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Abstract

Combining parallel programming with prototyping is aimed at alleviating parallel program-
ming by enabling the programmer to make practical experiments with ideas for parallel algorithms
at a high level, neglecting low-level considerations of speci�c parallel architectures in the begin-
ning of program development. Therefore, prototyping parallel algorithms is aimed at bridging
the gap between conceptual design of parallel algorithms and practical implementation on speci�c
parallel systems.

The essential prototyping activities are programming, evaluation and transformation of proto-
types. This paper gives a report on some experience with implementing parallel algorithms based
on prototype evaluation and transformation employing the ProSet-Linda approach.

1 Introduction

Parallel programming is conceptually harder to undertake and to understand than sequential pro-
gramming, because a programmer often has to cope with the coexistence and coordination of multiple
parallel activities. Prototyping is used to explore the essential features of a proposed system through
practical experimentation before its actual implementation to make the correct design choices early
in the process of software development. Early experimentation with alternate algorithm choices or
problem decompositions for parallel applications is suggested to make parallel programming easier.

To be useful, prototypes must be built rapidly, and designed in such a way that they can be modi�ed
rapidly. Therefore, prototypes should be built in very high-level languages to make them rapidly
available. Consequently, a prototype is usually not a very e�cient program since the language should
o�er constructs which are semantically on a very high level, and the runtime system has a heavy
burden for executing these highly expressive constructs. The primary goal of parallel programming|
decreasing the execution time for an application program|is not the �rst goal with prototyping
parallel algorithms. The �rst goal is to experiment with ideas for parallel algorithms before mapping
programs to �t for speci�c parallel architectures to achieve high speedups.

Prototypes may be classi�ed as throwaway, experimental or evolutionary [11]. A throwaway prototype
describes a product designed to be used only to help identify requirements for a new system. Exper-
imental prototyping focuses on the technical implementation of a development goal. In evolutionary
prototyping, a series of prototypes is produced that complies with an acceptable behavior, according
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to the feedback from prototype evaluations. Once the series has converged, the result may be turned
into a software product by transformations.

This raises issues of software engineering: once we are satis�ed with the prototype, how do we trans-
form it systematically into a production-e�cient program? This question is fairly di�cult for sequen-
tial programs [28], but not satisfactorily solved as yet for prototypes of parallel algorithms. Therefore,
such transformations are usually accomplished manually. Before building transformation tools it
seems to be reasonable to gain some knowledge about the requirements on such tools through prac-
tical experience and to develop a theoretical foundation for such tools. The present paper discusses
the systematic manual transformation of ProSet-Linda prototypes into e�cient message-passing
programs (PVM and MPI) and shared-memory programs on multi-processor workstations.

Various experience with developing sequential software systems using prototyping has been made
[14]. This paper presents some experience with implementing parallel algorithms for computer vision
(Section 2) and for the Salishan/Cowichan problems (Section 3) based on prototype evaluation and
transformation. Section 4 discusses related work and Section 5 draws some conclusions. The ProSet-
Linda prototyping approach is presented in Appendix A which should be consulted �rst when this
approach is new to the reader.

2 Developing Parallel Algorithms for Computer Vision

The ProSet-Linda approach has been applied to the development of parallel algorithms for high-
level three-dimensional computer vision [19]. To give a report on the experience made, �rst three-
dimensional computer vision and interpretation-tree search for model matching within this context is
discussed. Parallel interpretation-tree search with ProSet-Linda, the evaluation of the prototypes
and the transformation of the most promising prototype into e�cient implementations is discussed in
the subsequent subsections.

2.1 Three-Dimensional Computer Vision

Computer vision is commonly divided into several levels. With three-dimensional computer vision [10],
low-level vision is concerned with processing range data acquired by a laser range scanner to eliminate
noise. Medium-level vision is concerned with identifying geometric surfaces. High-level vision tries,
for example, to identify the shape and position of data objects using matched model features. In
high-level vision, �rst the model invocation process pairs likely model and data features for further
consideration. Model matching then uses the candidate matches proposed by the invocation to form
consistent groups of matches. Fig. 1 illustrates this process.

2.2 Interpretation-Tree Search for Model Matching

The classical control algorithm for symbolic model matching in computer vision is the Interpretation-
Tree search algorithm [15]. The algorithm searches a tree of potential data-to-model correspondences,
such that each node in the tree represents one correspondence and the path of nodes from the current
node back to the root of the tree is a set of simultaneous pairings. This model matching algorithm
is a specialized form of the general AI tree search technique, where branches are pruned using a set
of consistency constraints according to some (geometric) criterion. The goal of the search algorithm
is to maximize the set of consistent data-to-model correspondences in an e�cient manner. Finding
these correspondences is a key problem in model-based vision, and is usually a preliminary step to
object recognition, pose estimation, or visual inspection.

Unfortunately, this algorithm has the potential for combinatorial explosion. To reduce the complexity,
techniques for pruning the trees have been developed, thus limiting the number of candidate matches
considered [15]. However, even with these e�ective forms of pruning, the algorithm still can have
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Figure 1: The role of model matching in three-dimensional computer vision for model acquisition from
multiple range views.

exponential complexity, making the standard interpretation-tree search algorithm unsuitable for use
in scenes with many features.

As many of the nodes in the standard interpretation-tree algorithmarise because of the use ofwildcards,
an alternative search algorithm explores the same search space, but it does not use a wildcard model
feature to match otherwise unmatchable data features [9]. The tree in Fig. 2 displays an example
non-wildcard interpretation tree. In a sequential algorithm, the tree is searched depth-�rst following
the leftmost branches �rst (no pruning is shown here to illustrate the shape of the tree). The tuple

 is the output of model invocation. The segmented surfaces in Fig. 1 are the data features and
the current partial model consists of the model features. Model invocation uses the model and data
properties to pair likely model and data features. It produces a sorted list of consistent data-to-model
pairs (datai;modeli; Ai) where Ai is the compatibility measure (plausibility) of the features datai and
modeli. The list is initially sorted with larger Ai values at the top. Model matching uses 
 to build
the interpretation tree.

2.3 Parallel Interpretation-Tree Search with ProSet-Linda

Parallelism in a tree search algorithm can be obtained by searching the branches of a tree in parallel.
A simple approach would be to spawn a new process for each subtree to be evaluated. This approach
would not work well since the amount of parallelism is determined by the input data and not by,
for instance, the number of available processors. The programs which will be discussed below are
master-worker applications (also called task farming). In a master-worker application, the task to be
solved is partitioned into independent subtasks. These subtasks are placed into a tuple space, and
each process in a pool of identical workers then repeatedly retrieves a subtask description from the
tuple space, solves it, and puts the solutions into a tuple space. The master process then collects the
results. An advantage of this programming approach is easy load balancing because the number of
workers is variable and may be set to the number of available processors.
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Figure 2: The interpretation tree for 
 = [(d1;m2); (d2;m1); (d2;m4); (d4;m5)]. The di are data
features and the mi are model features. The root of the interpretation tree has no pairings. Each data
feature appears (in order) at most once in a branch. At each node at level k in the tree, therefore,
there is a hypothesis with k features matched.

Four parallel variations of non-wildcard interpretation-tree search have been investigated as feasibility
studies for e�cient parallelization [19]. The evaluation of the prototypes serves to select the most
promising way to parallelize the search. Based on this evaluation, the best parallel algorithm has
been re�ned into e�cient implementations [24]. Below, only this algorithm is presented, because it
has been transformed into e�cient implementations. In this paper, only small parts of the code can
be presented. Refer to [19] and [24] for more detailed presentations.

The so-called parallel best-�rst search tree algorithm is based on the sequential best-�rst search tree
algorithm which assumes that it is possible to evaluate how well sets of model features match sets of
data features (based on the plausibilities from the model invocation and consistency measures as the
set sizes grow) [9]. As any real problem is likely to provide some useful heuristic ordering constraints,
the potential for speeding up the matching process is large. The best-�rst search tree algorithm
searches for the �rst plausible solution (usually not the optimal solution).

Fig. 3 displays the coarse structure of the master-worker program for this best-�rst search tree algo-
rithm. Arrows indicate access to the tuple spaces. These access patterns are only shown for one of the
identical worker processes. The program uses two tuple spaces: One for the work tasks (WORK) and
one for the results (RESULT). The master (the main program) spawns a number of worker processes
to do the work. This number is an argument to the main program. The initial task tuples, which
represent the nodes at the �rst level of the interpretation-tree, are deposited at tuple space WORK.
Each worker executes in a loop in which it �rst checks whether there are more task tuples in tuple
space WORK, and terminates when there is no more work to do. Synchronization between the mas-
ter and the workers is achieved when the �rst satisfactory match has been deposited by a worker at
RESULT.

Each extension of a branch in the interpretation-tree is formed by appending new entries from 
,
subject to the constraints that (1) each data feature appears at most once on a path through the tree
and (2) the data features are used in order (with gaps allowed). The condition in the following loop
of the worker ensures that these constraints are satis�ed:

for Entry 2 Hypotheses j (8 x 2 MyPath j (Entry(1) > x(1))) do
if Consistent (MyPath, Entry) then
deposit [MyPath + Entry] at TargetTS end deposit;

end if ;
end for;

The hypotheses from the model invocation are stored in the tuple Hypotheses. The set of pairs
MyPath represents the current partial branch in the tree. The condition `Entry(1) > x(1)' enforces
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Figure 3: The coarse structure of the master-worker program for the parallel best-�rst search tree
algorithm.

the data feature ordering constraint. Only extensions that satisfy the normal binary constraints are
accepted (the Boolean function Consistent checks this). A match is satisfactory when the termination
number of matched features has been reached. Extension stops when this threshold is reached. The
threshold is a program argument. Beforehand, TargetTS has been set to indicate whether we have a
new incomplete work task (TargetTS is WORK) or a new satisfactory result (TargetTS is RESULT).

The central data structure for this algorithm is a distributed priority queue of entries of the following
form, sorted by the estimated evaluation of the next potential extension:

(Si = fpairi1 ; pairi2; : : : pairing; g(Si);m; f(Si [ f pairmg))

where Si is a set of n mutually compatible data-to-model pairs (a partial branch in the tree), g(Si) is
the actual evaluation of Si, m indicates that pairm is the next extension of Si to be considered, and
f(Si [fpairmg) is the estimated evaluation of that extension. The priority queue is sorted with larger
f() values at the top.

In addition to putting the initial task tuples into tuple space WORK, the master initializes the top
of the priority queue at tuple space WORK with components (fg; 1:0; 1; A1):

deposit [ 1, 0, fg, 1.0, 1, Hypotheses(1)(3) ] at WORK end deposit;

The expression `Hypotheses(1)(3)' selects the plausibility for the highest rated hypothesis from the
model invocation (this is A1). The hypotheses are initially sorted by the model invocation. `Hy-
potheses(1)(1)' selects the data feature and `Hypotheses(1)(2)' selects the model feature from the �rst
hypothesis.

Each entry of the priority queue is stored as a tuple in WORK. The �rst component indicates the
pointer to the corresponding entry. The integer 1 indicates the top of the queue. The second com-
ponent refers to the next entry. The integer 0 indicates the end of the queue. Fig. 4 illustrates the
structure of this queue.

Each worker executes in a loop and �rst pops the top of the priority queue (Si; g(Si);m; f(Si [
fpairmg)) at tuple space WORK. After popping the top of the priority queue, other worker processes
can work in parallel on the tail of the queue to allow parallel access to the distributed queue in tuple
space, provided that there exists a tail.

If not rejected by consistency checks, early termination or non-existence of further hypotheses, the
worker generates the next descendant of the successful extension:

(Si [ f pairmg; g(Si [ f pairmg);m+ 1 ; f(Si [ f pairmg [ f pairm+1g))
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Figure 4: The distributed priority queue for parallel best-�rst search. The integer values 1 and 0 are
used to indicate the top and the end of the queue, respectively. The intermediate entries are identi�ed
by the contained atoms. We use black circles to represent the atoms. A link between two atoms means
that these two atoms are equal. Note, that the atoms are not the addresses of the respective entries,
but rather the identi�cation of the entries (distributed pointers which are independent of memory
addresses to allow access from di�erent processors).

plus the next descendant of the parent:

(Si; g(Si);m + 1 ; f(Si [ f pairmg))

to be inserted into priority queue.

The algorithm needs two evaluation functions, f() for the estimated new state evaluation and g() for
the actual state evaluation. The f() evaluation function gives longer branches higher evaluations to
direct the workers to search the tree depth-�rst.

The priority queue is stored as a distributed data structure [22] in tuple space WORK. Distributed
data structures may be examined and manipulated by multiple processes simultaneously. In this
case, multiple processes can work independently on di�erent partitions of the queue. The individual
entries are linked together by means of ProSet's atoms. ProSet does not support pointers as they
are known in Modula, C or similar procedural languages. As mentioned before, atoms are unique
with respect to one machine and across machines (they contain the host and process identi�cation,
creation time, and an integer counter). Atoms can only be created and compared for equality. We use
them as distributed pointers which are independent of the processor's memory addresses. Note, that
multiple processes can work independently on di�erent partitions of the queue. A variety of other
data structures, such as distributed priority sorted heaps or distributed sorted trees, could be used to
implement the priority queue.

2.4 Evaluation of the Prototypes

For testing the parallel algorithms, the output from the low- and medium-level components of the
IMAGINE2 [10] system for range images of workpieces is used. Some experimental results with the
ProSet-Linda prototype for the parallel best-�rst search algorithm are displayed in Fig. 5. Fig. 5a
shows the number of visited nodes in relation to the number of workers and Fig. 5b shows the number
of visited nodes per worker in relation to the number of workers. T is the termination threshold for
satisfactory matches. The zigzag line is due to non-determinism, but the tendency is obvious. The
number of visited nodes per worker converges to approximately T

2
as the number of workers increases.

Therefore, the addition of worker processes increases the search space.

The parallel best-�rst algorithm is not necessarily much faster than the sequential best-�rst algorithm,
but can produce better results within the same or even a shorter time. The f() function for the
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Figure 5: The experimental results for the ProSet-Linda implementation of the parallel best-�rst
search algorithm.

estimated new state evaluations directs the workers to search the tree depth-�rst, which increases the
probability of �nding a satisfactory match earlier. The workers are guided by the plausibilities to follow
the most promising branches. Therefore, the experimental evaluation showed that the parallel best-
�rst search algorithm is the most promising way to parallelize model matching for three-dimensional
computer vision. Refer to [19] for a more detailed description of the evaluation.

Another main observation to make at this point is: because the sequential variations of interpretation-
tree model matching algorithms were presented in a set-oriented way [9], it was quite straightforward
to implement them and the alternative parallel implementations in ProSet-Linda and then compare
them, in only a few weeks. The prototypes for the developed algorithms could be regarded as executable
speci�cations.

2.5 Transforming the Most Promising Prototype into E�cient Implemen-
tations

As a consequence of the evaluation, the prototype of the parallel best-�rst algorithm has been trans-
formed into e�cient implementations [24]. The ProSet-Linda prototype is �rst transformed into a
C-Linda implementation. With Linda, it is easy to program with di�erent styles, e.g. with distributed
data structures, active data structures and message passing [2]. The transformations between C-Linda
styles are discussed in [2]. Then, the C-Linda implementation has been transformed into a message-
passing style to serve as a preliminary step for a message-passing implementation. In this project, a
MPI library (Message Passing Interface) is used [7]. The transformation from message-passing style
C-Linda programs into MPI programs is straightforward: only the coordination part is changed.

For an e�cient implementation with MPI, the implementation of the priority queue needs to work
e�ciently on distributed memory machines. Parallelizing a priority queue requires the processing
of several request in parallel. Classical sequential algorithms use a heap for maintaining a priority
queue. Early approaches tried to use parallel priority queue algorithms developed for shared memory
machines on distributed memory machines, too, by simulating the required shared memory [31]. This
results in imbalanced load of the processors' memories. Load balancing processes are required which
produce additional simulation overhead.

Thus, new algorithms for distributed memory were investigated. These algorithms use local sequential
priority queues on each processor to maintain a global parallel priority queue [23]. Early attempts
in this direction proposed algorithms that do not guarantee the selection of the element with global
maximum priority. The semantics of a priority queue changed in a way not acceptable for many ap-
plications. Recently published algorithms provide real parallel priority queues for distributed memory
without the above mentioned problems [32].
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Figure 6: The coarse structure of the distributed priority queue in the low-level C-Linda and MPI
implementations.

Our parallel algorithm uses an n-ary global heap consisting of local priority queues residing on each
processor [26]. The global heap property is kept across all local priority queues, i.e. in a minimum-
heap each node locally maintains a priority queue containing only elements that are smaller than the
elements kept at the children nodes. Due to the use of an n-ary heap and a simple load balancing
scheme this algorithm is easily scalable to the number of available processors.

The distributed priority queue (DPQ), which has been implemented with C-Linda and MPI, uses
a divide-and-conquer model. The DPQ is a distributed heap with a root node and several worker
processes connected in a tree structure (see Fig. 6). According to the heap property, all items stored
at one particular node have a larger priority than all those stored at any of its children. Each process
of the DPQ stores its items in a local heap. Items are inserted or deleted on a particular node in a
round-robin scheme which provides a perfectly balanced distribution of the data.

The DPQ is accessed at the DPQ server process which invokes the appropriate actions to maintain
the heap property of the whole distributed heap. For every request | push or pop | the DPQ server
process determines the host process which actually has to change its number of stored items. Then,
the work is propagated down the path to this host. The DPQ server process is able to process the
next request as soon as the previous request is handed over to a DPQ node at a lower level of the
distributed heap. Due to the distribution scheme, congestion along a path in the distributed heap is
avoided by choosing another subtree each time a request is relayed down the heap.

Fig. 7a shows the total elapsed execution times of the C-Linda (message-passing style) and MPI
implementations on a network of six SparcStationsTM connected by an Ethernet network. The C-
Linda program uses the Network-C-Linda system from SCA [33], and the MPI implementation uses
CHIMP/MPI (Common High-Level Interface to Message Passing) from the Edinburgh Parallel Com-
puting Centre [1]. The elapsed times include the time required for starting the processes over the
network. With both implementations, the number of evaluated nodes of the search tree increases with
the number of workers as predicted by the prototype. Fig. 7b shows also that the evaluation times for
each node in the interpretation tree decreases when the number of workers is increased: the quality
of the result is improved while the total execution times of model matching remains approximately
constant, even when the number of workers exceeds the number of available processors.

At least with the C-Linda implementation, the total execution time decreases as long as the number
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Figure 7: Comparison of the total execution times and the times per node for the transformed C-Linda
and the MPI implementations on a network of six SparcStationsTM. The termination threshold for
satisfactory matches for the displayed times is T = 6.

of workers does not exceed the number of available processors. Fig. 7a shows that the execution time
remains almost constant for �fteen or more workers with both implementations. The results are di�er-
ent for less than �fteen workers because the C-Linda system applies automatic load balancing for the
available hosts. CHIMP/MPI assigns processes to hosts in a strict round-robin scheme. Despite the
load balancing, the C-Linda implementation is not as fast as the MPI implementation. The commu-
nication procedures of MPI are on a lower level than the C-Linda primitives, allowing optimizations
to a greater extent. Refer to [24] for a detailed discussion of the tranformed implementations.

3 Developing Parallel Algorithms for the Salishan/Cowichan
Problems

The Salishan [8] and the Cowichan [34] problems are suites for assessing the usability of parallel
programming systems. They have been implemented with the ProSet-Linda approach [21]. To save
space, only the experience with one problem, viz. Hamming's Problem, are reported in the present
paper.

Input to Hamming's Problem is an ordered list of prime numbers p1, : : :, pk and an integer n. Ham-
ming's Problem is to produce the ordered stream containing integers lower or equal to n matching the
product:

p
i1
1 � pi22 � : : : � pikk

with ij 2 N0 for j 2 f 1; : : : ; kg. These numbers are called hamming numbers and the problem is
called extended hamming problem. The simple version restricts the problem to the primes 2, 3, and
5. Another formulation for the problem is to �nd all integers between 1 and n with all prime factors
occuring in the given list of primes.

The steps for transforming the prototype solutions for this problem into e�cient implementations are
illustrated in Fig. 8. After the evaluation of prototypes for di�erent parallelizations, the prototypes
are transformed within ProSet-Linda itself to arrive at a conceptual level of C-Linda [33]. In the
next step, the ProSet-Linda prototype is transformed into a C-Linda implementation. With the step
from ProSet-Linda to C-Linda, the transformation of the sequential parts|in particular the data
structures|is the �rst task. The transformation of the coordination part is straightforward.

With the transformation from C-Linda to the Multi-Thread Architecture [29], the tuple space is simply
stored in shared memory. The Multi-thread implementation is directly derived from the �rst C-Linda
implementation. The Multi-thread implementation allows parallel execution on multi-processor Sparc-
StationsTM.
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Figure 8: The transformation steps from ProSet-Linda to low-level programming systems which
have been applied to the Salishan/Cowichan problems.

For the transformation fromC-Linda into PVM, �rst the C-Linda implementation is transformed into a
message-passing style C-Linda program, as discussed in subsection 2.5. Again, the transformation from
message-passing style C-Linda programs into PVM programs is straightforward: only the coordination
part is changed. PVM (Parallel Virtual Machine) is a popular message-passing library which is
available on workstation networks as well as several parallel computer systems [12].

The experimental results for the transformed low-level implementations are displayed in Fig. 9. The C-
Linda and PVM implementations are measured on a network of six SparcStation 10 (single processor)
and the Multi-thread implementation is measured on a SparcStation 10/512 with two processors. The
execution times for the PVM and Multi-thread implementations decrease even when more worker
processes are spawned than processors are available. These good speedups are achieved because
process creation is cheap with the PVM and Multi-thread implementations and because the work is
better distributed among the processes. The speedups through improved load balancing are eliminated
with the C-Linda implementation by the high costs for process creation. For a detailed discussion of
these transformations and evaluations refer to [21].

4 Related Work

Various approaches to prototyping parallel algorithms with very high-level parallel programming lan-
guages intend to alleviate the development of parallel algorithms in quite di�erent ways. Some trans-
formations of parallel prototypes into e�cient implementations are discussed in the literature. The
transformation of sequential programs is discussed in [28].

In [20], high-level parallel algorithm speci�cations are re�ned within PSETL, which is a data-parallel
extension to SETL. High-level PSETL code is successively transformed manually into lower-level
architecture-speci�c PSETL code.

The Crystal [4] approach starts from a high-level functional problem speci�cation, through a sequence
of optimizations tuned for particular parallel machines, leading to the generation of e�cient target
code with explicit communication and synchronization. This approach to automation is to design a
compiler that classi�es source programs according to the communication primitives and their cost on
the target machine and that maps the data structures to distributed memory, and then generates
parallel code with explicit communication commands. Regarding those classes of problems for which
the default mapping strategies of the compiler are inadequate, Crystal provides special language
constructs for incorporating domain speci�c knowledge by the programmer and directing the compiler
in its mapping.
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Transformation techniques have been developed for the Proteus prototyping language [30]. Proteus'
semi-automatic re�nement system is based on algebraic speci�cation techniques and category the-
ory to transform prototypes to implementations on speci�c architectures. For the time being, these
transformations are restricted to the data-parallel constructs of Proteus [30]. [27] discusses the trans-
formation of data-parallel Proteus programs to low-level systems such as High Performance Fortran
(HPF) and message-passing libraries. In addition to the data-parallel constructs, Proteus provides
some constructs for control parallelism, but transformations of control-parallel prototypes are not
discussed.

The automatic or semi-automatic transformation of control-parallel prototypes into e�cient low-level
programs is still an unsolved problem and subject to further research.

5 Conclusions

To build a parallel system, you should start with executable prototypes to study the feasibility of
ideas for parallelization (neglect the execution performance in the �rst instance). Powerful tools are
needed to make prototyping of parallel algorithms and systems feasible.

This paper reports on the experience with the development of parallel algorithms for computer vi-
sion applications and for the Salishan/Cowichan problems employing the ProSet-Linda approach.
Prototypes for several parallel algorithms have been developed, evaluated and transformed. The eval-
uation showed that not all algorithmic variations are good candidates for e�cient parallelization. An
application area for prototyping is to carry out feasibility studies. If we had implemented the al-
gorithms directly with a production language, for example C with extensions for message passing,
the implementation e�ort would have been higher, because the e�ort to practically evaluate ideas for
parallelization with low-level languages is higher than it is with a prototyping language.
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A Prototyping Parallel Algorithms with ProSet-Linda

ProSet-Linda combines the sequential prototyping language ProSet [6] with the coordination lan-
guage Linda [3] to obtain a parallel programming language as a tool for prototyping parallel algorithms
[17, 18]. The procedural, set-oriented language ProSet [6] is a successor to SETL [25]. ProSet is
an acronym for PROtotyping with SETs. The high-level structures that ProSet provides qualify
the language for prototyping. Refer to [25] for a case study using SETL for prototyping.

A.1 Basic Concepts

ProSet provides the data types atom, integer, real, string, Boolean, tuple, set, function, and module.
As a prototyping language, ProSet is weakly typed, i.e., the type of an object is in general not known
at compile time. Atoms are unique with respect to one machine and across machines. They can only
be created and compared for equality. Tuples and sets are compound data structures, the components
of which may have di�erent types. Sets are unordered collections while tuples are ordered. There is
also the unde�ned value om which indicates unde�ned situations.

As an example consider the expression [123, "abc", true, f1.4, 1.5g] which creates a tuple consisting
of an integer, a string, a Boolean, and a set of two reals. This is an example of what is called a tuple
former. As another example consider the set forming expression f2 � x : x 2 [1::10]jx > 5g which
yields the set f12; 14; 16; 18; 20g. The quanti�ers of predicate calculus are provided (9, 8). The control
structures have ALGOL as one of its ancestors.

A.2 Parallel Programming

To support prototyping of parallel algorithms, a prototyping language must provide simple and power-
ful means for dynamic creation and coordination of parallel processes. In ProSet-Linda, the concept
for process creation via Multilisp's futures [16] is adapted to set-oriented programming and combined
with Linda's [13] concept for synchronization and communication. Process communication and syn-
chronization in ProSet-Linda is reduced to concurrent access to a shared data pool, thus relieving
the programmer from the burden of having to consider all process inter-relations explicitly. The par-
allel processes are decoupled in time and space in a simple way: processes do not have to execute at
the same time and do not need to know each other's addresses (this is necessary with synchronous
point-to-point message passing).

A.2.1 Process Creation

Process creation in ProSet-Linda is provided through the unary operator ||, which may be applied
to a function call. A new process will be spawned to compute the value of this expression concurrently
with the spawning process similar to futures in Multilisp [16]. If this process creator || is applied to
an expression that is assigned to a variable, the spawning process continues execution without waiting
for the termination of the newly spawned process. At any time the value of this variable is needed, the
requesting process will be suspended until the future resolves (the corresponding process terminates)
thus allowing concurrency between the computation and the use of a value. Consider the following
statement sequence to see an example:

x := || p(); -- Statement 1
. . . -- Some computations without access to x
y := x + 1; -- Statement 2

After statement 1 is executed in the above example, process p() runs in parallel with the spawning
process. Statement 2 will be suspended until p() terminates. If p() resolves before statement 2 has
started execution, then the resulting value will be assigned immediately.
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Side e�ects and write parameters are not allowed for parallel processes in ProSet-Linda. Synchro-
nization and communication is done only via tuple-space operations.

A.2.2 Synchronization and Communication

Linda is a coordination language which extends a sequential language by means for synchronization and
communication through so-called tuple spaces [13]. Synchronization and communication in ProSet-
Linda are carried out through several atomic operations on tuple spaces: addition, removal, reading,
and updates of individual tuples in tuple space. Linda and ProSet both provide tuples; thus, it is
quite natural to combine both models to form a tool for prototyping parallel algorithms. The access
unit in tuple space is the tuple. Reading access to tuples in tuple space is associative and not based
on physical addresses, but rather on their expected content described in templates. This method is
similar to the selection of entries from a data base. ProSet-Linda supports multiple tuple spaces.
Several library functions are provided for handling multiple tuple spaces dynamically.

ProSet-Linda provides three tuple-space operations. The deposit operation deposits a tuple into a
tuple space:

deposit [ "pi", 3 :14 ]at TS end deposit;

TS is the tuple space at which the tuple [ "pi", 3 :14 ] has to be deposited. Thefetch operation tries
to fetch and remove a tuple from a tuple space:

fetch ( "name", ? x ) at TS end fetch;

This template only matches tuples with the string "name" in the �rst �eld and integer values in
the second �eld. The optional l-values speci�ed in the formals (the variable x in our example) are
assigned the values of the corresponding tuple �elds, provided matching succeeds. Formals are pre�xed
by question marks. The selected tuple is removed from tuple space. The meet operation is the same
as fetch, but the tuple is not removed and may be changed:

meet ( "pi", ? x ) at TS end meet;

Changing tuples is done by specifying expressions for values into which speci�c tuple �elds will be
changed. Consider

meet ( "pi", ? into 2:0 � 3:14 ) at TS end meet;

where the second element of the met tuple is changed into the value of the expression 2:0 � 3:14.
Tuples which are met in tuple space may be regarded as shared data since they remain in tuple space
irrespective of changing them or not. With meet, in-place updates of speci�c tuple components are
supported.

A.3 An Introductory Example: the Dining Philosophers Problem

As an introductory example, we present the complete parallel solution to the dining philosophers
problem. The dining philosophers problem is a classical problem in parallel programming which has
been posed by Dijkstra [5]. It is often used to test the expressivity of new parallel languages.

The ProSet-Linda solution in Figure 10 is derived from the C-Linda version in [2]. In the C-Linda
version, the philosophers �rst fetch their left and then their right chopsticks. In the ProSet-Linda
version, this order is not speci�ed. This is accomplished by the use of multiple templates for one
fetch statement. The fetch statement suspends until a matching tuple is available. Then, the
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program DiningPhilosophers;
visible constant n := 5, -- Number of philosophers

TS := CreateTS (); -- New tuple space
begin

for i in [ 0 . . . n-1 ] do
-- Deposit chopsticks and room tickets at the tuple space:
deposit [ "chopstick", i ] at TS end deposit;
if i 6= n-1 then -- One ticket less than the number of philosophers
deposit [ "room ticket" ] at TS end deposit;
|| phil(i); -- Spawn the next philosopher

end if ;
end for;
phil(n-1); -- The main program becomes the last philosopher

procedure phil (i);
begin

loop

think ();
fetch ( "room ticket" ) at TS end fetch;
-- Fetch left and right chopstick in arbitrary order:
fetch ( "chopstick", i ) )

-- Left chopstick fetched, fetch the right one:
fetch ( "chopstick", (i+1) mod n ) at TS end fetch;

xor ( "chopstick", (i+1) mod n ) )
-- Right chopstick fetched, fetch the left one:
fetch ( "chopstick", i ) at TS end fetch;

at TS
end fetch;
eat ();
-- Return the fetched chopsticks and the room ticket:
deposit [ "chopstick", i ] at TS end deposit;
deposit [ "chopstick", (i+1) mod n ] at TS end deposit;
deposit [ "room ticket" ] at TS end deposit;

end loop;
end phil;

end DiningPhilosophers;

Figure 10: Solution for the dining philosophers problem. The function CreateTS creates a new tuple
space. The templates are enclosed in parentheses and not in brackets in order to set the templates
apart from tuples
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enclosed statement which is speci�ed for the selected template is executed. The program works for
arbitrary n > 1.

To prevent deadlock, only four philosophers (or one less than the total number of philosophers) are
allowed into the room at any time to guarantee to be at least one philosopher who is able to make
use of both, his left and his right chopstick. In [2] this is demonstrated with the pigeonhole principle:
in every distribution of the n chopsticks among the n� 1 philosophers with table tickets, there must
be at least one philosopher who gets two chopsticks. For a detailed discussion of prototyping parallel
algorithms with ProSet-Linda refer to [17].
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