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Abstract

In this paper, we investigate optimal designs for multivariate additive spline regression
models. We assume that the knot locations are unknown, so must be estimated from the
data. In this situation, the Fisher information for the full parameter vector depends on the
unknown knot locations, resulting in a non-linear design problem. We show that locally,
Bayesian and maximin D-optimal designs can be found as the products of the optimal
designs in one dimension. A similar result is proven for Q-optimality in the class of all
product designs.

Keywords and Phrases: Additive spline model, Bayesian D-optimality, maximin D-optimality,

Q-optimality, product designs,

1 Introduction

Polynomial spline modeling is a popular statistical technique for nonparametric function esti-

mation, because of its similarity to polynomials and its conceptual simplicity [see e.g. De Boor
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(1978), Dierckx (1995) or Eubank (1999) among many others]. These concepts have first been

considered in the case of a univariate predictor and have then been extended to the situation

of a multivariate predictor usually combining univariate basis functions from different compo-

nents of the predictor [see for example Friedman (1991), Stone et al. (1997) among others].

Several authors propose to use least squares splines [see e.g. Hartley (1961) and Gallant and

Fuller (1973) for some early references]. If the knots are assumed to be fixed, this approach is

particularly attractive because of its computational simplicity. Grove et al. (2004) use B-splines

to analyse data from an engine-mapping experiment from the automotive industry. For some

further applications of spline models in the context of dynamic programming, computer models

and chromatography we refer to Chen et al. (1999), Siddapa et al. (2007), Fang (2006) and

Put et al. (2004). If the knots are also estimated from the data the estimation problem is a

nonlinear least squares problem and the computation of the estimate and appropriate designs is

substantially more difficult [see e.g. Jupp (1978) or Mao and Zhao (2003)].

In the case where the knots are assumed to be known several authors have studied the problem of

constructing optimal designs for the corresponding segmented univariate polynomial regression

models [see e.g. Studden and Van Arman (1969), Studden (1971), Murty (1971a,b), Park (1978),

Kaishev (1989), Heiligers (1998, 1999), Woods and Lewis (2006) among others]. If the design of

experiment should also address the precise estimation of the knots, the situation is substantially

more difficult. Recently, Dette et al. (2008) considered the problem of constructing optimal

designs for (univariate) free knot least squares splines, while Dette et al. (2009) discussed

optimal designs for (univariate) smoothing splines.

Most of the literature on design of experiments for spline regression models discusses the uni-

variate case. Recently Yue and Hickernell (2002) investigated smoothing splines for ANOVA

models while Woods et al. (2003) considered optimal design problems for multivariate B-spline

models, where the knots are assumed to be known and do not have to be estimated from the

data.

This is the first paper to consider multivariable designs for spline models with unknown knots,

which is the most prevalent situation in practical problems encountered in industry. The paper

is organised as follows. After a brief introduction into the terminology in Section 2 we consider

optimal design problems in an additive spline regression model with a K-dimensional predictor

and a truncated power basis, where the knots for each coefficient are also estimated from the data.

We derive theoretical results on locally, Bayesian and standardised maximin D-optimal designs

for these models in Section 3, and apply these results to the engine mapping problem considered

by Grove et al. (2004). We also show that the same assertions hold true for Ds-optimal designs

for estimating the knots and briefly consider models containing interaction terms. In Section

4, we investigate local and robust Q-optimal designs for predictions at unobserved locations of

the predictor. In Section 5, we show that the results derived in Sections 3 and 4 hold for any

regression spline basis spanning the same space. Our results are illustrated by several examples

throughout the paper, and some conclusions are given in Section 6. Finally, the proofs of our

results can be found in an Appendix.
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2 Optimal design for additive spline models

The general form of a spline regression function in one variable xk ∈ [ak, bk] ⊂ IR using a

truncated power basis is given by

µk(xk) = θk,1 +

lk∑
i=2

θk,ix
i−1
k +

rk∑
i=1

lik−1∑
j=0

θk,i,j(xk − λk,i)mk−j
+ =: θk,1 + γTk (xk, λk)θ(k) (1)

where the last identity defines the vector γk in an obvious manner, θ(k) is the vector of all linear

parameters in model (1) except the intercept, and λk = (λk,1, . . . , λk,rk)T ∈ Λk is the vector

of all knots in model (1). Throughout the paper, we define z+ = max(0, z) and Λk = {λk ∈
[ak, bk]

rk |λk,1 < λk,2 < . . . < λk,rk}. Moreover, we assume that lk ≤ mk + 1 and lik ≤ mk − 1 to

ensure that the regression function is continuously differentiable.

In many real life problems, there will be more than one explanatory variable, and this situation

can be accommodated by fitting additive spline models in K variables of the form

Yi = µ(x1,i, . . . , xK,i) + εi, εi
iid∼ N (0, σ2), i = 1, . . . , n,

µ(x) = θ1 +
K∑
k=1

γTk (xk, λk)θ(k), x = (x1, . . . , xK)T . (2)

Example 1 To familiarise with the notation, consider a simple example. Assume we have the

quadratic two-factor model (l1 = l2 = 3) with one knot in each direction (r1 = r2 = 1), i.e.

µ(x1, x2) = θ1 + θ1,2x1 + θ1,3x
2
1 + θ1,1,0(x1 − λ1,1)2

+ + θ2,2x2 + θ2,3x
2
2 + θ2,1,0(x2 − λ2,1)2

+. (3)

All exponents of the terms including the knots (m1− j and m2− j) are 2, so l11−1 = l12−1 = 0

(l11 = l12 = 1) and m1 = m2 = 2. Thus lk = mk + 1 and lik = mk − 1 for k = 1, 2, i = 1, so the

conditions on the degree of the polynomial part and the smoothnesses of the spline part are also

satisfied.

The full parameter vector to be estimated is (θT , λT )T where θ = (θ1, θ
T
(1), . . . , θ

T
(K))

T and λ =

(λT1 , . . . , λ
T
K)T . Obviously, model (2) is linear in the θ-component of the parameter vector, and

non-linear in λ. Throughout this paper, we consider approximate designs. An approximate

design

ξ =

(
x(1) x(2) . . . x(m)

w1 w2 . . . wm

)
is a probability measure with finite support on the design space χ = [a1, b1]× . . .× [aK , bK ], i.e.

x(i) ∈ χ, i = 1, . . . ,m. Without loss of generality, we let ak = −1, bk = 1 for all k = 1, . . . , K.

The observations are taken at the support points of the design, and the number of observations

in each point x(i) is proportional to the weight wi.
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The Fisher information of a design ξ is then given by the matrix

M(ξ, θ, λ) =

∫
g(x, θ, λ)gT (x, θ, λ) dξ(x) =

m∑
i=1

wi g(x(i), θ, λ)gT (x(i), θ, λ)

where g(x, θ, λ) is the vector of derivatives of the regression function µ(x) with respect to the

model parameters, i.e. g(x, θ, λ) = (1, gT1 (x1, θ(1), λ1)), . . . , gTK(xK , θ(K), λK))T with

gTk (xk, θ(k), λk)) =

((
∂µk(xk)

∂θ(k)

)T
,

(
∂µk(xk)

∂λk

)T)
.

The Fisher information can be expressed as

M(ξ, θ, λ) = CθI(ξ, λ)CT
θ (4)

where Cθ is a nonsingular block-diagonal square matrix depending only on θ, but neither on λ

nor the design ξ, and

I(ξ, λ) =

∫
f(x, λ)fT (x, λ) dξ(x).

The vector f(x, λ) is defined by f(x, λ) = (1, f̃T1 (x1, λ1), . . . , f̃TK(xK , λK))T where the components

of the vector f̃k(xk, λk), k = 1, . . . , K, are given by

(f̃k(xk, λk))q =



xqk q = 1, . . . , lk − 1

(xk − λk,1)mk−q+1+α0
+ q = α0 + 1, . . . , α1

(xk − λk,2)mk−q+1+α1
+ q = α1 + 1, . . . , α2

...
...

(xk − λk,rk)
mk−q+1+αrk−1

+ q = αrk−1 + 1, . . . , αrk

(5)

where αj = lk − 1 +
∑j

s=1(lsk + 1), j = 0, . . . , rk, and q = 1, . . . , pk with pk + 1 the number of

parameters in the kth single factor model (1). Similarly, for each single factor model µk(xk), the

Fisher information can be expressed as

Mk(ξk, θk, λk) = Cθk
I(ξk, λk)C

T
θk

where Ik(ξk, λk) =
∫
fk(xk, λk)f

T
k (xk, λk) dξk(xk) and the vector fk(xk, λk) equals (1, f̃Tk (xk, λk))

T .

The non-singular matrices Cθk
, k = 1, . . . , K, without their first rows and columns, respectively,

form the blocks around the main diagonal of the matrix Cθ, together with the first block con-

sisting of the value 1.

From (4) we obtain that both the single factor models (1) and the additive model (2) are

partially nonlinear models in the sense of Hill (1980) and Khuri (1984). Using properties of the

determinant, it follows that

|M(ξ, θ, λ)| = |CθI(ξ, λ)CT
θ | = |Cθ|2 |I(ξ, λ)|,
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so the same design ξ∗D,λ will maximise the determinants of the Fisher information M(ξ, θ, λ) and

of the more manageable matrix I(ξ, λ), which will be denoted as information matrix in what

follows. The design ξ∗D,λ will only depend on the vector of the unknown knot locations λ, but not

on the linear parameters θ. Following Chernoff (1953), we call a design ξ∗D,λ locally D-optimal

if it maximises the determinant of the Fisher information matrix for given λ, i.e.

ξ∗D,λ = arg max
ξ
|I(ξ, λ)|.

3 D- and Ds-optimal designs

3.1 Locally and robust D-optimal designs

The concept of local D-optimality requires knowledge of the unknown parameter vector λ. If

λ is misspecified at the design stage, the design may be inefficient, i.e. will not allow accurate

estimation of the model parameters. Several approaches to overcome the parameter dependency

of optimal designs in nonlinear models have been suggested. We will focus on two non-sequential

concepts: Bayesian D-optimality (see, e.g. Chaloner and Verdinelli, 1995) and standardised

maximin D-optimality (Imhof, 2001).

When some prior knowledge about the location of the knots is available, which can be summarised

in a prior distribution π(λ) on Λ where Λ = Λ1×Λ2× . . .×ΛK , it is reasonable to use a Bayesian

optimality criterion which averages the original criterion over the plausible values for λ. The

Bayesian D-optimality criterion function with respect to the prior π on Λ is given by

ΦD,π(ξ) =

∫
Λ

log |I(ξ, λ)| dπ(λ), (6)

and is maximised with respect to the design ξ.

If only an interval for each knot can be specified, the problem of specifying a prior on the knots

can be avoided by using a maximin approach guarding the experiment against the worst case

scenario. This is a more cautious approach than the Bayesian, and is recommended in the

absence of sufficient prior knowledge. The standardised maximin D-optimality criterion is

ΨD,ΛM
(ξ) = inf

λ∈ΛM

Φ(ξ, λ) = inf
λ∈ΛM

|I(ξ, λ)|
|I(ξ∗D,λ, λ)|

(7)

where ξ∗D,λ is the locally D-optimal design with respect to λ and ΛM ⊆ Λ is the set in which λ

is supposed to lie.

The following result states how Bayesian and standardised maximin D-optimal designs for the

additive model (2) can be constructed from the corresponding Bayesian and standardised max-

imin D-optimal designs for the single factor models (1).

Theorem 1 (a) Let π(λ) be a prior for λ ∈ Λ with marginals πk(λk), k = 1, . . . , K. Then

the product design ξ∗D,π = ξ∗D,π1
⊗ ξ∗D,π2

⊗ . . . ⊗ ξ∗D,πK
is Bayesian D-optimal with respect
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to π(λ) for the additive model, where ξ∗D,π1
, . . . , ξ∗D,πK

are the Bayesian D-optimal designs

with respect to πk(λk) in the single factor models (1).

(b) Let ξ∗D,ΛM,1
, . . . , ξ∗D,ΛM,K

be the standardised maximin D-optimal designs with respect to

ΛM,k, k = 1, . . . , K, in the single factor models (1) for compact parameter spaces ΛM,k ⊂
Λk. Then the product design ξ∗D,ΛM

= ξ∗D,ΛM,1
⊗ ξ∗D,ΛM,2

⊗ . . . ⊗ ξ∗D,ΛM,K
is standardised

maximin D-optimal with respect to ΛM = ΛM,1 × . . .× ΛM,K in the additive model (2).

See Appendix A.1 for the proof of Theorem 1. Local D-optimality can be viewed as a special

case of Bayesian D-optimality with a point mass prior on λ.

Applying Theorem 1 and Theorem 3.1 in Dette et al. (2008) we can find an explicit solution

of the locally D-optimal design problem for the additive model if the regression function has

exactly one continuous derivative at each knot.

Corollary 1 Let mk ≥ lk− 1 and lik = mk− 1 for all i. Then the locally D-optimal design ξ∗D,λ
with respect to λ = (λT1 , . . . , λ

T
K)T in the additive model (2) on the design space χ is the product

design with marginals ξ∗D,λk
, k = 1, . . . , K, where the support points xk,1, . . . , xk,pk+1 of ξ∗D,λk

have

equal weights wk,i = 1/(pk + 1), i = 1, . . . , pk + 1, where pk + 1 is the number of parameters in

the marginal model µk. The support points are given by

xk,i = ak + (νk,i,lk + 1)
(λk,1 − λk,0

2

)
, i = 1, . . . , lk,

xk,i−1+lk+(s−1)mk
= λs + (νk,i,mk+1 + 1)

(λk,s+1 − λk,s
2

)
, i = 2, . . . ,mk + 1, s = 1, . . . , rk,

where λk,0 = ak, λk,rk+1 = bk, νk,1,t, . . . , νk,t,t are the ordered roots of the polynomial

(x2
k − 1)L′t−1(xk) and L′t(xk) is the derivative of the tth Legendre polynomial.

Example 2 Consider Example 1 on the design space [−1, 1]2. Note that the condition lik =

mk − 1 for all i from Corollary 1 is satisfied. For both marginal models lk = mk + 1 = 3, so the

required values are νk,1,3 = −1, νk,2,3 = 0 and νk,3,3 = 1 for k = 1, 2. Applying Corollary 1, we

obtain the general form of the locally D-optimal marginal designs as

ξ∗D,λk
=

(
λk,0 (λk,0 + λk,1)/2 λk,1 (λk,1 + λk,2)/2 λk,2

0.2 0.2 0.2 0.2 0.2

)
.

For λ1,1 = −0.5 and λ2,1 = 0.5 (λk,0 = −1, λk,2 = 1) we obtain

ξ∗D,λ1
=

(
− 1 − 0.75 − 0.5 0.25 1

0.2 0.2 0.2 0.2 0.2

)
,

ξ∗D,λ2
=

(
− 1 − 0.25 0.5 0.75 1

0.2 0.2 0.2 0.2 0.2

)
and the product design of these marginals is locally D-optimal in the two-factor model.
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Although the D-optimal information matrix I(ξ∗D,λ, λ) for the additive model (2) is uniquely

determined due to the strict log-concavity of the determinant criterion, the locally D-optimal

designs are not necessarily unique even if the D-optimal designs for the single factor models are

unique. Remark 1 characterises the support of any D-optimal design for the additive model (2).

Remark 1 The support of any multi-factor D-optimal design must be contained in the support

of the product of the corresponding one-dimensional D-optimal designs.

The proof of Remark 1 can be found in Appendix A.2.

The number of support points of product designs quickly increases in higher dimensions. To

investigate if all support points of the product design are required, or if a subset will be sufficient

we consider the model from Examples 1 and 2. The product design consists of 25 support points

to estimate 9 parameters. Numerical evidence shows that there is, however, no locally D-optimal

design with fewer support points than 25. Figure 3.1 shows the efficiencies of the locally D-

optimal m-point designs, found numerically, relative to the product design for λ = (−0.5, 0.5)T ,

where 9 ≤ m ≤ 25 is the number of support points. The efficiency is an increasing function of m

up to m = 25. We obtained similar results numerically for a variety of models in two variables.
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Figure 1: Efficiencies of locally D-optimal designs with 9 - 25 support points, relative to the prod-

uct optimal design, for the two factor spline model with terms (1, x1, x
2
1, (x1 + 0.5)2

+, x2, x
2
2, (x2−

0.5)2
+).

3.2 Ds-optimal designs for estimating the knots

In some practical problems, the experimenter’s main interest is in estimating the knot locations,

since they may indicate at which experimental conditions the behaviour of the regression function

changes and provide insight into the complexity of the response. In what follows, we therefore

investigate Ds-optimal designs for the estimation of the knots. This means we minimise the
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determinant of the asymptotic covariance matrix for the estimator of λ, or equivalently, maximise

the function

ψs(M(ξ, θ, λ)) = |(ATM−(ξ, θ, λ)A)−1|. (8)

The matrix AT = (Js | 0s×(p−s)) consists of two blocks, where Js is the identity matrix of size

s =
∑K

k=1 rk, 0s×(p−s) is a zero matrix of size s× (p−s), and p = 1+
∑K

k=1 pk is the total number

of model parameters. Without loss of generality, throughout this section we have re-ordered the

rows and columns of the information matrix M(ξ, θ, λ) such that the top left corner of size s× s
of this matrix corresponds to the derivatives of the regression function with respect to the knots,

and also re-ordered the rows and columns of I(ξ, λ) accordingly. Here, M−(ξ, θ, λ) and I−(ξ, λ)

denote the respective generalised inverses of the matrices M(ξ, θ, λ) and I(ξ, λ). The design ξ

must ensure that the parameters in λ are estimable, i.e. the matrix ATM−(ξ, θ, λ)A must be

non-singular.

Lemma 1 shows that we can restrict ourselves to considering the simpler problem of maximising

ψs(I(ξ, λ)) = |(AT I−(ξ, λ)A)−1|, and that consequently Ds-optimal designs for estimating the

knots in model (2) do not depend on the linear model parameters θ.

Lemma 1 There exists a positive constant cθ, depending only on θ but neither on λ nor on the

design ξ, such that

|(ATM−(ξ, θ, λ)A)−1| = cθ|(AT I−(ξ, λ)A)−1|,
where I(ξ, λ) is the re-ordered version of the information matrix defined in (5).

The proof of Lemma 1 can be found in Appendix A.3.

We now consider Bayesian and standardised maximin Ds-optimality, where a Bayesian Ds-

optimal design with respect to a prior π on Λ maximises

ΦDs,π(ξ) =

∫
Λ

logψs(I(ξ, λ)) dπ(λ),

and a standardised maximin Ds-optimal design with respect to ΛM maximises

ΨDs,ΛM
(ξ) = inf

λ∈ΛM

ψs(I(ξ, λ))

ψs(I(ξ∗Ds,λ
, λ))

.

Here ξ∗Ds,λ
denotes the locally Ds-optimal design with respect to λ. Analogous to Section 3.1,

we show that the product of designs which are Bayesian (standardised maximin) Ds-optimal for

estimating the knots λk in the kth marginal model (1) are Bayesian (standardised maximin) Ds-

optimal for estimating all knots λ = (λT1 , . . . , λ
T
K)T in the additive model (2). LocalDs-optimality

is embedded in this result as the special case of π being a point mass prior concentrated in some

λ ∈ Λ. The proof of Theorem 2 is in Appendix A.4.

Theorem 2 (a) Let π(λ) be a prior for λ ∈ Λ with marginals πk, k = 1, . . . , K. Let

ξ∗Ds,π1
, . . . , ξ∗Ds,πK

denote the Bayesian Ds-optimal designs with respect to πk(λk) in the

single factor models. Then the product design ξ∗Ds,π
= ξ∗Ds,π1

⊗ ξ∗Ds,π2
⊗ . . . ⊗ ξ∗Ds,πK

is

Bayesian Ds-optimal with respect to π(λ) for the additive model.
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(b) Let ξ∗Ds,ΛM,1
, . . . , ξ∗Ds,ΛM,K

be standardised maximin Ds-optimal designs with respect to ΛM,k,

k = 1, . . . , K, in the single factor models (1) for compact parameter spaces ΛM,k ⊂ Λk.

Then the product design ξ∗Ds,ΛM
= ξ∗Ds,ΛM,1

⊗ξ∗Ds,ΛM,2
⊗. . .⊗ξ∗Ds,ΛM,K

is standardised maximin

Ds-optimal with respect to the parameter space ΛM = ΛM,1 × . . . × ΛM,K in the additive

model.

3.2.1 Examples

A numerical study was carried out to investigate locally Ds-optimal designs, and found they

have the same support points as the locally D-optimal designs for the same model, but different

weights. Some selected single factor locally Ds-optimal designs for quadratic models with one

and two knots, respectively, i.e.

µ(x1) = θ1 + θ1,2x1 + θ1,3x
2
1 + θ1,1,0(x1 − λ1,1)2

+

µ(x1) = θ1 + θ1,2x1 + θ1,3x
2
1 + θ1,1,0(x1 − λ1,1)2

+ + θ1,2,0(x1 − λ1,2)2
+, (9)

are given in Table 1.

Table 1: Selected locally Ds-optimal designs for the quadratic single factor models with one or

two knots, respectively. The last weight is omitted since the weights sum up to one.

λ1,1 λ1,2 Support points Weights

-0.5 – -1 -0.75 -0.5 0.25 1 0.094 0.375 0.375 0.125

0 – -1 -0.5 0 0.5 1 0.063 0.250 0.375 0.250

0.2 – -1 -0.4 0.2 0.6 1 0.050 0.200 0.375 0.300

-0.5 0.5 -1 -0.75 -0.5 0 0.5 0.75 1 0.047 0.188 0.207 0.116 0.207 0.188

0.2 0.5 -1 -0.4 0.2 0.35 0.5 0.75 1 0.018 0.073 0.238 0.246 0.250 0.141

The locally Ds-optimal designs in Table 1 all generate information matrices of full rank, so

the full parameter vector is estimable when using these designs. Even if the experimenter’s

main interest is in estimating the knots, the other parameters are still of some importance. We

therefore investigate how efficient locally Ds-optimal designs are for estimating the full parameter

vector, i.e. how D-efficient they are. Similarly, when using a locally D-optimal design, it will be

interesting to see how well this design performs for estimating the knots only, i.e. to assess its

Ds-efficiency. The D-efficiency and the Ds-efficiency of a design ξ are defined by

effD(ξ, λ) =

(
|I(ξ, λ)|
|I(ξ∗D,λ, λ)|

)1/p

, effDS
(ξ, λ) =

(
ψs(ξ, λ)

ψs(ξ∗Ds,λ
, λ)

)1/s

.

In Table 2, we present D-efficiencies of locally Ds-optimal designs (for the same parameter λ)

as well as Ds-efficiencies of locally D-optimal designs in models (9) and some selected two-

dimensional models.
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Table 2: Selected D- and Ds-efficiencies of locally Ds- respective D-optimal designs for quadratic

models in one or two variables with knots λ1,1, λ1,2 and λ2,1.

λ1,1 λ1,2 λ2,1 effD(ξ∗Ds,λ
, λ) effDs(ξ

∗
D,λ, λ)

-0.5 – – 0.694 0.652

0 – – 0.779 0.731

0.2 – – 0.766 0.718

-0.5 0.5 – 0.850 0.820

0.2 0.5 – 0.695 0.696

-0.5 – 0.5 0.665 0.653

0.2 – 0.5 0.703 0.685

0 – 0 0.757 0.732

We can see from Table 2 that the D- and Ds-efficiencies in these examples are between 65%

and 85%. This was confirmed for a variety of different scenarios (not listed). Hence D- (Ds)-

optimal designs maintain moderate efficiency for the estimation of only the knot locations (all

parameters). However, to avoid a loss in accuracy it is recommended to run the design which

has been constructed for the respective purpose.

3.3 Application - Robustness of Bayesian D-optimal designs

The purpose of engine mapping experiments as considered in Grove et al. (2004) is to model a

measure of engine performance as a function of several adjustable engine variables. The data

for such an experiment described in Woods et al. (2003) give rise to an additive spline model

for the maximum brake torque timing of an engine in the three variables “speed”, “load” and

“air-fuel ratio”. The corresponding single factor models are the cubic spline model

µ1(x1) = θ1,1 + θ1,2x1 + θ1,3x
2
1 + θ1,4x

3
1 + θ1,1,0(x1 − λ1,1)3

+ (10)

for the variable “speed” and quadratic polynomials for “load” and “air-fuel ratio”, respectively.

We use this model to assess the robustness of locally and Bayesian D-optimal designs, in order

to investigate if it is necessary to calculate the numerically more demanding Bayesian D-optimal

design, or if locally D-optimal designs will be sufficiently robust.

The data imply that the knot λ1,1 should be in the interval [0, 0.6]. We compare the locally

D-optimal design for the midpoint, i.e. λ1,1 = 0.3, with the Bayesian D-optimal design with

respect to the uniform prior on [0, 0.6] using two different approximations for this prior: π1, the

uniform distribution on the seven points 0, 0.1, . . . , 0.6 as a crude but simple approximation; π2,

the uniform distribution on 121 equidistant points from 0 to 0.6 as an approximation close to the

continuous prior. To compare designs we define the relative D-efficiency of a design ξ1 compared

10



with a design ξ2 as

effrel,D(ξ1, ξ2, λ) =

(
|I(ξ1, λ)|
|I(ξ2, λ)|

)1/p

.

The Bayesian D-optimal designs with respect to the priors π1 and π2 were calculated numerically,

and the locally D-optimal design for λ11 = 0.3 and the Bayesian D-optimal design with respect

to π1 for the single factor model (10) are depicted in Figure 2. The Bayesian D-optimal design

with respect to π2 is very similar to the corresponding design for the cruder approximation and

therefore not shown. Figure 2 also shows the relative D-efficiencies of the Bayesian D-optimal

designs with respect to π1 and π2, respectively, compared with the locally D-optimal design for

λ11 = 0.3. Here p = 10, as we consider the three-factor model described above.

-1.0 -0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

x

ω

Locally D-optimal design
Bayesian D-optimal design

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
95

1.
00

1.
05

1.
10

1.
15

λ11

Re
l. E

ff.

7 pt prior
121 pt prior

Figure 2: Left: Support points and weights of the locally D-optimal design for λ11 = 0.3 and the

Bayesian D-optimal design with respect to π1 for the single factor model (10). Right: Relative

D-efficiencies of the Bayesian D-optimal designs with respect to π1 and π2 compared with the

locally D-optimal design for λ11 = 0.3, plotted against the possible knots in the interval [0, 0.6].

Figure 2 shows that in the interval from about 0.14 to 0.42 the Bayesian D-optimal designs

are slightly less efficient, but outperform the locally D-optimal designs if the knot is closer to

the boundary. Both Bayesian designs have similar relative D-efficiencies, with the Bayesian D-

optimal design with respect to π1 being slightly better around the boundary, and the Bayesian

D-optimal design with respect to π2 being somewhat more efficient in the interior. For a large

area of uncertainty it is recommended to use a Bayesian D-optimal design, where the level of

approximation to a continuous prior does not seem to have a large impact on design performance.

3.4 D-optimal designs for models with interactions

So far we have considered the additive model (2), but there might occur situations where the

factors do not work independently on the response but interact. In this case, the models are

no longer partially nonlinear. The decomposition (4) of the Fisher information can no longer

be achieved with a matrix C which does not depend on the design. Therefore, optimal designs

11



(with respect to any of the criteria considered in this paper) do not only depend on the knots

but also on some of the linear parameters.

For the D-optimal designs we have found numerically for the model

µ(x) = θ1 + θ2x1 + θ3x
2
1 + θ4(x1 − λ1,1)2

+ + θ5x2 + θ6x1x2 + θ7x
2
1x2 + θ8(x1 − λ1,1)2

+x2

+ θ9x
2
2 + θ10x1x

2
2 + θ11x

2
1x

2
2 + θ12(x1 − λ1,1)2

+x
2
2 + θ13(x2 − λ2,1)2

+ + θ14x1(x2 − λ2,1)2
+ (11)

+ θ15x
2
1(x2 − λ2,1)2

+ + θ16(x1 − λ1,1)2
+(x2 − λ2,1)2

+

the dependence of design performance on θ is quite weak. This can also be seen in Table 3,

which shows the D-efficiencies of several D-optimal designs for the additive model (2) (which

do not depend on θ) relative to the D-optimal designs for the full model for different values of

θ. We can also see from Table 3 that the D-optimal designs for the additive model are highly

efficient in the full interaction model with efficiencies of over 90%.

Table 3: Selected D-efficiencies of D-optimal designs for the additive model in the full interaction

model. θ1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T , θ2 = (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 9, 4, 5, 6)T ,

and θ3 = (1, 1, 2, 3,−3,−2,−1, 4, 2,−4, 2,−1, 1,−7, 8,−11)T .

λ1,1 λ1,2 θ effD(ξ∗D,λ, λ)

-0.5 0.5 θ1 0.901

-0.5 0.5 θ2 0.901

-0.5 0.5 θ3 0.930

0.2 0.5 θ1 0.912

0.2 0.5 θ2 0.913

0.2 0.5 θ3 0.913

Although somewhat counter-intuitive, the D-optimal designs for the full interaction model found

here have fewer support points than the D-optimal designs for the additive model, i.e. a model

with much fewer parameters than the interaction model. For example, the D-optimal design for

the full interaction model with λ = (0.2, 0.5) and θ = θ1 has 19 support points, many of which

actually coincide with the support points of the D-optimal design for the additive model. For

illustration, this design, together with the D-optimal design for the additive model is shown in

Figure 3, together with the corresponding standardised variances.

4 Optimal designs for prediction of the response surface

Often, the experimenter is rather interested in the prediction of the response surface at different

points than in the particular values of the unknown parameters. A first order approximation to

12



Figure 3: Top left: Support points of the D-optimal design for the full interaction model with

λ = (0.2, 0.5) and θ = θ1. Top right: Support points of the D-optimal design for the additive

model with λ = (0.2, 0.5). Bottom left: Standardised variance of the D-optimal design for the full

interaction model. Bottom right: Standardised variance of the D-optimal design for the additive

model evaluated under the full interaction model.

the variance of µ̂(x) at some point x = (x1, . . . , xK) ∈ IRK is given by

Var (µ̂(x)) = gT (x, θ, λ)M−1(ξ, θ, λ)g(x, θ, λ) = fT (x, λ)I−1(ξ, λ)f(x, λ).

Naturally, it is appealing to minimise this variance jointly for a user-selected choice of values for

x, reflected in a distribution H(x). So the goal is to minimise the objective function

Q(ξ, λ) =

∫
fT (x, λ)I−1(ξ, λ)f(x, λ) dH(x). (12)

Since the matrix Q :=
∫
f(x, λ)fT (x, λ) dH(x) is non-negative definite we can decompose it into

Q = GGT where G is a lower triangular matrix (Cholesky Decomposition), and the objective

function can be expressed as

Q(ξ, λ) = tr(GT I−1(ξ, λ)G) = tr(GGT I−1(ξ, λ)).

13



To achieve robustness against misspecification of the knots, we seek Bayesian Q-optimal designs

with respect to a prior π(λ), which minimise

ΦQ,π(ξ) =

∫
Λ

Q(ξ, λ) dπ(λ). (13)

Similarly, a minimax Q-optimal design minimises

ΨQ,ΛM
(ξ) = max

λ∈ΛM

Q(ξ, λ). (14)

Theorem 3, which is proven in Appendix A.5, establishes the main result of this section, i.e. that

the product design of the Bayesian (minimax) Q-optimal designs in the marginal models (1) is

Bayesian (minimax) Q-optimal for the additive model (2) in the class of all product designs.

Theorem 3 Let π be a prior on λ ∈ Λ with marginals πk on Λk, k = 1, . . . , K, ΛM = ΛM,1 ×
. . . × ΛM,K a compact subset of Λ, and the weighting measure H(x) be a product measure with

marginals H1(x1), . . . , HK(xK).

(a) The product design of the Bayesian Q-optimal designs for the single factor models with

respect to Hk and πk, k = 1, . . . , K, is Bayesian Q-optimal within the class of all product

designs with respect to H and π.

(b) The product design of the minimax Q-optimal designs for the single factor models with

respect to Hk and Λk, k = 1, . . . , K, is minimax Q-optimal within the class of all product

designs with respect to H and Λ.

4.1 Performance of Q-optimal product designs

Since the product designs of the Q-optimal designs in the single factor models (1) are Q-optimal

within the class of product designs, but not necessarily optimal among all designs, we investigate

their performance relative to the Q-optimal designs found by numerical search.

Table 4 shows a selection of Q-optimal designs for the quadratic single factor models (9). Here,

H1 is the uniform distribution on the design interval [−1, 1], i.e. the goal is to predict accurately

over the whole range of the variable x1. The designs were found numerically, using a multiplica-

tive algorithm which updates the weights on a grid in each step, and H1 was approximated by

a discrete uniform distribution on 1000 equidistant points in this interval.

We can see from Table 4 that although the Q-optimal designs are all minimally supported they

are far from being equally weighted. All Q-optimal designs are supported at the end points

of the design interval, -1 and 1, at the knots, and at the points approximately in the middle

between the endpoints and the knots. The support is thus almost identical to the support of the

locally D-optimal designs with respect to the same knot locations.

Comparing the products of these designs with the corresponding Q-optimal designs in two vari-

ables, we found that the support was identical, but the weights differed to some extent. The
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Table 4: Selected Q-optimal designs for the quadratic single factor models with one or 2 knots,

respectively. The last weight is omitted since the weights sum up to one.

λ1,1 λ1,2 Support points Weights

-0.5 – -1 -0.76 -0.5 0.25 1 0.101 0.195 0.196 0.338

-0.2 – -1 -0.61 -0.2 0.405 1 0.123 0.241 0.191 0.295

0 – -1 -0.51 0 0.505 1 0.136 0.269 0.191 0.269

0.2 – -1 -0.41 0.2 0.605 1 0.150 0.295 0.191 0.241

0.5 – -1 -0.255 0.5 0.755 1 0.171 0.338 0.196 0.195

-0.5 0.5 -1 -0.755 -0.5 0 0.5 0.755 1 0.084 0.162 0.140 0.229 0.140 0.162

-0.5 0.2 -1 -0.755 -0.5 -0.155 0.2 0.605 1 0.083 0.160 0.124 0.189 0.139 0.202

Q-optimal product designs are therefore not Q-optimal among all designs, but they turn out to

be very highly efficient. Table 5 shows some Q-efficiencies of Q-optimal product designs ξQ,λ
where the Q-efficiency of a design ξ is defined as the ratio

effQ(ξ, λ) =
Q(ξ∗Q,λ, λ)

Q(ξ, λ)
,

with ξ∗Q,λ denoting the locally Q-optimal design. The last column shows the Q-efficiency of the

D-optimal design for the same knot locations for comparison.

Table 5: Selected Q-efficiencies of locally Q-optimal product designs and locally D-optimal de-

signs with respect to the knots λ1,1, λ1,2 and λ2,1 in the quadratic two factor model.

λ1,1 λ1,2 λ2,1 effQ(ξQ,λ, λ) effQ(ξ∗D,λ, λ)

-0.5 – 0.5 0.9978 0.8505

-0.5 – -0.2 0.9984 0.8746

0 – 0 0.9991 0.9071

0.2 – 0.5 0.9985 0.8746

-0.5 0.5 0.5 0.9989 0.8767

-0.5 0.2 -0.2 0.9993 0.9100

We find that all Q-optimal product designs have an efficiency of more than 99%. From a plot

of the directional derivative of the objective function we can see, however, that they are not

Q-optimal. Figure 4 shows a plot of the directional derivative of the objective function for the

Q-optimal design and the Q-optimal product design, both for the quadratic two-factor model

with knots λ1,1 = −0.5, λ1,2 = 0.5 and λ2,1 = 0.5.
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Figure 4: The directional derivative of the criterion function evaluated at the Q-optimal design

(left) and the Q-optimal product design (right), both for the quadratic two-factor model with

knots λ1,1 = −0.5, λ1,2 = 0.5 and λ2,1 = 0.5.

Figure 4 indicates that the product design does not put enough weight on the vertices and one

point towards the centre of the design range, resulting in values of the directional derivative

greater than 1 at these points.

We also assessed the performance of the product of single factor Bayesian Q-optimal designs

with marginal priors πk relative to the optimal multifactor design for the prior π. It turned

out that in this situation the support of the Q-optimal multifactor design was usually slightly

larger than (but still similar to) the support of the optimal product design. The efficiencies of

the optimal product designs are still high, but not quite as impressive as in the local case. For

example, the Q-optimal product design for the quadratic two-factor model (3) with one knot in

each direction from Example 1 has Bayesian Q-efficiency of 0.8974 for the four point prior with

equal weights on the knot locations {(−0.5,−0.5), (−0.5, 0.5), (0.5,−0.5), (0.5, 0.5)}.

5 Other spline bases - a generalisation

The following result, which is proven in Appendix A.6, relates D- and Q-optimal designs for the

splines generated by the truncated power basis to splines from other bases. Truncated power

bases can suffer from severe ill-conditioning (De Boor, 1978) whereas for example B-spline bases

are well-conditioned and have local support, thus facilitating computation.

Theorem 4 The results presented in Theorems 1 and 3 for the truncated power basis are also

valid for any regression spline basis spanning the same space, i.e. a change in the spline basis

does not affect the optimal designs with respect to the local and robust D- and Q-optimality

criteria.
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6 Conclusion/Discussion

We have shown that D-optimal designs for the full parameter vector and Ds-optimal designs for

the knots λ in additive multivariable spline models of the form (2) with unknown knot locations

can be found as the products of the D- and Ds-optimal designs in the corresponding single factor

models (1), thus reducing computational effort for calculating optimal multi-factor designs, as

it is sufficient to compute the corresponding optimal designs in one variable. Since model (2) is

partially nonlinear these designs depend on the unknown knots λ, and misspecifications of these

parameters can lead to poor designs. Hence we have generalised our results to parameter robust

optimality criteria, namely Bayesian and standardised maximin D- and Ds-optimality.

In many situations, the main goal of an experiment is to predict the response at unobserved lo-

cations. We have considered Bayesian/minimax Q-optimal designs and shown that the products

of Bayesian/minimax Q-optimal designs in the single factor models are optimal in the addi-

tive model within the class of product designs. In a numerical study, we have found that the

Q-optimal product designs are - if not Q-optimal among all designs - extremely efficient.

We have finally shown that all results on local and robust D- and Q-optimality presented above

are valid regardless of the choice of regression spline basis.

We have illustrated our results throughout the paper through examples and applied them to our

motivating example on engine mapping (Grove et al., 2004, Woods et al., 2003). We hope that

our work will facilitate the utilisation of optimal designs either directly or indirectly in upcoming

experiments in the automotive industry.

We finally note that for some applications interactions between the explanatory variables might

be present. We have briefly discussed the full interaction model in Section 3.4, but the true model

might lie somewhere in between the strictly additive and the full interaction model. Future work

is planned on optimal design for model selection to find the best fit. Another issue to be pursued

in future work is designing experiments efficiently in the situation when the number of knots is

unknown.
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A Proofs

A.1 Proof of Theorem 1

For clarity of presentation, in what follows we restrict ourselves to proving the assertion of the

Theorem for K = 2. The general case K ≥ 2 follows by defining meta-factors consisting of more

than one single factor and applying the result for K = 2.
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(a) Let ξ1, ξ2 denote the marginals of the design ξ. The special form of the information matrices

permits application of Lemma 5.1 in Schwabe (1996), which is stated for information matrices

of linear models, and we find that

|I(ξ, λ)| ≤ |I1(ξ1, λ1)| |I2(ξ2, λ2)| = |I(ξ1 ⊗ ξ2, λ)|. (15)

Using this inequality, the following holds:∫
Λ

log |I(ξ∗D,π1
⊗ ξ∗D,π2

, λ)| dπ(λ) ≤ max
ξ

∫
Λ

log |I(ξ, λ)| dπ(λ)

≤ max
ξ1,ξ2

∫
Λ

log(|I1(ξ1, λ1)| |I2(ξ2, λ2)|) dπ(λ)

= max
ξ1

∫
Λ1

log |I1(ξ1, λ1)| dπ1(λ1)

+ max
ξ2

∫
Λ2

log |I2(ξ2, λ2)| dπ2(λ2) (16)

=

∫
Λ1

log |I1(ξ∗D,π1
, λ1)| dπ1(λ1) +

∫
Λ2

log |I2(ξ∗D,π2
, λ2)| dπ2(λ2)

So substituting the Bayesian D-optimal designs ξ∗D,π1
, ξ∗D,π2

for the single factor models into (16)

gives an upper bound for the maximal determinant for the two-factor model. Moreover, this

upper bound is attained at ξ∗D,π = ξ∗D,π1
⊗ ξ∗D,π2

since following (15) we obtain∫
Λ

log |I(ξ∗D,π1
⊗ ξ∗D,π2

, λ)| dπ(λ) =

∫
Λ1

log |I1(ξ∗D,π1
, λ1)| dπ1(λ1) +

∫
Λ2

log |I2(ξ∗D,π2
, λ2)| dπ2(λ2)

So all inequalities turn into equalities and ξ∗π is optimal.

(b) Let the set N (ξ) be the subset of ΛM at which for a given design ξ the minimum of Φ(ξ, λ)

over λ is attained, i.e.

N (ξ) = {λ ∈ ΛM |Φ(ξ, λ) = min
λ∈ΛM

Φ(ξ, λ)}.

As we consider compact sets ΛM,k, k = 1, 2, the product set ΛM is also compact, and the infimum

in the definition of the standardised maximin D-optimality criterion will be attained, so the

minimum exists for all ξ. The setN (ξ) will therefore not be empty for any design ξ. Let Ψ0 be the

optimal value of the standardised maximin D-optimality criterion, i.e. Ψ0 = minλ∈ΛM
Φ(ξ∗, λ).

The proof will be divided into two steps, the first of which will show that the product design

characterised by the marginals ξ∗k, k = 1, 2, of the standardised maximin D-optimal design ξ∗ for

ΛM is also standardised maximin D-optimal for ΛM . In step 2, we will show that the product

of the standardised maximin D-optimal designs ξ∗D,ΛM,k
with respect to ΛM,k in the single factor

models will produce the same value as the product of the marginals ξ∗k, k = 1, 2, when substituted

into the criterion function ΨD,ΛM
(·).
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Applying (15) and the result for locally D-optimal designs from part (a) of this Theorem, we

obtain the following inequality for all λ = (λT1 , λ
T
2 )T ∈ ΛM :

Φ(ξ∗, λ) ≤ Φ(ξ∗1 , λ1)Φ(ξ∗2 , λ2) = Φ(ξ∗1 ⊗ ξ∗2 , λ) (17)

For all λ ∈ N (ξ∗1 ⊗ ξ∗2), we have

Φ(ξ∗1 ⊗ ξ∗2 , λ) ≤ Ψ0, (18)

because of the optimality of Ψ0. Combining (17) and (18), yields that for all λ ∈ N (ξ∗1 ⊗ ξ∗2)

Ψ0 ≤ Φ(ξ∗, λ) ≤ Φ(ξ∗1 ⊗ ξ∗2 , λ) ≤ Ψ0,

hence

min
λ∈ΛM

Φ(ξ∗1 ⊗ ξ∗2 , λ) = Ψ0 = max
ξ

min
λ∈ΛM

Φ(ξ, λ),

so the product design ξ∗1 ⊗ ξ∗2 is also standardised maximin D-optimal with respect to ΛM .

Let Ψk = minλk∈ΛM,k
Φ(ξ∗D,ΛM,k

, λk), k = 1, 2. Applying (15) and the result for locally D-optimal

designs from part (a) again, it follows that for all λ ∈ N (ξ∗D,ΛM,1
⊗ ξ∗D,ΛM,2

)

Ψ1 Ψ2 ≤ Φ(ξ∗D,ΛM,1
, λ1)Φ(ξ∗D,ΛM,2

, λ2) = Φ(ξ∗D,ΛM,1
⊗ ξ∗D,ΛM,2

, λ) ≤ Ψ0. (19)

Since neither of the values Ψ0,Ψ1 or Ψ2 depend on λ, we obtain from (19) that Ψ1 Ψ2 ≤ Ψ0.

Now, for all λ ∈ N (ξ∗1)×N (ξ∗2) we have

Φ(ξ∗1 , λ1)Φ(ξ∗2 , λ2) = Φ(ξ∗1 ⊗ ξ∗2 , λ) ≥ Ψ0. (20)

Combining (19) and (20), we find that

min
λ1∈ΛM,1

Φ(ξ∗1 , λ1) min
λ2∈ΛM,2

Φ(ξ∗2 , λ2) ≥ Ψ1 Ψ2, (21)

so to avoid a contradiction to the optimality of ξ∗D,ΛM,1
and ξ∗D,ΛM,2

in the single factor models

there must be equality in (21), and using (19) again we obtain that

min
λ∈ΛM

Φ(ξ∗D,ΛM,1
⊗ ξ∗D,ΛM,2

, λ) = Ψ0,

which completes the proof of Theorem 1. 2

A.2 Proof of Remark 1

From Corollary 5.4 in Schwabe (1996) we obtain that a necessary condition for local D-optimality

of a design ξ in the additive model (2) is local D-optimality of the marginals of ξ in the corre-

sponding single factor models (1) which proves the assertion. 2
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A.3 Proof of Lemma 1

The multiplication of a matrix B with AT from the left and A from the right yields the top

left corner B11 of B of size s × s. We therefore show that the determinant of M−
11(ξ, θ, λ) is

proportional to the determinant of I−11(ξ, λ) in what follows. We define gs(x, θ, λ) as the gradient

of the regression function with respect to λ and θ, i.e. the first s entries corresponding to the

derivatives with respect to λ will be linear combinations (involving θ) of terms of the form

(xk − λk,i)
j
+, j = mk − lik, . . . ,mk, where mk and lik are defined in (1) and mk − lik + 1 and

mk are the lowest and the highest exponent of (xk−λk,i)+ appearing in the model, respectively.

Similarly, define fs(x, λ) as the vector with the first s entries equal to (xk − λk,i)mk−lik
+ , and the

last (p− s) entries equal to the last (p− s) entries in gs(x, θ, λ). We therefore have

M(ξ, θ, λ) =

∫
gs(x, θ, λ)gTs (x, θ, λ) dξ(x) and I(ξ, λ) =

∫
fs(x, λ)fTs (x, λ) dξ(x).

We can express gs(x, θ, λ) in the form gs(x, θ, λ) = Cθfs(x, λ) where Cθ is a non-singular p× p-
matrix with the lower (p− s) rows equal to (0(p−s)×s | Jp−s), and Cθ,11, the top left corner of Cθ
of size s× s, is a diagonal matrix where the entry ck,i corresponding to the knot λk,i is given by

−(mk− lik + 1) times the coefficient θk,i,lik−1 of the term (xk−λk,i)mk−lik+1
+ , i.e. Cθ is of the form

Cθ =

(
Cθ,11 Cθ,12

0(p−s)×s Jp−s

)
=

(
diag(ck,i) Cθ,12

0(p−s)×s Jp−s

)
.

Since both factors of ck,i are non-zero by the definition of the model, so is their product −(mk−
lik + 1) θk,i,lik−1 and both the top left and the bottom right corner of Cθ are non-singular. By

the formula for inverting block matrices, we obtain that C−1
θ is a block matrix of the form

C−1
θ =

(
C−1
θ,11 C−1

θ,11Cθ,12

0(p−s)×s Jp−s

)
=

(
diag(1/ck,i) C

−1
θ,11Cθ,12

0(p−s)×s Jp−s

)
. (22)

Now AT (CT
θ )−1 = (diag(1/ck,i) | 0s×(p−s)), so

|ATM−(ξ, θ, λ)A| = |AT (CT
θ )−1I−(ξ, λ)C−1

θ A| =
∏
k,i

(
1

ck,i

)2

|AT I−(ξ, λ)A|.

Therefore the assertion of Lemma 1 follows with cθ =
∏

k,i c
2
k,i. 2

A.4 Proof of Theorem 2

From the proof of Theorem 5.13 in Schwabe (1996), we obtain the inequality

ψs(I(ξ, λ)) ≤ ψs(I1(ξ1, λ1)) ψs(I2(ξ2, λ2)) = ψs(I(ξ1 ⊗ ξ2, λ))

where ξ1 and ξ2 are the marginals of the design ξ, and λ = (λT1 , λ
T
2 )T . The rest of the proof now

follows exactly along the same lines as the proof of Theorem 1 and is therefore omitted. 2
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A.5 Proof of Theorem 3

We first establish a result on the lower Cholesky factor G for the matrix Q.

Lemma 2 If H(x) is a product measure of the marginals H1(x1), . . . , HK(xK) there exists a

Cholesky decomposition GGT of Q where the lower Cholesky factor G is block-diagonal except

for the first column, which may consist of non-zero entries. The blocks are lower triangular

matrices, and have sizes IRpk×pk , k = 1, . . . , K, where pk + 1 is the number of parameters in

the kth marginal model (1). If the choice of the distribution H(x) makes Q positive definite the

unique lower Cholesky factor G is of the form described above.

Proof of Lemma 2: For clarity of presentation, we show the proof for the special case K = 2.

The proof for general K ≥ 2 then follows by defining meta-factors of more than one variable.

Let f(x1, x2, λ) = (1, f̃1(x1, λ1), f̃2(x2, λ2))T . Then the matrix Q is given by

Q =


1 QT

10 QT
20

Q10 Q11 QT
21

Q20 Q21 Q22

 , where Qk0 =

∫
f̃k(xk, λk) dHk(xk), (23)

Qkk =

∫
f̃k(xk, λk)f̃

T
k (xk, λk) dHk(xk), k = 1, 2, and

Q21 =

∫
f̃2(x2, λ2)f̃T1 (x1, λ1) dH(x1, x2) =

∫
f̃2(x2, λ2) dH2(x2)

∫
f̃T1 (x1, λ1) dH1(x1).

The last equality in (23) follows from Fubini’s Theorem and the assumption that H(x) is a

product measure. The lower triangular matrix G in the Cholesky decomposition of Q is of the

form

G =


1 01×p1 01×p2

G10 G11 0p1×p2

G20 G21 G22

 (24)

where the blocks Gkk are lower triangular matrices of size pk × pk, respectively, k = 1, 2, and

(1, G10, G20)T is a column vector. To prove the assertion of Lemma 2, we show in the following

that there exists a Cholesky decomposition G with the block G21 = 0p2×p1 . We note that from

(24) we obtain

GGT =


1 GT

10 GT
20

G10 G11G
T
11 +G22G

T
22 G10G

T
20

G20 G20G
T
10 G20G

T
20 +G22G

T
22

 (25)

for G21 = 0p2×p1 . We are now looking for a matrix G such that GGT of the form (25) is equal

to Q. Equating the corresponding blocks in GGT and Q and using that both matrices are
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symmetric we obtain

G10 = Q10, G20 = Q20 (26)

(26), (23) ⇒ G10G
T
10 +G11G

T
11 = Q11 ⇒ G11G

T
11 = Q11 −Q10Q

T
10

=

∫
f̃1(x1)f̃T1 (x1) dH1(x1)−

∫
f̃1(x1) dH1(x1)

∫
f̃T1 (x1) dH1(x1) (27)

where the expression in (27) is obviously non-negative definite, and therefore a Cholesky decom-

position G11G
T
11 exists. Similarly, we find that

G22G
T
22 = Q22 −G20G

T
20 =

∫
f̃2(x2)f̃T2 (x2) dH2(x2)−

∫
f̃2(x2) dH2(x2)

∫
f̃T2 (x2) dH2(x2)

which is also non-negative definite, so, again, there exists a Cholesky decomposition G22G
T
22 for

this matrix. Finally, we consider the term

G20G
T
10 = Q20Q

T
10 =

∫
f̃2(x2) dH2(x2)(

∫
f̃1(x1) dH1(x1))T = Q21

from (26) and (23). The last assertion is obvious because if Q is positive definite then the

Cholesky decomposition is unique, and we have just shown that there exists a lower Cholesky

factor G which satisfies the condition G21 = 0p2×p1 . 2

From Lemma 2 we obtain that there exists a lower Cholesky factor G for Q, which is a block-

diagonal matrix except for the first column. Applying the rules for block-wise matrix inversion

(repeatedly if K > 2) we find that G−1 is of the same form as G. We note that the ma-

trix GT I−1(ξ, λ)G is at the same time (asymptotically) proportional to the covariance matrix

of the maximum likelihood estimator for β in the linear regression model with expectation

η̆(x) = f̆T (x, λ)β = (G−1f(x, λ))Tβ and i.i.d. normal errors. Therefore f̆(x, λ) is of the form

(1, f̆1(x1, λ1), . . . , f̆K(xK , λK))T , i.e. each single vector f̆k(xk, λk) depends only on the variable

xk, k = 1, . . . , K. We can therefore apply Lemma 5.5 (ii) in Schwabe (1996) to the weighted

regression model η̆(x) = (G−1f(x, λ))Tβ, and we obtain the form of the covariance matrix

CG(ξ, λ) = GT I−1(ξ, λ)G in the additive model if ξ is a product design, and of the covariance

matrices CG,k(ξk, λk) in the corresponding marginal models η̆k(xk) = (1, f̆k(xk, λk)
T )βk where ξk

are the marginals of ξ. For the marginal model we define the matrices Qk with

Qk =

∫ (
1

f̃k(xk, λk)

)
(1 f̃Tk (xk, λk)) dHk(xk)

=

(
1

∫
f̃Tk (xk, λk) dHk(xk)∫

f̃k(xk, λk) dHk(xk)
∫
f̃k(xk, λk)

∫
f̃Tk (xk, λk) dHk(xk)

)

=

(
1 QT

k0

Qk0 Qkk

)
, k = 1, . . . , K,
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using the notation from the proof of Lemma 2. The lower Cholesky factor Gk for each Qk is

therefore given by

Gk =

(
1 01×pk

Gk0 Gkk

)
, k = 1, . . . , K.

The block-wise inverse G−1
k of Gk is

G−1
k =

(
1 01×pk

−G−1
kkGk0 G−1

kk

)
.

Now G−1 has the blocks 1, G−1
11 , . . . , G

−1
KK on its main diagonal, some possibly non-zero entries

in the first column and all other entries are zero. The model (G−1
k fk(xk, λk))

Tβk is therefore

equivalent to the marginal model η̆k(xk) = (1, f̆k(xk, λk)
T )βk of η̆(x), k = 1, . . . , K. We write

CG,k(ξk, λk) in diagonal form

CG,k(ξk, λk) =

(
Ck,β0 γT

γ C̃G,k(ξk, λk)

)
,

where γ is some vector, and use the representation of the covariance matrix CG(ξ, λ) of a product

design ξ = ξ1 ⊗ . . .⊗ ξK from Lemma 5.5 (ii) in Schwabe (1996)

CG(ξ, λ) =


Cβ0

C̃G,1(ξ1, λ1)

. . .

CG,K(ξK , λK)

 ,

where the off-diagonal blocks in CG(ξ, λ) have been omitted since they do not contribute to the

trace and Cβ0 =
∑K

k=1Ck,β0 − (K − 1). From this representation it is obvious that the local

Q-criterion for ξ in the additive model with respect to H(x) and λ can be expressed (apart from

an additive constant) as the sum of the local Q-criteria for ξk in the single factor models with

respect to Hk and λk. So interchanging the integration with respect to π(λ) and the summation

of the Q-criteria in the marginal models yields the desired result for Bayesian Q-optimality.

Equivalently, the maximisation with respect to λ = (λT1 , . . . , λ
T
K)T ∈ ΛM,1 × . . .× ΛM,K and the

summation can be interchanged, so the result for minimax Q-optimality follows. 2

A.6 Proof of Theorem 4:

Let bi(x, λ), i = 1, . . . , r, be the truncated power basis for the spline space R with given knots

λ and given smoothnesses at the knots where x can be multi-dimensional, i.e. x = (x1, . . . , xK).

Then for any system of splines (e.g. B-splines) there exists a basis b̌i(x, λ), i = 1, . . . , r, for the

same space R. So the original regression function µ(x) (an element of R) can be written as

µ(x) =
r∑
i=1

θibi(x, λ) =
r∑
i=1

θ̌ib̌i(x, λ) (28)
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for some parameters θi and θ̌i, i = 1, . . . , r. From (4) and (5), we obtain that the vector of

derivatives of
∑r

i=1 θibi(x, λ) with respect to the parameters θi and λ (when multiplied by some

non-singular matrix C−1
θ , which depends on θ but neither on the knots λ nor on the design)

forms the basis of another spline space S with the same knots as for R, the original one, but

smaller smoothnesses. This basis depends on λ and x, but not on θ. Since each element of R

can also be expressed in terms of b̌i(x, λ), there exists another non-singular matrix Dθ̌, which

may depend on θ̌ and the knots but not on x, so that the vector of derivatives multiplied by

D−1
θ̌

is a basis of S, which only depends on λ and x. Now the two new bases for S are related to

each other by multiplication with a non-singular matrix Eθ,λ, which does not depend on x (basis

transformation). As a result, the information matrices I(ξ, λ), Ǐ(ξ, λ) for the models generated

by using the different spline bases are related by I(ξ, λ) = Eθ,λ Ǐ(ξ, λ)ET
θ,λ.

For the D- and Q-optimality criteria we obtain:

• Bayesian D-optimality:
∫

log |I(ξ, λ)| dπ(λ) =
∫

log |Eθ,λ|2 dπ(λ) +
∫

log |Ǐ(ξ, λ)| dπ(λ).

Since Eθ,λ does not depend on x and therefore not on the design ξ, the criterion functions

for both matrices are maximised by the same design.

• Standardised Maximin optimality: Using that the locally D-optimal designs are equal, and

that the expression |Eθ,λ|2 cancels, we find that

min
λ∈ΛM

|I(ξ, λ)|
|I(ξ∗D,λ, λ)|

= min
λ∈ΛM

|Eθ,λ|2 |Ǐ(ξ, λ)|
|Eθ,λ|2 |Ǐ(ξ∗D,λ, λ)|

,

so the criterion functions are equal and therefore maximised by the same design.

• Q-optimality: From f(x, λ) = Eθ,λf̌(x, λ) it follows that

Q(ξ, λ) =

∫
fT (x, λ)I−1(ξ, λ)f(x, λ) dH(x)

=

∫
f̌T (x, λ)ET

θ,λ(E
T
θ,λ)
−1(x, λ)Ǐ−1(ξ, λ)E−1

θ,λEθ,λf̌(x, λ) dH(x)

=

∫
f̌T (x, λ)Ǐ−1(ξ, λ)f̌(x, λ) dH(x)

So the Q-criterion function is equal for both bases, and therefore minimised by the same

design. The assertion for Bayesian and minimax Q-optimality is now obvious. 2
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