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Abstract

We consider the problem of nonparametric quantile regression for twice censored data.

Two new estimates are presented, which are constructed by applying concepts of monotone

rearrangements to estimates of the conditional distribution function. The proposed methods

avoid the problem of crossing quantile curves. Weak uniform consistency and weak conver-

gence is established for both estimates and their finite sample properties are investigated by

means of a simulation study. As a by-product, we obtain a new result regarding the weak

convergence of the Beran estimator for right censored data on the maximal possible domain,

which is of its own interest.
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Keywords and Phrases: quantile regression, crossing quantile curves, censored data, monotone
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1 Introduction

Quantile regression offers great flexibility in assessing covariate effects on event times. The method

was introduced by Koenker and Bassett (1978) as a supplement to least squares methods focussing
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on the estimation of the conditional mean function and since this seminal work it has found

numerous applications in different fields [see Koenker (2005)]. Recently Koenker and Geling

(2001) have proposed quantile regression techniques as an alternative to the classical Cox model

for analyzing survival times. These authors argued that quantile regression methods offer an

interesting alternative, in particular if there is heteroscedasticity in the data or inhomogeneity

in the population, which is a common phenomenon in survival analysis [see Portnoy (2003)].

Unfortunately the “classical” quantile regression techniques cannot be directly extended to survival

analysis, because for the estimation of a quantile one has to estimate the censoring distribution

for each observation. As a consequence rather stringent assumptions are required in censored

regression settings. Early work by Powell (1984, 1986), requires that the censoring times are

always observed. Moreover, even under this rather restrictive and – in many cases – not realistic

assumption the objective function is not convex, which results in some computational problems [see

for example Fitzenberger (1997)]. Even worse, recent research indicates that using the information

contained in the observed censored data actually reduces the estimation accuracy [see Koenker

(2008)].

Because in most survival settings the information regarding the censoring times is incomplete

several authors have tried to address this problem by making restrictive assumptions on the

censoring mechanism. For example, Ying et al. (1995) assumed that the responses and censoring

times are independent, which is stronger than the usual assumption of conditional independence.

Yang (1999) proposed a method for median regression under the assumption of i.i.d. errors, which

is computationally difficult to evaluate and cannot be directly generalized to the heteroscedastic

case. Recently, Portnoy (2003) suggested a recursively re-weighted quantile regression estimate

under the assumption that the censoring times and responses are independent conditionally on the

predictor. This estimate adopts the principle of self consistency for the Kaplan-Meier statistic [see

Efron (1967)] and can be considered as a direct generalization of this classical estimate in survival

analysis. Peng and Huang (2008) pointed out that the large sample properties of this recursively

defined estimate are still not completely understood and proposed an alternative approach, which

is based on martingale estimating equations. In particular, they proved consistency and asymptotic

normality of their estimate.

While all of the cited literature considers the classical linear quantile regression model with right

censoring, less results are available for quantile regression in a nonparametric context. Some

results on nonparametric quantile regression when no censoring is present can be found in Chaud-

huri (1991) and Yu and Jones (1997, 1998). Chernozhukov et al. (2006) and Dette and Volgushev
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(2008) pointed out that many of the commonly proposed parametric or nonparametric estimates

lead to possibly crossing quantile curves and modified some of these estimates to avoid this prob-

lem. Results regarding the estimation of the conditional distribution function from right censored

data can be found in Dabrowska (1987, 1989) or Li and Doss (1995). The estimation of condi-

tional quantile functions in the same setting is briefly stressed in Dabrowska (1987) and further

elaborated in Dabrowska (1992a), while El Ghouch and Van Keilegom (2008) proposed a quantile

regression procedure for right censored and dependent data. On the other hand, the problem of

nonparametric quantile regression for censored data where the observations can be censored from

either left or right does not seem to have been considered in the literature.

This gap can partially be explained by the difficulties arising in the estimation of the conditional

distribution function with two-sided censored data. The problem of estimating the (unconditional)

distribution function for data that may be censored from above and below has been considered

by several authors. For an early reference see Turnbull (1974). More recent references are Chang

and Yang (1987); Chang (1990); Gu and Zhang (1993) and Patilea and Rolin (2006). On the

other hand- to their best knowledge- the authors are not aware of literature on nonparametric

conditional quantile regression for left and right censored data when the censoring is not always

observed and only the conditional independence of censoring and lifetime variables is assumed.

In the present paper we consider the problem of nonparametric quantile regression for twice

censored data. We consider a censoring mechanism introduced by Patilea and Rolin (2006) and

propose an estimate of the conditional distribution function in several steps. On the basis of this

estimate and the preliminary statistics which are used for its definition, we construct two quantile

regression estimates using the concept of simultaneous inversion and isotonization [see Dette et al.

(2005)] and monotone rearrangements [see Dette et al. (2006), Chernozhukov et al. (2006) or

Anevski and Fougères (2007) among others]. In Section 2 we introduce the model and the two

estimates, while Section 3 contains our main results. In particular, we prove uniform consistency

and weak convergence of the estimates of the conditional distribution function and its quantile

function. As a by-product we obtain a new result on the weak convergence of the Beran estimator

on the maximal possible interval, which is of independent interest. In Section 4 we illustrate the

finite sample properties of the proposed estimates by means of a simulation study. Finally, all

proofs and technical details are deferred to an Appendix.
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2 Model and estimates

We consider independent identically distributed random vectors (Ti, Li, Ri, Xi), i = 1, . . . , n, where

Ti are the variables of interest, Li and Ri are left and right censoring variables, respectively, and

Xi denote the covariates. We assume that the distributions of the random variables Li, Ri and Ti

depend on Xi and denote by FL(t|x) := P (L ≤ t|X = x) the conditional distribution function of L

given X = x. The conditional distribution functions FR(.|x) and FT (.|x) are defined analogously.

Additionally, we assume that the random variables Ti, Li, Ri are almost surely nonnegative and

independent conditionally on the covariate Xi. Our aim is to estimate the conditional quantile

function F−1
T (.|x). However, due to the censoring, we can only observe the triples (Yi, Xi, δi) where

Yi = max(min(Ti, Ri), Li) and the indicator variables δi are defined by

δi :=


0 , Li < Ti ≤ Ri

1 , Li < Ri < Ti

2 , Ti ≤ Li < Ri or Ri ≤ Li.

(2.1)

An unconditional version of this censoring mechanism was introduced by Patilea and Rolin (2006),

and some applications of this model can also be found in the corresponding paper. Roughly

speaking, the construction of an estimate for the conditional quantile function of T can be ac-

complished in three steps. First, we define the variables Si := min(Ti, Ri) and consider the model

Yi = max(Si, Li), which is a classical right censoring model. In this model we estimate the con-

ditional distribution FL(.|x) of L. In a second step, we use this information to reconstruct the

conditional distribution of T [see Section 2.1]. Finally, the concept of simultaneous isotonization

and inversion [see Dette et al. (2005)] and the monotone rearrangements, which was recently in-

troduced by Dette et al. (2006) in the context of monotone estimation of a regression function,

are used to obtain two estimates of the conditional quantile function [see Section 2.2].

2.1 Estimation of the conditional distribution function

To be more precise, let H denote the conditional distribution of Y . We introduce the notation

Hk(A|x) = P
(
A ∩ {δ = k}|X = x

)
and obtain the decomposition H = H0 + H1 + H2 for the

conditional distribution of Yi. The subdistribution functions Hk (k = 0, 1, 2) can be represented

as follows

H0(dt|x) = FL(t− |x)(1− FR(t− |x))FT (dt|x)(2.2)
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H1(dt|x) = FL(t− |x)(1− FT (t|x))FR(dt|x)(2.3)

H2(dt|x) = {1− (1− FT (t|x))(1− FR(t|x))}FL(dt|x) = FS(t|x)FL(dt|x).(2.4)

Note that the conditional (sub-)distribution functions Hk and H can easily be estimated from the

observed data by

Hk,n(t|x) :=
n∑
i=1

Wi(x)I{Yi≤t,δi=k}, Hn(t|x) :=
n∑
i=1

Wi(x)I{Yi≤t},(2.5)

where the quantities Wi(x) denote local weights depending on the covariates X1, ..., Xn, which will

be specified below. We will use the representations (2.2) - (2.4) to obtain an expression for FT in

terms of the functions H,Hk and then replace the distribution functions H,Hk by their empirical

counterparts Hn, Hk,n, respectively. We begin with the reconstruction of FL. First note that

M−
2 (dt|x) :=

H2(dt|x)

H(t|x)
=
FS(t|x)FL(dt|x)

FL(t|x)FS(t|x)
=
FL(dt|x)

FL(t|x)
(2.6)

is the predictable reverse hazard measure corresponding to FL and hence we can reconstruct FL

using the product-limit representation

FL(t|x) =
∏
(t,∞]

(1−M−
2 (ds|x))(2.7)

[see e.g. Patilea and Rolin (2006)]. Now having a representation for the conditional distribution

function FL we can define in a second step

Λ−T (dt|x) :=
H0(dt|x)

FL(t− |x)−H(t− |x)
=

H0(dt|x)

FL(t− |x)(1− FS(t− |x))
(2.8)

= =
H0(dt|x)

FL(t− |x)(1− FR(t− |x))(1− FT (t− |x))

=
FL(t− |x)(1− FR(t− |x))FT (dt|x)

FL(t− |x)(1− FR(t− |x))(1− FT (t− |x))
=

FT (dt|x)

1− FT (t− |x)
,

which yields an expression for the predictable hazard measure of FT . Finally, FT can be recon-

structed by using the product-limit representation

1− FT (t|x) =
∏
[0,t]

(1− Λ−T (ds|x))(2.9)

[see e.g. Gill and Johansen (1990)]. Note that formula (2.9) yields an explicit representation of the

conditional distribution function FT (.|x) in terms of the quantities H0, H1, H2, H, which can be

estimated from the data [see equation (2.5)]. The estimate of the conditional distribution function

5



is now defined as follows. First, we use the representation (2.7) to obtain an estimate of FL(.|x),

that is

FL,n(t|x) =
∏
(t,∞]

(1−M−
2,n(ds|x)),(2.10)

where

M−
2,n(ds|x) =

H2,n(ds|x)

Hn(s|x)
.(2.11)

Second, after observing (2.8) and (2.9), we define

FT,n(t|x) = 1−
∏
[0,t]

(1− Λ−T,n(ds|x)),(2.12)

where

Λ−T,n(ds|x) =
H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
.(2.13)

In Section 3 we will analyse the asymptotic properties of these estimates, while in the following

Section 2.2 these estimates are used to construct nonparametric and noncrossing quantile curve

estimates.

Remark 2.1 Throughout this paper, we will adopt the convention ′0/0 = 0′. This means that if,

for example, H0,n(dt|x) = 0 and FL,n(t− |x)−Hn(t− |x) = 0, the contribution of

H0,n(dt|x)

FL,n(t− |x)−Hn(t− |x)

in (2.13) will be interpreted as zero.

2.2 Non-crossing quantile estimates by monotone rearrangements

In practice, nonparametric estimators of a conditional distribution function F (.|x) are not neces-

sarily increasing for finite sample sizes [see e.g. Yu, Jones (1998)]. Although this problem often

vanishes asymptotically, it still is of great practical relevance, because in a concrete application it

is not completely obvious how to invert a non-increasing function. Trying to naively invert such

estimators may lead to the well-known problem of quantile crossing [see Koenker (2005) or Yu

and Jones (1998)] which poses some difficulties in the interpretation of the results. In this paper

we will discuss the following two possibilities to deal with this problem
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1. Use a procedure developed by Dette and Volgushev (2008) which is based on a simultaneous

isotononization and inversion of a nonincreasing distribution function. As a by-product this

method yields non-crossing quantile estimates. To be precise, we consider the operator

Ψ :

{
L∞(J)→ L∞(IR)

f 7→
(
y 7→

∫
J
I{f(u)≤y}du

)(2.14)

where L∞(I) denotes the set of bounded, measurable functions on the set I and J denotes

a bounded interval. Note that for a strictly increasing function f this operator yields the

right continuous inverse of f , that is Ψ(f) = f−1 [here and in what follows, f−1 will denote

the generalized inverse, i.e. f−1(t) := sup{s : f(s) ≤ t}]. On the other hand, Ψ(f) is always

isotone, even in the case where f does not have this property. Consequently, if f̂ is a not

necessarily isotone estimate of an isotone function f , the function Ψ(f̂) could be regarded as

an isotone estimate of the function f−1. Therefore, the first idea to construct an estimate of

the conditional quantile function consists in the application of the operator Ψ to the estimate

FT,n defined in (2.12), i.e.

q̂(τ |x) = Ψ(FT,n(.|x))(τ).(2.15)

However, note that formally the mapping Ψ operates on functions defined on bounded

intervals. More care is necessary if the operator has to be applied to a function with an

unbounded support. A detailed discussion and a solution of this problem can be found

in Dette and Volgushev (2008). In the present paper we use different approach which is

a slightly modified version of the ideas from Anevski and Fougères (2007). To be precise

note that estimators of the conditional distribution function F (.|x) [in particular those of

the form (2.5), which will be used later] often are constant outside of the compact interval

J := [j1, j2] = [mini Yi,maxi Yi]. Now the structure of the estimator FT,n(.|x) implies that

FT,n(.|x) will also be constant outside of J . We thus propose to consider the modified

operator Ψ̃J defined as

Ψ̃J :

{
L∞(IR)→ L∞(IR)

f 7→
(
y 7→ j1 +

∫
J
I{f(u)≤y}du

)
.

(2.16)

Consequently the first estimator of the conditional quantile function is given by

q̂(τ |x) = Ψ̃J(FT,n(.|x))(τ).(2.17)

2. Use the concept of increasing rearrangements [see Dette et al. (2006) and Chernozhukov

et al. (2006) for details] to construct an increasing estimate of the conditional distribution
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function, which is then inverted in a second step. More precisely, we define the operator

Φ :

{
L∞(J)→ L∞(IR)

f 7→ (y 7→ (Ψf(.))−1(y))
(2.18)

where Ψ is introduced in (2.14). Note that for a strictly increasing right continuous function

f this operator reproduces f , i.e. Φ(f) = f . On the other hand, if f is not isotone, Φ(f) is

an isotone function and the operator preserves the Lp-norm, i.e.∫
J

|Φ(f(u))|p du =

∫
J

|f(u)|p du.

Moreover, the operator also defines a contraction, i.e.∫
J

|Φ(f1)(u)− Φ(f2)(u)|p du ≤
∫
J

|f1 − f2|2 du ∀ p ≥ 1

[see Hardy et al. (1988) or Lorentz (1953)]. This means if f̂(= f1) is a not necessarily isotone

estimate of the isotone function f(= f2), then the isotonized estimate Φ(f̂) is a better

approximation of the isotone function f than the original estimate f̂ with respect to any

Lp-norm [note that Φ(f) = f because f is assumed to be isotone]. For a general discussion

of monotone rearrangements and the operators (2.14) and (2.18) we refer to Bennett and

Sharpley (1988), while some statistical applications can be found in Dette et al. (2006) and

Chernozhukov et al. (2006).

The idea is now to use rearranged estimators of Hi(.|x) and H(.|x) in the representations

(2.6)-(2.9). For this purpose we need to modify the operator Φ so that it can be applied to

functions of unbounded support. We propose to proceed as follows

• Define the operator Φ̃J indexed by the compact interval J = [j1, j2] as

Φ̃J :

 L∞(IR)→ L∞(IR)

f 7→
(
y 7→ I{y<j1}f(j1−) + (Ψ̃Jf(.))−1(y)I{j1≤y≤j2} + I{y>j2}f(j2)

)(2.19)

• Truncate the estimator Hn(·|x) for values outside of the interval [0, 1], i.e.

H̃n(t|x) := Hn(t|x)I{Hn(t|x)∈[0,1]} + I{Hn(t|x)>1}

[note that in general estimators of the form (2.5) do not necessarily have values in the

interval [0, 1] since the weights Wi(x) might be negative]

• Use the statistic HIP
n (t|x) := Φ̃JY (H̃n(·|x))(t) as estimator for H(t|x).
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• Observe that the estimator HIP
n (t|x) is by construction an increasing step function

which can only jump in the points t = Yi, i.e. it admits the representation

HIP
n (t|x) =

∑
i

W IP
i (x)I{Yi≤t}(2.20)

with weights W IP
i (x) ≥ 0. Based on this statistic, we define estimators HIP

k,n of the

subdistribution functions Hk as follows

HIP
k,n(t|x) =

∑
i

W IP
i (x)I{Yi≤t}I{δi=k}, k = 0, 1, 2(2.21)

In particular, such a definition ensures that HIP (t|x) = HIP
0,n(t|x)+HIP

1,n(t|x)+HIP
2,n(t|x).

So far we have obtained increasing estimators of the quantities H and Hi. The next step in

our construction is to plug these estimates in representation (2.6) to obtain:

M̃−
2,n(dt|x) =

HIP
2,n(dt|x)

HIP
n (t|x)

,(2.22)

which defines an increasing function with jumps of size less or equal to one. This implies

that F̃L,n(t|x) =
∏

(t,∞](1 − M̃
−
2,n(ds|x)) is also increasing. For the rest of the construction,

observe the following Lemma which will be proved at the end of this section.

Lemma 2.2 Assume that Yi 6= Yj for i 6= j. Then the function

Λ̃−T,n(dt|x) :=
HIP

0,n(dt|x)

F̃L,n(t− |x)−HIP
n (t− |x)

(2.23)

is nonnegative, increasing and has jumps of size less or equal to one.

This in turn yields the estimate

F IP
T,n(t|x) = 1−

∏
[0,t]

(1− Λ̃−T,n(ds|x)).(2.24)

In the final step we now simply invert the resulting estimate of the conditional distribu-

tion function F IP
T,n since it is increasing by construction. We denote this estimator of the

conditional quantile function by

q̂IP (t|x) := sup
{
s : F IP

T,n(s|x) ≤ t
}
.(2.25)

In the next section, we will discuss asymptotic properties of the two proposed estimates q̂ and q̂IP

of the conditional quantile curve.
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Remark 2.3 In the classical right censoring case, there is no uniformly good way to define the

Kaplan-Meier estimator beyond the largest uncensored observation [see e.g. Fleming and Harring-

ton (1991), page 105]. Typical approaches include setting it to unity, to the value at the largest

uncensored observation, or to consider it unobservable within certain bounds [for more details,

see the discussion in Fleming and Harrington (1991), page 105 and Anderson et al. (1993), page

260]. When censoring is light, the first of the above mentioned approaches seems to yield the best

results [see Anderson et al. (1993), page 260].

When the data can be censored from either left or right, the situation becomes even more com-

plicated since now we also have to find a reasonable definition below the smallest uncensored

observation. From definitions (2.6)-(2.9) it is easy to see that FT,n equals zero below the small-

est uncensored observation with non-vanishing weight and is constant at the largest uncensored

observation and above. In practice, the latter implies that the estimators q̂(τ |x) and q̂IP (τ |x)

are not defined as soon as supt FT,n(t|x) < τ or supt F
IP
T,n(t|x) < τ , respectively. A simple ad-hoc

solution to this problem is to define the estimator FT,n or F IP
T,n as 1 beyond the last observation

with non-vanishing weight or to locally increase the bandwidth. A detailed investigation of this

problem is postponed to future research.

We conclude this section with the proof of Lemma 2.2.

Proof of Lemma 2.2 In order to see that Λ̃−T,n(dt|x) is increasing, we note that

HIP
n (t− |x) =

∏
[t,∞)

(
1− HIP

n (ds|x)

HIP
n (s|x)

)
=
∏
[t,∞)

(
1−

HIP
2,n(ds|x)

HIP
n (s|x)

−
HIP

0,n(ds|x) +HIP
1,n(ds|x)

HIP
n (s|x)

)
≤

∏
[t,∞)

(
1−

HIP
2,n(ds|x)

HIP
n (s|x)

)
= F̃L,n(t− |x).

Thus F̃L,n(t−|x)−HIP
n (t−|x) ≥ 0 and the nonnegativity of Λ̃−T,n(dt|x) is established. In order to

prove the inequality Λ̃−T,n(dt|x) ≤ 1 we assume without loss of generality that Y1 < Y2 < · · · < Yn.

Observe that as soon as δk = 0 we have for k ≥ 2

F̃L,n(Yk − |x)−HIP
n (Yk − |x)

=
[
1−

∏
[Yk,∞)

(
1−

HIP
0,n(ds|x) +HIP

1,n(ds|x)

HIP
n (s|x)

)] ∏
[Yk,∞)

(
1−

HIP
2,n(ds|x)

HIP
n (s|x)

)
(∗)
=

[
1−

∏
j≥k,δj 6=2

(
1−

∆HIP
0,n(Yj|x) + ∆HIP

1,n(Yj|x)

HIP
n (Yj|x)

)] ∏
j≥k+1,δj=2

(
1−

∆HIP
2,n(Yj|x)

HIP
n (Yj|x)

)
=

[
1−

∏
j≥k,δj 6=2

(HIP
n (Yj−1|x)

HIP
n (Yj|x)

)] ∏
j≥k+1,δj=2

(HIP
n (Yj−1|x)

HIP
n (Yj|x)

)
10



(∗∗)
=

[
1− HIP

n (Yk−1|x)

HIP
n (Yk|x)

∏
j≥k+1,δj 6=2

(HIP
n (Yj−1|x)

HIP
n (Yj|x)

)] ∏
j≥k+1,δj=2

(HIP
n (Yj−1|x)

HIP
n (Yj|x)

)
≥

[
1− HIP

n (Yk−1|x)

HIP
n (Yk|x)

] ∏
j≥k+1

(HIP
n (Yj−1|x)

HIP
n (Yj|x)

)
=

[HIP
n (Yk|x)−HIP

n (Yk−1|x)

HIP
n (Yk|x)

]HIP
n (Yk|x)

HIP
n (Yn|x)

= ∆HIP
n (Yk|x),

where the equalities (∗) and (∗∗) follow from δk = 0. An analogous result for k = 1 follows by

simple algebra. Hence we have established that for δk = 0 we have ∆Λ̃−T,n(Yk|x) ≤ 1, and all the

other cases need not be considered since we adopted the convention ’0/0=0’. Thus the proof is

complete. 2

3 Main results

The results stated in this section describe the asymptotic properties of the proposed estimators.

In particular, we investigate weak convergence of the processes {Hk,n(t|x)}t, {FT,n(t|x)}t, etc.

where the predictor x is fixed. Our main results deal with the weak uniform consistency and the

weak convergence of the process {FT,n(t|x)− FT (t|x)}t and the corresponding quantile processes

obtained in Section 2. In order to derive the process convergence, we will assume that it holds

for the initial estimates Hn, Hk,n and give sufficient conditions for this property in Lemma 3.3.

In a next step we apply the delta method [see Gill (1989)] to the map (H,H2) 7→ M−
2 defined in

(2.6) and the product-limit maps defined in (2.7) and (2.9). Note that the product limit maps are

Hadamard differentiable on the set of cadlag functions with total variation bounded by a constant

[see Lemma A.1 on page 42 in Patilea and Rolin (2001)], and hence the process convergence of

M−
2,n and Λ−T,n will directly entail the weak convergence results for FL,n and FT,n, respectively.

However, the Hadamard differentiability of the map (H2, H) 7→M−
2 only holds on domains where

H(t) > ε > 0, and hence more work is necessary to obtain the corresponding weak convergence

results on the interval [t00,∞] if H(t00|x) = 0, where

t00 := inf {t : H0(t|x) > 0} .(3.1)

This situation occurs for example if FR(t00|x) = 0, which is quite natural in the context considered

in this paper because R is the right censoring variable.
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For the sake of a clear representation and for later reference, we present all required technical con-

ditions for the asymptotic results at the beginning of this section. We assume that the estimators

of the conditional subdistribution functions are of the form (2.5) with weights Wj(x) depending

on the covariates X1, ..., Xn but not on Y1, ..., Yn or δ1, ..., δn. The first set of conditions concerns

the weights that are used in the representation (2.5).

(W1) With probability tending to one, the weights in (2.5) can be written in the form

Wi(x) =
Vi(x)∑n
j=1 Vj(x)

,

where the functions Vj (j = 1, . . . , n) have the following properties:

(1) There exist constants 0 < c < c < ∞ such that for all n ∈ N and all x we have either

Vj(x) = 0 or c/nh ≤ Vj(x) ≤ c/nh

(2) If |x − Xj| ≤ Ch for some constant C < ∞, then Vj(x) 6= 0 and Vj(x) = 0 for

|x−Xj| ≥ cn for some sequence (cn)n∈N such that cn = O(h). Without loss of generality,

we will assume that C = 1 throughout this paper.

(3)
∑

i Vi(x) = C(x)(1 + oP (1)) for some positive function C

(4) supt
∣∣∑

i Vi(x)(x−Xi)I{Yi≤t}
∣∣ = oP (1/

√
nh)

Here [and throughout this paper] h denotes a smoothing parameter converging to 0 with

increasing sampling size.

(W2) We assume that the weak convergence

√
nh(H0,n(.|x)−H0(.|x), H2,n(.|x)−H2(.|x), Hn(.|x)−H(.|x))⇒ (G0, G2, G)

holds in D3[0,∞], where the limit denotes a centered Gaussian process which has a version

with a.s. continuous sample paths and a covariance structure of the form

Cov(Gi(s|x), Gi(t|x)) = b(x)(Hi(s ∧ t|x)−Hi(s|x)Hi(t|x))

Cov(G(s|x), G(t|x)) = b(x)(H(s ∧ t|x)−H(s|x)H(t|x))

Cov(Gi(s|x), G(t|x)) = b(x)(Hi(s ∧ t|x)−Hi(s|x)H(t|x))

for some function b(x). Here and throughout this paper weak convergence is understood as

convergence with respect to the sigma algebra generated by the closed balls in the supremum

norm [see Pollard (1984)].
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(W3) The estimators Hk,n(.|x) (k = 0, 1, 2) and Hn(.|x) are weakly uniformly consistent on the

interval [0,∞)

Remark 3.1 It will be shown in Lemma 3.3 below that important examples for weights satisfying

conditions (W1)-(W3) are given by the Nadaraya-Watson weights

WNW
i (x) =

1
nh
Kh(x−Xi)

1
nh

∑
jKh(x−Xj)

=:
V NW
i (x)∑
j V

NW
j (x)

,(3.2)

or by the local linear weights

WLL
i (x) =

1
nh
Kh(x−Xi) (Sn,2 − (x−Xi)Sn,1)

Sn,2Sn,0 − S2
n,1

(3.3)

=
1
nh
Kh(x−Xi) (1− (x−Xi)Sn,1/Sn,2)

1
nh

∑
jKh(x−Xj) (1− (x−Xj)Sn,1/Sn,2)

=:
V LL
i (x)∑
j V

LL
j (x)

,

where Kh(.) := K(./h), Sn,k := 1
nh

∑
jKh(x−Xj)(x−Xj)

k and the kernel satisfies the following

condition.

(K1) The kernel K in (3.2) and (3.3) is a symmetric density of bounded total variation with

compact support, say [−1, 1], which satisfies c1 ≤ K(x) ≤ c2 for all x with K(x) 6= 0 for

some constants 0 < c1 ≤ c2 <∞.

For the distributions of the random variables (Ti, Li, Ri, Xi) we assume that for some ε > 0:

(D1) The conditional distribution function FR fulfills FR(t00|x) < 1

(D2) The conditional distribution functions FL(.|x), FR(.|x), FT (.|x) are continuous

(D3) For i = 0, 1, 2 we have limy→x supt |Hi(t|y)−Hi(t|x)| = 0

(D4) The conditional distribution functions FL(.|x), FR(.|x), FT (.|x) have densities,

say fL(.|x), fR(.|x), fT (.|x), with respect to the Lebesque measure

(D5)
∫∞
t00

fL(u|x)

F 2
L(u|x)FS(u|x)

du <∞

(D6)
∫∞
t00

1
FL(u|x)FS(u|x)

∣∣∣∂x fL(u|x)
FL(u|x)

∣∣∣ du <∞
(D7) sup(t,z)∈(t00,∞)×Uε(x)

∣∣∣∂2
z
fL(t|z)
FL(t|z)

∣∣∣ <∞
13



(D8) The functions Hk(t|x) (k = 0, 1, 2) are twice continuously differentiable with respect to the

second component in some neighborhood Uε(x) of x and for k = 0, 1, 2 we have

sup
t

sup
|y−x|<ε

|∂2
yHk(t|y)| <∞

(D9) The distribution function FX of the covariates Xi is twice continuously differentiable with

density fX such that fX(x) 6= 0

(D10) There exists a constant C > 0 such that H(t|y) ≥ CH(t|x) for all (t, y) ∈ [t00, t00 + ε) × I
where I is an interval of positive length with x ∈ I.

(D11) fL(t|y)
FL(t|y)

= fL(t|x)
FL(t|x)

(1 + o(1)) uniformly in t ∈ [t00, t00 + ε) as y → x

(D12) For τT,0(x) := inf{t : FT (t|x) > 0} we have infy∈Uε(x) FL(τT,0(y)|y) > 0.

Remark 3.2 From the definition of t00 and H0 we immediately see that under condition (D1) we

have t00 = τT,0(x)∨τL,0(x) where we use the notation τL,0(x) := inf{t : FL(t|x) > 0}. In particular,

this implies that under either of the assumptions (D5) or (D12) the equality t00 = τT,0(x) holds.

Finally, we make some assumptions for the smoothing parameter

(B1) n log(n)h5 = o(1) and nh −→∞.

(B2) h→ 0 and nh/ log(n) −→∞.

Some important practical examples for weights satisfying conditions (W1) - (W3) include Nadaraya-

Watson and local linear weights. This is the assertion of the next Lemma.

Lemma 3.3

1. Conditions (W1)(1) and (W1)(2) are fulfilled for the Nadaraya-Watson weights WNW
i with a

Kernel K satisfying condition (K1). If the density fX is continuous at the point x, condition

(W1)(3) also holds. Finally, if the function x 7→ fX(x)FY (t|x) is continuously differentiable

in a neighborhood of x for every t with uniformly (in t) bounded first derivative and (B1) is

fulfilled, condition (W1)(4) holds.

If additionally to these assumptions the density fX of the covariates X is continuously dif-

ferentiable at x with bounded derivative, condition (W1) also holds for the local linear and

rearranged local linear weights WLL
i and WLLI

i defined in (3.3) and (2.20), (2.21) respec-

tively, provided that the corresponding kernel fulfills condition (K1) .
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2. Under assumptions (D8), (D9) and (B1) condition (W2) holds for the Nadaraya-Watson,

local linear or rearranged local linear weights based on a positive, symmetric kernel with

compact support.

3. Under assumptions (B2), (D2), (D3) condition (W3) holds for the Nadaraya-Watson weights

Wi based on a positive, symmetric kernel with compact support. If additionally the density

fX of the covariates X is continuously differentiable at x with bounded derivative, condition

(W3) also holds for local linear or rearranged local linear weights.

Note that the assumption (B1) does not allow to choose h ∼ n−1/5, which would be the MSE-

optimal rate for Nadaraya-Watson or local linear weights and functions with two continuous

derivatives with respect to the predictor. This assumption has been made for the sake of a

transparent presentation and implies that the bias of the estimates is negligible compared to the

stochastic part. Such an approach is standard in nonparametric estimation for censored data, see

Dabrowska (1987) or Li and Doss (1995). In principle, most results of the present paper can be

extended to bandwidths h ∼ n−1/5 if a corresponding bias term is substracted.

Another useful property of estimators constructed from weights satisfying condition (W1) is that

they are increasing with probability tending to one.

Lemma 3.4 Under condition (W1)(1) we have

P
(

“The estimates (Hn(.|x), H0n(.|x), H1n(.|x), H2n(.|x) are increasing”
)
n→∞−→ 1.

The Lemma follows from the relation

{“The estimates Hn(.|x), H0n(.|x), H1n(.|x), H2n(.|x) are increasing”} ⊇ {Wi(x) ≥ 0 ∀ i}

and the fact that under assumption (W1) the probability of the event on the right hand side

converges to one. We will use Lemma 3.4 for the analysis of the asymptotic properties of the

conditional quantile estimators in Section 3.2. One noteworthy consequence of the Lemma is the

fact that

P
(
q̂IP (.|x) ≡ q̂(.|x)

)
→ 1,

which follows because the mappings Ψ and the right continuous inversion mapping coincide on

the set of nondecreasing functions. In particular, this indicates that, from an asymptotic point

of view, it does not matter which of the estimators q̂, q̂IP is used. The difference between both

estimators will only be visible in finite samples - see Section 4. In fact, it can only occur if one of

the estimators Hn, Hk,n is decreasing at some point.
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3.1 Weak convergence of the estimate of the conditional distribution

We are now ready to describe the asymptotic properties of the estimates defined in Section 2. Our

first result deals with the weak uniform consistency of the estimate FT,n(.|x) under some rather

weak conditions. In particular, it does neither require the existence of densities of the conditional

distribution functions [see (D4)] nor integrability conditions like (D5).

Theorem 3.5 If conditions (D1), (D2), (D12), (W1)(1)-(W1)(2) and (W3) are satisfied, then

the following statements are correct.

1. The estimate FT,n(.|x) defined in (2.12) is weakly uniformly consistent on the interval [0, τ ]

for any τ such that FS(τ |x) < 1.

2. If additionally FS(τT,1(x)|x) = 1, where

τT,1(x) := sup{t : FT (t|x) < 1},

and FT,n(.|x) is increasing and takes values in the interval [0, 1], the weak uniform consistency

of the estimate FT,n(.|x) holds on the interval [0,∞).

The next two results deal with the weak convergence of FT,n and require additional assumptions

on the censoring distribution. We begin with a result for the estimator FL,n, which is computed

in the first step of our procedure by formulas (2.6) and (2.7).

Theorem 3.6

1. Let the weights used for H2,n and Hn in the definition of the estimate M−
2,n in (2.11) satisfy

conditions (W1) and (W2). Moreover, assume that conditions (B1), (D1) and (D4)-(D11)

hold. Then we have as n→∞
√
nh(Hn −H,H0,n −H0,M

−
n,2 −M−

2 )⇒ (G,G0, GM)

in D3([t00,∞]), where (G,G0, GM) denotes a centered Gaussian process with a.s. continuous

sample paths and GM(t) = A(t)−B(t) is defined by

A(t) =

∫ ∞
t

dG2(u)

H(u|x)
, B(t) :=

∫ ∞
t

G(u)

H2(u|x)
H2(du|x).(3.4)

Here the process (G0, G2, G) is specified in assumption (W2) and the integral with respect to

the process G2(t) is defined via integration-by-parts.
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2. Under the conditions of the first part we have

√
nh(Hn −H,H0,n −H0, FL,n − FL)⇒ (G,G0, G3)

in D3([t00,∞]), where the process (G0, G2, G) is specified in assumption (W2) and G3 is a

centered Gaussian process with a.s. continuous sample paths which is defined by

G3(t) = FL(t|x)GM(t).

Remark 3.7 The value of the process GM at the point t00 is defined as its path-wise limit. The

existence of this limit follows from assumption (D5) and the representation

E[GM(s)GM(t)] = b(x)

∫ ∞
s∨t

1

H(u|x)
M−

2 (du|x)

for the covariance structure of GM , which can be derived by computations similar to those in

Patilea and Rolin (2001).

Theorem 3.8 Assume that the conditions of Theorem 3.6 and condition (D12) are satisfied.

Moreover, let t00 < τ such that FS([0, τ ]|x) < 1. Then we have the following weak convergence

1.

√
nh(Λ−T,n − Λ−T )⇒ V

in D([0, τ ]), where

V (t) :=

∫ t

0

G0(du)

(FL −H)(u− |x)
−
∫ t

0

G3(u−)−G(u−)

(FL −H)2(u− |x)
H0(du|x)

is a centered Gaussian process with a.s. continuous sample paths and the integral with respect

to G0 is defined via integration-by-parts.

2.

√
nh(FT,n − FT )⇒ W

in D([0, τ ]), where

W (t) := (1− FT (t|x))V (t),

is a centered Gaussian process with a.s. continuous sample paths.

Note that the second part of Theorem 3.8 follows from the first part using the representation

(2.13) and the delta method.
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3.2 Weak convergence of conditional quantile estimators

In this subsection we discuss the asymptotic properties of the two conditional quantile estimates

q̂ and q̂IP defined in (2.17) and (2.25), respectively. As an immediate consequence of Theorem 3.5

and the continuity of the quantile mapping [see Gill (1989), Proposition 1] we obtain the weak

consistency result.

Theorem 3.9 If the assumptions of the first part of Theorem 3.5 are satisfied and additionally

the conditions FS(F−1
T (τ |x)|x) < 1 and infε≤t≤τ fT (t|x) > 0 hold some some ε > 0, then the

estimators q̂(.|x) and qIP (.|x) defined in (2.17) and (2.25) are weakly uniformly consistent on the

interval [ε, τ ].

The compact differentiability of the quantile mapping and the delta method yield the following

result.

Theorem 3.10 If the assumptions of Theorem 3.8 are satisfied, then we have for any ε > 0 and

τ > 0 with FS(F−1
T (τ |x)|x) < 1 and infε≤t≤τ fT (t|x) > 0

√
nh(q̂(.|x)− F−1

T (.|x))⇒ Z(.) on D([ε, τ ]),
√
nh(q̂IP (.|x)− F−1

T (.|x))⇒ Z(.) on D([ε, τ ]),

where Z is a centered Gaussian process defined by

Z(.) = − W ◦ F−1
T (.|x)

fT (.|x) ◦ F−1
T (.|x)

and the centered Gaussian process W is defined in part 2 of Theorem 3.8.

The proof Theorem 3.5 - 3.10 is presented in the Appendix A and requires several separate steps.

A main step in the proof is a result regarding the weak convergence of the Beran estimator on the

maximal possible domain in the setting of conditional right censorship. We were not able to find

such a result in the literature. Because this question is of independent interest, it is presented

separately in the following Subsection.

3.3 A new result for the Beran estimator

We consider the common conditional right censorship model [see Dabrowska (1987) for details].

Assume that our observations consist of the triples (Xi, Zi,∆i) where Zi = min(Bi, Di),∆i =
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I{Zi=Di}, the random variables Bi, Di are independent conditionally on Xi and nonnegative almost

surely. The aim is to estimate the conditional distribution function FD of Di. Following Beran

(1981) this can be done by estimating FZ , the conditional distribution function of Z, and πk(t|x) :=

P
(
Zi ≤ t,∆i = k|X = x

)
(k = 0, 1) through

FZ,n(t|x) := Wi(x)I{Zi≤t}, πk,n(t|x) := Wi(x)I{Zi≤t,∆i=k} (k = 0, 1)(3.5)

and then defining an estimator for FD as

FD,n(t|x) := 1−
∏
[0,t]

(1− Λ−D,n(ds|x)),(3.6)

where the quantity Λ−D,n(ds|x) is given by

Λ−D,n(ds|x) :=
π0,n(ds|x)

1− FZ,n(s− |x)
,(3.7)

and the Wi(x) denote local weights depending on X1, ..., Xn [see also the discussion at the begin-

ning of Section 3].

The weak convergence of the process
√
nh(FD,n(t|x) − FD(t|x))t in D([0, τ ]) with π0(τ |x) < 1

was first established by Dabrowska (1987). An important problem is to establish conditions that

ensure that the weak convergence can be extended to D([0, t0]) where t0 := sup{s : π0(s|x) < 1}.
In the unconditional case, such conditions were derived by Gill (1983) who used counting pro-

cess techniques. A generalization of this method to the conditional case was first considered by

McKeague and Utikal (1990) and later exploited by Dabrowska (1992b) and Li and Doss (1995).

However, none of those authors considered weak convergence on the maximal possible interval

[0, t0]. The following Theorem provides sufficient conditions for the weak convergence on the

maximal possible domain.

Theorem 3.11 Assume that for some ε > 0

(R1) The conditional distribution functions FD(.|x) and FB(.|x) have densities, say fD(.|x) and

fB(.|x), with respect to the Lebesque measure

(R2)
∫ t0

0
λD(t|x)

1−FZ(t−|x)
dt <∞,

(R3)
∫ t0

0
|∂xλD(t|x)|
1−FZ(t−|x)

dt <∞,

(R4) sup(t,y)∈(0,t0)×Uε(x)

∣∣∂2
yλD(t|y)

∣∣ <∞,
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(R5) 1−FZ(t|y) ≥ C(1−FZ(t|x)) for all (t, y) ∈ (t0− ε, t0]× I where I is an interval of positive

length with x ∈ I,

(R6) λD(t|y) = λD(t|x)(1 + o(1)) uniformly in t ∈ (t0 − ε, t0] as y → x.

Moreover, let the weights in (3.5) satisfy condition (W1) and let the weak convergence

√
nh(FZ,n(.|x)− FZ(.|x), π0,n(.|x)− π0(.|x))⇒ (G,G0) on D([0,∞))

to a centered Gaussian process (G,G0) with covariance structure given by

Cov(G0(s|x), G0(t|x)) = b(x)(π0(s ∧ t|x)− π0(s|x)π0(t|x))

Cov(G(s|x), G(t|x)) = b(x)(FZ(s ∧ t|x)− FZ(s|x)FZ(t|x))

Cov(G0(s|x), G(t|x)) = b(x)(π0(s ∧ t|x)− π0(s|x)FZ(t|x))

for some function b(x) hold [this is the case for Nadaraya-Watson or local linear weights, see

Lemma 3.3]. Then under assumption (B1)

√
nh(FD,n(.|x)− FD(.|x))t ⇒ GD(.) in D([0, t0]),(3.8)

where GD denotes a centered Gaussian process with covariance structure taking the form

Cov(GD(t), GD(s)) = b(x)

∫ s∧t

0

ΛD(du|x)

1− FZ(u|x)
.
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4 Finite sample properties

We have performed a small simulation study in order to investigate the finite sample properties of

the proposed estimates. An important but difficult question in the estimation of the conditional

distribution function from censored data is the choice of the smoothing parameter. For conditional

right censored data some proposals regarding the choice of the bandwidth have been made by

Dabrowska (1992b) and Li and Datta (2001). In order to obtain a reasonable bandwidth parameter

for our simulations, we used a modification of the cross validation procedure proposed by Abberger

(2001) in the context of nonparametric quantile regression. To address the presence of censoring

in the cross validation procedure, we proceeded as follows:

1. Divide the data in blocks of size K with respect to the (ordered) X-components. Let

{(Yjk, Xjk, δjk)| j = 1, . . . , Jk} denote the points among {(Yi, Xi, δi)| i = 1, . . . , n} which fall

in block k (k = 1, . . . , K). For our simulations we used K = 25 blocks.

2. In each block, estimate the distribution function FT as described in Section 2.1. Denote the

sizes of the jumps at the jth uncensored observation in the kth block by wjk

3. Define

h := argminα

K∑
k=1

Jk∑
j=1

wjkρτ (Yjk − q̃j,kα (τ |Xjk))

where ρτ denotes the check function and q̃j,kα is either the estimator q̂IP or q̂ with bandwidth

α based on the sample {(Yi, Xi, δi)| i = 1, . . . , n} without the observation (Yjk, Xjk, δjk).

For a motivation of the proposed procedure, observe that the classical cross validation is based

on the fact that each observation is an unbiased ’estimator’ for the regression function at the

corresponding covariate. In the presence of censoring, such an estimator is not available. There-

fore, the cross validation criterion discussed above tries to mimic this property by introducing the

weights wjk. A deeper investigation of the theoretical properties of the procedure is beyond the

scope of the present paper and postponed to future research. In order to save computing time

the bandwidth that we used for our simulations is an average of 100 cross validation runs in each

scenario.

For the calculation of the estimators of the conditional sub-distribution functions, we chose local

linear weights [see Remark 3.1] with a truncated version of the Gaussian Kernel, i.e.

K(x) = φ(x)I{φ(x)>0.001},
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where φ denotes the density of the standard normal distribution.

We investigate the finite sample properties of the new estimators in a similar scenario as models 2

and 3 in Yu and Jones (1997) [note that we additionally introduce a censoring mechanism]. The

first model is given by

(model 1)


Ti = 2.5 + sin(2Xi) + 2 exp(−16X2

i ) + 0.5N (0, 1)

Li = 2.6 + sin(2Xi) + 2 exp(−16X2
i ) + 0.5(N (0, 1) + q0.1)

Ri = 3.4 + sin(2Xi) + 2 exp(−16X2
i ) + 0.5(N (0, 1) + q0.9)

where the covariates Xi are uniformly distributed on the interval [−2, 2] and qp denotes the p-

quantile of a standard normal distribution. This means that about 10% of the observations are

censored by type δ = 1 and δ = 2, respectively. For the sample size we use n = 100, 250, 500. In

Figures 2 and 1 we show the mean conditional quantile curves and corresponding mean squared

error curves for the 25%, 50% and 75% quantile based on 5000 simulation runs. The cases where

the q̂IP (τ |x) is not defined are omitted in the estimation of the mean squared error and mean

curves [this phenomenon occurred in less than 3% of the simulation runs]. Only results for the

the estimator q̂IP are presented because it shows a slightly better performance than the estimator

q̂. We observe no substantial differences in the performance of the estimates for the 25%, 50%

and 75% quantile curves with respect to bias. On the other hand it can be seen from Figure 1
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Figure 1: Mean squared error curves of the estimates of the quantile curves in model 1 for different

sample sizes: n = 100 (dotted line); n = 250 (dashed line); n = 500 (solid line). Left panel:

estimates of the 25%-quantile curves; middle panel: estimates of the 50%-quantile curves; right

panel: estimates of the 75%-quantile curves. 10% of the observations are censored by type δ = 1

and δ = 2, respectively.

that the estimates of the quantile curves corresponding to the 25% and 75% quantile have larger
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variability. In particular the mse is large at the point 0, where the quantile curves attain their

maximum.
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Figure 2: Mean (dashed lines) and true (solid lines) quantile curves for model 1 for different

sample sizes: n = 100 (left column), n = 250 (middle column) and n = 500 (right column). Upper

row: estimates of the 25% quantile curves; middle row: estimates of the 50% quantile curves;

lower row: estimates of the 75% quantile curves. 10% of the observations are censored by type

δ = 1 and δ = 2, respectively.
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As a second example we investigate the effect of different censoring types. To this end, we consider

a similar example as in model 3 of Yu and Jones (1997), that is

(model 2)


Ti = 2 + 2 cos(Xi) + exp(−4X2

i ) + E(1)

Li = 2 + 2 cos(Xi) + exp(−4X2
i ) + (cL + U [0, 1])

Ri = 2 + 2 cos(Xi) + exp(−4X2
i ) + (cR + E(1))

where the covariates Xi are uniformly distributed on the interval [−2, 2], E(1) denotes an exponen-

tially distributed random variable with parameter 1, U [0, 1] is a uniformly distributed random vari-

able on [0, 1] and the parameters (cL, cR) are used to control the amount of censoring. For this pur-

pose we investigate three different cases for the parameters (cL, cR), namely (−0.5, 1.5), (−0.5, 0.5)

and (−0.2, 1.5), which corresponds to approximately (10%, 11%), (30%, 11%) and (11%, 25%) of

type δ = 1 and δ = 2 censoring, respectively. The corresponding results for the estimators of the

25%, 50% and 75% quantile on the basis of a sample of n = 250 observations are presented in

Figures 3 and 4.
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Figure 3: Mean squared error curves of the estimates of the quantile curves in model 2 for different

censoring: (10%, 11%) censoring (dotted line); (30%, 11%) censoring (dashed line); (11%, 25%)

censoring (solid line). Left panel: estimates of the 25%-quantile curves; middle panel: estimates

of the 50%-quantile curves; right panel: estimates of the 75%-quantile curves. The sample size is

n = 250.

We observe a slight increase in bias when estimating upper quantile curves. An additional amount

of censoring results in a slightly worse average behavior of the estimates. More censoring of type

δ = 2 has an impact on the accuracy of the estimates of the lower quantiles, while more censoring

of type δ = 1 has a stronger effect for the upper quantile curves. Upper quantile curves are always
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estimated with more variability which is in accordance with the factor 1/fT (F−1
T (p|x)|x) in their

limiting process.
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Figure 4: Mean (dashed lines) and true (solid lines) quantile curves for model 2 and different cen-

soring: left column: (10%, 11%) censoring; middle column: (30%, 11%) censoring; right column:

(11%, 25%) censoring. Upper row: 25% quantile curves; middle row: 50% quantile curves; lower

row: 75% quantile curves. The sample sizes is 250.
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A Appendix: Proofs

Proof of Lemma 3.3 We begin with the proof of the first part. Recalling the definition of

the Nadaraya-Watson weights in (3.2), we see that (W1)(1) follows easily from the inequality

c1 ≤ K(x) ≤ c2 for all x in the support of K. Conditions (W1)(2) and (W1)(3) hold with

C(x) = fX(x), which is a standard result from density estimation [see e.g. Parzen (1962)].

Finally, for assumption (W1)(4) we note that, as soon as the function fX(.)FY (t|.) is continuously

differentiable in a neighborhood of x with uniformly (in t) bounded derivative, we have

sup
t

∣∣∣ 1

nh
E
[∑

i

Kh(x−Xi)(x−Xi)I{Yi≤t}

]∣∣∣ = O(h2).

From standard empirical process arguments [see for example Pollard (1984)] we therefore obtain

sup
t

1

nh

∣∣∣∑
i

Kh(x−Xi)(x−Xi)I{Yi≤t} − E
[∑

i

Kh(x−Xi)(x−Xi)I{Yi≤t}

]∣∣∣ = O
(√h log n

n

)
a.s. and the assertion now follows from condition (B1).

To see that we can also use the local linear weights defined in (3.3), we note that

Sn,0 = fX(x)(1 + oP (1))(A.1)

Sn,1 = h2µ2(K)f ′X(x) + oP (h2),(A.2)

Sn,2 = h2µ2(K)fX(x) + oP (h2)(A.3)

and from the compactness of the support of K, which implies: |x − Xj| = O(h) uniformly in j,

we obtain the representation V LL
i = V NW

i (1 + oP (1)) uniformly in i. Conditions (W1)(1) and

(W1)(4) for the local linear follow from the corresponding properties of the Nadaraya-Watson

weights (possibly with slightly smaller and larger constants c and c, respectively).

Finally, from the fact that, with probability tending to one, the local linear weights are positive,

it follows that the corresponding estimators Hn, Hni are increasing and hence unchanged by the

rearrangement. This implies P
(
∃i ∈ 1, ..., n : WLL

i 6= WLLI
i

)
n→∞−→ 0, where WLLI

i denote the
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weights of the rearranged local linear estimator. Thus condition (W1) also holds for the weights

WLLI
i and the proof of the first part is complete.

For a proof of the second part of the Lemma we note that the same arguments as given in

Dabrowska (1987), Section 3.2, yield condition (W2) for the Nadaraya-Watson weights [here we

used assumptions (D8), (D9) and (B1)].

The corresponding result for the local linear weights can be derived by a closer examination of

the weights WLL
i . For the sake of brevity, we will only consider the estimate Hn defined in (2.5),

the results for Hk,n (k = 0, 1, 2) follow analogously. From the definition of the weights WLL
i we

obtain the representation

HLL
n (t|x) =

1

nh

n∑
i=1

K
(
x−Xi
h

)
(Sn,2 − (x−Xi)Sn,1)

Sn,2Sn,0 − S2
n,1

I{Yi≤t}

=
1

nh

n∑
i=1

K
(
x−Xi
h

)
Sn,0

1

1− S2
n,1/(Sn,0Sn,2)

I{Yi≤t} −
1

nh

n∑
i=1

K
(
x−Xi
h

)
(x−Xi)Sn,1

Sn,2Sn,0 − S2
n,1

I{Yi≤t}

= HNW
n (t|x) +OP (h2)

uniformly in t where the last equality follows from the estimates HNW
n (t|x) = OP (1) and (A.1)

- (A.3). Now condition (B1) ensures h2 = o(1/
√
nh) and thus the difference HNW

n − HLL
n is

asymptotically negligible. From Lemma 3.4 we immediately obtain that, with probability tending

to one, the rearranged estimators HLLI
n and HLLI

i,n defined in (2.20) and (2.21) coincide with the

estimates HLL
n and HLL

i,n respectively. Thus condition (W2) also holds for (HLLI
n , HLLI

0,n , H
LLI
2,n ) and

the second part of Lemma 3.3 has been established.

We now turn to the proof of the last part. Again we only consider the process Hn(.|x), and note

that the uniform consistency of Hk,n(.|x) follows analogously. First, observe the estimate

E
[ 1

nh

∑
i

Kh(x−Xi)I{Yi≤t}

]
=

1

h

∫
Kh(x− u)FY (t|u)fX(u)du = fX(x)FY (t|u)(1 + o(1))

uniformly in t, which is a consequence of condition (D3). From standard empirical process argu-

ments [see Pollard (1984)] it follows that almost surely

sup
t

∣∣∣ 1

nh

∑
i

Kh(x−Xi)I{Yi≤t} − E
[ 1

nh

∑
i

Kh(x−Xi)I{Yi≤t}

]∣∣∣ = O
(√ log n

nh

)
,

and with condition (B2) the assertion for the Nadaraya-Watson weights follows. The extension

of the result to local linear and rearranged local linear weights can be established by the same

arguments as presented in the second part of the proof. 2
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Remark A.1 Before we begin with the proof of Theorem 3.5, we observe that condition (W1)

implies that we can write the weights Wi(x) in the estimates (2.5) in the form

Wi(x) = W
(1)
i (x)IAn +W

(2)
i (x)IACn ,

where An is some event with P
(
An

)
→ 1, W

(1)
i (x) = Vi(x)/

∑
j Vj(x) and W

(2)
i (x) denote some

other weights. If we now define modified weights

W̃i(x) := W
(1)
i (x)IAn +WNW

i (x)IACn ,

where WNW
i (x) denote Nadaraya-Watson weights, we obtain: P(∃i ∈ 1, ..., n : W̃i 6= Wi)→ 0, i.e.

any estimator constructed with the weights W̃i(x) will have the same asymptotic properties as an

estimator based on the original weights Wi(x). Thus we may confine ourselves to the investigation

of the asymptotic distribution of estimators constructed from the statistics in (2.5) that are based

on the weights W̃i(x). In order to keep the notation simple, the modified estimates are also

denoted by Hn, Hk,n, etc. Finally, observe that we have the representation W̃i(x) = Ṽi(x)∑
j Ṽj(x)

with

Ṽi := ViIAn + V NW
i (x)IACn . Note that by construction, the random variables Ṽi satisfy conditions

(W1)(1)-(W1)(4) if the kernel in the definition of WNW
i (x) satisfies assumption (K1).

Proof of Theorem 3.5: Let S denote the set of pairs of functions (H2(.|x), H(.|x)) of bounded

variation such that H(.|x) ≥ β > 0. Since the map (H2(.|x), H(.|x)) 7→ M−
2 (.|x) is continuous

on S with respect to the supremum norm [see the discussion in Anderson et al. (1993) following

Proposition II.8.6], and Hn is uniformly consistent [which implies P((H2,n, Hn) ∈ S] → 1], the

weak uniform consistency of M−
2n on [t00 + ε,∞) [ε > 0 is arbitrary] follows from the uniform

consistency of H2,n and Hn. This can be seen by similar arguments as given in Dabrowska (1987),

p. 184.

Moreover, the map M−
2 (.|x) 7→ FL(.|x) is continuous on the set of functions of bounded variation

[reverse time and use the discussion in Andersen et.al. (1993) following Proposition II.8.7], and

thus the uniform consistency of FL,n(.|x) on [t00 + ε,∞) follows for any positive ε > 0.

In the next step, we consider the map

(H0,n(.|x), Hn(.|x), FL,n(.|x)) 7→ ΛT,n(.|x) =

∫ .

0

H0,n(dt|x)

FL,n(t− |x)−Hn(t− |x)

and split the range of integration into the intervals [0, t00 + ε) and [t00 + ε, t). The continuity of

the integration and fraction mappings yields the uniform convergence

sup
t∈[t00+ε,τ)

∣∣∣∣∫
[t00+ε,t)

H0,n(dt|x)

FL,n(t− |x)−Hn(t− |x)
−
∫

[t00+ε,t)

H0(dt|x)

FL(t− |x)−H(t− |x)

∣∣∣∣ P−→ 0(A.4)
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for any τ with FS(τ |x) < 1 [note that inft∈[t00+ε,τ) FL(t − |x) − H(t − |x) > 0 since FL(t −
|x) − H(t − |x) = FL(t − |x)(1 − FS(t − |x)) and FL(t00 − |x) > 0 by assumption (D12) and

continuity of the conditional distribution function FL(.|x)]. We now will show that the integral

over the interval [0, t00 + ε) can be made arbitrarily small by an appropriate choice of ε. To this

end, denote by W1(x, n), ...,Wk(x, n) those values of Y1, ..., Yn, whose weights fulfill Wi(x) 6= 0

and by W(1)(x, n), ...,W(k)(x, n) the corresponding increasingly ordered values. By Lemma B.2 in

Appendix B we can find an ε > 0 such that:

sup
t00+ε≥t≥W(2)(x,n)

1

FL,n(s− |x)−Hn(s− |x)
= OP (1),

and it follows ∫
[W(2)(x,n),t00+ε)

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
≤ H0,n(t00 + ε|x)OP (1).

Therefore it remains to find a bound for the integral
∫

[0,W(2)(x,n))

H0,n(ds|x)

FL,n(s−|x)−Hn(s−|x)
. For this purpose

we consider two cases. The first one appears if the δi corresponding to W(1)(x, n) equals 0.

In this case there is positive mass at the point W(1)(x, n) but at the same time FL,n(s|x) =

FL,n(W(2)(x, n)|x) for all s ∈ [0,W(2)(x, n)) and hence
∫

[0,t00+ε)

H0,n(ds|x)

FL,n(s−|x)−Hn(s−|x)
≤ H0,n(t00 +

ε|x)OP (1). For all other values of the corresponding δi the mass of H0,n(ds|x) at the point

W(1)(x, n) equals zero and thus the integral vanishes. Summarizing, we have obtained the estimate∫
[0,t00+ε)

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
≤ H0,n(t00 + ε|x)OP (1) = H0(t00 + ε|x)OP (1),

where the last equality follows from the uniform consistency of H0,n and the remainder OP (1)

does not depend on ε. Moreover, since the function ΛT,n(.|x) is increasing [see Lemma 2.2], the

inequality

sup
t≤t00+ε

|ΛT,n(t|x)| =
∫

[0,t00+ε)

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
≤ H0(t00 + ε|x)OP (1)(A.5)

follows. Now for any δ > 0 we can choose an εδ > 0 such that H0(t00 + εδ|x) < δ [recall the

definition of t00 in (3.1)] and we have

P
(

sup
t∈[0,t00+εδ)

|ΛT,n(t|x)− ΛT (t|x)| > 2α
)
≤ P

(
sup

t∈[0,t00+εδ)

|ΛT,n(t|x)| > α
)
≤ P

(
OP (1) > α/δ

)
,

whenever ΛT (t00 +ε|x) < α, where the last inequality follows from (A.5) and the remainder OP (1)

does not depend on α and δ. From this estimate we obtain for any τ with FS(τ |x) < 1

P
(

sup
t∈[0,τ)

|ΛT,n(t|x)−ΛT (t|x)| > 4α
)
≤ P

(
sup

t∈[t00+εδ,τ)

|ΛT,n(t|x)−ΛT (t|x)| > 2α
)

+P
(
OP (1) > α/δ

)
.
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By (A.4) The first probability on the right hand side of the inequality converges to zero as n tends

to infinity for any α, εδ > 0, and the limit of the second one can be made arbitrarily small by

choosing δ appropriately. Thus we obtain limn→∞ P
(

supt∈[0,τ) |ΛT,n(t|x) − ΛT (t|x)| > 4α
)

= 0,

which implies the weak uniform consistency of ΛT,n(.|x) on the interval [0, τ).

Finally, the continuity of the mapping ΛT 7→ FT [see the discussion in Anderson et al. (1993)

following Proposition II.8.7] yields the weak uniform consistency of the estimate FT,n and the first

part of the theorem is established.

For a proof of the second part, we use an idea from Wang (1987). Note that, as soon as FT,n(.|x)

is increasing and bounded by 1 from above, we have the inequality supt≥a |FT,n(t|x)− FT (t|x)| ≤
|FT,n(a|x)− FT (a|x)|+ (1− FT (a|x)). Thus

sup
t≥0
|FT,n(t|x)− FT (t|x)| ≤ 2 sup

0≤t≤a
|FT,n(t|x)− FT (t|x)|+ 2(1− FT (a|x)),

and by assumption and part one of the theorem we can make 1 − FT (a|x) arbitrarily small with

uniform consistency on the interval [0, a] still holding. Consequently, we obtain the uniform con-

sistency on [0,∞), which completes the proof of Theorem 3.5. 2

Proof of Theorem 3.6: The second part follows from the first one by the Hadamard differ-

entiability of the map A 7→
∏

(t,∞](1 − A(ds)) in definition (2.10) [see Patilea and Rolin (2001),

Lemma A.1] and the delta method [Gill (1989)]. Note that these results require a.s. continuity of

the sample paths which follows from the fact that the process GM defined in the first part of the

Theorem has a.s. continuous sample paths together with the continuity of FL(.|x).

The proof will now proceed in two steps: first we will show that weak convergence holds in

D3([σ,∞]) for any σ > t00 and secondly we will extend this convergence to D3([t00,∞]). Note that

from condition (D5) we obtain FL(t00|x) > 0, and the continuity of FL(.|x) yields t00 > 0.

Set ε > 0 and choose σ > t00 such that H(σ|x) > ε. Recall that the map

(H,H0, H2) 7→ (H,H0,M
−
2 )

is Hadamard differentiable on the domain D̃ := {(A1, A2, A3) ∈ BV 3
1 ([σ,∞]) : A1 ≥ 0, A3 ≥ ε/2}

[see Patilea and Rolin (2001)] and takes values in BV 3
C([σ,∞]). Here BVC denotes the space of

functions of bounded variation with elements uniformly bounded by the constant C. Moreover,

assumption (W2) implies weak convergence and weak uniform consistency of the estimator Hn

on D([σ,∞]). Therefore (H0,n, H2,n, Hn) will belong to the domain D̃ with probability tending

to one if n → ∞. Hence, we can define the random variable H̄n := IAnHn + IACn where An :=
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{
inft∈[σ,∞]Hn(t) ≥ ε/2

}
, which certainly has the property H̄n ≥ ε/2 on [σ,∞] almost surely. Now,

since P(H̄n 6= Hn] = 1 − P(An) → 0, the weak convergence result in (W2) continues to hold on

D3([σ,∞]) with Hn replaced by H̄n. By the same argument, we may replace the Hn in the

definition of M−
2,n by H̄n without changing the asymptotics. Thus we can apply the delta method

[see Gill (1989), Theorem 3] to (H0,n, H2,n, H̄n) and deduce the weak convergence

√
nh(Hn −H,H0,n −H0,M

−
2,n −M−

2 )⇒ (G,G0, GMσ) in D3([σ,∞]).

To obtain the weak convergence in D3([t00,∞]), we apply a Lemma from Pollard (1984, page 70,

Example 11). First define GM as the pathwise limit of GMσ(σ) for σ ↓ t00, the existence of this

limit is discussed in Remark 3.7. Note that there exist versions of GM , G,G0 with a.s. continuous

paths (this holds for G and G0 by assumption, whereas the paths of GM are obtained from those of

G2, G by a transformation that preserves continuity [see equation (3.4)]), and hence the condition

on the limit process in the Lemma is fulfilled.

Hereby we have obtained a Gaussian process GM on the interval [t00,∞] and have taken care of

condition (iii) in the Lemma in Pollard (1984). For arbitrary positive ε and δ we now have to

find a σ = σ(δ, ε) > t00 such that

P

(
sup

t00<t≤σ
|GM(t)| ≥ δ

)
< ε(A.6)

lim sup
n→∞

P

(
sup

t00<t≤σ

√
nh
∣∣(M−

2,n −M−
2 )(σ − |x)− (M−

2,n −M−
2 )(t− |x)

∣∣ ≥ δ

)
< ε.(A.7)

Note that once we have found a σ such that (A.7) holds, we can make σ smaller until (A.6) is ful-

filled with (A.7) still holding. This is possible because for every δ > 0, limσ↓t00 P
(
supt00<t≤σ |GM(t)| ≥ δ

)
=

0, which can be established as follows. Define the function κ(t) :=
∫∞
t

M−
2 (ds|x)

H(s|x)
and denote by Wt

a Brownian motion on [0,∞]. Then we have

Cov(
√
b(x)Wκ(s),

√
b(x)Wκ(t)) = b(x)(κ(s) ∧ κ(t)) = b(x)

∫ ∞
s∨t

M−
2 (ds|x)

H(s|x)
= Cov(GM(s), GM(t)),

where the last equality follows from Remark 3.7. Thus we have represented the process GM in

terms of a Brownian motion and the assertion follows from the finiteness of κ(t00) [by assumption

(D5)] and the properties of the Brownian motion.

In order to prove the existence of a constant σ that ensures (A.7), we reverse time and transform

our problem into the setting of conditional right censorship [see Section 3.3]. To be more precise,

define the function a(t) := 1
t

which is strictly decreasing and maps the interval [0,∞] onto itself.

Consider the random variables Bi := a(Si), Di := a(Li), Zi := Bi ∧ Di and ∆i := I{Di≤Bi} =
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I{Si≤Li}. This is a conditional right censorship model with the useful property that Λ−D(.|Xi), the

predictable hazard function of Di, is closely connected to the reverse hazard function M−
2 (.|Xi)

by the identity

Λ−D(a(t)|x) = M−
2 (∞|x)−M−

2 (t− |x)

It is easy to verify that the conditional Nelson-Aalen estimator Λ−D,n(dt|x) in the new model is

related to the estimator M−
2,n in a similar way, i.e. Λ−D,n(a(t)|x) = M−

2,n(∞|x)−M−
2,n(t|x). Thus to

prove (A.7) it suffices to find a σ such that in the new model the following inequality is fulfilled

lim sup
n→∞

P

(
sup
σ≤t<t0

√
nh
∣∣(Λ−D,n − Λ−D)(t|x)− (Λ−D,n − Λ−D)(σ − |x)

∣∣ > δ

)
< ε,(A.8)

where we define t0 = a(t00) <∞. This assertion is established in the proof of Theorem 3.11 [note

that the assumptions (R2)-(R6) can be directly identified with the assumptions of Theorem 3.6].

2

Proof of Theorem 3.8: First of all note that the a.s. continuity of the sample paths of the

processes V (.) and W (.) follows because these processes are constructed from processes which

already have a.s. continuous sample paths in a way that preserves continuity. Thus it remains to

verify the weak convergence. From Theorem 3.6 we obtain

√
nh(Hn −H,H0,n −H0, FL,n − FL)⇒ (G,G0, G3)(A.9)

in D3([t00,∞]). Now from FL(s− |x)−H(s− |x) = FL(s− |x)(1− FS(s− |x)) and the definition

of τ it follows that

FL(s− |x)−H(s− |x) ≥ ε > 0 ∀s ∈ [t00, τ ]

[note that the inequality FL(t00 − |x) > 0 was derived at the beginning of the proof of Theorem

3.6]. For positive numbers δ define the event

An(δ) :=

{
inf

t∈[t00,τ)
(FL,n(t|x)−Hn(t|x)) > δ

}
.

Because of (A.9) [which implies the uniform consistency of FL,n(.|x) and Hn(.|x)], we have that

for δ < ε P (IAn(δ) 6= 1)
n→∞−→ 0. Define H̃n := HnIAn(δ), H̃0,n := H0,nIAn(δ) and F̃L,n := FL,nIAn(δ) +

IACn (δ), then it follows from (A.9)

√
nh(F̃L,n − FL − (H̃n −H), H̃0,n −H0)⇒ (G3 −G,G0) in D3([t00, τ ])
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Moreover, the pair (H̃0,n, F̃L,n− H̃n) is an element of {(A,B) ∈ BV 2
1 ([t00, τ ]) : A ≥ 0, B ≥ δ > 0}.

Since the map (A,B) 7→
∫ t
t00

dA(s)
B(s)

is Hadamard differentiable on this set [see Anderson et al.

(1993),page 113], the delta method [see Gill (1989)] yields

√
nh

(∫ .

t00

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
− Λ−T (.|x)

)
⇒ V (.)

in D([t00, τ ]]. Finally, observe that for t ≥ t00 we have

Λ−T,n(t|x) =

∫ t

t00

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
+

∫
[0,t00)

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
,

and thus it remains to prove that the second term in this sum is of order oP (1/
√
nh). From

Lemma B.2 in the Appendix B we obtain the bound: supt00≥t≥W(2)(x,n)
1

FL,n(s−|x)−Hn(s−|x)
= OP (1),

where W(2)(x, n) is defined in the proof of theorem 3.5, and it follows∫
[W(2)(x,n),t00)

H0,n(ds|x)

FL,n(s− |x)−Hn(s− |x)
≤ H0,n(t00|x)OP (1).

Standard arguments yield the estimate H0,n(t00|x) = oP (1/
√
nh) and thus it remains to derive an

estimate for the integral
∫

[0,W(2)(x,n))

H0,n(ds|x)

FL,n(s−|x)−Hn(s−|x)
. For this purpose we consider two cases. The

first one appears if the δi corresponding to W(1)(x, n) equals 0. In this case there is positive mass at

the point W(1)(x, n) but at the same time FL,n(s|x) = FL,n(W(2)(x, n)|x) for all s ∈ [0,W(2)(x, n))

and hence
∫

[0,t00)

H0,n(ds|x)

FL,n(s−|x)−Hn(s−|x)
≤ H0,n(t00|x)OP (1). For all other values of the corresponding

δi the mass of H0,n(ds|x) at the point W(1)(x, n) equals zero and thus the integral vanishes. Now

the proof of the theorem is complete. 2

Proof of Theorem 3.9: Note that the estimator F IP
T,n(.|x) is nondecreasing by construction. The

assertion for q̂IP (.|x) now follows from the Hadamard differetiability of the inversion mapping tan-

gentially to the space of continuous functions [see Proposition 1 in Gill (1989)], the continuity of

FT (.|x) and the weak uniform consistency of F IP
T,n(.|x) on the interval [0, τ ]. The corresponding

result for the estimator q̂(.|x) follows from the convergence P
(
q̂IP (.|x) ≡ q̂(.|x)

)
→ 1 [see the

discussion after Lemma 3.4]. 2

Proof of Theorem 3.10: Observe that the estimator F IP
T,n(.|x) is nondecreasing by construc-

tion and that Theorem 3.8 yields
√
n(F IP

T,n(.|x) − F T (.|x)) ⇒ W (.) on D([0, τ + α]) for some

α > 0 where the process W has a.s. continuous sample paths. Note that the convergence holds

on D([0, τ + α]). This follows from the continuity of FS(.|x) and F−1
T (.|x) at τ which implies
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FS(F−1
T (τ + α|x)|x) < 1 for some α > 0. By the same arguments fT (.|x) ≥ δ > 0 on the interval

[ε− α, τ + α] if we choose α sufficiently small. Thus Proposition 1 from Gill (1989) together with

the delta method yield the weak convergence of the process for q̂IP (.|x). The corresponding result

for q̂(.|x) follows from the fact that P
(
q̂IP (.|x) ≡ q̂(.|x)

)
→ 1. 2

Proof of Theorem 3.11: By the delta method [Gill (1989)], formula (3.6), and the Hadamard

differentiability of the product-limit mapping [Anderson et al. (1993)] it suffices to verify the weak

convergence of
√
nh(Λ−D,n(t|x) − Λ−D(t|x))t on D([0, t0]). The corresponding result on D([0, τ ])

with τ < t0 follows from the delta method and the Hadamard differentiability of the mapping

(π0,n, FZ,n) 7→ Λ−D,n. For the extension of the converegnce to D([0, t0]) it suffices to establish

condition (A.8) [this follows by arguments similar to those in the proof of Theorem 3.6]. Define

the random variable U as the largest Zi corresponding nonvanishing weight W̃i(x) i.e.

U = U(x) := max
{
Zi : W̃i(x) 6= 0

}
.

Note that for t ≥ U we have FZ,n(t|x) = 1 for the corresponding estimate of FZ(.|x). We write

Λ−D,n(y − |x) =
n∑
i=1

∫
[0,y)

d
(
W̃i(x)I{Zi≤t,∆i=1}

)
∑n

j=1 W̃j(x)I{Zj≥t}

=
n∑
i=1

∫
[0,y)

W̃i(x)I{Zi≥t}d
(
I{Zi≤t,∆i=1}

)∑n
j=1 W̃j(x)I{Zj≥t}

=
n∑
i=1

∫
[0,y)

Ci(x, t)I{1−FZ,n(t−|x)>0}dNi(t)

for the plug-in estimator of Λ−D(.|x), where

Ci(x, t) :=
W̃i(x)I{Zi≥t}∑n
j=1 W̃j(x)I{Zj≥t}

=
Ṽi(x)I{Zi≥t}∑n
j=1 Ṽj(x)I{Zj≥t}

,

and the quantity Ni(t) is defined as Ni(t) := I{Zi≤t,∆i=1}. In what follows, we will use the notation

G(A) =
∫
A
G(du) for a distribution function G and a Borel set A. With the definition

Λ̂−D,n(y − |x) :=
n∑
i=1

∫
[0,y)

Ci(x, t)I{1−FZ,n(t−|x)>0}Λ
−
D(dt|Xi)

we obtain the decomposition

|(Λ−D,n − Λ−D)((σ, t]|x)| ≤ |(Λ−D,n − Λ̂−D,n)((σ, U ∧ t]|x)|+ |(Λ−D,n − Λ̂−D,n)((U ∧ t, t]|x)|

+ |(Λ̂D,n − Λ−D)((σ, t]|x)|.
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Observing that Λ−D,n((U ∧ t, t]) = Λ̂−D,n((U ∧ t, t]) = 0 it follows that

|(Λ−D,n − Λ̂−D,n)((U ∧ t, t]|x)| = 0,

|(Λ̂−D,n − Λ−D)((σ, t]|x)| ≤ |(Λ̂−D,n − Λ−D)((σ, U ∧ t]|x)|+ Λ−D((U ∧ t, t]|x),

sup
σ≤t<t0

|(Λ̂−D,n − Λ−D)((σ, t ∧ U ]|x)| ≤ sup
σ≤t≤U∧t0

|(Λ̂−D,n − Λ−D)((σ, t]|x)|

where we set the supremum over the empty set to zero. Hence assertion (A.8) can be obtained

from the statements

√
nh sup

σ≤t<t0
Λ−D((U ∧ t, t]|x)

P−→ 0(A.10)

√
nh sup

σ≤t≤U∧t0
|(Λ̂−D,n − Λ−D)((σ, t]|x)| P−→ 0(A.11)

lim sup
n→∞

P

(√
nh sup

σ≤t<U∧t0
|(Λ−D,n − Λ̂−D,n)((σ, U ∧ t]|x)| > δ

)
< ε/2,(A.12)

which will be shown separately.

Proof of (A.10) For a proof of (A.10) note that

Λ−D((U ∧ t, t]|x) =

{
0 , U ≥ t

Λ−D((U, t]|x) , U < t

and Λ−D((U, t]|x) ≤ Λ−D((U ∧ t0, t0]|x) whenever U < t ≤ t0. Hence, the supremum in (A.10) can

be bounded by

(A) sup
σ≤t<t0

Λ−D((U ∧ t, t]|x) ≤ Λ−D((U ∧ t0, t0]|x).

Observing (R2) we have FD([t0,∞]|x) > 0 [note that Λ−D(dt|x) = FD(dt|x)
1−FD(t−|x)

] and obtain

(B) Λ−D((U ∧ t0, t0]|x) ≤
∫

(U∧t0,t0]

FD(dt|x)

FD([t0,∞]|x)
=
FD((U ∧ t0, t0]|x)

FD([t0,∞]|x)
.

Observing (A) and (B) it suffices to verify the convergence
√
nhFD((U ∧ t0, t0]|x)

P−→ 0. For this

purpose we introduce the notation

uαn = uαn(x) := inf
{
s :
√
nhFD((s, t0]|x) ≤ α

}
[note that uαn ≤ t0]. Assume that the interval I in condition (R5) contains the set [x, x + β) for

some β > 0 [the other case (x − β, x] ⊆ I can be treated analogously]. Then we obtain for any
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fixed α > 0 and sufficiently large n

P
(√

nhFD((U ∧ t0, t0]|x) > α
)
≤ E

[
I{U∧t0<uαn}

]
= E

[
E
[
I{U∧t0<uαn}

∣∣X1, ..., Xn

]]
≤ E

[
E
[ n∏
j=1

{
1− I{Zj≥uαn}I{W̃i(x)6=0}

} ∣∣∣X1, ..., Xn

]]
≤ E

[ n∏
j=1

{
1− E

[
I{Zj≥uαn}

∣∣Xj

]
I{|Xj−x|≤cn}

}]
= E

[ n∏
j=1

{
1− FZ([uαn,∞]|Xj)I{|Xj−x|≤cn}

}]
≤ E

[ n∏
j=1

{
1− FZ([uαn,∞]|Xj)I{Xj∈[x,x+cn]}

} ]
(∗)
≤ E

[ n∏
j=1

{
1− CFZ([uαn,∞]|x)I{Xj∈[x,x+cn]}

} ]
=

n∏
j=1

{
1− CFD([uαn,∞]|x)FB([uαn,∞]|x)E

[
I{Xj∈[x,x+cn]}

]}
≤

n∏
j=1

{
1− CFD([uαn, t0)|x)FB([uαn,∞]|x)E

[
I{Xj∈[x,x+cn]}

]}
=

n∏
j=1

{1− CFD([uαn, t0)|x)FB([uαn,∞]|x) (cnfX(x) + o(cn))}

≤
n∏
j=1

{
1− CO(1)

α2

nh

FB([uαn,∞]|x)

FD([uαn, t0)|x)
(cnfX(x) + o(cn))

}
=

(
1− Cα

2

n

FB([uαn,∞]|x)

FD([uαn, t0)|x)
fX(x)(1 + o(1))

)n
,

where the inequality (∗) follows from (R5), the last inequality follows from the definition of uαn,

and the last equality is a consequence of the fact that the estimate o(h) holds uniformly in j. Now

we have

FD([uαn, t0)|x)

FB([uαn,∞]|x)
≤

∫
[uαn ,t0)

FD(ds|x)

FB((s,∞]|x)
≤
∫

[uαn ,t0)

FD(ds|x)

FB((s,∞]|x)FD((s,∞]|x)FD([s,∞]|x)

=

∫
[uαn ,t0)

Λ−D(ds|x)

FZ((s,∞]|x)
−→ 0,

by (R2) [note that uαn → t0 if n→∞] and hence the proof of (A.10) is complete.
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Proof of (A.11) For fixed σ ≤ s ≤ U ∧ t0 and sufficiently small h we have

|(Λ̂−D,n − Λ−D)((σ, s]|x)| =
∣∣∣∫ s

σ

n∑
i=1

Ci(x, t)(λD(t|Xi)− λD(t|x))dt
∣∣∣

=
∣∣∣∫ s

σ

n∑
i=1

Ci(x, t)

(
∂xλD(t|x)(x−Xi) +

1

2
∂2
xλD(t|ξi)(x−Xi)

2

)
dt
∣∣∣

≤
∣∣∣∫ s

σ

n∑
i=1

Ci(x, t)(x−Xi)∂xλD(t|x)dt|+
∫ s

σ

n∑
i=1

Ci(x, t)(x−Xi)
2C

2
dt,

with some positive constant C, where we used (R4) in the last inequality. The second term in the

above inequality can be bounded as follows

C

2

∫ s

σ

n∑
i=1

Ci(x, t)(x−Xi)
2dt ≤ C

2

∫ s

σ

n∑
i=1

Ci(x, t)O(h2)dt ≤ C

2
(t0−σ)O(h2) = O(h2) = o

(
1√
nh

)
,

where the last inequality holds uniformly in s ∈ [σ, t0]. Thus it remains to consider the first term,

which can be represented as follows

Rn :=
∣∣∣∫ s

σ

∑n
i=1 Ṽi(x)I{Zi≥t}(x−Xi)∑n
j=1

Ṽj(x)∑n
k=1 Ṽk(x)

I{Zj≥t}

1∑n
k=1 Ṽk(x)

∂xλD(t|x)dt
∣∣∣

=
∣∣∣ 1∑n

k=1 Ṽk(x)

∫ s

σ

n∑
i=1

Ṽi(x)I{Zi≥t}(x−Xi)

(
1− FZ(t− |x)

1− FZ,n(t− |x)

)
∂xλD(t|x)

1− FZ(t− |x)
dt
∣∣∣.

Now, from condition (W1)(3) and (W1)(4) 1∑n
k=1 Ṽk(x)

= OP (1),
∑n

i=1 Ṽi(x)I{Zi≥t}(x − Xi) =

oP (1/
√
nh) uniformly in t ∈ (σ, U ∧ t0), (R3) and 1−FZ(t−x)

1−FZ,n(t−|x)
= OP (1) uniformly in t ∈ (σ, U ∧ t0)

[see Lemma B.3 in the Appendix B] we obtain

Rn = oP (1/
√
nh)

∣∣∣∣∫ s

σ

∂xλD(t|x)

1− FZ(t− |x)
dt

∣∣∣∣ ≤ oP (1/
√
nh)

∫ t0

σ

|∂xλD(t|x)|
1− FZ(t− |x)

dt = oP (1/
√
nh)

uniformly in s ∈ [σ, t0], and hence assertion (A.11) is established.

Proof of (A.12) Observe that |(Λ−D,n − Λ̂−D,n)((σ, U ∧ t0]|x)| ≤ |D1(U ∧ t0)−D1(σ)| , where we

have used the notation Mi(t) := Ni(t)−
∫ t

0
I{Zi≥s}Λ

−
D(ds|Xi) and

D1(t) :=
n∑
i=1

∫
[0,t]

Ci(x, t)I{1−FZ,n(t−|x)>0}dMi(t).(A.13)

Define Ft := σ(Xi, I{Zi≤t,∆i=1}, I{Zi≤t,∆i=0} : i = 1, ..., n) and note that Mi are independent locally

bounded martingales with respect to (Ft)t [see Theorem 2.3.2 p. 61 in Fleming and Harrington
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(1991)]. Moreover, I{1−FZ,n(t−|x)>0}, I{Zj≥t} and Ṽi(x) [and with them Ci(x, t)] are measurable

with respect to Ft and leftcontinuous, hence predictable. The structure of the ’weights’ Ci also

implies their boundedness.

Thus for t < t0 D1(t) is a locally bounded right continuous martingale with predictable variation

given by

〈D1, D1〉 (t) =

∫
[0,t]

n∑
i=1

C2
i (x, s)I{1−FZ,n(t−|x)>0}d 〈Mi,Mi〉 (s)(A.14)

=

∫
[0,t]

n∑
i=1

C2
i (x, s)I{1−FZ,n(t−|x)>0}Λ

−
D(ds|Xi).

Note that withD1, D1(t)−D1(σ) is also a locally bounded martingale for t ∈ [σ, t0] with predictable

variation 〈D1, D1〉 (t)− 〈D1, D1〉 (σ). Hence from a version Lenglart’s inequality [see Shorack and

Wellner (1986), p. 893, Example 1] we obtain

P
(

sup
σ≤t≤U∧t0

nh(D1(t)−D1(σ))2 ≥ ε
)
≤ η

ε
+ P (Dn ≥ η) ,(A.15)

where Dn = nh (〈D1, D1〉 (U ∧ t0)− 〈D1, D1〉 (σ)). If σ is sufficiently close to t0 it follows

Dn = nh

∫
[σ,U∧t0]

n∑
i=1

C2
i (x, t)Λ−D(dt|Xi)

= nh

∫
[σ,U∧t0]

n∑
i=1

Ṽ 2
i (x)I{Zi≥t}(∑n

j=1 Ṽj(x)I{Zj≥t}

)2 Λ−D(dt|Xi)

≤ nh sup
j
Ṽj(x)

∫
[σ,U∧t0]

n∑
i=1

Ci(x, t)

(1− FZ,n(t− |x))

1∑n
k=1 Ṽk(x)

Λ−D(dt|Xi)

(∗)
= OP (1)

∫
[σ,U∧t0]

n∑
i=1

Ci(x, t)

(1− FZ,n(t− |x))
λD(t|x)dt(1 + oP (1))

= OP (1)

∫
[σ,U∧t0]

λD(t|x)

1− FZ,n(t− |x)
dt(1 + oP (1))

= OP (1)

∫
[σ,U∧t0]

λD(t|x)

1− FZ(t− |x)

1− FZ(t− |x)

1− FZ,n(t− |x)
dt(1 + oP (1))

= OP (1)

∫
[σ,U∧t0]

λD(t|x)

1− FZ(t− |x)
dt

where we have used (R6), (W1)(1) and (W1)(3) in equality (∗) [note that the (1 + oP (1)) holds

uniformly in i and t] and Lemma B.3 in the last equality. Now we obtain from (R2) the a.s.

convergence
∫

[σ,U∧t0]
λD(t|x)

1−FZ(t−|x)
dt

σ→t0−→ 0 and hence assertion (A.12) ist established [first choose η in

38



(A.15) small enough to make η/ε small and then choose σ close enough to t0].

Summarizing these considerations, we have established (A.10)-(A.12) and the proof of the theorem

is complete. 2

B Auxiliary results: technical details

Lemma B.1 Let M be a locally bounded, rightcontinuous martingale on [0,∞) and denote by

〈M,M〉 the predictable variation of M . Then we have for any stopping time U with P (U <∞) = 1

and all η, ε > 0

P
(

sup
t≤U

M2(t) ≥ ε
)
≤ η

ε
+ P (〈M,M〉 (U) ≥ η)

Proof: In fact this Lemma is a specific version of Lenglart’s inequality [see Fleming and Harrington

(1991), Theorem 3.4.1]. To be precise note that it suffices to prove that for any a.s. finite stopping

time T

E[M2(T )] ≤ E[〈M,M〉(T )].(B.1)

Let τk denote a localizing sequence such that M(. ∧ τk) ≤ k and M2(t ∧ τk)− 〈M,M〉(t ∧ τk) is a

martingale. Define the processes

Xk(t) := M2(t ∧ τk), Yk(t) := 〈M,M〉(t ∧ τk).

Note that by Theorem 2.2.2 in Fleming and Harrington (1991) (Xk − Yk)(t ∧ T ) is a martingale

and hence for all t:

E[Xk(t ∧ T )] = E[Yk(t ∧ T )].(B.2)

Moreover, k ≥ Xk(t ∧ T )
t→∞−→ Xk(T ) a.s., and hence we obtain by the Dominated Convergence

Theorem

E[Xk(T )] = lim
t→∞

E[Xk(t ∧ T )].

Since the process 〈M,M〉 is increasing, we also have

〈M,M〉(t ∧ T ) ↑ 〈M,M〉(T ) a.s.

and by the Monotone Convergence Theorem

E[Yk(T )] = lim
t→∞

E[Yk(t ∧ T )].
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Combining this and (B.2) we obtain the identity E[Xk(T )] = E[Yk(T )] for all a.s. finite stopping

times T . Hence we can apply Lenglart’s inequality to the process Xk dominated by Yk which leads

to:

P1,k := P

(
sup
t≤U

M2(t ∧ τk) ≥ ε

)
≤ η

ε
+ P (〈M,M〉(U ∧ τk) ≥ ε) =:

η

ε
+ P2,k.

Finally, from supt≤U M
2(t∧τk) = supt≤U∧τkM

2(t) ↑ supt≤U M
2(t) and 〈M,M〉(U∧τk) ↑ 〈M,M〉(U)

a.s. as k tends to infinity we obtain the desired result. 2

Lemma B.2 Assume that conditions (D2) and (D12) hold. Denote by W1(x, n), ...,Wk(x, n)

those values of Y1, ..., Yn, whose weights fulfill Wi(x) 6= 0 and by W(1)(x, n), ...,W(k)(x, n) the

corresponding increasingly ordered values. Assume that the estimators FL,n and Hn are based

on weights Wi(x) = Vi(x)/
∑

j Vj(x) with Vi(x) satisfying the conditions (W1)(1)-(W1)(2), that

FS,n(r|x) := Hn(r|x)/FL,n(r|x) is consistent for some r > t00 with FS(r|x) < 1 and that all the

observations Yi are distinct. Then we have for any b < r:

sup
b≥s≥W(2)(x,n)

1

FL,n(s− |x)−Hn(s− |x)
= OP (1).

Proof: As in the proof of Theorem 3.6 we reverse the time and use the same notation. Write

Vx := a(W(2)(x, n)), v = a(r), w = a(b), then the statement of the Lemma can be reformulated as

sup
w≤s≤Vx

1

1− FD,n(s|x)− (1− FZ,n(s|x))
= OP (1).

With the notation FB,n(s|x) := 1 − (1 − FZ,n(s|x))/(1 − FD,n(s|x)) the denominator in this ex-

pression can be rewritten as

1

1− FD,n(s|x)− (1− FZ,n(s|x))
=

1

(1− FD,n(s|x))FB,n(s|x)

[note that FB,n(v|x) = 1− FS,n(r− |x)]. Since FB,n(s|x) is increasing in s and consistent at some

point v ≤ w with FB,n(v|x) > 0, we only need to worry about finding a bound in probability for

the term 1/(1−FD,n(s|x)). Such a bound can be derived by exploiting the underlying martingale

structure of the estimator Λ−D,n(t) of the hazard measure. More precisely, using exactly the same

arguments as given in the proof of Theorem 3.6 and the same notation we obtain Λ−D,n(t∧Vx|x)−
Λ̂−D,n(t∧ Vx|x) = D1(t∧ Vx), where D1(t) is defined in (A.13) and is a locally bounded continuous

martingale on [0,∞) with predictable variation given in (A.14). The martingale property of D1(t)

implies that |D1(t)| is a nonnegative submartingale and from Doob’s submartigale inequality we

obtain for any β > 0 and sufficiently large n

P
(

sup
t≤Vx
|D1(t)| ≥ 1

β

)
≤ βE|D1(Vx)| ≤ β

√
E|D1(Vx)|2 ≤ β

√
E〈D1, D1〉 (Vx) ≤ β

√
sup

y∈Uε(x)

Λ−D(Vx|y),
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where we have used the inequality (B.1) from the proof of Lemma B.1 and the fact that the

weights Ci are positive and sum up to one. Note that the expression
√

supy∈Uε(x) Λ−D(Vx|y) is

finite. This follows from condition (D12), which now reads supy∈Uε(x) 1 − FD(τ̃T (y)|y) < 1 since

we have reversed time, and the relation Λ−D(t|x) = − log(1−FD(t|x)). Thus we have obtained the

estimate supt≤Vx |D1(t)| = OP (1).

From the definition of Λ̂−D,n(t|x) we can derive the bound supt Λ̂−D,n(t|x) ≤ supy∈Uε(x) Λ−D(Vx|y),

and thus obtain

sup
t≤Vx

Λ−D,n(t|x) ≤ sup
t≤Vx
|D1(t)|+ sup

t≤Vx
Λ̂−D,n(t|x) = OP (1).(B.3)

Finally, we note that the estimator FD,n(s|x) can be expressed in terms of the statistic Λ−D,n(t|x)

by using the product limit map as 1 − FD,n(t|x) =
∏

[0,t]

(
1− Λ−D,n(ds|x)

)
. By exactly the same

arguments as given in the proof of Lemma 6 in Gill and Johansen (1990) we obtain the inequality

1− FD,n(t|x) ≥ exp
(
−c(η)Λ−D,n(t|x)

)
a.s.

whenever 0 < t ≤ Vx, where 1 − 2η is the size of the largest atom of Λ−D,n on the interval (0, Vx]

and c(η) := − log(η)/(1 − η) < ∞ [note that, whenever all observations take distinct values,

the size of the largest atom of Λ−D,n on (0, Vx] is less or equal to the largest possible value of∑
iWi(x)I{Zi=Vx,∆i=1}/

∑
iWi(x)I{Zi≥Vx} which can in turn be bounded by c/(c+c) < 1 uniformly

in n and thus η > 0]. The desired bound for 1/(1 − FD,n(s|x)) now follows from the above

inequality together with (B.3) and thus the proof is complete. 2

Lemma B.3 Let (X1, Y1), ..., (Xn, Yn) denote i.i.d. random variables with F (y|x) := P (Y1 ≤
y|X1 = x). Define F̂ (y|x) :=

∑
i

Vi(x)I{Yi≤y}∑
j Vj(x)

, which is an estimator of the conditional distribution

function F (y|x) and assume that the weights weights Vi(x) satisfy conditions (W1)(1)-(W1)(3),

the bandwidth h fulfills nh2+ε →∞, h→ 0 and that additionally the following conditions hold

1. F (t|x) is continuous at (t0, x0)

2. there exist constants C > 0, δ > 0 such that 1 − F (t|y) ≥ C(1 − F (t|x)) for all (t, y) ∈
(t0 − δ, t0]× I where I is an interval of positive length with x ∈ I.

3. F (t0 − δ|z) is continuous in the second component at the point z = x

4. The distribution function G of the random variables Xi has a continuous density g with

g(x) > 0.
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Then, with the notation U := max{Yi : Vj(x) 6= 0}, we have for n→∞

sup
0≤y≤t0∧U

1− F (y − |x)

1− F̂n(y − |x)
= OP (1).

Proof: Define

F̄n(y|x) :=

∑n
i=1 F (y|Xi)I{|x−Xi|≤h}∑n

i=1 I{|x−Xi|≤h}
,

and observe the representation

1− F (y − |x)

1− F̂n(y − |x)
=

1− F̄n(y − |x)

1− F̂n(y − |x)

1− F (y − |x)

1− F̄n(y − |x)
.

We now will derive bounds for both ratios on the right hand side. For the first factor we note that

the interval I from condition 2. contains either (x − ε, x] or [x, x + ε) for some ε > 0. We only

treat the first case. We have for sufficiently small h for all t ∈ (t0 − δ, t0]

Xi ∈ (x− h, x]⇒ 1− F (t− |Xi) > C(1− F (t− |x))

This implies

sup
t∈(t0−δ,t0]

1− F (t− |x)

1− F̄n(t− |x)

= sup
t∈(t0−δ,t0]

1− F (t− |x)∑
i I{Xi∈(x−h,x]}(1− F (t− |Xi))

∑
i I{Xi∈(x−h,x]}(1− F (t− |Xi))∑
i I{|x−Xi|≤h}(1− F (t− |Xi))

∑
i

I{|x−Xi|≤h}

≤ 1

C

∑
i I{|x−Xi|≤h}∑
i I{Xi∈(x−h,x]}

=
1

C

Gn(x+ h)−Gn(x− h)

Gn(x)−Gn(x− h−)
,

where Gn denotes the empirical distribution function of X1, ..., Xn.

It is a well known fact that nα‖Gn−G‖∞
n→∞−→ 0 ∀α < 1/2 almost surely. Since G has a continuous

density g with g(x) > 0, we obtain

Gn(x+ h)−Gn(x− h)

Gn(x)−Gn(x− h−)
=

1
h
(G(x+ h)−G(x− h)) + oP (1)
1
h
(G(x)−G(x− h−)) + oP (1)

P−→ 2,

which yields

P
(

sup
t∈[t0−δ,t0]

1− F (t− |x)

1− F̄n(t− |x)
>

2

C
+ ε
)
−→ 0 ∀ ε > 0.

It now remains to consider the interval [0, t0 − δ]. Observe that condition 3. implies 1 − F (t0 −
δ − |Xi) ≥ 0.5(1− F (t0 − δ − |x)) if |Xi − x| is sufficiently small, which yields

1− F (t− |x)

1− F̄n(t− |x)
≤ 1− F (t− |x)

1− F̄n(t0 − δ − |x)
≤ 2

1− F (t− |x)

1− F (t0 − δ − |x)
<∞
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for sufficiently large n. Summarizing, we have obtained the estimate

sup
0≤y≤t0

1− F̄n(y − |x)

1− F (y − |x)
= OP (1).

Thus it remains to consider the ratio (1− F̄n(y−|x))/(1− F̂n(y−|x)). For this purpose note that

1− F̂ (y − |x) =
∑
i

Vi(x)(1− I{Yi<y})∑
j Vj(x)

=
1 + oP (1)

C(x)

∑
i

Vi(x)(1− I{Yi<y})(B.4)

≥ c
1 + oP (1)

C(x)

1

nh

∑
i

I{Vi(x)6=0}(1− I{Yi<y})

≥ c
1 + oP (1)

C(x)

1

nh

∑
i

I{|x−Xi|≤h}(1− I{Yi<y})

= cfX(x)
1 + oP (1)

C(x)

∑
i I{|x−Xi|≤h}(1− I{Yi≤y})∑

j I{|x−Xj |<h}
,

uniformly in y. In (B.4) the last equality follows from 1
nh

∑
j I{|x−Xj |≤h} = fX(x)(1 + oP (1)), the

second equality is a consequence of (W1)(3) and the two inequalities follow from (W1)(1) and

(W1)(2), respectively. Note that the quantity
∑

i I{|x−Xi|≤0}(1 − I{Yi<y})/
∑

j I{|x−Xj |≤h} equals

1 − F̂NW (y − |x) where F̂NW is the Nadaraya-Watson estimator of F with rectangular kernel.

Thus it remains to find a bound for (1 − F̂NW (y − |x))/(1 − F̄n(y − |x)). Conditionally on

X1, ..., Xn, this is simply the ratio between 1−Fn and 1− F̄ where Fn is the empirical distribution

function of the sample {Yi : |x−Xi| ≤ h} with sample size
∑

j I{|x−Xj |≤h} and F̄ is the averaged

distribution function of the corresponding Yi. Since the random variables Yi are independent

conditionally on Xi, we can apply the results from van Zuijlen (1978) to obtain the bound

P
(

1− F̂NW (t− |x) < β(1− F̄n(t− |x)) ∀t ≤ U
∣∣∣X1, ..., Xn

)
≤ 2π2

3

β2

(1− β)4
.

Since the right hand side of the last inequality does not depend on any random quantities or their

distributions, this result also holds unconditionally, and thus the proof is complete. 2
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