, that is

η(t, θ) = ηPD(ηPK(t, θPK), θPD) ,

where the vector of model parameters is given by θ = (θPD, θPK). For the PD model

ηPD(C, θPD) the traditional model choice is the Emax model

ηPD(C, θPD) = θPD

0 +
θPD
1 C

θPD
2 + C

where θPD = (θPD
0 , θPD

1 , θPD
2 )T , θPD

0 is the baseline effect (placebo), θPD
1 is the maximal effect

related to the drug, θPD
2 is the plasma concentration producing 50% of the maximal effect,

5



and C is a concentration (Ritschel, 1992). The PD relationship may be described by the

Hill model or the Emax model, see Toutain (2002) among others.

The choice of PK model depends on the particular application at hand. We consider two

widely used models in the present paper.

(1) The first is a mono-exponential model or a single compartment model given by

ηPK(t, θPK) = D1e
− t θPK

1 ,

where θPK
1 is the plasma clearance (or the total elimination rate).

(2) The second model is an effect compartment model given by

ηPK(t, θPK) = D1
θPK
2

θPK
2 − θPK

1

(
e− t θPK

1 − e− t θPK
2

)
,

where D1 is the administered dose in the unit of drug amount per unit body weight,

θPK
2 is the absorbtion rate and θPK

1 is the total elimination rate. The actual dose for

each subject is D1V where V is a volume/mass of the subject/animal.

More details for these models an other choices for a PK model can be found in El-Masri

and Portier (1998), Schaedeli el at. (2002), for example, and in textbooks such as Shargel

and Yu (1985) and, Rowland and Tozer (1995).

3 Optimality criterion

Throughout we assume that a fixed total sample size N for the study is pre-determined

either from cost or other physical constraints. The design problem is how to obtain the N

observations in some optimal fashion. Following convention, we formulate our optimality

criterion in terms of the Fisher information matrix. The Fisher information matrix for

the general nonlinear model defined in (1) is

M(ξN , θ) =
n∑

i=1

ni∑
j=1

f(ti,j)f
T (ti,j), f(t) = f(t, θ) =

∂η(t, θ)

∂θ
,

and the inverse of M(ξN) is asymptotically proportional to the covariance matrix of the

nonlinear least squares estimator of the parameter θ. An optimal design minimizes or

maximizes a statistically meaningful function of the information matrix.

To simplify the design problem, we work with approximate designs that are essentially

discrete probability measures defined on the design interval. We denote such a de-

sign with r design points t1, t2, . . . , tr and corresponding weights w1, w2, . . . , wr by ξ =
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{t1, t2, . . . , tr; w1, w2, . . . , wr}. The Fisher information matrix of design ξ is defined by

M(ξ, θ) =
r∑

j=1

wjf(tj)f
T (tj),

see Pukelsheim (1993). In practice, for a given statistical model and a design criterion, the

design problem consists of selecting the optimal number r of design points, the optimal

time points t1, . . . , tr and corresponding optimal proportions w1, . . . , wr of observations

to allocate at these points. The exact design is implemented by assigning approximately

Nwi observations at ti, i = 1, . . . , r subject to Nw1 + · · · + Nwr = N . Approximate

designs are much easier to find and study than exact optimal designs and they perform

just as well as exact optimal designs when we have moderate sample sizes (Pukelsheim

and Rieder, 1992). More importantly, when the design criterion is convex over the space

of information matrices, computer algorithms are available for generating many types of

optimal approximate designs for many types of problems.

In what is to follow, we focus on design criteria that estimate selected parameters in the

model. For estimating a single parameter, we want to construct a design that accurately

estimates cT θ, where c = ej and ej is the zero vector with the ith entry equals to one.

Such an optimal design minimizes the variance of the estimated jth parameter among all

designs on the design interval. When all the parameters of interest are represented in the

set J , we want a design that maximizes the minimal efficiency for estimating the selected

parameters. This means that we want to find a design that maximizes

min
j∈J

{effj(ξ)}, (2)

where

effj(ξ) = effj(ξ, θ) =
eT

j M−(ξ∗ej
, θ)ej

eT
j M−(ξ, θ)ej

; j ∈ J ,

and ξ∗ej
is the locally ej-optimal design for estimating the jth parameter, i.e. ξ∗ej

is the

design that minimizes

eT
j M−(ξ, θ)ej (3)

over all designs ξ such that ej ∈ range M(ξ, θ). Note that we have used M−(ξ, θ) to denote

a generalized inverse of the Fisher information matrix because the information matrix of

an optimal design may be singular.

Following Dette (1995) or Müller and Pázman (1998) we call a design maximizing the

criterion (2) standardized maximin optimal design. Clearly, these optimal designs still

depend on the model parameters that we try to estimate and so they are locally opti-

mal. To remove the dependence on the nominal values, we introduce a concept of robust

optimality criterion and define a robust design as the design that maximizes

min
j∈J

min
θ∈Ω

{effj(ξ, θ)} (4)
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for a user-selected plausible set Ω for the unknown model parameters. In practice, the set

Ω is a cartesian product of the intervals specified for each parameter.

We compute standardized maximin and robust designs, first, by maximizing the optimality

criterion within the class of all k-point designs on the given design space. Here k is

typically the minimal number of points required for estimation of all parameters in the

model. We employ the Nelder-Mead algorithm in the matlab package for optimization.

After the optimal k-point standardized maximin design is found, we consider the class

of all k + 1-points designs and find an optimal design within this class and repeat the

procedure. At each iteration, we increase the number of points by one, until no reduction

in the criterion value is observed. The value of k for our two models was k = 4.

4 Emax/mono-compartment model

4.1 Locally optimal design

The Emax/mono-compartment model is given by

η(t, θ) = θ0 +
θ1

θ2/D1eθ3t + 1
(5)

where θ = (θ0, θ1, θ2, θ3)
T and the explanatory variable t varies in the interval [0, T ].

Without loss of generality we put D1 = 1 (this is valid due to substitution θ2/D1 → θ̃2).

A direct calculation shows the gradient of the mean function in model (5) is

f(t) = f(t, θ1, θ2, θ3) =

(
1,

1

θ2eθ3t + 1
,

−θ1e
θ3t

(θ2eθ3t + 1)2
,
−θ1θ2te

θ3t

(θ2eθ3t + 1)2

)T

. (6)

We now construct and study properties of the locally ek-optimal designs. Justifications

for our procedure and claims are provided in the appendix as Lemma 1. The technical

result also tells us how the optimal design changes when the design interval changes.

It can be argued that the components {f1(t), f2(t), f3(t), f4(t)} of the gradient defined

in (6) form a Chebyshev system on the interval [0, T ] and that the left hand side of

equation (8) is proportional to the corresponding Chebyshev polynomial. It follows that

the solution of (8) is unique even though there are 4 equations and 8 variables in the

system of equations; see Karlin and Studden (1966) and the Appendix for more details.

Table 1 displays the locally ek-optimal designs for various parameter combinations of

(θ2, θ3) for the design space [0, T ] = [0, 120], where we have used the same values for the

parameters as Fang and Hedayat (2008) for the sake of comparison. These authors deter-

mined locally D-optimal designs in this context. Note that the locally optimal design for
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Table 1: The locally ek-optimal designs {t∗1, t∗2, t∗3, t∗4; w1, w2, w3, w4} for the Emax/mono-

compartment model (5) with t∗1 = 0, t∗4 = T = 120.

e1-optimal e2-optimal
θ2 θ3 t∗2 t∗3 w1 w2 w3 w4 w1 w2 w3 w4

0.2 0.10 12.117 33.502 0 0 0 1 0.308 0.279 0.192 0.221
0.1 0.10 16.031 38.673 0 0 0 1 0.354 0.226 0.146 0.274
0.4 0.10 9.163 29.157 0 0 0 1 0.264 0.315 0.236 0.185
0.2 0.05 23.335 63.612 0.039 0.086 0.166 0.708 0.291 0.284 0.209 0.216
0.2 0.20 6.060 16.756 0 0 0 1 0.309 0.279 0.191 0.221

e3-optimal e4-optimal
0.2 0.10 12.117 33.502 0.232 0.391 0.268 0.109 0.127 0.270 0.373 0.230
0.1 0.10 16.031 38.673 0.244 0.398 0.256 0.102 0.140 0.284 0.360 0.216
0.4 0.10 9.163 29.157 0.217 0.378 0.283 0.122 0.114 0.255 0.386 0.245
0.2 0.05 23.335 63.612 0.239 0.399 0.261 0.101 0.137 0.286 0.363 0.214
0.2 0.20 6.060 16.756 0.232 0.391 0.268 0.109 0.127 0.270 0.373 0.230

estimating the baseline effect θ0 advises the experimenter to run most of the experiments

under the maximal condition t = T . A heuristic explanation of this observation is given

by the fact that for the Emax/mono-compartment model (5) we have limt→∞ η(t, θ) = θ0.

In other words: the best identification of the baseline effect is obtained for large values of

the explanatory variable.

It might also be of interest to investigate the efficiency of the locally D-optimal designs

derived in Fang and Hedayat (2008) for the estimation of the individual parameters. These

efficiencies are listed in Table 2, and it can be observed that the locally D-optimal designs

minimizing the volume of the ellipsoid of concentration yield rather low efficiencies for

estimating the baseline effect. The efficiencies for estimating the parameters θ2 and θ3 are

approximately 80%, while high efficiencies are only obtained for estimating the maximal

effect related to the drug.

Table 2: The locally D-optimal designs {t∗D1 , t∗D2 , t∗D3 , t∗D4 ; w1, w2, w3, w4} for the

Emax/mono-compartment model (5) and their ek-efficiencies with t∗D1 = 0, t∗D4 = T =

120, wi = 1/4, i = 1, 2, 3, 4.

θ2 θ3 t∗D2 t∗D3 eff1 eff2 eff3 eff4

0.2 0.10 13.479 31.616 0.251 0.951 0.810 0.836
0.1 0.10 17.645 36.667 0.252 0.917 0.799 0.842
0.4 0.10 10.278 27.386 0.251 0.932 0.824 0.827
0.2 0.05 25.860 60.310 0.471 0.957 0.802 0.844
0.2 0.20 6.741 15.812 0.250 0.951 0.810 0.836
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4.2 Standardized maximin optimal and robust design

We now discuss standardized maximin optimal and robust designs. The primary goal of

standardized maximin optimal designs is to provide efficient estimates for several indi-

vidual parameters of interest. The robust designs provide additional level of protection

against mis-specification of the unknown model parameters in a practical way. This is

important because it is well documented in the literature that locally optimal designs

can depend sensitively on the nominal values of the model parameters. Both types of

designs achieve their aims by maximizing over a certain region of plausible values for the

parameters.

Standardized maximin optimal designs are a subset of the class of minimax or maximin

designs and it is well known such optimal designs are notoriously difficult to construct.

Except for the simplest models with a single or two optimality criteria, these optimal de-

signs have to be determined numerically and in a computationally burdensome manner.

Fortunately, the standardized maximin optimal designs for the Emax/mono-compartment

model and Emax/effect-compartment model do not depend on θ0 and θ1. This simplifies

the calculation for standardized maximin optimal designs considerably and the justifica-

tions for our assertion can be deduced from Lemma 1 or Lemma 3 in the appendix.

Table 3 displays standardized maximin optimal designs for selected values of the param-

eters. The first part of the table shows the different designs and efficiencies when the

minimum in the criterion (2) is taken over all parameters, i.e. J = {1, 2, 3, 4}. In this

case the standardized maximin optimal design yields efficiencies between 56% and 85%,

because it is a compromise between two very different types of designs: the locally opti-

mal design for estimating the baseline effect θ0, which puts most of its weight at the right

boundary of the design interval and the locally optimal designs for estimating the remain-

ing parameters θ1, θ2, θ3, which use less observations at the point T . On the other hand,

if estimation of the baseline is not the primary goal, one could use the set J = {2, 3, 4}
in the criterion (2) and the standardized maximin optimal designs are extremely efficient;

see the second part of Table 3. A similar result as Lemma 1 shows that the robust designs

also do not depend on intervals specified for θ0 and θ1. Some robust designs are given

in Table 4. Note that the robust designs have 6 support points and can also be used for

model checking. The right column of Table 4 contains the minimum efficiency, where the

minimum is taken over the set J (of parameters of interest) and the set Ω [see equation

(4)]. Note that this value corresponds to the worst case in J × Ω, and for most values

(j, θ) the efficiencies of the robust design are substantially higher.
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Table 3: Standardized maximin optimal designs {t∗1, t∗2, t∗3, t∗4; w1, w2, w3, w4} for the

Emax/mono-compartment model (5) with t∗1 = 0, t∗4 = T .

criterion (2) with J = {1, 2, 3, 4}
θ2 θ3 t∗2 t∗3 w1 w2 w3 w4 eff1 eff2 eff3 eff4

0.2 0.10 12.916 36.811 0.104 0.179 0.154 0.564 0.567 0.627 0.567 0.610
0.1 0.10 17.001 42.077 0.108 0.183 0.150 0.559 0.564 0.611 0.564 0.607
0.4 0.10 9.797 32.326 0.097 0.173 0.160 0.570 0.572 0.620 0.572 0.616
0.2 0.05 24.552 65.193 0.139 0.242 0.198 0.421 0.715 0.804 0.715 0.793
0.2 0.20 6.462 18.430 0.103 0.178 0.154 0.565 0.565 0.625 0.565 0.609

criterion (2) with J = {2, 3, 4}
θ2 θ3 t∗2 t∗3 w1 w2 w3 w4 eff2 eff3 eff4

0.2 0.10 12.167 33.275 0.220 0.298 0.287 0.195 0.933 0.933 0.933
0.1 0.10 16.025 38.701 0.260 0.282 0.247 0.212 0.904 0.904 0.904
0.4 0.10 9.261 28.892 0.183 0.303 0.320 0.194 0.945 0.945 0.945
0.2 0.05 23.491 63.381 0.215 0.319 0.287 0.179 0.944 0.944 0.944
0.2 0.20 6.085 16.643 0.220 0.298 0.287 0.195 0.933 0.933 0.933

Table 4: Robust standardized maximin optimal designs for the Emax/mono-compartment

model (5). The set Ω in the criterion (4) is given by Ω = {θ : 0.1 ≤ θ2 ≤ 0.4, 0.05 ≤ θ3 ≤
0.2}. The right part of the table shows the minimal efficiencies calculated over the set Ω

and the class J of parameters included in the optimality criterion.

5-point robust design for criterion (4) with J = {1, 2, 3, 4}
t∗1 t∗2 t∗3 t∗4 t∗5
0 8.355 20.986 51.299 120
w1 w2 w3 w4 w5 min eff

0.164 0.221 0.254 0.114 0.247 0.265
6-point robust design for criterion (4) with J = {1, 2, 3, 4}

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 7.178 16.665 30.966 60.097 120
w1 w2 w3 w4 w5 w6 min eff

0.121 0.139 0.157 0.125 0.108 0.349 0.386
5-point robust design for criterion (4) with J = {2, 3, 4}
t∗1 t∗2 t∗3 t∗4 t∗5
0 8.622 20.521 50.073 120
w1 w2 w3 w4 w5 min eff

0.176 0.252 0.308 0.140 0.124 0.280
6-point robust design for criterion (4) with J = {2, 3, 4}
t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 7.041 16.702 30.803 57.507 120
w1 w2 w3 w4 w5 w6 min eff

0.171 0.166 0.198 0.166 0.176 0.123 0.472
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5 Emax/effect-compartment model

5.1 Locally optimal design

The Emax/effect-compartment model is given by

η(t, θ) = θ0 +
θ1(e

−θ3t − e−θ4t)

θ2(1− θ3/θ4)/D1 + (e−θ3t − e−θ4t)
(7)

where θ = (θ0, θ1, θ2, θ3, θ4)
T . Without loss of generality we put D1 = 1. The corresponding

vector of regression function for model (7) is given by

f(t) = f(t, θ1, θ2, θ3, θ4) =

(
1,

(e−θ3t−e−θ4t)θ4

θ2(θ4−θ3)+θ4(e−θ3t−e−θ4t)
,
−θ1(e−θ3t−e−θ4t)θ4(θ4−θ3)

(θ2(θ4−θ3)+θ4(e−θ3t−e−θ4t))
2 ,

− θ1θ4θ2(te−θ3t(θ4−θ3)−e−θ3t+e−θ4t)
(θ2(θ4−θ3)+θ4(e−θ3t−e−θ4t))

2 ,
θ1θ2(θ4te−θ4t(θ4−θ3)−e−θ3tθ3+e−θ4tθ3)

(θ2(θ4−θ3)+θ4(e−θ3t−e−θ4t))
2

)T

.

The construction of the ek-optimal designs for this model is similar to the method for

the Emax/mono-compartment model and is fully described in the appendix as Lemma

3. This result greatly simplifies the numerical construction of such optimal designs and

enables us to study properties of the designs. The last part of Lemma 3 tells us how the

optimal design changes when the design interval changes.

Table 5 presents locally optimal designs for selected nominal values of the parameters. We

observe that in all cases these designs are supported at only four points although model

(7) has five parameters. Because locally D-optimal designs are commonly used, we also

listed them and their efficiencies for estimating the individual parameters in Table 6. We

observe that the locally D-optimal designs yield rather low efficiencies for estimating the

individual parameters.

5.2 Standardized maximin optimal and robust design

We pointed out earlier on that standardized maximin designs are not dependent on the

nominal values of θ0 and θ1 and this observation is important because we can now find

these designs using numerical methods substantially faster. Standardized maximin op-

timal designs for the Emax/effect-compartment model for selected values of the model

parameters are given in Table 7 and some robust designs are presented in Table 8. Simi-

larly to the situation discussed in Section 4, the inclusion of baseline effect in the optimal-

ity criterion (2), i.e. 1 ∈ J , reduces the minimal efficiency of the standardized maximin

optimal design; see the first part of Table 7. On the other hand, if J = {2, 3, 4, 5} the

standardized maximin optimal designs have remarkable good efficiencies for estimating
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Table 5: Locally ek-optimal designs {t∗1, t∗2, t∗3, t∗4, t∗5; w1, w2, w3, w4, w5} for the Emax/effect-

compartment model (7) with t∗1 = 0.

e2-optimal
θ2 θ3 θ4 t∗2 t∗3 t∗4 t∗5 w1 w2 w3 w4 w5

0.2 0.10 0.5 0.085 2.331 14.223 35.800 0 0.325 0.407 0.175 0.093
0.1 0.10 0.5 0.025 2.032 17.512 40.465 0 0.364 0.432 0.136 0.068
0.4 0.10 0.5 0.219 2.717 12.415 33.462 0 0.297 0.366 0.202 0.134
0.2 0.05 0.5 0.073 2.436 23.994 68.486 0 0.309 0.399 0.191 0.101
0.2 0.20 0.5 0.096 2.108 9.706 20.553 0 0.344 0.402 0.156 0.097
0.2 0.10 0.3 0.155 3.641 17.801 39.117 0 0.339 0.404 0.161 0.096
0.2 0.10 0.9 0.042 1.347 12.160 34.386 0 0.311 0.401 0.189 0.099

e3-optimal
0.2 0.10 0.5 0.149 2.583 14.947 37.915 0 0.185 0.269 0.315 0.231
0.1 0.10 0.5 0.073 2.302 18.210 42.029 0 0.152 0.277 0.348 0.223
0.4 0.10 0.5 0.255 2.816 12.742 34.733 0 0.219 0.259 0.281 0.241
0.2 0.05 0.5 0.131 2.694 25.382 71.467 0 0.161 0.278 0.339 0.221
0.2 0.20 0.5 0.128 2.205 9.862 21.037 0 0.210 0.238 0.290 0.262
0.2 0.10 0.3 0.234 3.898 18.284 40.642 0 0.205 0.248 0.295 0.252
0.2 0.10 0.9 0.075 1.488 12.883 35.993 0 0.164 0.279 0.336 0.221

e4-optimal
0.2 0.10 0.5 0.031 2.152 13.867 35.059 0 0.255 0.150 0.245 0.350
0.1 0.10 0.5 0.013 1.962 17.409 40.303 0 0.231 0.162 0.268 0.338
0.4 0.10 0.5 0.059 2.319 11.536 30.803 0 0.279 0.137 0.221 0.363
0.2 0.05 0.5 0.032 2.272 23.304 67.423 0 0.250 0.161 0.250 0.339
0.2 0.20 0.5 0.016 1.878 9.470 20.017 0 0.261 0.126 0.238 0.374
0.2 0.10 0.3 0.035 3.315 17.383 38.173 0 0.261 0.131 0.239 0.369
0.2 0.10 0.9 0.018 1.252 11.806 33.815 0 0.250 0.161 0.250 0.339

e5-optimal
0.2 0.10 0.5 1.449 13.019 34.306 0.114 0 0.296 0.386 0.204
0.1 0.10 0.5 0.989 16.327 39.611 0.105 0 0.309 0.395 0.191
0.4 0.10 0.5 1.897 11.013 30.156 0.130 0 0.271 0.370 0.229
0.2 0.05 0.5 1.589 21.174 65.989 0.103 0 0.318 0.397 0.182
0.2 0.20 0.5 1.129 9.042 19.731 0.154 0 0.241 0.346 0.259
0.2 0.10 0.3 2.025 16.528 37.522 0.140 0 0.257 0.360 0.243
0.2 0.10 0.9 0.883 10.766 33.101 0.103 0 0.318 0.397 0.182

the parameters θ1, θ2, θ3, θ4 in the Emax/effect-compartment model (see the second part

of Table 7).

Table 8 shows the robust designs and their corresponding minimal efficiencies calculated

over the set J × Ω. Because the set Ω used in the optimality criterion is rather large,

the resulting minimal efficiencies are small. However, it should be noted again that these

values represent the minimal efficiencies over the set Ω, and at most points in this set,

the efficiencies are substantially larger. On the other hand, the minimal efficiency of the
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Table 6: The locally D-optimal designs {t∗D1 , t∗D2 , t∗D3 , t∗D4 , t∗D5 ; w1, w2, w3, w4, w5} for the

Emax/effect-compartment model (7) and their ek-efficiencies with t∗D5 = T = 120, wi =

1/5, i = 1, 2, 3, 4, 5.

θ2 θ3 θ4 t∗D1 t∗D2 t∗D3 t∗D4 eff1 eff2 eff3 eff4 eff5

0.2 0.10 0.5 0.280 2.947 14.694 32.650 0.200 0.622 0.643 0.704 0.605
0.1 0.10 0.5 0.165 2.812 18.655 37.883 0.201 0.613 0.635 0.701 0.616
0.4 0.10 0.5 0.428 3.083 12.105 28.503 0.200 0.615 0.648 0.696 0.611
0.2 0.05 0.5 0.293 3.347 25.578 62.389 0.200 0.638 0.619 0.691 0.576
0.2 0.20 0.5 0.264 2.560 10.020 19.031 0.200 0.616 0.681 0.678 0.645
0.2 0.10 0.3 0.448 4.464 18.368 36.119 0.200 0.617 0.673 0.689 0.637
0.2 0.10 0.9 0.162 1.819 12.875 31.270 0.200 0.635 0.621 0.695 0.578

robust design is close to the minimal efficiency of standardized maximin optimal design

if the set Ω is small.

Table 7: Standardized maximin optimal designs {t∗1, t∗2, t∗3, t∗4, t∗5; w1, w2, w3, w4, w5} for the

Emax/effect-compartment model (7) with t∗1 = 0.

criterion (2) with J = {1, 2, 3, 4, 5}
θ2 θ3 θ4 t∗2 t∗3 t∗4 t∗5 w1 w2 w3 w4 w5 eff1 eff2 eff3 eff4 eff5

0.2 0.10 0.5 0.215 2.49 13.88 37.6 0.490 0.083 0.171 0.156 0.100 0.490 0.490 0.493 0.493 0.490
0.1 0.10 0.5 0.133 2.28 18.12 43.6 0.505 0.065 0.150 0.166 0.114 0.505 0.505 0.505 0.531 0.505
0.4 0.10 0.5 0.310 2.77 11.91 33.5 0.478 0.104 0.162 0.147 0.108 0.478 0.478 0.509 0.489 0.478
0.2 0.05 0.5 0.224 2.53 23.96 73.2 0.497 0.072 0.160 0.166 0.105 0.498 0.498 0.498 0.512 0.498
0.2 0.20 0.5 0.190 2.36 9.60 21.2 0.485 0.100 0.168 0.133 0.115 0.486 0.486 0.506 0.501 0.486
0.2 0.10 0.3 0.336 4.03 17.46 40.6 0.486 0.094 0.171 0.140 0.110 0.487 0.487 0.501 0.498 0.487
0.2 0.10 0.9 0.131 1.46 12.03 36.8 0.496 0.070 0.162 0.170 0.102 0.496 0.496 0.496 0.502 0.496

criterion (2) with J = {2, 3, 4, 5}
θ2 θ3 θ4 t∗2 t∗3 t∗4 t∗5 w1 w2 w3 w4 w5 eff2 eff3 eff4 eff5

0.2 0.10 0.5 0.174 2.22 13.02 34.0 0.106 0.153 0.301 0.276 0.164 0.752 0.764 0.752 0.752
0.1 0.10 0.5 0.094 1.92 16.17 39.9 0.149 0.124 0.315 0.267 0.145 0.754 0.760 0.754 0.754
0.4 0.10 0.5 0.306 2.59 11.21 30.0 0.103 0.171 0.273 0.266 0.186 0.733 0.776 0.733 0.733
0.2 0.05 0.5 0.175 2.28 21.34 65.7 0.105 0.142 0.304 0.288 0.161 0.773 0.773 0.773 0.773
0.2 0.20 0.5 0.183 2.11 9.08 19.6 0.129 0.162 0.277 0.244 0.187 0.718 0.804 0.718 0.718
0.2 0.10 0.3 0.304 3.60 16.57 37.3 0.121 0.161 0.283 0.256 0.180 0.727 0.791 0.727 0.727
0.2 0.10 0.9 0.096 1.26 10.96 32.8 0.104 0.142 0.306 0.288 0.160 0.771 0.771 0.771 0.771

6 Comparison with designs used in practice

We now compare performance of the robust designs and commonly used designs when we

analyze data with the Emax/mono-compartment model or the Emax/effect-compartment

model. We provide three comparisons for the former model and one for the latter model.
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Table 8: Robust standardized maximin optimal designs for the Emax/effect-compartment-

model (7). The set Ω in the criterion (4) is given by Ω = {θ : 0.1 ≤ θ2 ≤ 0.4, 0.05 ≤ θ3 ≤
0.2, 0.3 ≤ θ4 ≤ 0.9}. The numbers on the extreme right of the table show the minimal

efficiency calculated over the set of Ω and the set J of parameters included in the criterion.

6-point robust design for criterion (4) with J = {1, 2, 3, 4, 5}
t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 0.372 2.663 9.700 21.765 52.112
w1 w2 w3 w4 w5 w6 min eff

0.206 0.080 0.178 0.159 0.253 0.125 0.206
7-point robust design for criterion (4) with J = {1, 2, 3, 4, 5}

t∗1 t∗2 t∗3 t∗4 t∗5 t∗6 t∗7
0 0.210 1.863 5.619 13.690 26.264 55.369
w1 w2 w3 w4 w5 w6 w7 min eff

0.262 0.098 0.126 0.110 0.107 0.173 0.125 0.262
6-point robust design for criterion (4) with J = {2, 3, 4, 5}
t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
0 0.308 2.557 9.581 21.245 51.054
w1 w2 w3 w4 w5 w6 min eff

0.086 0.104 0.191 0.187 0.267 0.165 0.218
7-point robust design for criterion (4) with J = {2, 3, 4, 5}
t∗1 t∗2 t∗3 t∗4 t∗5 t∗6 t∗7
0 0.181 1.809 5.904 13.990 26.894 53.788
w1 w2 w3 w4 w5 w6 w7 min eff

0.106 0.115 0.145 0.129 0.118 0.212 0.175 0.296

The purpose of the comparisons is to evaluate the suitability of robust designs for practical

applications in terms of efficiencies gained or loss because of its added flexibility. The first

three studies uses the Emax/mono-compartment model for data analysis and the fourth

uses the Emax/effect-compartment model.

(1) Rosarior et al. (2006) used a viral dynamics model to compare the effectiveness of

in vivo viral inhibition of several doses of maraviroc and used a modeling approach

to support design considerations for a monotherapy using different dose regimens

of maraviroc. We focus on the sampling time scheme on the last day of treatment

where plasma samples were taken at 0, 1, 2, 4, 6, 8, 24, 48, 72 and 120h postdose

for PK measurements. Subjects were asymptomatic HIV-1 infected patients.

(2) Agoram et al. (2006) describe an experiment where PK samples were collected at

0, 0.5, 6, 24, 48, 72, 96, and 120 hours for studying chemotherapy-induced anemia.

Subjects were given Darbepoetin Alfa and the aim was to develop and evaluate a

population pharmacokinetic-pharmacodynamic model.

15



(3) Danhof et al. (1998) used an integrated pharmacokinetic-pharmacodynamic ap-

proach to optimize R-apomorphine delivery in patients with idiopathic Parkinsons

disease. The sampling scheme was to use equidistant time points in the study.

(4) Magee et al. (2002) conducted a study to assess lymphocyte responsiveness to

immunosuppressive therapy using a three-component complex model to characterize

effects of prednisoloone. Blood samples were drawn at 0, 1, 2, 4, 6, 8, 12, 18, 24

and 32 hours from healthy volunteers who received a single total body weight-based

oral dose of prednisone.

There was no justification for the sampling scheme used in each study. For easy reference,

we denote these designs respectively by

ξ1 = {0, 1, 2, 4, 6, 8, 24, 48, 72, 120},
ξ2 = {0, 0.5, 6, 24, 48, 72, 96, 120},
ξ3 = {0, 12, 24, 48, 60, 72, 84, 96, 108, 120},
ξ4 = {0, 1, 2, 4, 6, 8, 12, 18, 24, 32}.

We now evaluate the efficiencies of these designs relative to the robust designs. For space

considerations, we compare the first three designs using the Emax/mono-compartment

model and the fourth design using the Emax/effect-compartment model. The ratio

Ck(ξr, ξj, θ) =
eT

k M−(ξj, θ)ek

eT
k M−(ξr, θ)ek

measures the efficiency of the design ξj for estimating the kth parameter in the model

relative to the robust design ξr in the jth study.

Figures 1 – 4 display the function Ck(ξr, ξj, θ) for various values of the parameter θ. We

observe that the optimal designs and each quantity Ck does not depend on the parameters

θ0 and θ1. The value Ck can be interpreted as follows. If θ is the “true” set of parameter

values for the model, the robust design has Ck times smaller variance for the estimated

kth parameter compared with the design ξj. This implies if Ck > 1 the robust design

ξr should be preferred; otherwise if Ck < 1, the design ξj has a smaller variance for the

estimated kth parameter and so it is preferred. In most cases the robust designs yield

substantially smaller variances than the designs ξ1, ξ2, ξ3 and ξ4 used in practice.

Figures 1 and 2 show that the variances of the estimated parameters θ0, θ1, θ2, θ3 obtained

from the robust design are on average 1.2-1.4 times smaller than the corresponding vari-

ances for the design ξ1, ξ2. In terms of confidence interval, the lengths of the confidence

intervals for these parameters are shorter using our proposed robust designs. The im-

provement can be substantial. For example, if the “true” parameters are θ2 = θ3 = 0.3,
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the variance for the baseline effect θ0 in the Emax/mono-compartment model obtained

by the robust design ξr, is approximately 1.7 times smaller than the variance obtained

from the commonly used design ξ1 (see the upper left panel in Figure 1).

In Figure 3 we show the corresponding results for the design ξ3, which has more points

than the robust design ξr and the designs ξ1 and ξ2. The variances for the estimated

parameters θ1, θ2, θ3 obtained from the robust design are in average 1.6 times smaller

than the corresponding variances obtained from the design ξ3. On the other hand, the

commonly used design ξ3 yields up to 0.75 times smaller variances for the parameter θ0

in the Emax/mono-compartment model if θ3 > 0.08 and up to 1.6 times larger variances

if θ3 < 0.08.

Finally, some results for the Emax/effect-compartment model are shown in Figure 4. Here

the variances for the estimated parameters θ1, θ2, θ3 obtained from the robust design are

in average 1.8 times smaller than the corresponding variances obtained from the design

ξ4. On the other hand, the variance for the parameter θ5, obtained by the commonly used

design ξ4, are up to 0.6 times smaller than the variance obtained by the robust design if

θ3 > 0.08. However, if θ3 < 0.08, the advantages of the robust design ξr are obvious. The

variances obtained from this design are up to 4 times smaller than those obtained from

the commonly used design.

7 Conclusion

Optimal designs for estimating individual parameters or some of the parameters in a linear

model are relatively straightforward, but the task is much harder for nonlinear models.

We provided new and fairly closed analytical description for locally optimal designs for

estimating individual model parameter in two popular models in PK/PD studies – the

Emax/mono-compartment and Emax/effect-compartment model. These designs do not

require iterative methods for construction and so this facilitates studying their properties.

These designs were then used to construct designs that are efficient for estimating several

parameters of the model and at the same time, they are less sensitive to the nominal

values of the model parameters.
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Figure 1: Comparisons of the design ξ1 = {0, 1, 2, 4, 6, 8, 24, 48, 72, 120} and the robust de-

sign ξr = {0, 7.2, 16.7, 31.0, 60.1, 120; 0.121, 0.139, 0.157, 0.125, 0.108, 0.349} for estimating

the parameters in the Emax/mono-compartment model (5).
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Figure 2: Comparisons of the design ξ2 = {0, 0.5, 6, 24, 48, 72, 96, 120} and the robust de-

sign ξr = {0, 7.2, 16.7, 31.0, 60.1, 120; 0.121, 0.139, 0.157, 0.125, 0.108, 0.349} for estimating

the parameters in the Emax/mono-compartment model (5).
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Figure 3: Comparisons of the design ξ3 = {0, 12, 24, 48, 60, 72, 84, 96, 108, 120} and the

robust design ξr = {0, 7.2, 16.7, 31.0, 60.1, 120; 0.121, 0.139, 0.157, 0.125, 0.108, 0.349} for

estimating the parameters in the Emax/mono-compartment model (5).
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Figure 4: Comparisons of the design ξ4 = {0, 1, 2, 4, 6, 8, 12, 18, 24, 32} and the robust

design ξr = {0, 0.18, 1.81, 5.9, 14.0, 26.9, 53.8; 0.106, 0.115, 0.145, 0.129, 0.118, 0.212, 0.175}
for estimating the parameters in the Emax/effect-compartment model (7) with θ4 = 0.5.
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We proposed standardized maximin and robust optimal designs for the Emax/mono-

compartment and Emax/effect-compartment models and showed that robust designs of-

fered certain advantages over commonly used designs. First, they do not require only a

single best guess for the model parameters, which can sometimes be difficult to accommo-

date in practice. This happens, for example, when there are conflicting opinions for the

single best guess. Our approach allows robust designs to incorporate additional flexibility

by allowing the researcher to specify an interval containing plausible values for each model

parameter of interest. Second, we showed robust designs can outperform these commonly

used designs frequently and sometimes substantially in terms of providing more precise

estimates for the parameters of interest.

A limitation of our approach is that we assume errors are independently distributed. This

assumption may not be applicable for some studies because responses within patient over

a short period of time are likely to be correlated. However, we view our proposed design

strategy as an intermediary step to building more efficient and practical designs. Our

future research will be to improve the current work by constructing optimal designs that

account for the correlated responses over time.
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8 Appendix: Justifications

We first state an auxiliary result for finding locally optimal designs for the two models.

The Lemma is a reformulation of the equivalence theorem for ek-optimality and very

useful in the present context. Details are in Pukelsheim (1993).

Lemma A. Let f(t) = (f1(t), . . . , fm(t))T and assume the components are linearly inde-

pendent continuous functions on the interval [0, T ]. The design ξ = {t1, t2, . . . , tr; w1, w2, . . . , wr}
is ek-optimal for estimating the kth parameter if and only if there exists a vector q ∈ Rm,

such that qk 6= 0 and the generalized polynomial qT f(t) satisfies the following conditions

(i) qT f(ti) = (−1)i i = 1, . . . , m

(ii) |qT f(t)| ≤ 1 for all d ∈ [0, T ]

(iii) Fw = νek
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for some ν > 0, where F = ((−1)jfi(tj))
m,r
i,j=1 and wT = (w1, . . . , wr). Moreover, eT

k M−(ξ)ek =

1/ν2.

Here are 2 technical lemmas for the construction of the proposed optimal designs.

Lemma 1. For the Emax/mono-compartment model (5)

1. The locally ek-optimal designs do not depend on the parameters θ0 and θ1.

2. The locally e3- and e4-optimal designs are supported at four well defined points, say

t∗1, t
∗
2, t

∗
3, t

∗
4, which are determined as the unique solution of the system of nonlinear

equations

q1 + q2
1

θ2eθ3ti + 1
+ q3

−θ1e
θ3ti

(θ2eθ3ti + 1)2
+ q4

−θ1θ2te
θ3ti

(θ2eθ3ti + 1)2
= (−1)i−1, i = 1, . . . , 4 (8)

with respect to scalar numbers q1, . . . , q4 and points t1, . . . , t4 subject to the condition

|(q1, . . . , q4)
T f(t)| ≤ 1 for all t ∈ [0, T ]. The corresponding weights are given by

w∗ =
F−1ek

1T F−1ek

,

where 1 = (1, . . . , 1)T , F = (f(t∗1),−f(t∗2), f(t∗3),−f(t∗4)). Moreover, t∗1 = 0 and

t∗4 = T .

3. Let tj(θ2, θ3, T ) be a point with corresponding weight wj(θ2, θ3, T ) of the locally ek-

optimal design on the interval [0, T ]. Then for any γ > 0 we have

γtj(θ2, θ3, T ) = tj(θ2, θ3/γ, γT ), wj(θ2, θ3, T ) = wj(θ2, θ3/γ, γT ).

8.1 Proof of Lemma 1.

Since f(t, θ) = diag(1, 1, θ1, θ1)f̃(t, θ2, θ3) where

f̃(t, θ2, θ3) =

(
1,

1

θ2eθ3t + 1
,

−eθ3t

(θ2eθ3t + 1)2
,
−θ2te

θ3t

(θ2eθ3t + 1)2

)T

,

the optimality criterion (3) is a product of two functions. The first function depends on

the parameter θ1 but not on the design, while the second function depends on the design

but does not depend on the parameters θ0 and θ1. Consequently, we obtain the first

statement of the Lemma.

By standard arguments it can be shown that functions {f1(t), f2(t), f3(t), f4(t)} form a

Chebyshev system on the interval [0, T ] and each of the systems {f1(t), f2(t), f3(t)} and

{f1(t), f2(t), f4(t)} is also a Chebyshev system. Therefore, it follows that the optimal
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designs for estimating the parameters θ3 and θ4 are supported at the Chebyshev points

defined by equation (8) [see e.g. Karlin and Studden (1966)]. The weights can then

determined using results of Pukelsheim and Torsney (1991) and this proves the second

part of the Lemma. The third part of the lemma follows from the fact that

f(γt, θ1, θ2, θ3) = diag(1, 1, 1, γ)f(t, θ1, θ2, γθ3).

¤
Lemma 2. For the Emax/effect-compartment model (7)

1. The locally ek-optimal designs do not depend on the parameters θ0 and θ1.

2. The locally e1-optimal design is a one-point design supported at the point 0.

3. Let tj(θ2, θ3, T ) be a point with corresponding weight wj(θ2, θ3, θ4, T ) of a locally

ek-optimal design on the interval [0, T ]. Then for any γ > 0 we have

wj(θ2, θ3, θ4, T ) = wj(θ2, θ3/γ, θ4/γ, γT ), γtj(θ2, θ3, θ4, T ) = tj(θ2, θ3/γ, θ4/γ, γT ).

8.2 Proof of Lemma 2.

The first part is obtained using similar arguments in the proof of Lemma 1. The second

part directly follows from Lemma A with q = e1. The third part follows from the identity

f(γt, θ1, θ2, θ3, θ4) = f(t, θ1, θ2, γθ3, γθ4).

¤
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