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Abstract

This paper presents a short survey on limit theorems for certain functionals of
semimartingales, which are observed at high frequency. Our aim is to explain the
main ideas of the theory to a broader audience. We introduce the concept of stable
convergence, which is crucial for our purpose. We show some laws of large numbers
(for the continuous and the discontinuous case) that are the most interesting from a
practical point of view, and demonstrate the associated stable central limit theorems.
Moreover, we state a simple sketch of the proofs and give some examples.

Keywords: central limit theorem, high frequency observations, semimartingale,
stable convergence.
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1 Introduction

In the last decade there has been a considerable development of the asymptotic theory for
processes observed at a high frequency. This was mainly motivated by financial applica-
tions, where the data, such as stock prices or currencies, are observed very frequently. As
under the no-arbitrage assumptions price processes must follow a semimartingale (see e.g.
[7]), there was a need for probabilistic tools for functionals of semimartingales based on
high frequency observations.

Inspired by potential applications, probabilists started to develop limit theorems for
semimartingales. An important starting point was the unpublished work of Jacod [10], who
developed a first general (stable) central limit theorem for high frequency observations;
the crucial part of this work was later published in [11] (see also Chapter IX in [14] for
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a detailed study of the asymptotic results). Later on those results were used to derive
limit theorems for various functionals of semimartingales; we refer to [3], [4], [12], [13],
[15] among many others. Statisticians applied the asymptotic theory to analyze the path
properties of discretely observed semimartingales: for the estimation of certain volatility
functionals and realised jumps (see e.g. Theorem 3.1, Example 3.2 and Theorem 3.6 of
this paper or [4], [17]), or for performing various test procedures (see e.g. [1], [5], [8]). The
aim of this paper is to present a short survey of these theoretical results and to carefully
explain the main concepts and ideas of the proofs. We remark that the formal proofs of
various limit theorems are usually long and pretty complicated; however, we try to give
the reader a simple and clear intuition behind the theory, making those limit theorems
more accessible for non-specialists in the field of semimartingales and stochastic processes.

Throughout this paper we are in a framework of a one-dimensional Itô semimartingale,
i.e.

Xt = X0 +
∫ t

0
asds+

∫ t

0
σsdWs + δ1{|δ|≤1} ? (µ− ν)t + δ1{|δ|>1} ? µt, (1.1)

defined on the filtered probability space (Ω,F, (Ft)t≥0,P). In (1.1) (as)s≥0 is a stochastic
drift process, (σs)s≥0 is a stochastic volatility, W denotes a standard Brownian motion, δ
is a predictable function, µ a Poisson random measure and ν its predictable compensator
(the precise definition of µ, ν and f ? µ will be given later). The last two summands of
(1.1) stand for the (compensated) small jumps and the large jumps, respectively.

Typically, the stochastic process X is observed at high frequency, i.e. the data points
Xi∆n , i = 0, . . . , [t/∆n] are given, and we are in the framework of infill asymptotics, that is
∆n → 0. When X is a continuous process (i.e. the last two terms of (1.1) are 0 identically)
we are interested in the behaviour of the functionals

V (f)nt = ∆n

[t/∆n]∑
i=1

f
(∆n

i X√
∆n

)
, t > 0, (1.2)

where ∆n
i X = Xi∆n −X(i−1)∆n

and f : R → R is a smooth function. The scaling ∆−1/2
n

in the argument is explained by the selfsimilarity of the Brownian motion W .

When the process X contains jumps it is more appropriate to consider functionals of
the type

V (f)nt =
[t/∆n]∑
i=1

f(∆n
i X). (1.3)

In contrast to V (f)nt , the asymptotic theory for V (f)nt crucially depends on the behaviour
of the function f near 0. When f(x) ∼ xp at 0 we observe the following: if p > 2 the
limit of V (f)nt is driven by the jump part of X, if 0 < p < 2 the limit of the normalized
version of V (f)nt is driven by the continuous part of X, and if p = 2 both parts contribute
to the limit. Finally, we remark that almost all high frequency statistics used for practical
applications are of the form (1.2), (1.3) or of related type (the two most well-known
generalizations are multipower variation (see e.g. [6]), truncated power variation (see e.g.
[17]) or combinations thereof (see e.g. [20])). Thus, it is absolutely crucial to understand
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the asymptotic theory for the functionals V (f)nt and V (f)nt . We will derive the law of large
numbers for V (f)nt and V (f)nt , and prove the associated stable central limit theorems.

This paper is organized as follows: in Section 2 we introduce the concept of stable con-
vergence and demonstrate Jacod’s central limit theorem for semimartingales. We explain
the intuition behind Jacod’s theorem and give some examples to illustrate its application.
Section 3 is devoted to the asymptotic results for functionals V (f)nt and V (f)nt . We state
the theoretical results and present an intuitive (and rather precise) sketch of the proofs.

2 The mathematical background

We start this section by introducing the notion of stable convergence of random variables
(or processes). As we will see in Section 3, we typically deal with mixed normal limits
in the framework of semimartingales. More precisely, we have that Yn

d−→ V U , where
V > 0, U ∼ N(0, 1) and the random variables V and U are independent (we write Yn

d−→
MN(0, V 2), and the latter is called a mixed normal distribution with random variance
V 2). Usually, the distribution of V is unknown and thus the weak convergence Yn

d−→
MN(0, V 2) is useless for statistical purposes, since confidence intervals are unavailable.
The problem can be explained as follows: as for the case of a normal distribution with
deterministic variance V 2, we would try to estimate V 2, say by V 2

n , and hope that

Yn/Vn
d−→ N(0, 1).

However, the weak convergence Yn
d−→ V U does not imply (Yn, Vn) d−→ (V U, V ) for a

random variable V (which is required to conclude that Yn/Vn
d−→ N(0, 1)). For this reason

we need a stronger mode of convergence that would imply the joint weak convergence of
(Yn, V ) for any F-measurable variable V .

Stable convergence is exactly the right type of convergence to guarantee this property.
In the following subsection we give a formal definition of stable convergence and derive its
most useful properties (in fact, all properties statisticians should know).

2.1 A crash course on stable convergence

In this subsection all random variables or processes are defined on some probability space
(Ω,F,P). We start with a definition of stable convergence.

Definition 2.1 Let Yn be a sequence of random variables with values in a Polish space
(E, E). We say that Yn converges stably with limit Y , written Yn

st−→ Y , where Y is defined
on an extension (Ω′,F′,P′), iff for any bounded, continuous function g and any bounded
F-measurable random variable Z it holds that

E(g(Yn)Z)→ E′(g(Y )Z) (2.4)

as n→∞.
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First of all, we remark that random variables Yn in the above definition can be also
random processes. We immediately see that stable convergence is a stronger mode of
convergence than weak convergence, but weaker than convergence in probability.

For the sake of simplicity we will only deal with stable convergence of Rd-valued ran-
dom variables in this subsection (many of the results below transfer directly to stable
convergence of processes). The next proposition gives a much simpler characterization of
stable convergence which is closer to the original definition of Renyi [18] (see also [2]).

Proposition 2.2 The following properties are equivalent:

(i) Yn
st−→ Y

(ii) (Yn, Z) d−→ (Y,Z) for any F-measurable variable Z

(iii) (Yn, Z) st−→ (Y,Z) for any F-measurable variable Z

The assertion of Proposition 2.2 is easily shown and we leave the details to the reader.

For the moment it is not quite clear why an extension of the original probability space
(Ω,F,P) in Definition 2.1 is required. The next lemma gives the answer.

Lemma 2.3 Assume that Yn
st−→ Y and Y is F-measurable. Then

Yn
P−→ Y.

Proof: As Yn
st−→ Y and Y is F-measurable, we deduce by Proposition 2.2(ii) that

(Yn, Y ) d−→ (Y, Y ). Hence, Yn − Y
d−→ 0, and Yn

P−→ Y readily follows. 2

Lemma 2.3 tells us that the extension of the original probability space is not required
iff we have Yn

P−→ Y . But if we have ”real” stable convergence Yn
st−→ Y , what type of

extension usually appears? A partial answer is given in the following example.

Example 2.4 Let (Xi)i≥1 be a sequence of i.i.d. random variables with EX1 = 0 and
EX2

1 = 1, defined on (Ω,F,P). Assume that F = σ(X1, X2, . . .). Setting Yn = 1√
n

∑n
i=1Xi

we obtain that
Yn

d−→ Y ∼ N(0, 1),

which is of course a well-known result. Is there a stable version of this weak convergence?
The answer is yes. Let Y ∼ N(0, 1) be independent of F (thus it has to be defined on an
extension of (Ω,F,P)!). Then, for any collection t1, . . . , tk ∈ N, we deduce that

(Yn, Xt1 , . . . , Xtk) d−→ (Y,Xt1 , . . . , Xtk)

as Yn is asymptotically independent of (Xt1 , . . . , Xtk). Thus, (Yn, Z) d−→ (Y,Z) for any
F-measurable variable, which implies that Yn

st−→ Y .
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In fact, the described situation is pretty typical. Usually, we only require a new
standard normal variable, independent of F, to define the limiting variable Y (the canonical
extension is simply the product space). We will see later that, when dealing with processes,
we typically require a new Brownian motion, independent of F, to define the limiting
process. However, more complicated extensions may appear (see e.g. Section 3.2). 2

The last proposition of this subsection gives the answer to our original question and
presents the ∆-method for stable convergence, which is quite often used in statistical
applications.

Proposition 2.5 Let Yn, Vn, Y , X, V be Rd-valued, F-measurable random variables and
let g : Rd → R be a C1-function.

(i) If Yn
st−→ Y and Vn

P−→ V then (Yn, Vn) st−→ (Y, V ).

(ii) Let d = 1 and Yn
st−→ Y ∼ MN(0, V 2) with V being F-measurable. Assume that

Vn
P−→ V and Vn, V > 0. Then Yn

Vn

d−→ N(0, 1) (and there is also a stable version of
this convergence).

(iii) Let
√
n(Yn − Y ) st−→ X. Then

√
n(g(Yn)− g(Y )) st−→ ∇g(Y )X.

Proof: Assertion (i) is trivial, since Yn
st−→ Y implies (Yn, V ) d−→ (Y, V ) and we have

Vn − V
P−→ 0 by assumption. Part (ii) follows by part (i) and the continuous mapping

theorem, since (Yn, Vn) st−→ (Y, V ). Finally, let us show part (iii). Since
√
n(Yn−Y ) st−→ X

we have |Yn − Y |
P−→ 0. The mean value theorem implies that

√
n(g(Yn)− g(Y )) =

√
n∇g(ξn)(Yn − Y )

for some ξn with |ξn − Y | ≤ |Yn − Y |. Clearly, ξn
P−→ Y . Thus, by part (i) we obtain

(ξn,
√
n(Yn − Y )) st−→ (Y,X), which implies part (iii) because ∇g is continuous. 2

The ∆-method presented in Proposition 2.5 again demonstrates the importance of sta-
ble convergence. We would like to emphasize that such a result does not hold for the
usual weak convergence when Y is random, which is a typical situation in a semimartin-
gale framework (see Section 3).

2.2 Jacod’s stable central limit theorem

In practice it is a difficult task to prove stable convergence, especially for processes. As
for weak convergence, it is sufficient to show stable convergence of the finite dimensional
distributions and tightness. However, proving stable convergence of the finite dimensional
distributions is by far not easy, because the structure of the σ-algebra F can be rather
complicated (note that the σ-algebra F from Example 2.4 has a pretty simple form).
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Jacod [11] has derived a general stable central limit theorem for partial sums of trian-
gular arrays. Below we assume that all processes are defined on the filtered probability
space (Ω,F, (Ft)t≥0,P). We consider functionals of the form

Y n
t =

[t/∆n]∑
i=1

Xin, (2.5)

where the Xin’s are Fi∆n-measurable and square integrable random variables. Moreover,
we assume that Xin’s are ”fully generated” by a Brownian motion W 1. Recall that the
functionals V (f)nt and V (f)nt are of the type (2.5).

Before we present the main theorem of this subsection, we need to introduce some
notations. Below, ([M,N ]s)s≥0 denotes the covariation process of two (one-dimensional)
semimartingales (Ms)s≥0 and (Ns)s≥0. We write V n u.c.p.−→ V whenever supt∈[0,T ] |V n

t −
Vt|

P−→ 0.

Theorem 2.6 (Jacod’s Theorem [11])
Assume there exist absolutely continuous processes F , G, and a continuous process B with
finite variation such that the following conditions are satisfied:

[t/∆n]∑
i=1

E(Xin|F(i−1)∆n
) u.c.p.−→ Bt, (2.6)

[t/∆n]∑
i=1

(
E(X2

in|F(i−1)∆n
)− E2(Xin|F(i−1)∆n

)
)

P−→ Ft =
∫ t

0
(v2
s + w2

s)ds, (2.7)

[t/∆n]∑
i=1

E(Xin∆n
iW |F(i−1)∆n

) P−→ Gt =
∫ t

0
vsds, (2.8)

[t/∆n]∑
i=1

E(X2
in1{|Xin>ε|}|F(i−1)∆n

) P−→ 0 ∀ε > 0, (2.9)

[t/∆n]∑
i=1

E(Xin∆n
i N |F(i−1)∆n

) P−→ 0, (2.10)

where (vs)s≥0 and (ws)s≥0 are predictable processes and condition (2.10) holds for all
bounded Ft-martingales with N0 = 0 and [W,N ] ≡ 0. Then we obtain the stable conver-
gence of processes:

Y n
t

st−→ Yt = Bt +
∫ t

0
vsdWs +

∫ t

0
wsdW

′
s, (2.11)

where W ′ is a Brownian motion defined on an extension of the original probability space
(Ω,F, (Ft)t≥0,P) and independent of the original σ-algebra F.

1Roughly speaking, this means that there is no martingale N with [W, N ] ≡ 0 that has a substantial
contribution to Xin (otherwise condition (2.10) of Theorem 2.6 would be violated). We also remark that
the central limit theorem in [11] is formulated with respect to a reference continuous (local) martingale
M , which is supposed to generate the Xin’s (and has to be chosen by the user). However, for continuous
Itô semimartingale models we can always choose M = W .
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Remark 2.7 To the best of our knowledge, Theorem 2.6 is the only (general) stable cen-
tral limit theorem for the case of infill asymptotics! Another stable central limit theorem
(for random variables) can be found in [9] (see Theorem 3.2 therein), but it requires a
certain nesting condition for the sequence of filtrations, which is not satisfied by Fi∆n .
This underlines the huge importance of Jacod’s theorem.

Furthermore, Theorem 2.6 is optimal in the following sense: there are no extra condi-
tions among (2.6) - (2.10) that guarantee the stability of the central limit theorem. Even
weak convergence Y n ⇒ Y would not hold under less conditions. 2

Remark 2.8 First of all, Theorem 2.6 is a probabilistic result that has no statistical
applications in general, because there is no way to access the distribution of Y . However,
when B ≡ 0 and v ≡ 0, which is the case for the most interesting situations, things become
different! We remark that, for any fixed t > 0,∫ t

0
wsdW

′
s ∼MN

(
0,
∫ t

0
w2
sds
)
,

since W ′ is independent of F. Hence

Y n
t√∫ t

0 w
2
sds

d−→ N(0, 1),

and the convergence still holds true if we replace the denominator by a consistent estimator.
The latter can be applied to obtain confidence bands or to solve other statistical problems.
2

Although the formal proof of Theorem 2.6 is rather complicated, it is worthwhile to
explain the meaning of the conditions (2.6) - (2.10). First of all, we observe the decom-
position

Y n
t =

[t/∆n]∑
i=1

(
Xin − E(Xin|F(i−1)∆n

)
)

︸ ︷︷ ︸
martingale part

+
[t/∆n]∑
i=1

E(Xin|F(i−1)∆n
)︸ ︷︷ ︸

drift part

,

where the first summand is a Fi∆n-martingale. By (2.6),
∑[t/∆n]

i=1 E(Xin|F(i−1)∆n
) u.c.p.−→ Bt,

and consequently it is sufficient to assume that Y n
t is a Fi∆n-martingale and to show that

Y n
t

st−→ Yt =
∫ t

0
vsdWs +

∫ t

0
wsdW

′
s.

Next, we observe that (2.9) is a classical (conditional) Lindeberg condition that ensures
that the limiting process Yt has no jumps. Now, let us analyze the quadratic variation
structure of Y n

t . Setting Wn
t = W∆n[t/∆n] and Nn

t = N∆n[t/∆n] we deduce from conditions
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(2.7), (2.8) and (2.10) that

[Y n, Y n]t
P−→ [Y, Y ]t = Ft =

∫ t

0
(v2
s + w2

s)ds,

[Y n,Wn]t
P−→ [Y,W ]t = Gt =

∫ t

0
vsds,

[Y n, Nn]t
P−→ [Y,N ]t = 0,

for some predictable processes (vs)s≥0 and (ws)s≥0. The second convergence suggests that
the process

∫ t
0 vsdWs must be a part of Yt. But, since [Y,N ]t = 0 and w 6≡ 0 in general,

the continuous Ft-martingales cannot fully explain the quadratic variation of Y , and thus
another martingale, which lives on the extension of (Ω,F, (Ft)t≥0,P), is required in the
representation of Y . But why must this term be of the form

∫ t
0 wsdW

′
s? The reason is the

Dambis-Dubins-Schwarz theorem (see e.g. Theorem V.1.6 in [19]): conditions (2.7), (2.8)
and (2.10) imply that, conditionally on F, the quadratic variation of this martingale is
absolutely continuous. Thus, it must be a time-changed Brownian motion; hence, it must
be of the form

∫ t
0 wsdW

′
s.

Finally, let us present a simple but important example to illustrate how Theorem 2.6
is applied in practice.

Example 2.9 Let σ be a càdlàg, Ft-adapted and bounded process and let g, h : R → R
be continuous functions with h being of polynomial growth. Define

Y n
t =

[t/∆n]∑
i=1

Xin, Xin = ∆1/2
n g(σ(i−1)∆n

)
(
h
(∆n

iW√
∆n

)
− Eh

(∆n
iW√
∆n

))
. (2.12)

Note that the Xin’s have a pretty simple structure, since ∆n
iW is independent of F(i−1)∆n

,
and thus of σ(i−1)∆n

, and ∆n
iW/
√

∆n ∼ N(0, 1). Now we need to check the conditions
(2.6) - (2.10) of Theorem 2.6. As E(Xin|F(i−1)∆n

) = 0 we can set B ≡ 0. A simple
calculation shows that

Ft = a2

∫ t

0
g2(σs)ds, Gt = b

∫ t

0
g(σs)ds,

where a2 = var(h(U)), b = E(h(U)U) and U ∼ N(0, 1). Thus, we can set

ws =
√
a2 − b2 g(σs), vs = b g(σs)

in (2.7) and (2.8). On the other hand, it holds that

[t/∆n]∑
i=1

E(X2
in1{|Xin>ε|}|F(i−1)∆n

) ≤ ε−2

[t/∆n]∑
i=1

E(X4
in|F(i−1)∆n

) ≤ C∆n

ε2

for some C > 0, because σ is a bounded process. Hence, condition (2.9) holds. The key
to prove (2.10) is the Itô-Clark representation theorem (see Proposition V.3.2 in [19]). It
says that there exists a process ηn such that

h
(∆n

iW√
∆n

)
− Eh

(∆n
iW√
∆n

)
=
∫ i∆n

(i−1)∆n

ηns dWs.
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From the Itô isometry we deduce that

E(Xin∆n
i N |F(i−1)∆n

) = ∆1/2
n g(σ(i−1)∆n

) E
(∫ i∆n

(i−1)∆n

ηns dWs

∫ i∆n

(i−1)∆n

dNs

)
= ∆1/2

n g(σ(i−1)∆n
) E
(∫ i∆n

(i−1)∆n

ηns d[W,N ]s
)

= 0

as [W,N ] ≡ 0. This implies (2.10) and we obtain that

Y n
t

st−→ Yt = b

∫ t

0
g(σs)dWs +

√
a2 − b2

∫ t

0
g(σs)dW ′s.

Furthermore, when h is an even function we have

Y n
t

st−→ Yt = a

∫ t

0
g(σs)dW ′s,

and the limiting process Y is mixed normal. 2

3 Asymptotic results

As we mentioned above we need to distinguish between the continuous and the discon-
tinuous case to derive the asymptotic results for V (f)nt and V (f)nt . We start with the
continuous case. Below, for any process V , we define Vt− = lims↗t Vs and ∆Vt = Vt−Vt−.

3.1 The continuous case

In this subsection we present the asymptotic results for the functional V (f)nt for continuous
Itô semimartingales X. More precisely, we consider a continuous semimartingale X of the
form

Xt = X0 +
∫ t

0
asds+

∫ t

0
σsdWs, (3.13)

where (as)s≥0 is a càglàd process and (σs)s≥0 is a càdlàg, adapted process.

We start with law of large numbers for V (f)nt . For any function f : R→ R, we define

ρx(f) = Ef(xU), (3.14)

for x ∈ R and U ∼ N(0, 1).

Theorem 3.1 Assume that the function f is continuous and has polynomial growth. Then

V (f)nt
u.c.p.−→ V (f)t =

∫ t

0
ρσs(f)ds. (3.15)

We remark that the drift process (as)s≥0 does not influence the limit V (f)t; we will see
later why. Next, we present Theorem 3.1 for an important subclass of V (f)nt .
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Example 3.2 (Realised power variation)
The class of statistics V (f)nt with f(x) = |x|p (p > 0) is called realised power variation.
It has some important applications in high frequency econometrics; see e.g. [4]. For
f(x) = |x|p, Theorem 3.1 translates to

V (f)nt
u.c.p.−→ V (f)t = mp

∫ t

0
|σs|pds

with mp = E(|U |p), U ∼ N(0, 1). For f(x) = x2 we rediscover a well-known result

V (f)nt
u.c.p.−→ [X,X]t =

∫ t

0
σ2
sds.

2

Now, let us give a sketch of the proof of Theorem 3.1.

• From local boundedness to boundedness: Our assumptions imply that the processes
(as)s≥0 and (σs−)s≥0 are locally bounded, i.e. there exists an increasing sequence of stop-
ping times Tk with Tk

a.s.−→∞ such that the stopped processes are bounded:

|as|+ |σs−| ≤ Ck, ∀s ≤ Tk

for all k ≥ 1. Indeed, it is possible to assume w.l.o.g. that (as)s≥0, (σs−)s≥0 are bounded,
because Theorem 3.1 is stable under stopping. To illustrate these ideas set a(k)

s = as1{s≤Tk},

σ
(k)
s = σs1{s<Tk}. Note that the processes a(k), σ(k) are bounded for all k ≥ 1. Associate
X(k) with a(k), σ(k) by (3.13), V (k)(f)nt with X(k) by (1.2) and V (k)(f)t with σ(k) by (3.15).
Now, notice that

V (k)(f)nt = V (f)nt , V (k)(f)t = V (f)t, ∀t ≤ Tk.

As Tk
a.s.−→ ∞ it is sufficient to prove V (k)(f)nt

u.c.p.−→ V (k)(f)t for each k ≥ 1. Thus, we can
assume w.l.o.g. that the process (as)s≥0, (σs−)s≥0 are bounded. 2

• The crucial approximation: First of all, observe that

∆n
i X =

∫ i∆n

(i−1)∆n

asds︸ ︷︷ ︸
=Op(∆n)

+
∫ i∆n

(i−1)∆n

σsdWs︸ ︷︷ ︸
=Op(∆

1/2
n )

,

where the second approximation follows by Burkholder’s inequality (see e.g. Theorem
IV.4.1 in [19]). Thus, the influence of the drift process (as)s≥0 is negligible for the first
order asymptotics. Indeed, we have

∆n
i X√
∆n
≈ αni = ∆−1/2

n σ(i−1)∆n
∆n
iW, (3.16)
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which is the crucial approximation for proving all asymptotic results. Note that the αni ’s
have a very simple structure: they are uncorrelated and αni ∼ MN(0, σ2

(i−1)∆n
). As f is

continuous and σ is càdlàg, it is relatively easy to show that

V (f)nt −∆n

[t/∆n]∑
i=1

f(αni ) u.c.p.−→ 0. (3.17)

On the other hand, it holds that

∆n

[t/∆n]∑
i=1

E(f(αni )|F(i−1)∆n
) = ∆n

[t/∆n]∑
i=1

ρσ(i−1)∆n
(f) u.c.p.−→ V (f)t

and ∆2
n

∑[t/∆n]
i=1 E(f2(αni )|F(i−1)∆n

) u.c.p.−→ 0. Hence

∆n

[t/∆n]∑
i=1

f(αni ) u.c.p.−→ V (f)t,

which implies V (f)nt
u.c.p.−→ V (f)t. 2

Now we turn our attention to the stable central limit theorem associated with Theo-
rem 3.1. Here we require a stronger assumption on the volatility process σ to be able
to deal with the approximation error induced by (3.16). More precisely, the process σ is
assumed to be a continuous Itô semimartingale:

σt = σ0 +
∫ t

0
ãsds+

∫ t

0
σ̃sdWs +

∫ t

0
τ̃sdVs, (3.18)

where the processes (ãs)s≥0, (σ̃s)s≥0, (τ̃s)s≥0 are càdlàg adapted and V is a Brownian
motion independent of W .

In fact, the condition (3.18) is motivated by potential applications, as it is satisfied for
many stochastic volatility models. Next, for any function f : R→ R and k ∈ N, we define

ρx(f, k) = E(f(xU)Uk), U ∼ N(0, 1). (3.19)

Note that ρx(f) = ρx(f, 0).

Theorem 3.3 Assume that f ∈ C1(R) with f, f ′ having polynomial growth and that con-
dition (3.18) is satisfied. Then the stable convergence of processes

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→ L(f)t =

∫ t

0
bsds+

∫ t

0
vsdWs +

∫ t

0
wsdW

′
s, (3.20)

holds, where

bs = asρσs(f ′) +
1
2
σ̃s(ρσs(f ′, 2)− ρσs(f ′)),

vs = ρσs(f, 1),

ws =
√
ρσs(f2)− ρ2

σs
(f)− ρ2

σs
(f, 1)
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and W ′ is a Brownian motion defined on an extension of the original probability space
(Ω,F, (Ft)t≥0,P) and independent of the original σ-algebra F.

As a consequence of Theorem 3.3 we obtain a simple but very important lemma.

Lemma 3.4 Assume that f : R → R is an even function and that the conditions of
Theorem 3.3 hold. Then ρx(f ′) = ρx(f ′, 2) = ρx(f, 1) = 0, and we deduce that

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→ L(f)t =

∫ t

0
wsdW

′
s

with ws =
√
ρσs(f2)− ρ2

σs
(f).

As we mentioned in Remark 2.8, L(f)t has obviously a mixed normal distribution (for any
t > 0) when f is an even function. Indeed, this is the case for almost all statistics used in
practice. Let us now return to Example 3.2.

Example 3.5 (Realised power variation)
We consider again the class of functions f(x) = |x|p (p > 0), which are obviously even.
By Lemma 3.4 we deduce that

∆−1/2
n

(
V (f)nt −mp

∫ t

0
|σs|p

)
st−→ L(f)t =

√
m2p −m2

p

∫ t

0
|σs|pdW ′s. (3.21)

(In fact, the above convergence can be deduced from Lemma 3.4 only for p > 1, since
otherwise f(x) = |x|p is not differentiable at 0. However, it is possible to extend the
theory to the case 0 < p ≤ 1 under a further condition on σ; see [3]). By Theorem 3.1
and Proposition 2.5 we are able to derive a feasible version of Lemma 3.4 associated with
f(x) = |x|p:

∆−1/2
n

(
V (f)nt −mp

∫ t
0 |σs|

p
)

√
m2p−m2

p

m2p
V (f2)nt

d−→ N(0, 1),

which can be used for statistical purposes. For the case of quadratic variation, i.e. f(x) =
x2, this translates to

∆−1/2
n

(∑[t/∆n]
i=1 |∆n

i X|2 −
∫ t

0 σ
2
s

)
√

2
3∆−1

n
∑[t/∆n]

i=1 |∆n
i X|4

d−→ N(0, 1).

Quite surprisingly, the stable convergence for the case of quadratic variation can be proved
without assuming the condition (3.18) (thus under very weak assumptions on the process
X); this is not possible anymore for other powers p. 2

We present the main ideas behind the proof of Theorem 3.3, which ends this subsection.

• CLT for the approximation (3.16): First of all, we observe that Theorem 3.3 is also
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stable under stopping. Thus, we can assume w.l.o.g. that the processes (as)s≥0, (σs)s≥0,
(ãs)s≥0, (σ̃s)s≥0, (τ̃s)s≥0 are bounded. In a first step, we show the central limit theorem
for the approximation αni . More precisely, we want to prove that

[t/∆n]∑
i=1

Xin
st−→
∫ t

0
vsdWs +

∫ t

0
wsdW

′
s, Xin = ∆1/2

n

(
f(αni )− E(f(αni )|F(i−1)∆n

)
)
,

where the process (vs)s≥0 and (ws)s≥0 are defined in Theorem 3.3. In principle, we can
follow the ideas of Example 2.9: we immediately deduce the convergence

[t/∆n]∑
i=1

E(X2
in|F(i−1)∆n

) P−→ Ft =
∫ t

0
(ρσs(f2)− ρ2

σs
(f))ds,

[t/∆n]∑
i=1

E(Xin∆n
iW |F(i−1)∆n

) P−→ Gt =
∫ t

0
ρσs(f, 1)ds.

On the other hand, conditions (2.6) with B ≡ 0, (2.9) and (2.10) of Theorem 2.6 are
shown as in Example 2.9 (in fact, the proof of (2.10) is a bit more complicated here).
Consequently, we deduce that

∑[t/∆n]
i=1 Xin

st−→
∫ t

0 vsdWs +
∫ t

0 wsdW
′
s. 2

• CLT for the canonical process: Before we proceed with the proof of Theorem 3.3 we
need to present a further intermediate step. In fact, it is much more natural to consider
a central limit theorem for the ”canonical process”

L(f)nt = ∆1/2
n

[t/∆n]∑
i=1

{
f
(∆n

i X√
∆n

)
− E

(
f
(∆n

i X√
∆n

)∣∣∣F(i−1)∆n

)}
since the latter is a martingale. Since f is continuous and σ is càdlàg, it is easy to see that

L(f)nt −
[t/∆n]∑
i=1

Xin
u.c.p.−→ 0,

where the Xin’s are defined as in the previous step, because the above expression is a sum
of martingale differences whose quadratic variation is shown to converge to 0 in probability
as in (3.17). Hence, L(f)nt

st−→
∫ t

0 vsdWs +
∫ t

0 wsdW
′
s. 2

• Putting things together: Now, we are left to proving

∆−1/2
n

(
V (f)nt − V (f)t

)
− L(f)nt

u.c.p.−→
∫ t

0
bsds,

where the process (bs)s≥0 is given in Theorem 3.3. In view of the previous step, it is
sufficient to show that

∆−1/2
n

[t/∆n]∑
i=1

∫ i∆n

(i−1)∆n

(ρσs(f)− ρσ(i−1)∆n
(f))ds u.c.p.−→ 0, (3.22)

∆1/2
n

[t/∆n]∑
i=1

E
(
f
(∆n

i X√
∆n

)
− f(αni )|F(i−1)∆n

)
u.c.p.−→

∫ t

0
bsds. (3.23)
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We remark that ρσs(f)−ρσ(i−1)∆n
(f) ≈ ρ′σ(i−1)∆n

(f)(σs−σ(i−1)∆n
). By assumption (3.18)

the left-hand side of (3.22) becomes asymptotically equivalent to a sum of martingale
differences and the convergence in (3.22) readily follows. Finally, let us highlight the proof
of (3.23) which is the crucial step. Assume for simplicity that

σt =
∫ t

0
σ̃sdWs

instead of (3.18), as the other components in (3.18) do not contribute to the limit process.
In the following we write Y n � Xn whenever Y n −Xn u.c.p.−→ 0. The most important idea
in the whole proof is the following approximation step

∆1/2
n

[t/∆n]∑
i=1

E
(
f
(∆n

i X√
∆n

)
− f(αni )|F(i−1)∆n

)

� ∆1/2
n

[t/∆n]∑
i=1

E
(
f ′(αni )

(∆n
i X√
∆n
− αni

)
|F(i−1)∆n

)

�
[t/∆n]∑
i=1

E
(
f ′(αni )

(
∆na(i−1)∆n

+
∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n
)dWs

)
|F(i−1)∆n

)

�
[t/∆n]∑
i=1

E
(
f ′(αni )

(
∆na(i−1)∆n

+ σ̃(i−1)∆n

∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n
)dWs

)
|F(i−1)∆n

)
.

By an application of Itô’s formula and Riemann integrability we obtain

[t/∆n]∑
i=1

E
(
f ′(αni )

(
∆na(i−1)∆n

+ σ̃(i−1)∆n

∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n
)dWs

)
|F(i−1)∆n

)
u.c.p.−→

∫ t

0
bsds,

which completes the proof of Theorem 3.3. 2

3.2 The discontinuous case

This subsection is devoted to the analysis of V (f)nt in the framework of an Itô semimartin-
gale exhibiting jumps, and we start with a discussion of the representation

Xt = X0 +
∫ t

0
asds+

∫ t

0
σsdWs + δ1{|δ|≤1} ? (µ− ν)t + δ1{|δ|>1} ? µt

from (1.1). Again, (as)s≥0 is càglàd and (σs)s≥0 is càdlàg adapted.

Regarding the latter two terms, recall that for some optional function W (ω, s, x) and
some random measure κ on R+×R the notation W?κt is an abbreviation for the stochastic
integral process

W ? κt(ω) =
∫

[0,t]×R
W (ω, s, x) κ(ω; ds, dx),
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as long as it exists. These processes are typically used to represent the jump part of a
semimartingale, since x ? µX with (ε is the Dirac measure)

µX(ω; dt, dx) =
∑
s

1{∆Xs(ω) 6=0}ε(s,∆Xs(ω))(dt, dx)

is the sum of the jumps of X up to time t. In general, those jumps must not be summable,
and thus compensating the small jumps (X is càdlàg, so there are only finitely many
jumps larger than any given η) with νX becomes necessary. This random measure is the
unique predictable one such that W ? (µX − νX)t is a local martingale for all optional W .
Assume for example that we are given a Poisson process Nt with parameter λ: In this
case, the compensator becomes νN (ω; dt, dx) = λdt⊗ ε1(dx), and x ? (µN − νN ) takes the
well-known form Nt − λt.

For technical reasons we use a slightly different approach, as for Itô semimartingales it
is always possible to choose µ as the specific Poisson random measure, whose compensator
is given by ν(ω; ds, dx) = ds⊗ dx. This happens at the cost of a change in the integrator:
x is replaced by some predictable function δ on Ω× R+ × R.

Throughout this section we restrict ourselves to the two choices of f , which are the
most interesting for applications, namely power variations with the respective cases p > 2
and p = 2. The same result for arbitrary semimartingales is proven in Lepingle [16].

Theorem 3.6 Let f(x) = |x|p for a non-negative exponent p. For any t ≥ 0 we have

V (f)nt
P−→ V (f)t =

{∑
s≤t |∆Xs|p, p > 2,

[X,X]t , p = 2.
(3.24)

Remark 3.7 Recall that

[X,X]t =
∫ t

0
σ2
sds+

∑
s≤t
|∆Xs|2

is almost surely finite for any (Itô) semimartingale. This implies in particular that∑
s≤t |∆Xs|p is finite for any p > 2 as well. 2

Remark 3.8 Following Jacod [12] there is a similar result for more general functions of
polynomial growth, but the limiting behaviour of V (f)nt depends heavily on additional
properties of the function f and the semimartingale X. In particular, assuming that f is
continuous with f(x) ∼ |x|p around zero, we have a more general version of Theorem 3.6:

For p > 2 the limit is always
∑

s≤t f(∆Xs), whereas for p = 2 it is
∫ t

0 ρσs(f)ds +∑
s≤t f(∆Xs). For p < 2, the conditions on X come into play: If the Wiener part is

non-vanishing, it dominates V (f)nt , which in turn converges to infinity. However, for the
standardised version V (f)nt we have the same limiting behaviour as in Theorem 3.1, no
matter what the jumps of X look like. If 1 < p < 2 and there is no Wiener part, we
have the limit

∑
s≤t f(∆Xs) again, provided that the jumps of power p are summable. A

similar result holds for 0 < p ≤ 1, if the (genuine) drift part is zero as well. 2
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Before we come to a sketch of the proof of Theorem 3.6, we state a local boundedness
condition on the jumps, which is assumed to be satisfied for the rest of this section: δ
is locally bounded by a family (γk) of deterministic functions with

∫
(1 ∧ γ2

k(x))dx < ∞.
Though not necessary for the LLN, this assumption simplifies the proof and it is crucial
for the CLT to hold. As Theorem 3.6 is also stable under stopping, we may assume again
that a and σ are actually bounded and that all γk can be replaced by a bounded function
γ satisfying

∫
(1 ∧ γ2(x))dx <∞.

• A fundamental decomposition: The basic idea in essentially all of the proofs on dis-
continuous semimartingales is to fix an integer q first (which eventually tends to infinity)
and to decompose X into the sum of the jumps larger than 1/q and the remaining terms,
including the compensated jumps smaller than 1/q. Precisely, we have for any q:

Xt = X(q)t +X(q)′t with X(q)′t := X0 +Qt +M(q)t +B(q)t, (3.25)

where

X(q)t = δ1{|γ|>1/q} ? µt, Qt =
∫ t

0 asds+
∫ t

0 σsdWs,

M(q)t = δ1{|γ|≤1/q} ? (µ− ν)t, B(q)t = δ1{|δ|≤1,γ>1/q} ? νt.

}
(3.26)

If X exhibits only finitely many jumps, the decomposition becomes much simpler: X(q)
can be interpreted as the pure jump part of the semimartingale, whereas X ′(q) denotes
its continuous part, and in this case one does of course not need the additional parameter
q. Keeping this intuition in mind, it might be easier to follow the proofs.

It is crucial that X(q)t has only finitely many jumps, as this makes its contribution to
V (f)nt rather simple to analyze. Setting

V (R, p)nt =
[t/∆n]∑
i=1

|∆n
i R|p

for any càdlàg process R and using

V (Q, p)nt
P−→

{
0, p > 2,∫ t

0 σ
2
sds, p = 2

from Theorem 3.1, the proof essentially reduces to showing that both V (B(q), p)nt and
V (M(q), p)nt are small and that V (X(q), p)nt converges to

∑
s≤t |∆Xs|p. One has to be

careful here, as all quantities above depend both on n and q. Formally, this means proving

limq→∞ lim supn→∞ P
(
|V (B(q), p)nt |+ |V (M(q), p)nt | > η

)
= 0,

limq→∞ lim supn→∞ P
(∣∣∣V (X(q), p)nt −

∑
s≤t |∆Xs|p

∣∣∣ > η
)

= 0

 (3.27)

for all η > 0.

• Some basic computations: For the first claim in (3.27), a simple calculation shows that
B(q) behaves in a similar way as the drift term in Q; precisely, we have |∆n

i B(q)| < Cq∆n.
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This allows to focus on the local martingale M(q) only. Following Proposition II.2.17 in
[14] its quadratic variation process is given by

N(q)t = 〈M(q),M(q)〉t = |δ|21{|γ|≤1/q} ? νt,

and we have

|∆n
i N(q)| =

∣∣∣ ∫ i∆n

(i−1)∆n

∫
{|γ(x)|≤1/q}

|δ(ω, s, x)|2dx ds
∣∣∣ ≤ ∆n

∫
{|γ(x)|≤1/q}

|γ(x)|2dx = eq∆n,

and eq → 0 for q → ∞ by assumption on γ. Thus the first part of (3.27) follows from
Burkholder’s inequality again, since

E(|∆n
iM(q)|p) ≤ E(|∆n

i N(q)|p/2) ≤ ep/2q ∆p/2
n

holds and p ≥ 2. Finally, we know from the structure of the compensator ν(ω; ds, dx) =
ds ⊗ dx that the finitely many (say: Kq(t)) jump times of X(q) within [0, t] have the
same distribution (conditionally on Kq(t)) as a sample of Kq(t) independent uniformly
distributed variables on the same interval. Thus, for growing n it becomes less likely that
two or more jump times are within the same interval [(i − 1)∆n, i∆n], and precisely we
have Ωn(t, q) → Ω almost surely, if we denote by Ωn(t, q) the set of those ω for which all
jump times of X(q) are at least 2∆n apart and none occurs in the interval [ [t∆n]

∆n
, t]. So

w.l.o.g. we are on Ωn(t, q), where we have

V (X(q), p)nt =
∑
s≤t
|∆X(q)s|p

identically. Thus the last step of (3.27) follows from Lebesgue’s Theorem, namely

E
(∣∣∣∑

s≤t
|∆X(q)s|p −

∑
s≤t
|∆Xs|p

∣∣∣) ≤ E
(∑
s≤t
|∆Xs|p1{|∆Xs|≤1/q}

)
→ 0

for q →∞. 2

We have central limit theorems associated with any of the two types of convergence in
Theorem 3.6, and it is no surprise that both limiting processes are fundamentally different
from the one in (3.21).

Before we state the result, we have to introduce some further quantities. First, we
need an extension of the original probability space, which supports a Brownian motion
W ′, two sequences (Un) and (U ′n) of independent N(0, 1) variables and a sequence (κn)
of independent U(0, 1) variables, all being mutually independent and independent of F.
Let further be (Tm) any choice of stopping times with disjoint graphs that exhausts the
jumps of X, which means that ∆Xt 6= 0 implies t = Tm for some m and that Tm 6= Tm′

for m 6= m′. Then we set for p = 2 and p > 3 (there is no CLT for 2 < p ≤ 3, since the
Brownian part within V (f)nt is not negligible at the rate of convergence

√
∆n):

L(f)t =
∑

m: Tm≤t
f ′(∆XTm)

(√
κmUmσTm− +

√
1− κmU ′mσTm

)
.

The proposition goes then as follows.
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Theorem 3.9 Let f(x) = |x|p for a non-negative exponent p. For any t ≥ 0 we have

∆−1/2
n

(
V (f)nt − V (f)t

)
st−→

{
L(f)t p > 3,
L(f)t + L(f)t, p = 2.

(3.28)

Remark 3.10 Note that L(f)t for p = 2 does not converge in general, and thus it depends
on the specific choice of the stopping times (Tm). However, it can be shown easily that its
F-conditional law does not, since conditionally on F the summands

αm = f ′(∆XTm)
(√

κmUmσTm− +
√

1− κmU ′mσTm

)
are independent, mean zero variables with

E(α2
m|F) =

1
2
f ′(∆XTm)2(σ2

Tm− + σ2
Tm

).

By definition f(x) = |x|2, and so∑
m: Tm≤t

f ′(∆XTm)2(σ2
Tm− + σ2

Tm
) < C

∑
m: Tm≤t

|∆XTm |2 <∞,

showing that L(f)t is absolutely summable, conditionally on F.

As we are interested in proving F-stable convergence towards L(f)t, it is by definition
only its F-conditional law that matters. The previous claim thus gives us the freedom
to work with any choice of (Tm) for the rest of this section, and we choose a convenient
one as follows: Consider for any q ≥ 1 the finitely many jump times (T (m, q)) of the
Poisson process µ([0, t] × {1/q < γ(z) ≤ 1/(q − 1)}). Then we denote with (Tm)m≥1 any
reordering of the double sequence (T (m, q) : m, q ≥ 1), and we set Pq = {m : Tm =
T (m′, q′) with q′ ≤ q}. 2

Remark 3.11 In contrast to the continuous case, we have stated both the LLN and the
CLT pointwise in t, but not in a functional sense. It is possible to do so, but one has to
be careful then: If T is a specific jump time of X, then the jump ∆XT is typically not
included in any of the discretized processes V (f)nT (whose corresponding jump times Tn
are not the same as T ), but it obviously occurs in the limit. This prevents V (f)nT from
converging uniformly in probability in the LLN (one has convergence in probability for
the Skorokhod topology, however), and we only have a functional CLT for a discretized
version, namely for ∆−1/2

n

(
V (f)nt −

∑
s≤ [t∆n]

∆n

|∆Xs|p
)

. See [12] for details. 2

We conclude with a sketch of the proof of Theorem 3.3.

• The case p > 3: Recall the notation in (3.25) and set I(m,n) = min{i : Tm ≤ i∆n}, so
Tm is in [(I(m,n)− 1)∆n, I(m,n)∆n]. The main idea of the proof is again to separate the
(finitely many) large jumps from the other terms in X. Precisely, on Ωn(t, q) the identity

∆−1/2
n

(
V (f)nt −

∑
s≤t

f(∆Xs)
)

= ∆−1/2
n

(
V (X ′(q), p)nt −

∑
m/∈Pq

f(∆XTm)
)

+
∑
m∈Pq

ζnm (3.29)
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holds, where we have defined

ζnm = ∆−1/2
n

{
f(∆n

I(m,n)X)− f(∆XTm)− f(∆n
I(m,n)X

′(q))
}
.

The first term in (3.29) comprises the contributions of the continuous part of X plus the
small jumps, and from a simple but tedious application of Itô’s formula one gets

lim
q→∞

lim sup
n→∞

P
(

∆−1/2
n

∣∣∣V (X ′(q), p)nt −
∑
m/∈Pq

f(∆XTm)
∣∣∣ > η

)
= 0.

Following (3.16) this result is not surprising for Q and B(q) within X ′(q) (recall p > 3),
and the main part is to prove that the contributions of the small jumps cancel out.

We may thus focus on
∑

m∈Pq
ζnm only, and a Taylor expansion around ∆XTm gives for

the dominating terms within each ζnm:

f(∆n
I(m,n)X)− f(∆XTm) = f ′(∆XTm)∆n

I(m,n)X
′(q) + f ′′(ξnm)(∆n

I(m,n)X
′(q))2,

where ξnm lies between ∆n
I(m,n)X and ∆XTm . f is a power function, so a simple calculation

gives ∑
m∈Pq

|ζnm −∆−1/2
n f ′(∆XTm)∆n

I(m,n)X
′(q)|

≤ Cp
∑
m∈Pq

∆−1/2
n (|∆n

I(m,n)X
′(q)|p + |∆XTm |p−2|∆n

I(m,n)X
′(q)|2),

and by similar arguments as in the proof of Theorem 3.6 (note that Pq has only finitely
many elements) this quantity converges in probability to zero for any q as n → ∞. The
proof of the first claim in Theorem 3.9 is finished, once one has shown∑

m∈Pq

∆−1/2
n f ′(∆XTm)∆n

I(m,n)X
′(q) st−→ L(f, q)t, (3.30)

where L(f, q)t is the same quantity as L(f)t, but where the sum goes over the terms in
Pq only (the convergence of L(f, q)t towards L(f)t is straight-forward). Proving (3.30)
mainly amounts to showing the stable convergence

(∆−1/2
n ∆n

I(m,n)X
′(q))m∈Pq

st−→ (
√
κmUmσTm− +

√
1− κmU ′mσTm)m∈Pq

for any fixed q. This result makes sense, as (3.16), the proof of Theorem 3.6 and Lemma
5.12 in [12] allow us to replace ∆n

I(m,n)X
′(q) by σTm−(WTm−W(i−1)∆n

)+σTm(Wi∆n−WTm).
Since the jump time Tm within [(I(m,n)− 1)∆n, I(m,n)∆n] is uniformly distributed (see
the graphic below), the additional factor κm ∼ U(0, 1) shows up.

σTm−(WTm −W(I(m,n)−1)∆n
) -� σTm(WI(m,n)∆n

−WTm)

(I(m,n)− 1)∆n Tm I(m,n)∆n︸ ︷︷ ︸
κm∆n

︸ ︷︷ ︸
(1− κm)∆n
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Showing finally that the convergence is indeed a stable one is a bit tricky, since we
cannot use Theorem 2.6 here. One works directly with Definition 2.1 instead, making
extensive use of the choice of the stopping times (Tm) as well as of the fact that the ho-
mogeneous Poisson measure µ restricted to {γ > 1/q} is independent of W . See again [12].

• The case p = 2: The main idea is similar, as we have on Ωn(t, q) the decomposition

∆−1/2
n

(
V (f)nt − [X,X]t

)
= ∆−1/2

n

(
V (X ′(q), 2)nt −

∫ t

0
σ2
sds−

∑
m/∈Pq

|∆XTm |2
)

+
∑
m∈Pq

ζnm

with ζnm as above, but with p = 2. In a same way as before, we have∑
m∈Pq

∆−1/2
n f ′(∆XTm)∆n

I(m,n)X
′(q) st−→ L(f, q)t, (3.31)

whereas we have

∆−1/2
n

(
V (Q, 2)nt −

∫ t

0
σ2
sds
)

st−→ L(f)t (3.32)

as in (3.21). Following Lemma 5.8 in [12] we also have the joint stable convergence in
(3.31) and (3.32), and so one is left to show

lim
q→∞

lim sup
n→∞

P
(

sup
s≤t

∣∣∣∆−1/2
n

(
V (X ′(q), 2)nt − V (Q, 2)nt −

∑
m/∈Pq

|∆XTm |2
)∣∣∣ > η

)
→ 0,

which is again a consequence of Itô’s formula. 2
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