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Abstract

We consider the problem of designing experiments for the estimation of the mean

in the location model in the presence of correlated observations. For a fixed correlation

structure approximate optimal designs are determined, and it is demonstrated that un-

der the model assumptions made by Bickel and Herzberg (1979) for the determination

of asymptotic optimal design, the designs derived in this paper converge weakly the

measures obtained by these authors.
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We also compare the approach of Sacks and Ylvisaker (1966, 1968) and Bickel and

Herzberg (1979) and point out some inconsistencies of the latter. Finally, this approach

is modified such that it has similar properties as the model considered by Sacks and

Ylvisaker, and it is demonstrated that the resulting design problems are related to

(logarithmic) potential theory.

AMS Subject Classification: 62K05

Keywords and Phrases: Optimal design, correlated observation, positive definite functions,

logarithmic potentials

1 Introduction

Consider the common linear regression model

y(t) = θ1f1(t) + . . . + θpfp(t) + ε(t) , (1.1)

where f1(t), . . . , fp(t) are given functions, ε(t) denotes a random error process, θ1, . . . , θp are

unknown parameters and t is the explanatory variable. We assume that N observations,

say y1, . . . , yN , can be taken at experimental conditions −T ≤ t1 ≤ . . . ≤ tN ≤ T to

estimate the parameters in the linear regression model (1.1). If an appropriate estimate θ̂

has been chosen, the quality of the statistical analysis can be further improved by choosing

an appropriate design for the experiment. In particular an optimal design minimizes a

functional of the variance-covariance matrix of the estimate, where the functional should

reflect certain aspects of the goal of the experiment. In contrast to the case of uncorrelated

errors, where numerous results and a rather complete theory are available [see for example the

monographs of Fedorov (1972), Silvey (1980), Pázman (1986), Atkinson and Donev (1992)

or Pukelsheim (1993)], the construction of optimal designs for dependent observations is

intrinsically more difficult. On the other hand this problem is of particular interest, because

in many applications the variable t in the regression model (1.1) represents the time and

all observations correspond to one subject. This deficit can be explained by the fact that
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optimal experimental designs for regression models with correlated observations have an

extremely complicated structure and are very difficult to find even in simple cases. Some

exact optimal design problems were considered in Näther (1985, Ch. 4), see also Pázman

and Müller (2001), Müller and Pázman (2003).

Because explicit solutions of the optimal design problem for correlated observations are rarely

available several authors have proposed to determine optimal designs based on asymptotic

arguments [see for example Sacks and Ylvisaker (1966, 1968), Bickel and Herzberg (1979)

and Näther (1985)]. Roughly speaking there exist two proposals to embed the optimal

design problem for regression models with correlated observations in an asymptotic optimal

design problem. The first one is due to Sacks and Ylvisaker (1966, 1968), who assumed

that the covariance structure of the error process ε(t) is fixed and that the number of design

points tends to infinity. Alternatively Bickel and Herzberg (1979) and Bickel, Herzberg and

Schilling (1981) considered a different model, where the correlation function depends on a

number of observations.

The present paper has several purposes. After a brief introduction into the terminology, we

present in Section 3 several new exact optimal approximate designs in the location model,

which extend the results of Boltze and Näther (1982) and Näther (1985). We also demon-

strate how these results are related to the designs derived in Bickel and Herzberg (1979)

studying the designs derived in this paper under the assumptions made by these authors. In

Section 4 we compare the method of Bickel and Herzberg (1979) with the approach suggested

by Sacks and Ylvisaker (1966, 1968), who considered a model, where the covariance matrix

of the (weighted) least squares estimate does not converge to 0 with an increasing sample

size. In particular, we show an inconsistency of the model proposed by Bickel and Herzberg

(1979): the covariance between observations at consecutive time points remains constant

although for an increasing sample size the explanatory variables are arbitrary close. As a

consequence, the covariance of the ordinary least squares estimate based on the optimal de-

sign vanishes asymptotically, but it does not converge to the covariance matrix corresponding
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to the uncorrelated case, despite the fact that the correlation structure approximates the

case of uncorrelated observations. Finally, a new approach for constructing optimal designs

for correlated data is introduced, which could be interpretated as compromise between the

methods proposed by Sacks and Ylvisaker (1966, 1968) and Bickel and Herzberg (1979). On

the one hand, this method is based on a similar argument as used by the latter authors; on

the other hand, for an increasing sample size the correlation structure does not approximate

the uncorrelated case.

2 Preliminaries

Consider the linear regression model (1.1), where ε(t) is a stationary process with

Eε(t) = 0, Eε(t)ε(s) = σ2K(t, s), (2.1)

Following Bickel and Herzberg (1979) we assume that ε(t) = ε(1)(t) + ε(2)(t), where ε(1)(t)

denotes a stationary process with correlation function ρ(t) and ε(2)(t) is white noise. Conse-

quently, we obtain

K(t, s) = γρ(t− s) + (1− γ)δt,s , (2.2)

where δ denotes Kronecker’s symbol. If N observations, say y = (y1, . . . , yN)T are available

at experimental conditions t1, . . . , tN and some knowledge of the correlation function is avail-

able, the vector of parameters can be estimated by the weighted least squares method, i.e.

θ̂ = (XT Σ−1X)−1XT Σ−1y with XT = (fi(tj))
j=1,...,N
i=1,...,p , and the variance-covariance matrix of

this estimate is given by

D(θ̂) = σ2(XT Σ−1X)−1 (2.3)

with Σ = (K(ti, tj))i,j, i, j = 1, . . . , N . If the the correlation structure of the process ε(t) is

not known, one usually uses the ordinary least squares estimate θ̃ = (XT X)−1XT y, which

has covariance matrix

D(θ̃) = σ2(XT X)−1XT ΣX(XT X)−1. (2.4)
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An experimental design ξN = {t1, . . . , tN} is a vector of N points in the interval [−T, T ],

which defines the time points or experimental conditions where observations are taken. Op-

timal designs for weighted or ordinary least squares estimation minimize a functional of

the covariance matrix of the weighted or ordinary least squares estimate, respectively, and

numerous optimality criteria have been proposed in the literature to discriminate between

competing designs. Because even in simple models exact optimal designs are difficult to

find, most authors usually use asymptotic arguments to determine efficient designs for the

estimation of the model parameters.

Following Näther (1985a, Chapter 4) we assume that the design points {t1, . . . , tN} are

generated by the quantiles of a distribution function, that is

tiN = a ((i− 1)/(N − 1)) , i = 1, . . . , N, (2.5)

where the function

a : [0, 1] → [−T, T ] (2.6)

is the inverse of a distribution function. If ξN denotes a design with N points and corre-

sponding quantile function a, the covariance matrix of the estimate θ̃ = θ̃ξN
given in (2.4)

can be written as

D(θ̃) = σ2D(ξ) , (2.7)

where ξ = ξN ,

D(ξ) = W−1(ξ)R(ξ)W−1(ξ) , W (ξ) =

∫
f(u)fT (u)ξ(du),

R(ξ) =

∫ ∫
K(u, v)f(u)fT (v)ξ(du)ξ(dv).

The matrix D(ξ) is called the covariance matrix of the design ξ and can be defined for

any distribution on the interval [−T, T ]. Following Kiefer (1974) we call any probability
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measures on [−T, T ] an approximate designs and an (approximate) optimal design minimizes

a functional of the covariance matrix D(ξ) over a class of all approximate designs.

Note that in general the function D(ξ) is not convex (with respect to the Loewner ordering)

on the space of all approximate designs. On the other hand in the location model

y(t) = θ + ε(t) (2.8)

we have

D(ξ) =

∫ ∫
K(u, v)ξ(du)ξ(dv), (2.9)

which obviously defines a convex function on the set of probability measures on the interval

[−T, T ]. For this reason most of the literature discussing optimal design problems for least

squares estimation in the presences of correlated observations considers the location model,

which corresponds to the estimation of the mean of a stationary process [see for example

Boltze and Näther (1982), Näther (1985a, 1985b)]. Throughout this paper we will follow

this line an restrict our attention to the model (2.8). The following lemma states that in this

case the optimality criterion (2.9) is convex or even strictly convex [see also Näther, 1985a,

Th 3.4.1)].

We shall use the following definition. A function f : R → R is positive definite if for any

real numbers x1, . . . , xn the n× n matrix H with entries hij = f(xi − xj) is a non-negative

definite matrix; correspondingly, the function f is strictly positive definite if the matrix H

is positive definite for all x1 < . . . < xn.

Lemma 1 The functional D(·) defined in (2.9) is convex. Moreover, if K(·, ·) is strictly

positive definite, then D(·) is strictly convex. That is,

D(αξ2 + (1− α)ξ1) < αD(ξ2) + (1− α)D(ξ1)

for all 0 < α < 1 and any two measures ξ1 and ξ2 on [−T, T ] such that ξ2− ξ1 is a non-zero

measure.
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Proof. We have

D(αξ2 + (1− α)ξ1) =

∫ ∫
K(u, v)[αξ2(du) + (1− α)ξ1(du)][αξ2(dv) + (1− α)ξ1(dv)]

= (1− α)2

∫ ∫
K(u, v)ξ1(du)ξ1(dv) + α2

∫ ∫
K(u, v)ξ2(du)ξ2(dv)

+2α(1− α)

∫ ∫
K(u, v)ξ1(du)ξ2(dv)

= α2D(ξ2) + (1− α)2D(ξ1) + 2α(1− α)

∫ ∫
K(u, v)ξ1(du)ξ2(dv)

= αD(ξ2) + (1− α)D(ξ1)− α(1− α)A ,

where

A =

∫ ∫
K(u, v)[ξ2(du)ξ2(dv) + ξ1(du)ξ1(dv)− 2ξ2(du)ξ1(dv)] =

∫ ∫
K(u, v)ζ(du)ζ(dv)

and ζ(du) = ξ2(du) − ξ1(du). Since the correlation function K(u, v) is positive definite, in

view of the Bochner-Khintchine theorem [Feller (1966), Ch. 19.2], we have A ≥ 0. If K(·, ·)
is strictly positive definite, we have A > 0 whenever ζ is not trivial. Therefore the functional

D(·) is strictly convex. ¤

In the following lemma we calculate the directional derivative of the functional D(·).

Lemma 2 If ξα = (1− α)ξ + αξ0 and D(·) is defined in (2.9), we have

∂

∂α
D(ξα)

∣∣∣∣
α=0

= 2

(∫
φ(v, ξ)ξ0(dv)−D(ξ)

)

where

φ(t, ξ) =

∫
K(t, u)ξ(du).

Proof. Taking into account the proof of Lemma 1, it follows

∂

∂α
D(ξα)

∣∣∣∣
α=0

=
∂

∂α

(
(1− α)2D(ξ) + α2D(ξ0) + 2α(1− α)

∫ ∫
K(u, v)ξ(du)ξ0(dv)

)∣∣∣∣
α=0

= 2

(∫
φ(v, ξ)ξ0(dv)−D(ξ)

)
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Using Lemmas 1 and 2 we obtain the following equivalence theorem, which characterizes the

optimality of a design for the location model.

Theorem 1

(i) A design ξ∗ minimizes the functional D(·) defined in (2.9) if and only if

min
t∈[−T,T ]

φ(t, ξ∗) ≥ D(ξ∗). (2.10)

(ii) In particular, a design ξ∗ is optimal if the function φ(·, ξ∗) is constant, where the

constant is given by D(ξ∗).

Proof. (i) Using the convexity of the functional D(·) and Lemma 2, the necessary and

sufficient condition for an extremum yields

min
ξ0

∫
φ(v, ξ∗)ξ0(dv) ≥ D(ξ∗).

Note that

∫
φ(v, ξ∗)ζ(dv) = min

ξ0

∫
φ(v, ξ∗)ξ0(dv)

for any design ζ satisfying

supp(ζ) ⊂ {t : φ(t, ξ∗) = min
v

φ(v, ξ∗)}.

Consequently, the necessary and sufficient condition of extremum becomes mint φ(t, ξ∗) ≥
D(ξ∗), which is exactly (2.10). The assertion (ii) obviously follows from (i). ¤

The final result of this section shows that an optimal design does not depend on the value γ

in the correlation function (2.2). For this reason we assume without loss of generality γ = 1

throughout the remaining discussion in this paper.
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Lemma 3 The optimal design ξ∗ does not depend on the constant γ ∈ (0, 1] and D(ξ∗) =

1− γ + γD(ξ∗), where

D(ξ) =

∫ ∫
ρ(t− s)ξ(du)ξ(dv) .

Proof. For the covariance function (2.2) we have

D(ξ) =

∫ ∫
K(u, v)ξ(du)ξ(dv) =

∫ ∫
(γρ(t− s) + (1− γ)δt,s)ξ(du)ξ(dv)

= 1− γ + γ

∫ ∫
ρ(t− s)ξ(du)ξ(dv) = 1− γ + γD(ξ).

¤

3 Optimal designs for particular correlation functions

In this section, we consider several types of correlation functions defined in (2.1) and (2.2).

Without loss of generality, we assume that T = 1 so that the design space is given by the

interval [−T, T ] = [−1, 1]. We begin our investigations with the exponential correlation

function, that is

ρ(t) = e−λ|t| , (3.1)

where λ > 0 is fixed.

Theorem 2 For the location model (2.8) with correlation function (3.1) the optimal design

ξ∗ is a mixture of the continuous uniform measure on the interval [−1, 1] and a two-point

discrete measure supported on {−1, 1}. In other words: ξ∗ has the density

p∗(u) = w∗
(

1

2
δ1(u) +

1

2
δ−1(u)

)
+ (1− w∗)

1

2
1[−1,1](u), (3.2)

where w∗ = 1/(1+λ), δx(·) denotes the Dirac measure concentrated at the point x and 1A(·)
is the indicator function of a set A. Moreover, the function φ(t, ξ∗) defined in (2.10) is

constant and D(ξ∗) = 1/(1 + λ).
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Proof. Direct calculations show that

φ(t, ξ∗) = w∗ 1

2

(
e−λ(1−t) + e−λ(1+t)

)
+

1

2
(1− w∗)

2− e−λ(1−t) − e−λ(1+t)

λ
=

1

1 + λ
,

which is a constant function. The statement of the theorem now follows from Theorem 1,

part (ii). ¤

Note that the result of Theorem 2 is known in literature [see Boltze and Näther (1982)] but

presented here for the sake of completeness. Next we consider the triangular correlation

function defined by

ρ(t) = max{0, 1− λ|t|}. (3.3)

In the particular case λ = 1 the optimal design can be obtained from Example 1 in Näther

(1985b). The following Theorem extends these results and specifies the optimal designs for

all λ > 0.

Theorem 3 Consider the location model (2.8) with correlation function (3.3).

(a) For λ ∈ N = {1, 2, . . .}, the optimal design is a discrete uniform measure supported

at 1 + 2λ equidistant points, tj = j/λ − 1, j = 0, 1, . . . , 2λ. For this design, D(ξ∗) =

1/(1 + 2λ).

(b) For any λ > 0, the optimal design ξ∗ is a discrete symmetric measure supported at 2n

points ±t1,±t2, . . . ,±tn with weights w1, . . . , wn at t1, . . . , tn, where n = d2λe,

(w1, . . . , wn) =
1

n(n + 1)
(dn/2e, . . . , 3, n− 2, 2, n− 1, 1, n).

Here t1, . . . , tn denote the ordered quantities |u1|, . . . , |un|, where uj = −1 + j/λ, j =

1, . . . , n− 1, un = 1. Moreover,

D(ξ∗) =
2λ

n(n + 1)
.
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Proof. For a proof of the statement in part (a) we fix a value t ∈ [−1, 1]. If t = tj for some

j ∈ {0, 1, . . . , 2λ} then ρ(t− tj) = 1 and ρ(t− ti) = 0 for all i 6= j. If t ∈ (tj−1, tj) for some

j ∈ {1, . . . , 2λ} then

ρ(t− tj−1) + ρ(t− tj) = 1− λ(t− ((j − 1)/λ− 1)) + 1− λ((j/λ− 1)− t) = 1

and ρ(t− ti) = 0 for all i > j and all i < j − 1. Therefore, for any t ∈ [−1, 1] we obtain

2λ∑
j=0

max{0, 1− λ|t− (j/λ− 1)|} = 1 .

This implies

φ(t, ξ∗) =

∫
ρ(t− v)ξ∗(dv) =

1

1 + 2λ

2λ∑
j=0

max{0, 1− λ|t− (j/λ− 1)|} = 1/(1 + 2λ)

and

D(ξ∗) =

∫ ∫
ρ(u− v)ξ∗(du)ξ∗(dv) = 1/(1 + 2λ).

The statement now follows from Theorem 2.

For a proof of part (b) we evaluate the function φ(t, ξ∗) on the different intervals (tj−1, tj).

First we consider the case where t > tn−1, for which we have

φ(t, ξ∗) =
n∑

i=1

wiρ(t− ti) +
n∑

i=1

wiρ(t + ti) =
n∑

i=n−2

wiρ(t− ti) =

=
1

n(n + 1)
((n− 1)λ(t− 1 + 1/λ) + λ(t + 1− (n− 1)/λ) + nλ(1− t))

=
2λ

n(n + 1)
.

If tn−2 < t < tn−1 it follows

φ(t, ξ∗) = wn−3ρ(t− tn−3) + wn−2ρ(t− tn−2) + . . . + wnρ(t− tn) =

=
1

n(n + 1)

(
2λ(t + 1− (n− 2)/λ)

+(n− 1)λ(t− 1 + 1/λ) + λ(−1 + (n− 1)/λ− t) + nλ(1− t))
)

=
2λ

n(n + 1)
,

11



while for tn−3 < t < tn−2 we have

φ(t, ξ∗) = wn−4ρ(t− tn−4) + wn−3ρ(t− tn−3) + . . . + wn−1ρ(t− tn−1) =

=
1

n(n + 1)

(
(n− 2)λ(t− 1 + 2/λ) + 2λ(t + 1− (n− 2)/λ)

+(n− 1)λ(−1 + 1/λ− t) + λ(−1 + (n− 1)/λ− t))
)

=
2λ

n(n + 1)
.

Other cases are considered in similar way and the assertion follows from Theorem 2. ¤

0 1 2 3 4 5
−1

−0.5

0

0.5

1

λ

Figure 1: Support points of optimal designs in the location model with triangular correlation

function (3.3) for different values of λ. The corresponding weights are given in Theorem 3.

Example 1 For the triangular correlation function (3.3) we obtain the following optimal

designs for the location model (2.8)

• If λ ∈ [0, 0.5], the optimal design is supported at the points −1 and 1 with weights

1/2.

12



• If λ ∈ [0.5, 1], the optimal design is given by

−1 1−1/λ 1/λ−1 1

1/3 1/6 1/6 1/3


 .

• If λ ∈ [1, 1.5], the optimal design is given by

−1 1−2/λ −1+1/λ 1−1/λ −1+2/λ 1

1/4 1/12 1/6 1/6 1/12 1/4


 .

• If λ ∈ [1.5, 2], the optimal design is given by

 −1 1−3/λ 1−2/λ −1+1/λ 1−1/λ −1+2/λ −1+3/λ 1

0.4/2 0.1/2 0.2/2 0.3/2 0.3/2 0.2/2 0.1/2 0.4/2


 .

For larger values of λ the support points of the optimal designs for the location model (2.8)

with correlation function (3.3) are displayed in Figure 1

Remark 1 It might be of interest to investigate the relation between the designs derived in

Theorem 1 and 2 and the designs obtained by the approach proposed by Bickel and Herzberg

(1979). These authors suggested a correlation structure depending on the sample size N ,

that is

ρN(t) = ρ(Nt) , (3.4)

where the function ρ(t) satisfies
∫ |ρ(t)|dt < ∞ (note that this condition corresponds to

the case of short range dependence). It can be shown that for the location model (2.8) the

optimality criterion proposed by Bickel and Herzberg (1979) is asymptotically (as N →∞)

given by

DBH(ξ) = 1 + 2

∫
Q(1/p(t))p(t)dt , (3.5)

where 1/p denotes the density of the quantile function a, the function Q is defined by

Q(u) =
∞∑

j=1

ρ(ju)
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[see Theorem 2.1 in Bickel and Herzberg (1979)]. For this criterion the asymptotic optimal

design ξ∗ on the interval [−1, 1] is uniquely determined and has absolute continuous density

i.e. p∗(t) = 1
2
1[−1,1](t).

We now investigate the asymptotic behavior of the design determined in Theorem 1 for the

correlation function ρN(t) = e−λN |t|. In this case the optimal design ξ∗N is given by (3.2) with

w∗ = w∗
N =

1

Nλ + 1
.

Because w∗ → 0 as N → ∞ it follows that the sequence of the optimal designs (ξ∗N)N∈N

converges weakly to the optimal design p∗ obtained by the approach of Bickel and Herzberg

(1979). Similarly, if ρN(t) = max{0, 1−Nλ|t|}, it follows from Theorem 4 that the sequence

of optimal design (ξ∗N)N∈N converges weakly to the design p∗.

For most correlation functions the optimal designs have to be determined numerically even

in the case of the location model. We conclude this section presenting several new numerical

results in this context. The next correlation function considered in our study corresponds

to the Gaussian distribution and is defined by

ρ(t) = e−λt2 . (3.6)

Some optimal designs for the location model with correlation function (3.6) are given in Table

1 for selected values of λ ∈ [0, 8.5]. The support point of the optimal design for larger values

of λ are depicted in Figure 2. From our numerical results we conclude for the correlation

structure (3.6) that the optimal design for the location model is a discrete measure, where

the number of support points increases with λ. It is also worthwhile to mention that for

this model the function φ(t, ξ∗) defined in (2.10) is not constant, and as a consequence, the

second part of Theorem 1 is not applicable.

We conclude this section with two examples, where the optimal design is a mixture between a

discrete and an absolute continuous measure with a non constant density. The first example

14



Table 1: Optimal designs for the location model with correlation function (3.6) for different

values of λ.

λ t1 t2 t3 w1 w2 w3

0.05 ±1 0.5

0.6 ±1 0.5

0.7 ±1 0 0.4685 0.063

1.9 ±1 0 0.354 0.292

2.0 ±1 ±0.104 0.348 0.152

3.7 ±1 ±0.309 0.282 0.218

3.9 ±1 ±0.336 0 0.277 0.202 0.043

6.0 ±1 ±0.463 0 0.237 0.179 0.169

6.1 ±1 ±0.469 ±0.058 0.235 0.176 0.089

8.5 ±1 ±0.553 ±0.178 0.207 0.154 0.139

0 5 10 15
−1

−0.5

0

0.5

1

λ

Figure 2: Support points of the optimal design for the location model with correlation function

(3.6) for different values of λ.

is obtained for the correlation function

ρ(t) =
1√

1 + λ|t| , (3.7)
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where λ > 0. In this case we obtain by an extensive numerical study that the optimal design

ξ∗ is given by

pξ∗(u) = w∗
(

1

2
δ1(u) +

1

2
δ−1(u)

)
+ (1− w∗)p∗(u), (3.8)

where w∗ ∈ [0, 1] denotes a weight and p∗(u) is a density which depends on λ. For the

selected values the optimal weights and corresponding densities are displayed in Table 3 and

the left part of Figure 3, respectively. It is also worthwhile to mention that in this case the

function φ∗(t, ξ∗) defined in (2.10) is constant.

Table 2: The weight of the optimal design (3.8) in the location model with correlation function

(3.7) for different values of λ.

λ 0.2 1 2 4 10

w∗ 0.796 0.516 0.392 0.283 0.173

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ=0.2

λ=1

λ=2

λ=4

λ=10

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3 λ=0.1

λ=1

λ=4

Figure 3: The density p∗ of the optimal design (3.8) for the location model for different values

of λ > 0. Left part: correlation structure (3.7); right part: correlation structure (3.9).

The last example considers the correlation function

ρ(t) =
1

1 + λ|t|0.5
, (3.9)
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for which our numerical results show that the optimal designs for the location model with

this correlation structure are also of the form (3.8), where the optimal weight w∗ and the

optimal density are displayed in Table 3 and the right part of Figure 3, respectively.

Table 3: The weight of the optimal design (3.8) in the location model with correlation function

(3.9) for different values of λ.

λ 0.1 0.5 1 2 4

w∗ 0.201 0.151 0.118 0.082 0.056

4 A new approach to the design experiments for cor-

related observations

In this Section we briefly describe and compare several aspects of the approach Sacks and

Ylvisaker (1966, 1968) and Bickel and Herzberg and Herzberg (1979) in order to develop

an alternative method for the construction of optimal designs for dependent data. In the

method proposed by Sacks and Ylvisaker (1966, 1968) the design space is fixed, the number

of design points in this set converges to infinity and the weighted least squares estimate θ̂ is

investigated. As a consequence, the corresponding asymptotic optimal designs depend only

on the behavior of the correlation function in a neighborhood of the point 0 and the variance

of the (weighted) least squares θ̂ does not converge to 0 as N →∞.

In contrast to Sacks and Ylvisaker (1966, 1968), Bickel and Herzberg (1979) considered the

ordinary least squares estimate, say θ̃, and assumed that the correlation function depends

on N according to ρN(t) = ρ(Nt), see (3.4). An alternative interpretation of this model is

that the correlation function is fixed but the design interval expands proportionally to the

number of observation points. In this model the correlation between two consecutive time

points ti and ti+1 is essentially constant, i.e. ρN(ti+1− ti) ≈ ρ(a′(ti)), and the variance of the
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ordinary least squares estimate converges to 0 with a rate depending on the function ρ. We

illustrate this effect in the following example.

Example 2 Consider the function ρ(t) = e−λ|t| and assume that γ = 1 in the correlation

function (2.2). The variance of the ordinary least squares estimate obtained from the optimal

design ξ∗ provided by Theorem 2 is given by

D(θ̃) = σ2D(ξ∗) =
σ2

1 + λ
.

The variance of the weighted least squares estimate for the uniform design (which is an

asymptotically optimal design for this estimator) is exactly the same: D(θ̂) = σ2/(1 + λ).

Note that both variances do not converge to 0 as N increases, unlike in the case of i.i.d

observations where the variance is σ2/N . In other words: the presence of correlations be-

tween observations significantly increases the variance of any least squares estimate for the

parameter θ.

On the other hand, it follows from (3.5) and the representation Q(t) = 1/(eλt−1) that in the

model considered by Bickel and Herzberg (1979) the variance of the ordinary least squares

estimate for the parameter θ is asymptotically given by

σ2

N

(
1 +

2

e2λ − 1

)
+ o

(
1

N

)
, N →∞ . (4.1)

Note that the dominating term in this expression differs from the rate σ2/N , although the

correlation function ρN converges to the Dirac measure at the point 0, which corresponds

to the case of uncorrelated observations. For other correlation functions, for example ρ(t) =

max{0, 1− λ|t|}, a similar observation can be made.

Consider now the case of long-range dependence in the error process, i.e. ρα(t) ∼ 1/|t|α as

t → ∞ where α ∈ (0, 1). It was shown by Dette et al. (2009) that the asymptotic optimal

design in the location model based on the approach of Bickel and Herzberg (1979) minimizes

the expression

Dα(ξ) =

∫
Qα(1/p(t))p(t)dt , (4.2)
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where

Qα(u) =
1

Nα

∞∑
j=1

ρα(ju).

For the correlation functions

ρ(1)
α (t) =

1

(1 + |t|2)α/2
, ρ(2)

α (t) =
1

1 + |t|α , ρ(3)
α (t) =

1

(1 + |t|)α
, (4.3)

it can be shown that Qα(t) = 1/((1− α)|t|α), and we obtain for the asymptotic variance of

the ordinary least squares estimate the expression

σ2

Nα

2α

1− α
+ o

(
1

Nα

)
, N →∞ .

Again the dominating term in this variance is different from the variance σ2/N , although

the correlation functions ρ
(j)
N (t) = ρ

(j)
α (Nt) in (4.3) approximate the Dirac measure at the

point 0.

The computation of the asymptotic variances in Example 2 illuminates the following general

theoretical results:

- In the case of correlated observations, the variance of any least squares estimator does

not converge to zero as N →∞.

- In the approach of Bickel and Herzberg (1979) (with ρN(t) = ρ(Nt)), the variance of

any least squares estimates converges to zero as N →∞.

- In the approach of Bickel and Herzberg (1979) the variance of the ordinary least squares

estimate has a different first order asymptotic behavior as the variance of the ordinary

least squares estimate for the case of uncorrelated observations, despite the fact that

the correlation function ρN(t) = ρ(Nt) degenerates as N →∞.

Therefore the natural question arises, if it is possible to develop an alternative concept for

the construction of optimal designs for correlated observations, which on the one hand is

based the normalization ρN(t) = ρ(Nt) used by Bickel and Herzberg (1979) and on the other

hand yields a variance of the ordinary least squares estimate, which is of precise order O(1).
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The answer to this question is affirmative if we allow ourselves to vary the variance of

individual observations as N changes. To be precise let c(t, s) = σ2ρ(t−s) be the covariance

function between observations at points t and s, then assume that not only ρ(·) but also

σ2 may depend on N . In order to be consistent with the model discussed in Bickel and

Herzberg (1979), we consider sequences of correlation functions satisfying

cN(t, s) = σ2
NρN(t− s) , (4.4)

where

ρN(t) = ρ(ant), σ2
N = aα

nτ 2, (4.5)

τ > 0 and 0 < α ≤ 1 is a constant depending on the asymptotic behavior of the function

ρ(t) as t →∞. The choice σ2
N = Nατ 2 yields that the variance of the ordinary least squares

estimate is of order O(1). Note that in the case of short-range dependence one has to use

α = 1. In the case of long-range dependence with ρ(t) = L(t)/tκ, where L(t) is a slowly

varying function at t →∞ (Seneta, 1976) one has to use α = κ in order to obtain a variance

of the ordinary least squares estimate, which is of order O(1).

Example 3 In the situation considered in the first part of Example 1 we have ρN(t) =

e−Nλ|t|, and with the choice σ2
N = Nτ 2 the asymptotic expression in (4.1) changes to

τ 2 2

eλ/2 − 1
+ O

(
1

N

)
, N →∞ .

Lemma 4 Assume that the function ρ(·) has one of the forms (4.3) with 0 < α < 1 and the

covariance function c(t, s) = cN(t, s) is of the form (4.4) and (4.5), where {aN}N∈N denotes

a sequence of positive numbers satisfying aN → ∞ as N → ∞. If the sequence of designs

{ξN}N∈N converges weakly to an asymptotic design ξ, then the variances of the ordinary least

squares estimate θ̃ for the location model is given by

DN(θ̃) =

∫ ∫
cN(u, v)ξN(du)ξN(dv)
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and converges to τ 2Dα(ξ) as N →∞, where

Dα(ξ) =

∫ ∫
rα(u− v)ξ(du)ξ(dv) (4.6)

and rα(t) = 1/|t|α.

Proof. Consider the correlation function ρ(t) = 1/(1 + |t|)α. Then

σ2
NρN(t) = aα

Nτ 2 1

(1 + |aN t|)α
= τ 2 1

(1/aN + |t|)α

which yields the statement of the lemma. The remaining cases in (4.3) can be treated

similarly and the details are omitted for the sake of brevity. ¤

Remark 2

(a) As a particular case of the sequence {aN}N∈N in Lemma 4, we can take aN = Nβ with

any β > 0.

(b) Note that the statement of Lemma 4 can be generalized to cover the more general

situation of functions ρ satisfying the condition ρ(t) = 1/|t|α + o(1/|t|α) as |t| → ∞.

This case covers the specific cases when ρ belongs to the so-called Mittag-Leffler family,

see e.g. Schneider (1996), Barndorff-Nielsen and Leonenko (2005).

(c) Lemma 4 implies that for certain positive functions r with singularity at the point 0

it can be natural to consider

D(ξ) =

∫ 1

−1

∫ 1

−1

r(u− v)ξ(du)ξ(dv) , (4.7)

as an optimality criterion for choosing between competing designs for the location

model. For the particular choice r(t) = 1/|t|α we obtain the optimality criterion (4.6).

A sufficient condition for the strict convexity of the design criterion (4.7) is the positive

definiteness of the function r(·) in the optimality criterion. This means that r(·) should be

a Fourier transform of a non-zero non-negative function h(·), that is

r(t) =

∫ ∞

−∞
e−itsh(s)ds.
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The positive definiteness implies that the function r(·) satisfies

1∫

−1

1∫

−1

r(u− v)ζ(du)ζ(dv) > 0 (4.8)

for any signed measure ζ(·) with ζ([−1, 1]) = 0 and 0 < ζ+([−1, 1]) < ∞ and the convexity of

the optimality criterion follows along the lines in the proof of Lemma 1. The list of examples

of positive definite functions r(·) includes r(t) = 1/|t|α with 0 < α < 1 and r(t) = − log(t2),

|t| ≤ 1, see Saff, Totik (1997).

Remark 3 In Lemma 4, we derived an optimality criterion of the form (4.7) with a de-

generate kernel r at the point 0 using a sequence of kernels σ2
NρN(t) where the sequence

of correlation functions {ρN(t)}N∈N has a specified form. An alternative way of obtaining

a limiting criterion of the form (4.7) with a given positive definite kernel r with r(0) = ∞
is to define an approximating sequence {σ2

NρN(t)}N∈N such that σ2
NρN(t) → r(t) for all t

as N → ∞. For example, we can define functions rN(t) = σ2
NρN(t) as convolutions of the

function r(t) with a density, that is

rN(t) = r ∗KωN
(t) =

∫
r(s)KωN

(t− s)ds,

where K is a symmetric density,

KωN
(x) =

1

ωN

K
( x

ωN

)

and ωN → 0 as N →∞. In this case the functions rN(·) are obviously Fourier transforms.

Our next result gives a sufficient condition for the convexity of the optimality criterion (4.7).

Theorem 4 Let r(·) be a function on R \ {0} with 0 ≤ r(t) < ∞ for all t 6= 0 and

r(0) = +∞. Assume that there exists a monotonously increasing sequence {σ2
NρN(t)}N∈N

of covariance functions such that 0 ≤ σ2
NρN(t) ≤ r(t) for all t and all N = 1, 2, . . . and

r(t) = limN→∞ σ2
NρN(t). Then (4.6) defines a convex functional on the set of all distribu-

tions; that is

D(αξ2 + (1− α)ξ1) ≤ αD(ξ2) + (1− α)D(ξ1) ∀ξ2, ξ1 and 0 < α < 1. (4.9)
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Proof. If D(ξ2) = +∞ or D(ξ1) = +∞ and 0 < α < 1 then D(αξ2 + (1− α)ξ1) = +∞ and

the inequality (4.9) is obvious.

Assume now D(ξ2) < +∞ and D(ξ1) < +∞. Define

BN =

∫ ∫
σ2

NρN(u− v)ξ2(du)ξ1(dv) , B =

∫ ∫
r(u− v)ξ2(du)ξ1(dv) ,

DN(ξ) =

∫ ∫
σ2

NρN(u− v)ξ(du)ξ(dv), AN =

1∫

−1

1∫

−1

σ2
NρN(u− v)ζ(du)ζ(dv) ,

where ζ(·) is the signed measure defined by ζ(du) = ξ2(du)− ξ1(du). Note that

BN =
1

2
[DN(ξ1) +DN(ξ2)− AN ] ≥ 0 (4.10)

and

AN = DN(ξ1) +DN(ξ2)− 2BN , A =

∫ ∫
r(u− v)ζ(du)ζ(dv) = D(ξ2) +D(ξ1)− 2B .

Similarly to the proof of Lemma 1, for all N and all 0 ≤ α ≤ 1 we have

DN(αξ2 + (1− α)ξ1) = αDN(ξ2) + (1− α)DN(ξ1)− α(1− α)AN

and by the Bochner-Khintchine theorem AN ≥ 0. Levi’s monotone convergence theorem

gives for i, j ∈ {1, 2}
∫ ∫

σ2
NρN(u− v)ξi(du)ξj(dv) →

∫ ∫
r(u− v)ξi(du)ξj(dv) as n →∞ . (4.11)

The formulae (4.11) with i = j = 1 and i = j = 2 together with (4.10) and AN ≥ 0 imply

lim sup
n→∞

BN ≤ lim
n→∞

1

2
[DN(ξ1) +DN(ξ2)] < ∞ .

This and (4.11) with i = 1, j = 2 now imply that the sequence BN converges to B (as

N →∞) and B < ∞. Hence A = limN→∞ AN ≥ 0 yielding (4.9). ¤

Theorem 5 Assume that the criterion (4.7) is convex and define φ(t, ξ) =
∫

r(t− u)ξ(du).

The design ξ∗ is optimal if and only if

min
t

φ(t, ξ∗) ≥ D(ξ∗).
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This theorem is a simple generalization of Theorem 1 and the proof is therefore omitted.

Note also that the asymptotic optimal design ξ∗, which minimizes the criterion (4.7), cannot

put positive mass at a single point if r(·) has a singularity at the point 0, because in this

case the functional D(ξ) becomes infinite.

We conclude this section presenting explicit solutions of the optimal design problem for two

specific singular kernels.

Lemma 5

(a) Let r(t) = 1/|t|α with 0 < α < 1. Then the asymptotic optimal design minimizing the

criterion (4.7) is a Beta distribution on the interval [−1, 1] with density

p∗(t) =
2−α

B(1+α
2

, 1+α
2

)
(1 + x)

α−1
2 (1− x)

α−1
2 .

(b) Let r(t) = − ln(t2). Then the asymptotic optimal design minimizing the criterion (4.7)

is the arcsine density on the interval [−1, 1] with density

p∗(t) =
1

π
√

1− x2
.

Proof. A direct computation yields that the integral
∫ 1

−1

1

|t− u|α (1 + u)
α−1

2 (1− u)
α−1

2 du

is constant for all 0 < α < 1. Consequently, the case (a) of the Lemma follows from the

second part of Theorem 5. Finally the part (b) of the Lemma is a well known fact in the

theory of logarithmic potentials, see for example Saff, Totik (1997). ¤
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