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Abstract

We consider the problem of testing parametric assumptions in an inverse regression model

with a convolution-type operator. An L2-type goodness-of-fit test is proposed which com-

pares the distance between a parametric and a nonparametric estimate of the regression

function. Asymptotic normality of the corresponding test statistic is shown under the null

hypothesis and under a general nonparametric alternative with different rates of convergence

in both cases. The feasibility of the proposed test is demonstrated by means of a small sim-

ulation study. In particular, the power of the test against certain types of alternative is

investigated.

Keywords: Inverse problems, Model selection, Goodness-of-fit tests, Limit theorems for

quadratic forms.

1 Introduction

In this paper we consider the model

Yi,n = Kψf(xi,n) + εi,n, i = −n, . . . , n (1)

where xi,n = i/(nan) are fixed design-points with an → 0, nan → ∞ for n → ∞, and

ε−n,n, . . . , εn,n are real-valued independent identically distributed errors with E[εi,n] = 0, σ2 :=

E[ε2
i,n] < ∞ and existing fourth moments. In (1) Kψ denotes the convolution operator defined

by

g(x) := Kψf(x) = f ∗ ψ(x) =
∫

R
ψ(x− t)f(t)dt, (2)

1Address for correspondence: Katharina Proksch, Ruhr-Universität Bochum, Fakultät für Mathematik, NA

3/75, Universitätsstr. 150, D-44780 Bochum, Germany, email: katharina.proksch@rub.de, Fon: +49/234/32–

23287, Fax: +49/551/32–14559
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where ψ is a given function, which will be specified below. The reconstruction of the function f

from g = Kψf at any location x on the real line requires (at least asymptotically) information

about g on the full real line. This is achieved by using a design which includes an additional

sequence an → 0 to ensure that some of the design points xk,n will converge to infinity. Recover-

ing the function f from the observations (x−n,n, Y−n,n), . . . , (xn,n, Y−n,n) is a statistical inverse

problem (see for example Bissantz et al. (2007) or Mair and Ruymgaart (1996)). Estimation of

the regression function f in model (1) and associated confidence bands have been discussed for

Fourier based estimators in Bissantz and Birke (2009) and Birke et al. (2009).

In inverse regression models with convolution operator it is often assumed that the signal f

is periodic on a compact interval, say [0, 1] (see e.g. Cavalier and Tsybakov (2002)). In this

case Kψ is a convolution operator on [0, 1] with periodic kernel ψ. However, in many examples

such as the reconstruction of astronomical and biological images from telescopic and microscopic

imaging devices this assumption is not realistic, because the signal in general is not periodic.

Some applications of model (1) can be found in Lauer et al. (2005), who used a parametric

model to investigate the surface brightness data from Hubble Space Telescope observations of

the centers of early-type galaxies, and in Claxton et al. (2005) and Spring and Inoué (1997),

where the PSF is modelled by a theoretically predicted Airy pattern, which can be tested by

pilot observations e.g. of a spherical bead based on model (1). Because any statistical analysis

depends sensitively on the parametric form of the function f many authors point out that it is

important to check these assumptions by means of a statistical test.

The problem of checking (parametric) model assumptions regarding the function g has found

considerable interest in direct regression models of the form Yi,n = g(xi,n)+εi,n. The (weighted)

L2-distance of a nonparametric kernel estimator of the function and a smoothed version of a

parametric estimate was used by Härdle and Mammen (1993) to test the validity of a parametric

model, and the (weighted) L2-norm of the function and its derivatives was estimated in Huang

and Fan (1999) by integrating the corresponding coefficients of a local polynomial estimator.

These results were derived in a random design setting. Likewise, in a regression model with fixed

design on a compact interval, a test statistic can be based on the difference of a nonparametric

kernel-based estimator and a parametric estimator of the variance (see Dette (1999), where

the asymptotic distribution of the test statistic under both the hypothesis of a linear model

and under fixed alternatives is derived). Bissantz et al. (2005) constructed L2-based tests for

parametric assumptions on time- or band-limited functions (i.e. functions where either the

function or its Fourier transform has compact support) under noise. They use the sinc-kernel

estimator for the regression function, which can be understood as a Fourier-based estimator
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for the case of a direct regression model. Closely related to these approaches are the results

in Paparoditis (2000) and Dette and Spreckelsen (2003) which consider goodness-of-fit testing

problems for the spectral density.

Similarly, goodness-of-fit tests for the parametric form of the density of independent identically

distributed random variables have been discussed in the literature. In particular, Bickel and

Rosenblatt (1973) proposed a test based on the L2-distance between a non-parametric kernel

density estimator and a smoothed version of a parametric fit. Their method was extended by

Neumann and Paparoditis (2000) and Bachmann and Dette (2005) to test parametric hypotheses

about the marginal distribution of stationary processes. Tests for the parametric form of the

density in deconvolution problems have been considered in Holzmann et al. (2007) and Butucea

(2007). Moreover, testing parametric models in the presence of instrumental variables in a

context which is closely related to statistical inverse problems has been considered in Holzmann

(2007).

In contrast to the case of direct regression and density estimation, the problem of testing para-

metric hypotheses regarding the regression function f in inverse models of the type (1) is not

well-studied in the literature, and it is the purpose of the present paper to develop a consistent

test for this problem. A rather pragmatic approach to this problem is to replace the inverse

model (1) by its direct regression analogue

Yi,n = g(xi,n) + εi,n

where g is defined by (2). Note that parametric assumptions on the original function f can be

expressed uniquely in terms of parametric assumptions on g. If we assume that convolution with

ψ is injective, in principle, all direct testing procedures (e.g. the tests suggested in Härdle and

Mammen (1993) or Dette (1999)) could be applied to test such equivalent parametric assump-

tions on g as well (note that the observations Yi,n at our disposal have mean g(xi,n)). However,

this procedure is generally not appropriate for detecting important alternatives given in terms of

f . The reason is that the deconvolution problem is ill-posed, i.e. the inverse of the convolution

operator is unbounded. Thus it can happen that the true function f0 has an arbitrarily large

L2-distance to the parametric model in the domain of f , whereas the corresponding convolution

g0 = f0 ∗ ψ is very close to the parametric model in the domain of g. Hence direct applica-

tion of tests to the (observable) data (x−n,n, Y−n,n), . . . , (xn,n, Yn,n) will result in an inefficient

procedure for those alternatives which can hardly be distinguished from the null in terms of g.

In this paper we take a different approach to construct tests for parametric hypotheses in the

inverse statistical regression model (1), which is based on an L2-distance between a nonpara-
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metric and a parametric estimate of the regression function f . Therefore our approach deals

directly with the original function f . In Section 2 we introduce a Fourier based estimate of

the regression function and state some basic assumptions, which are required in the following

discussion. In Section 3 we discuss the problem of testing simple hypothesis, i.e. H0 : f = f0,

where f0 is a given function. We establish asymptotic normality of the L2-type test statistic

both under the hypothesis and the alternative with different rates of convergence corresponding

to both cases. In Section 4 we use these results to develop a test for the composite hypothesis

H0 : f ∈MΘ, (3)

where MΘ := {f(ϑ, ·)|ϑ ∈ Θ ⊂ Rn} is a given parametric class. The practical performance of

the proposed tests is illustrated by means of a small simulation study in Section 5. Finally, to

keep the paper more readable, the proofs are deferred to Section 6.

2 Prerequisites. Estimator, notation and assumptions

In this Section we introduce the estimator and some important assumptions regarding the func-

tion f and the convolution function ψ. Throughout this paper let Fψ denote the Fourier

transform of ψ, which is defined by

Fψ(ω) =
∫

R
ψ(t) exp(−iωt) dt.

This yields

ψ(t) =
1

2π

∫
R
Fψ(ω) exp(iωt) dω (4)

and

Fg = Ff · Fψ. (5)

It follows from equations (4) and (5) that

f(t) =
1

2π

∫
R

Fg(ω)
Fψ(ω)

exp(itω) dω. (6)

For all purposes in this paper we further assume

Fψ(t) 6= 0 ∀ t ∈ R, (7)

which yields injectivity of the operator Kψ (see, e.g. Holzmann et al. (2007)). On the basis of

the representation (6) we propose as an estimator for the function f in model (1)

f̂n(t) =
1

2π

∫ 1
h

− 1
h

F̂g(ω)
Fψ(ω)

exp(itω) dω, (8)
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(see for example Diggle and Hall (1993)), where F̂g(ω) is the empirical Fourier transform of g

defined by

F̂g(ω) =
1
nan

n∑
j=−n

Yj,n exp(−iωxj,n)

and h is a smoothing parameter satisfying h→ 0 as n→∞. Note that a larger value of h yields

a smoother estimator f̂n. For our asymptotic considerations we require several assumptions

regarding the smoothness of the functions f and ψ. Our first assumption refers to the asymptotic

behavior of the Fourier transform Fψ.

Assumption A: There exists a constant β > 0 and a constant C ∈ C\ {0} such that

Fψ(ω)|ω|β −→ C, as |ω| → ∞.

Assumption A holds, e.g., for the density function ψ of the centered double-exponential (or

Laplace) distribution, given by ψ(t) = λ
2 e
−λ|t| with

Fψ(ω) =
1

1 + ω2

λ2

.

In this case we have β = 2 and C = λ2. The second assumption requires integrability of the

Fourier transform Ff and the convolution Kψf .

Assumption B: For Ff and Kψf we impose that there exist constants α > β and γ > 0 such

that

α > β :
∫

R
|Ff(ω)||ω|α dω <∞

γ > 0 :
∫

R
|Kψf(t)||t|γ dt <∞.

3 Testing of simple hypothesis

For a test of the simple hypothesis H0 : f = f0 against the alternative H1 : f 6= f0 (for a given

function f0) we use the L2 distance

Tn =
∫

R

∣∣f̂n(t)− f0(t)
∣∣2 dt, (9)

where f̂n is the estimator for the regression function f defined in (8). Our first theorem demon-

strates asymptotic normality of the statistic Tn under the null hypothesis and some regularity

assumptions on the index β of ill-posedness of the deconvolution problem, the smoothness pa-

rameter γ of the function f and the convergence rates of the bandwidth h and an. For a precise

statement of the result, we make the following
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Assumption C: For an and h we assume that for n→∞,

nanh
β+1 −→∞,

naγnh
β −→ c ∈ R+

0 ,

anh ln2(n) −→ 0,

ha
− 1

2
n −→ 0,

aγnh
−β−1 −→ 0.

Assumption C ensures that the rate of convergence to zero of an and h is neither too fast nor

to slow. Throughout this paper the symbol an ∼ bn implies lim
n→∞

an
bn

= 1.

Theorem 1. Suppose that assumptions A, B and C are satisfied. Then, under the null hypoth-

esis H0 : f = f0

n
(
a3
nh

4β+1
) 1

2 ·
(
Tn −

2σ2C1

π · (2β + 1)na2
nh

2β+1

)
D−→ N (0, C2),

where the constants C1, C2 ∈ R+ are defined by∫ 1
h

− 1
h

1
|Fψ(s)|2

ds ∼ C1 ·
∫ 1

h

− 1
h

|s|2β ds (10)

Var(An,1) ∼ C2

n2a3
nh

4β+1
(11)

and the random variable An,1 is given by

An,1 =
1

2πn2a2
n

∑
−n≤j 6=k≤n

εjεk

∫ 1
h

− 1
h

1
|Fψ(s)|2

exp(−isxj) exp(isxk) ds. (12)

Note that the result implies the existence of the limits in (10) and (11). Moreover, similar to

the case of testing parametric hypotheses in direct regression models, the bias term of the dis-

tribution grows with (anh)−1/2 (see for example Dette (1999)). Hence, in a practical application

of the method, the bias, which depends on the convolution kernel by the constant C1, is not

(even asymptotically) negligible, and has to be determined either explicitly or by simulation.

In the proof of Theorem 1 we will show that An,1 defined in (12) is the dominating term in a

decomposition of the difference Tn − ETn.

For a concrete convolution operator specified by the function ψ the constants C1 and C2 can

be determined either analytically or numerically. For example, if ψ is the density function of a

centered Laplace distribution the constants C1, C2 are given by

C1 =
1
λ4

and C2 =
4
9
· C

2
1σ

4

π
=

4
9
· σ

4

λ8π
.
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We obtain an asymptotic level-α-test ϕ = ϕ(Tn) for the hypothesis H0 : f = f0, i.e.,

ϕ(Tn) = I

{
1√
C2
na

3
2
nh

9
2

(
Tn −

2σ2C1

π · (2β + 1)na2
nh

2β+1

)
> u1−α

}
, (13)

where u1−α denotes the 1-α-quantile of the standard normal distribution and σ̂2 denotes an

appropriate estimate of the variance σ2 (see for example (1998)).

Next we consider the asymptotic behaviour of the test statistic Tn under the fixed alternative

H1 : f 6= f0. Here we need slightly different assumptions on an and h than in the case of H0.

Assumption D:

h2β+1√nan −→∞,

na3
n −→∞ and

aγnh
−(2β+1) = O(1)

as n→∞.

Theorem 2. Assume that assumptions A, B and D hold. Then, under H1 : f 6= f0

√
nan

(
Tn − ‖f − f0‖2

)
D−→ N

(
0,

2σ2

π
·
∥∥∥∥FfFψ

∥∥∥∥2
)
.

where ‖f‖ = (
∫

R f
2(t)dt)1/2 denotes the L2-norm of the function f .

Similarly to the proof of Theorem 1, the proof of Theorem 2 is based on the decomposition

of the statistic Tn − ETn where the leading term is not of order na
3
2
nh2β+1 as under the null

hypothesis. Under the alternative H1 the dominating term in the decomposition of Tn − ETn

is a linear statistic of the random variables ε−n,n, . . . , εn,n, which is of order
√
nan. In other

words the rates of convergence of the test statistic under the hypothesis and the alternative are

different, which is typical for this type of statistics (see for example Dette (1999), or Bissantz

et al. (2005)). Moreover, due to this difference in the dominating terms of the test statistics,

assumption D on the convergence rate to zero of h are slightly weaker than under the null

hypothesis, i.e. faster convergence to zero of h is permitted.

Note that the estimator f̂n(t) is only asymptotically unbiased. Hence, since Tn−ETn = An+2Bn,

where

An =
∫

R
|f̂n(t)− Ef̂n(t)|2dt− E

∫
R
|f̂n(t)− Ef̂n(t)|2dt

7



and

Bn =
∫

R

(
f̂n(t)− Ef̂n(t)

)(
Ef̂n(t)− f0(t)

)
dt

includes the bias, Bn may as well be not negligible. It is therefore tempting to use a test

statistic, for which Bn = 0, in particular for small sample sizes. For this purpose we propose as

an alternative statistic

T̃n =
∫

R

∣∣∣f̂n(t)− f̃0(t)
∣∣∣2 dt, (14)

where

f̃0(t) =
1

2π

∫ 1
h

− 1
h

1
nan

∑n
j=−nKψf0(xj) exp(−iωxj)

Fψ(ω)
exp(iωt) dω

is an approximation of f0 satisfying E[f̂n(t)] = f̃0(t). The alternative test statistic T̃n turns out

to have practical advantages over Tn at least for moderate sample sizes. For further details we

refer to the discussion in section 5.

Under H0 : f = f0, we have f̃0(t) = Ef̂n(t) if assumption C is satisfied. Using the same

decompositions as for the proofs of Theorem 1 and Theorem 2 we obtain similar results for the

limit distribution of the test statistic T̃n.

Corollary 1. If assumptions A, B, C and D hold, we have to the statistic T̃n defined in (14)

under H0 : f = f0

n
(
a3
nh

4β+1
) 1

2 ·
(
T̃n −

2σ2C1

π · (2β + 1)na2
nh

2β+1

)
D−→ N (0, C2)

and under H1 : f 6= f0

√
nan

(
T̃n − ‖f − f0‖2

)
D−→ N

(
0,

2σ2

π

∥∥∥∥FfFψ
∥∥∥∥2
)
.

Corollary 1 yields the following alternative level-α-test ϕ = ϕ(T̃n):

ϕ(T̃n) = I

{
1√
C2
na

3
2
nh

9
2

(
T̃n −

2σ2C1

π · (2β + 1)na2
nh

2β+1

)
> u1−α

}
. (15)

4 Testing of composite hypothesis

In this Section we extend the proposed test to the case of testing for a composite hypothesis of

the form

H0 : f ∈MΘ, (16)
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where

MΘ := {f(ϑ, ·)|ϑ ∈ Θ ⊂ Rn}

is a finite dimensional parametric family of regression models. For a precise statement of the

results, we assume that there exists a unique value ϑ0 with

ϑ0 = arg min
ϑ∈Θ
‖f − fϑ‖ .

In particular this means that, under the null hypothesis (16), there exists a unique ϑ0 ∈ Θ

such that fϑ0 = f. Let ϑ̂ an estimator for the parameter ϑ ∈ Θ, which yields the estimator

f(ϑ̂, ·) =: fϑ̂ for f(ϑ, ·) in the parametric model. As test statistic Tn,ϑ̂ we now use the (squared)

L2-distance between fϑ̂ and f̂n, that is

Tn,ϑ̂ :=
∫

R

∣∣fϑ̂(t)− f̂n(t)
∣∣2 dt.

Following Neumann and Paparoditis (2000), we use the results obtained for Tn in Section 2 to

derive the asymptotic properties of the statistic Tn,ϑ̂. To this end we require sufficient conditions

regarding the estimate ϑ̂ which yield the asymptotic equivalence of Tn and Tn,ϑ̂, i.e.

Tn − Tn,ϑ̂ = oP

(
1

na
3
2
nh

2β+ 1
2

)
. (17)

Observe that

Tn,ϑ̂ − Tn =
∫

R

(
fϑ̂(t)− fϑ0(t)

)2
dt+ 2

∫
R

(
f̂n(t)− fϑ0(t)

)(
fϑ0(t)− fϑ̂(t)

)
dt

=
∫

R

(
fϑ̂(t)− fϑ0(t)

)2
dt+ 2En,2,

where the last identity defines En,2 in an obvious manner. In order to find a suitable set of

conditions, which guarantee the approximation (17), we use the notation f(ϑ, t) = ft(ϑ) and

the first-order Taylor expansion

fϑ̂(t)− fϑ0(t) = f ′ϑ0
(t)(ϑ̂− ϑ0) +R(ϑ̂, ϑ0, t),

with

f ′ϑ0
(t) =

∂

∂ϑ

(
fϑ(t)

)∣∣∣
ϑ=ϑ0

.
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The Cauchy-Schwarz inequality yields∣∣En,2∣∣ =
∣∣∣∣∫

R

(
f̂n(t)− fϑ0(t)

)(
fϑ0(t)− fϑ̂(t)

)
dt

∣∣∣∣
=

∣∣∣∣∫
R

(
f̂n(t)− fϑ0(t)

)(
f ′ϑ0

(t)(ϑ̂− ϑ0) +R(ϑ̂, ϑ0, t)
)
dt

∣∣∣∣
≤

((∫
R
R2(ϑ̂, ϑ0, t) dt

) 1
2

+
∣∣∣ϑ̂− ϑ0

∣∣∣ (∫
R
|f ′ϑ0

(t)|2 dt
) 1

2

)

×
(∫

R

∣∣f̂n(t)− fϑ0(t)
∣∣2 dt) 1

2

=

((∫
R
R2(ϑ̂, ϑ0, t) dt

) 1
2

+
∣∣∣ϑ̂− ϑ0

∣∣∣ (∫
R
|f ′ϑ0

(t)|2 dt
) 1

2

)

×
(
OP

(
1

na2
nh

2β+1

)) 1
2

,

where the estimate in the last identity follows from Theorem 1, since∫
R

∣∣f̂n(t)− fϑ0(t)
∣∣2 dt = Tn

under H0 : f = fϑ0 . This shows that the following assumption E is sufficient for the required

asymptotic equivalence (17) of the statistics Tn,ϑ̂ and Tn.

Assumption E: ∫
R

∣∣fϑ̂(t)− fϑ0(t)
∣∣2 dt = oP

(
1

na
3
2
nh

2β+ 1
2

)
∫

R
R2(ϑ̂, ϑ0, t) dt = oP

(
1

nanh2β

)
∫

R

(
f ′ϑ0

(t)
)2
dt <∞

|ϑ0 − ϑ̂| = OP

(
1√

nanh2β

)
Theorem 3. Assume that assumptions A,B,C and E are satisfied, and that the null hypothesis

(16) holds. Then

n
(
a3
nh

4β+1
) 1

2

(
Tn,ϑ̂ −

2σ2C1

π(2β + 1)na2
n

(
1
h

)2β+1
)

D−→ N (0, C2),

where the constants C1 and C2 are defined in Theorem 1.

Theorem 3 can be summarized in the following way. Under the null hypothesis the test statistic

Tn,ϑ̂ has the same limit distribution as Tn provided that the estimate ϑ̂ is consistent with a

sufficiently fast rate.

Example 1. To provide an example for a parametric model where assumption E is satisfied,

consider the case of simple linear regression with

MΘ = {fϑ = ϑ ·m | ϑ ∈ R, } .

10



where m ∈ L2(R) is a given function. Under the hypothesis (16) the function of interest is given

by f = ϑ0 ·m for a unique ϑ0 ∈ R and the model (1) takes the form

Yi = ϑ0 ·Km(xi) + εi, i = −n, . . . , n.

For the least squares estimator ϑ̂ for the parameter ϑ, given by

ϑ̂ = arg min
ϑ∈R

n∑
i=−n

(
Yi,n − ϑKm(xi,n)

)2 =
n∑

j=−n
Yj,n

Km(xj,n)
n∑

k=−n

(
Km(xk,n)

)2 ,
we have

∣∣ϑ− ϑ0

∣∣ = OP

(
1
√
nan

)
,

since m ∈ L2(R) and V ar(εi,n) <∞. The first condition of assumption E is satisfied since∫ ∣∣fϑ̂(t)− fϑ0(t)
∣∣2 dt =

∣∣ϑ− ϑ0

∣∣ ∫ ∣∣m(t)
∣∣2 dt = OP

(
1
n

)
.

Moreover,

fϑ̂(t)− fϑ0(t) = m(t) ·
(
ϑ− ϑ0

)
with f ′ϑ0

= m. Thus the second and the third condition are satisfied as well.

To prove asymptotic normality of the statistic Tn,ϑ̂ under a fixed alternative, we can use the same

arguments as above to reduce the proof to the proof of Theorem 2. The following assumption

yields the asymptotic equivalence of the statistics

Tn =
∫

R

∣∣∣f̂n(t)− fϑ0(t)
∣∣∣2 dt and Tn,ϑ̂

under a fixed alternative f /∈Mϑ.

Assumption F

|ϑ̂− ϑp| = oP

(
1
√
nan

)
∫

R
R2(ϑ̂, ϑ0, t) = oP

(
1
nan

)
∫

R
|f ′ϑ0

(t)| dt <∞

Theorem 4. Assume that assumptions A, B, D and F are satisfied. Then, under H1 : f /∈MΘ

√
nan

(
Tn,ϑ̂ − ‖f − fϑ0‖

2
)
D−→ N

(
0,

2σ2

π

∥∥∥∥FfFψ
∥∥∥∥2)

.
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5 Finite sample properties

In this Section we present a simulation study of the finite sample properties of the estimator

and the testing procedures suggested in the previous sections.

5.1 Simulation setup

We assume that the observations follow model (1), i.e.

Yk,n = Kψf(xk,n) + εk,n, k = −n, . . . , n,

where the noise terms εk,n are normally distributed with variance σ2, and xk,n = k
nan

are the

design points. We consider the cases n = 100 and n = 500, corresponding to sample sizes of

201 and 1001, respectively, and noise levels σ = 0.1 and σ = 0.25. The design parameter an

was chosen as an = 2
9 for sample size 201 and an = 2

11 for sample size 1001. For a practical

application, a rule-of-thumb for the selection of an would be to choose it such that the observed

signal is indistinguishable from noise outside of the support
[
− 1
an
, 1
an

]
of the design. The

operator Kψ constitutes the convolution on R of the function of interest f with the function ψ.

We consider the functions

f1(x) = exp(−0.85 · (x− 1)2)

f2(x) = exp(−0.5(x− 0.6)2) + 1.2 exp(−1.3(x+ 1.45)2),

and the convolution function ψ is the density of a Laplace distribution with parameter λ = 1,

i.e. ψ(x) = 1
2 exp(−|x|).

Figure 1 shows the functions of interest f1 and f2 and typical estimates of each of these functions,

both for sample sizes 201 and 1001. Here and in the following for each set of values of parameters

n and σ the bandwidth was chosen as follows. First, the bandwidth used for these estimates was

chosen by visual inspection from 5 sets of data and kept fixed in all subsequent simulation with

the same set of parameters n, σ. For sample size 201 the bandwidth is ≈ 0.3, and for sample size

1001 it is ≈ 0.25, with only slightly different values for the two different noise levels. Second,

for the subsequent simulations of the proposed tests, the bandwidth was chosen ≈ 20% smaller

since the test statistic Tn requires undersmoothing estimates.

5.2 Distribution of the test statistic and a bootstrap test

In the following we consider both the original test statistic Tn and its alternative version T̃n

defined in (9) and (14), respectively. Figure 2 shows simulated distributions of both test statistics

12



Figure 1: Function of interest fi (solid line) and typical estimates f̂i,n from 201 (dotted line)

and 1001 observations (dash dotted line), respectively, for i = 1 (left panel) and i = 2 (right

panel). The noise level for data was chosen as σ = 0.1.

Figure 2: Empirical densities of the test statistics Tn (on the left) and T̃n (on the right) under the

null hypothesis H0 from samples of size 201 (dotted line) and 1001 (dashed line), in comparison

with the asymptotic densities (solid line) for noise level σ = 0.1.

13



Figure 3: Empirical densities of the test statistics Tn (on the left) and T̃n (on the right) under

an alternative H1 from samples of size 201 (dotted line) and 1001 (dashed line), in comparison

with the asymptotic densities (solid line) for noise level σ = 0.1. For the test, we used the null

hypothesis H0 : f = f1, but generated the data from f2.

in comparison to their asymptotic densities. In direct regression problems it is well known that

the asymptotic distribution of L2-type statistics does not yield an accurate approximation of

the nominal level (see Härdle and Mammen (1993) or Fan and Linton (2003)) and in the case of

inverse regression this difference is even more visible. We observe substantial differences between

the asymptotic distribution and the distribution for finite sample sizes. As a consequence the

tests using quantiles from the asymptotic distribution do not yield an adequate approximation

of the nominal level and the corresponding results are not displayed for the sake of brevity.

In Figure 3 we compare the test statistics with their asymptotic counterparts under an alternative

H1. Here the empirical densities are closer to the asymptotic densities. Hence the asymptotic

distribution under fixed alternatives can be used to estimate the type II error of the test if the

null hypothesis can not be rejected (see Dette (1999)).

Because the approximation of the nominal level by the asymptotic distribution is rather poor we

propose to use a bootstrap procedure for the determination of the quantiles. In the remaining

part of this section we will investigate the finite sample properties of the tests ϕ(Tn) and ϕ(T̃n)

defined in (13) and (15), respectively. To be precise let

ĝ(xi) =

∑n
j=−n K̃

(
xi−xj
h

)
Yj∑n

k=−n K̃
(
xi−xk
h

)
denote the Nadaraya-Watson estimate of the function g = Kψf , where K̃(x) = 1√

2π
exp(−x2

2 )

14



Table 1: Simulated level (in %) of the bootstrap version of the tests ϕ(Tn) and ϕ(T̃n) defined

in (13) and (15), respectively. Data was generated from f = f1 and f = f2 with sample sizes

n = 201 and 1001, and with noise levels σ = 0.1 and σ = 0.25.

ϕ(Tn) ϕ(T̃n)

n σ Level: 5% 10% 20% 5% 10% 20%

f = f1 2.3 5.2 12.4 2.0 4.7 11.0
100 0.1

f = f2 1.3 2.9 7.2 1.3 3.5 9

f = f1 5.6 9.5 19.2 4.1 8.3 17.4
100 0.25

f = f2 3.0 6.2 13.8 3.3 6.9 15.1

f = f1 2.5 5.0 9.5 2.5 6.3 12.9
500 0.1

f = f2 1.3 3.2 8.0 1.9 4.5 10.7

f = f1 2.4 6.6 14 3.9 9.3 17.8
500 0.25

f = f2 2.9 6.5 13.9 3.9 9.0 17.2

denotes the Gaussian kernel. In the next step the bootstrap residuals

ε̃i = Yi − ĝ(xi)

are calculated, where - for the sake of a reliable comparison - the local optimal bandwidth is

used in the Nadaraya Watson estimate. The bootstrap sample of residuals ε∗−n, . . . , ε
∗
n is now

drawn with replacement from the set {ε̃−n, . . . , ε̃n} , which gives the bootstrap observations

Y ∗i = ĝ(xi) + ε∗i .

To determine the power of the test we performed the following steps for 200 datasets generated

according to model 1. First, for each of the datasets we used 300 bootstrap replications to

determine the critical values of the test which were used in the second step to estimate the

power of the test in another 300 simulations. Hence, in total we performed 60000 simulations

for each combination of parameters n, σ2 and fi,·.

In Table 1 we investigate the performance of the tests under the null hypothesis H0 for data

generated from f1 and f2. We observe that both tests are conservative for small variances.

Overall the bootstrap test based on T̃n yields a better approximation of the nominal level for a

larger standard deviation, i.e. σ = 0.25.

In the second part of the simulation study we study the power of the bootstrap test and in-

vestigate the hypotheses H0 : f = f1 or H0 : f = f2. The data has been generated from the

15



Figure 4: Left: f1 (solid line) and scale disturbed versions f1,a for a = 0.6 (dashed line),

a = 0.85 (dotted line), a = 1.1 (dash dotted line) and a = 1.35 (long dashed line). Middle: f2

(solid line) and location disturbed versions f2,b for b = 0.3 (dashed line), b = 0.45 (dotted

line), b = 0.95 (dash dotted line). Right: f1 (solid line) and modality disturbed versions f1,c

for c = 0.3, (dashed line), c = 0.45 (dotted line), c = 0.6 and c = 1.0.

following three types of alternatives f1,a, f2,b and f1,c:

Scale disturbance:

f1,a(x) = f1(x) + a · sin(x)
x2 + 1

where parameter values are chosen as a ∈ {0.6, 0.85, 1.1} for σ = 0.1 and a ∈ {1.1, 1.35}

for σ = 0.25.

Location disturbance:

f2,b(x) = exp
(
−0.5 · (x− 0.6)2

)
+ 1.2 exp

(
−1.3 · (x+ 1.45− b)2

)
where the parameter values chosen as b ∈ {0.3, 0.45} for σ = 0.1 and b ∈ {0.65, 0.95} for

σ = 0.25.

Modality disturbance:

f1,c(x) = f1(x) + c · exp
(
−(x+ 1.5)2

)
where parameter values are chosen as c ∈ {0.3, 0.45, 0.6} for σ = 0.1 and c ∈ {0.6, 1.0}

for σ = 0.25.

Figure 4 shows the different alternative models and in Tables 2-4 we present the power of the

bootstrap tests based on Tn and T̃n for the different alternatives. In all cases the alternatives are

detected with reasonable probabilities. It is worthwhile to mention that for scale disturbances

the bootstrap test based on Tn yields slightly more power than the test based on T̃n. On the

16



Table 2: Simulated power (in %) of the bootstrap version of the tests ϕ(Tn) and ϕ(T̃n) for the

hypothesis H0 : f = f1 in the case of scale disturbances. The sample sizes are given by 201

and 1001 and noise levels are σ = 0.1 and σ = 0.25. Data is generated from f1,a, but the null

hypothesis f0 = f1.

Power of ϕ(Tn) Power of ϕ(T̃n)

n σ Level: 5% 10% 20% 5% 10% 20%

a = 0.6 8.0 17.6 46.4 7.6 16.6 42.3

100 0.1 a = 0.85 18.4 39.6 72.1 21.0 39.7 74.4

a = 1.1 72.2 91.6 99.7 75.5 96.2 99.4

a = 1.1 4.6 10.7 24.5 4.1 14.7 26.3
100 0.25

a = 1.35 9.4 19 37.1 6.0 17.1 26.3

a = 0.6 25.5 49.6 76.6 22.7 46.5 75.8

500 0.1 a = 0.85 64.1 94.5 100 63.5 88.5 100

a = 1.1 91.0 98.2 100 100 100 100

a = 1.1 7.1 17.9 37.5 5.0 16.2 34.2
500 0.25

a = 1.35 12.4 21.3 48.0 11.8 21.6 50.2

other hand for location disturbances and modality disturbances the test based on T̃n shows a

substantially better performance. Moreover, location disturbances appear to be more simple

to detect than scale disturbances. A possible explanation of this observation is that a scale

disturbed function f1,a to a significant extend resembles a typical estimate for the function f for

a undersmoothing bandwidth h.
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Table 3: Simulated power (in %) of bootstrap version of the tests ϕ(Tn) and ϕ(T̃n) for the

hypothesis H= f = f2 in the case of location disturbances. The sample sizes are given by 201

and 1001 and noise levels are σ = 0.1 and σ = 0.25. Data is generated from f2,b.

Power of ϕ(Tn) Power of ϕ(T̃n)

n σ Level: 5% 10% 20% 5% 10% 20%

b = 0.3 7.4 15.5 35.5 11.9 23.6 45.5
100 0.1

b = 0.45 22.2 40.1 67.4 25.0 50.8 80.0

b = 0.65 5.7 13.7 29 10.6 20.0 34.7
100 0.25

b = 0.95 13.7 26.4 46.2 12.4 30.3 52.4

b = 0.3 12.0 33.3 64.4 21.4 44.6 73.0
500 0.1

b = 0.45 81.6 95.7 99.8 90.1 98.0 100

b = 0.65 10.5 17.9 38.9 15.2 27.4 46.0
500 0.25

b = 0.95 36.3 60.6 83.3 43.6 67.6 89.1

Table 4: Simulated power (in %) of the bootstrap version of the tests ϕ(Tn) and ϕ(T̃n) for the

hypothesis H0 : f = f1 in the case of modality disturbances. The sample sizes are given by

201 and 1001 and noise levels are σ = 0.1 and σ = 0.25. Data is generated from f1,c.

Power of ϕ(Tn) Power of ϕ(T̃n)

n σ Level: 5% 10% 20% 5% 10% 20%

c = 0.3 5.2 9.2 22.5 5.2 11.0 25.3

100 0.1 c = 0.45 12.8 19.1 41.5 10.3 25.8 46.7

c = 0.6 34.2 59.1 84.7 35.5 63.1 90.9

c = 0.6 5.9 13.8 27.3 7.1 12.5 25.0

100 0.25 c = 1.0 15.1 32.4 58.1 15.5 28.7 59.4

c = 0.3 5.0 11.8 27.9 7.5 16.1 37.5

500 0.1 c = 0.45 29.2 55.6 88.4 33.8 57.1 85.5

c = 0.6 92.9 99.8 100 97.8 99.9 100

c = 0.6 8.4 12.6 31.3 12.4 22.1 36.7

500 0.25 c = 1.0 41.2 69.3 93 57.5 81.0 97.0
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6 Proofs

Note that {Yi,n | i = −n, . . . , n;n ∈ N} is a triangular array of random variables. Throughout

this proof we omit the second index n for the sake of a transparent notation, i.e. we write Yi

instead of Yi,n and similarly xi, εi instead of xi,n, εi,n, respectively.

6.1 Proof of Theorem 1

The proof is based on the following decomposition of the difference Tn−ETn between observed

and expected test statistic under H0 : f = f0:

Tn − ETn = An + 2Bn,

where

An :=
∫

R
|f̂n(t)− Ef̂n(t)|2dt− E

∫
R
|f̂n(t)− Ef̂n(t)|2dt

Bn :=
∫

R
(f̂n(t)− Ef̂n(t))(Ef̂n(t)− f(t))dt.

Next, Parseval’s equation with the notation cn = 1
2πnan

yields

An = 2π
∫

R
c2
n

1
|Fψ(s)|2

∑
−n≤j 6=k≤n

εjεk exp(−isxj) exp(isxk)I[− 1
h
, 1
h

](s)ds

+ 2π
∫

R
c2
n

1
|Fψ(s)|2

n∑
j=−n

(ε2
j − σ2)I[− 1

h
, 1
h

](s)ds

=
∑

−n≤j 6=k≤n
εjεkajk +

n∑
j=−n

(ε2
j − σ2)ajj =: An,1 +An,2,

where the last line defines the statistics An,1 and An,2 in the obvious manner and

ajk := 2π
∫

R
c2
n

1
|Fψ(s)|2

exp(−isxj) exp(isxk)I[− 1
h
, 1
h

](s)ds.

Hence, the Tn − ETn can be decomposed into a sum of three terms as

Tn − ETn = An,1 +An,2 + 2Bn.

The proof of Theorem 1 is now performed in several steps. First, we show that under the null

hypothesis H0 : f = f0 the dominating term of An is the random variable An,1 which is of order

(na3/2
n h2β+1/2)−1. This is as consequence of Lemmas 6.1, 6.2 and 6.4, and the fact that

An,2 =
n∑

j=−n
(ε2
j − σ2)ajj ∼

C1

(2β + 1)πn2a2
nh

2β+1

n∑
j=−n

(ε2
j − σ2)

=
C1

(2β + 1)πa2
nn

3
2h2β+1

1√
n

n∑
j=−n

(ε2
j − σ2),
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which implies (by the central limit theorem and assumption C)

An,2 = oP

(
1

na
3
2
nh

2β+ 1
2

)
.

Secondly, we show that the term Bn is asymptotically negligable, i.e.

Bn = oP

(
1

na
3
2
n

h−2β− 1
2

)
, (18)

see Lemma 6.3. Next, we use Theorem 5.2 of de Jong (1987) to establish asymptotic normality

of An,1 (see Lemma 6.4), which yields

na
3
2
nh

2β+ 1
2
(
Tn − ETn

)
= na

3
2
nh

2β+ 1
2An,1 + oP (1) + oP (1) D−→ N (0, C2).

With the following auxiliary results we present a rigorous justification of these arguments. Fi-

nally, the bias will be computed as

E[Tn] ∼ C1

π(2β + 1)
σ2

na2
n

(
1
h

)2β+1

.

This completes the proof of Theorem 1.

Lemma 6.1. Suppose that nanh→∞ for n→∞, then

V ar(An,1) ∼ C2

n2a3
n

·
(

1
h

)4β+1

for a constant C2 ∈ R+.

Proof: A straightforward calculation yields

V ar(An,1) =
∑

−n≤k<j≤n
4V ar(εkεj)|akj |2 =

∑
−n≤k<j≤n

4σ4|akj |2 =
∑

−n≤k 6=j≤n
2σ4|akj |2

=
∑

−n≤k,j≤n
2σ4|akj |2 −

n∑
k=−n

2σ4|akk|2 =
∑

−n≤k,j≤n
2σ4|akj |2 +O

(
1

n3a4
n

(
1
h

)4β+2
)
.

n∑
j,k=−n

|ajk|2 ∼ 4C2
1π

2c4
n

n∑
j=−n

n∑
k=−n

∫
R

∫
R
|s|2β|z|2βI[− 1

h
, 1
h

](s)I[− 1
h
, 1
h

](z) ·

· exp
(
ixk(s− z)

)
· exp

(
−ixj(s− z)

)
dsdz

= 4C2
1c

2
n

∫
R

∫
R
|s|2β|z|2βI[− 1

h
, 1
h

](s)I[− 1
h
, 1
h

](z) ·
sin2

(
s−z
an

)
(s− z)2

dsdz

=
4C2

1c
2
n

h4β

∫ 1

−1

∫ 1

−1
|sz|2β ·

sin2( s−zanh
)

(s− z)2
ds dz

=
8C2

1c
2
n

h4β

(∫ 1

0

∫ 1

0
|sz|2β ·

sin2( s−zanh
)

(s− z)2
ds dz +

∫ 1

0

∫ 1

0
|sz|2β ·

sin2( s+zanh
)

(s+ z)2
ds dz

)

=
C2

1

42βπ2n2a2
nh

4β

(∫ 1

0

∫ v

−v
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv

+
∫ 2

1

∫ 2−v

v−2
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv

+
∫ 1

−1

∫ 2−|u|

|u|
|v2 − u2|2β ·

sin2( v
anh

)
v2

dv du,

)
, (19)
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where we substituted s+ z = v and s− z = u. Next, we show

lim
n→∞

anh

∫ 1

0

∫ 1

0
|sz|2β ·

sin2( s−zanh
)

(s− z)2
ds dz = C̃ ∈ R+

for the first of these integrals. For the second and third integral a similar limiting property can

be established.

For this purpose define τn := bv/(πanh)c , where b·c denotes the integer part of v/(πanh). We

find

anh

∫ 1

0

∫ v

−v
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv

= 2anh
∫ 1

0

τn∑
j=0

∫ (j+1)πanh

jπanh
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv −∆1
n,

where ∆1
n is a non-negative error term. From this decomposition of the inner integral it follows

immediately that whenever

u2 = j2π2a2
nh

2 + ∆2
j,n,u ∈ [j2π2a2

nh
2 , j2π2a2

nh
2 + (2j + 1)π2a2

nh
2],

we have for the non-negative error term ∆2
j,n,u

0 ≤ ∆2
j,n,u ≤ (2j + 1)π2a2

nh
2 ≤

(
2v
πanh

+ 1
)
π2a2

nh
2 ≤ 2πanh (1 + πanh) ,

or

∆2
j,n,u = O (anh)

uniformly in u and j. Using this approximation for u2 in the expression |v2−u2| of the integrand

we find

anh

∫ 1

0

∫ v

−v
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv

∼ 2
∫ 1

0

τn∑
j=0

∫ (j+1)π

jπ
|v2 − (jπanh)2|2β · sin2(ũ)

ũ2
dũ dv −∆1

n

= 2
∫ 1

0

τn∑
j=0

cj |v2 − (jπanh)2|2β dv −∆1
n,

where the sequence {cj} is summable, since

∞∑
j=0

cj =
∫ ∞

0

sin2(ũ)
ũ2

dũ =
π

2
.

It remains to show the existence of the outer integral. Let

An(v) :=
τn∑
j=0

cj
∣∣v2 − (jπanh)2

∣∣2β · I[0,1](v).
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Since v ∈ [0, 1] and j ∈ {0, . . . τn} we have
∣∣v2 − (jπanh)2

∣∣2β ≤ 1. This implies the convergence

of An to a (Lebesgue-)measurable function A and

0 ≤ An ≤
π

2
· I[0,1] =: g.

An application of Lebesgue’s Theorem of dominated convergence gives

lim
n→∞

∫
An(v) dv =

∫
lim
n→∞

An(v) dv =
∫
A(v) dv ≤ π

2
,

which shows that the limit exists.

Moreover, a straightforward calculation yields

∆1
n = 2anh

∫ 1

0

∫ (⌊
v

πanh

⌋
+1
)
πanh

v
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv = O
(

(anh)2β
)

= o(1),

and thus

0 ≤ l := lim
n→∞

anh

∫ 1

0

∫ 1

0
|sz|2β ·

sin2( s−zanh
)

(s− z)2
ds dz =

∫
A(v) dv.

In the final step, we show that the limit l is positive. To this end let n0 ∈ N such that 1
anh
≥ π√

2

for all n ≥ n0, then it follows

anh

∫ 1

0

∫ v

−v
|v2 − u2|2β ·

sin2( u
anh

)
u2

du dv =
∫ 1

0

∫ v
anh

− v
anh

|v2 − (uanh)2|2β · sin2(u)
u2

du dv

≥
∫ 1

1
2

∫ π
4

−π
4

|v2 − (uanh)2|2β · sin2(u)
u2

du dv > 0.

Together with a similar computation for the second and third integral in decomposition (19)

this concludes the proof of the Lemma.

For a proof of (18) we start by showing that f̂n(t) is asymptotically unbiased uniformly in t.

Lemma 6.2. For Ff ∈ L2(R) and under assumptions A, B and C we have

E
[
f̂n(t)

]
− f(t) = o

(
hα
)

+O

(
1

nanhβ+1

)
+ o

(
aγn ·

1
hβ+1

)
o(1),

uniformly with respect to t.

Proof: Note that

E
[
f̂n(t)

]
− f(t) =

1
2π

∫
R

exp(ist)
[ 1
nan

∑n
j=−nKf(xj) exp(−isxj)

Fψ(s)
· I[− 1

h
, 1
h

](s)−Ff(s)
]
ds.

Using the estimate

1
nan

n∑
j=−n

Kf(xj) exp(−isxj) =
∫ 1

an

− 1
an

Kf(z) exp(−isz) dz +O

(
1
nan

)
,
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(uniformly with respect to s) we obtain

E
[
f̂n(t)

]
− f(t) =

1
2π

∫
R

exp(ist)
[∫ 1

an

− 1
an

Kf(z) exp(−isz) dz +O
(

1
nan

)
Fψ(s)

· I[− 1
h
, 1
h

](s)−Ff(s)
]
ds

=
1

2π

∫
R

exp(ist)
[F(Kf)(s)
Fψ(s)

· I[− 1
h
, 1
h

](s)−Ff(s)
]
ds

− 1
2π

∫
R

exp(ist)
Fψ(s)

[ ∫
(−∞,− 1

an
]∪[ 1

an
,∞)

Kf(z) exp(−isz) dz +O

(
1
nan

)]
·I[− 1

h
, 1
h

](s) ds

From equation (5) we have
F(Kf)
Fψ

= Ff, which yields

E
[
f̂n(t)

]
− f(t) =

1
2π

∫
R

exp(ist)
[
Ff(s) · I[− 1

h
, 1
h

](s)−Ff(s)
]
ds+O

(
1

nanhβ+1

)
− 1

2π

∫
R

exp(ist)
Fψ(s)

[ ∫
(−∞,− 1

an
]∪[ 1

an
,∞)

Kf(z) exp(−isz) dz
]
·I[− 1

h
, 1
h

](s) ds

= − 1
2π

∫
(−∞,− 1

h
]∪[ 1

h
,∞)

exp(ist)Ff(s) ds+O

(
1

nanhβ+1

)

− 1
2π

∫
R

exp(ist)
Fψ(s)

[ ∫
(−∞,− 1

an
]∪[ 1

an
,∞)

Kf(z) exp(−isz) dz
]
·I[− 1

h
, 1
h

](s) ds.

Now we estimate the integrals as follows.

1
aγn

∣∣∣∣∫
[ 1
an
,∞)

Kf(z) exp(−isz) dz
∣∣∣∣ ≤ ∫

[ 1
an
,∞)

∣∣∣Kf(z) exp(−isz) 1
aγn

∣∣∣ dz ≤ ∫
[ 1
an
,∞)
|Kf(z)| · |z|γ dz.

From assumption B and Lebesgue’s theorem of dominated convergence it follows that

lim
n→∞

∫
[ 1
an
,∞)
|Kf(z)| · |z|γ dz = 0,

and we obtain ∫
(−∞, 1

an
]∪[ 1

an
,∞)
|Kf(z)| dz = o (aγn) .

The same line of arguments yields∫
(−∞,− 1

h
]∪[ 1

h
,∞)

exp(ist)Ff(s) ds = o
(
hα
)
.

Finally, we conclude

Ef̂n(t)− f(t) = o
(
hα
)

+O

(
1

nanhβ+1

)
+ o

(
aγn ·

1
hβ+1

)
,

uniformly with respect to t.
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Lemma 6.3. Under assumptions A, B and C, and for Ff ∈ L2(R) ,

Bn =
∫

R

(
f̂n(t)− Ef̂n(t)

)(
Ef̂n(t)− f(t)

)
dt = oP

(
h−2β− 1

2n−1a
− 3

2
n

)
.

Proof: From the Cauchy-Schwarz equality we have

|Bn| ≤
(∫

R

∣∣∣f̂n(t)− Ef̂n(t)
∣∣∣2 dt) 1

2
(∫

R

∣∣∣Ef̂n(t)− f(t)
∣∣∣2 dt) 1

2

,

and an application of the Markov-inequality yields(∫
R

∣∣∣f̂n(t)− Ef̂n(t)
∣∣∣2 dt) 1

2

= OP

(
h−2β− 1

2n−1a
− 3

2
n

)
.

Finally, using Lemma 6.2 provides∫
R

∣∣∣Ef̂n(t)− f(t)
∣∣∣2 dt = o(1),

which completes the proof of lemma 6.3.

�

Lemma 6.4. Under the assumptions of Theorem 1 we have

na
3
2
nh

2β+ 1
2 An,1

D−→ N (0, C2).

Proof: The asymptotic normality is established using Theorem 5.2 in de Jong (1987). Straight-

forward calculations yield

1
hβ
· 1
V ar(An,1)

·max
|i|≤n

∑
|j|≤n
j 6=i

a2
ij → 0 for n→∞,

which implies assumption (1) of Theorem 5.2 in de Jong (1987) with the choice K(n) = h−
β
4 .

Moreover, assumption (2) of the latter Theorem is an immediate consequence of E|εi| <∞ and

1
h →∞ for n→∞. It remains to show assumption (3) of Theorem 5.2 in de Jong (1987). From

Gershgorin’s circle Theorem (see Horn and Johnson (1985), p. 344-346) we obtain

|µk| ≤
n∑

j=−n
j 6=k

|ajk| ∀ k = −n, . . . , n,

where µ−n, . . . , µn denote the eigenvalues of the matrix
(
aij
)n
i,j=−n. Further we have for all

i ∈ {−n, . . . , n}

|µi| ≤ max
|k|≤n

n∑
j=−n
j 6=k

|ajk| = O

(
ln(n)
nanh2β

)
,
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which is uniformly in k. From this estimate we have, under assumption C,

1
V ar(An,1)

·max
|i|≤n
|µi|2 = O (h(1 + ln(2n)) = o(1).

Hence, assumption (3) of de Jong (1987), Theorem 5.2 is satisfied, too, which establishes asymp-

totic normality of An,1.

�

6.2 Proof of Theorem 2

For a proof of the asymptotic normality of Tn under the alternative we use Parseval’s equation

to obtain the decomposition

Tn − ETn =
∫

R
|f̂n(t)− f0(t)|2dt− E

∫
R
|f̂n(t)− f0(t)|2dt

=
n∑

j 6=k=−n
(YjYk −Kf(xj)Kf(xk))ajk +

n∑
j=−n

(Y 2
j −Kf2(xj)− σ2)ajj

+
∫ 1

h

− 1
h

cn

n∑
j=−n

εj
exp(−isxj)
Fψ(s)

Ff0(s)ds+
∫ 1

h

− 1
h

cn

n∑
j=−n

εj
exp(isxj)
Fψ(s)

Ff0(s)ds

=: D1 +D2 +D3 +D3,

where the last identity defines the random variables D1, D2 and D3 in an obvious manner.

Straightforward calculations give the representation

D1 =
∑

−n≤j 6=k≤n
εjεkajk + 2

∑
−n≤j 6=k≤n

Kf(xj)εkajk =: D1,1 + 2D1,2,

which yields

Tn − ETn = D1,1 + 2D1,2 +D2 +D3 +D3. (20)

Obviously, E[D1,2] = 0, and for the variance we obtain

V ar(D1,2) =σ2
n∑

k=−n

∣∣∣ n∑
j=−n
j 6=k

Kf(xj)ajk
∣∣∣2 = σ2

n∑
k=−n

∣∣∣ n∑
j=−n

Kf(xj)ajk −Kf(xk)akk
∣∣∣2

= σ2
n∑

k=−n

∣∣∣ n∑
j=−n

Kf(xj)ajk
∣∣∣2 +O

(
1

n2a2
nh

2β+1

)
+O

(
1

n3a3
nh

4β+2

)
.
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By an integral approximation and the definition of ajk we obtain

n∑
k=−n

∣∣∣ n∑
j=−n

Kf(xj)ajk
∣∣∣2 = 4π2c4

n

n∑
k=−n

∣∣∣ n∑
j=−n

Kf(xj)
∫ 1

h

− 1
h

exp(−isxj) exp(isxk)
|Fψ(s)|2

ds
∣∣∣2

= 2πc3
n

∫ 1
an

− 1
an

∣∣∣∫ 1
h

− 1
h

n∑
j=−n

Kf(xj)
exp(−isxj) exp(isz)

|Fψ(s)|2
ds
∣∣∣2 dz +O

(
1
nan

)
= 2πc3

n

∫
R

∣∣∣∫ 1
h

− 1
h

n∑
j=−n

Kf(xj)
exp(−isxj) exp(isz)

|Fψ(s)|2
ds
∣∣∣2 dz +O

(
1

n4a4
n

)

= 4π2c3
n

∫ 1
h

− 1
h

∣∣∣∣ n∑
j=−n

Kf(xj)
exp(−isxj)
|Fψ(s)|2

∣∣∣∣2 ds+O

(
1

n4a4
n

)
,

where we have applied Parseval’s equation for the fourth equality. Another integral approxima-

tion of the remaining sum yields

V ar(D1,2) = 4σ2π2c3
nn

2a2
n

∫ 1
h

− 1
h

∣∣∣∣∫ 1
an

− 1
an

Kf(z)
exp(−isz)
|Fψ(s)|2

dz

∣∣∣∣2 ds+ o

(
1
nan

)
+O

(
1

n2a2
nh

2β+1

)
+O

(
1

n3a3
nh

4β+2

)
+O

(
1

n3a3
nh

4β+1

)
=

σ2

2πnan

∫ 1
h

− 1
h

∣∣∣∣Ff(s)
Fψ(s)

∣∣∣∣2 ds+ o

(
1
nan

)
+O

(
1

n2a2
nh

2β+1

)
+O

(
1

n3a3
nh

4β+2

)

=
σ2

2πnan

(∥∥∥∥FfFψ
∥∥∥∥2

+ o(1),

)
,

where the last estimate follows from assumption D, which impliesO(n−2a−2
n h−2β−1) = o(n−1a−1

n )

and O(n−3a−3
n h−4β−2) = o(n−1a−1

n ). If assumption D is fulfilled, straightforward computations

show that the remaining terms in (20) are asymptotically negligible, that is

D1,1 = oP

(
1
√
nan

)
, D2 = oP

(
1
√
nan

)
, D3 = oP

(
1
√
nan

)
, D3 = oP

(
1
√
nan

)
.

Finally, the assertion of Theorem 2 follows by an application of Lyapunov’s Theorem to the

leading term D1,2, i.e.

√
nan

(
Tn − ETn

)
=
√
nan

(
2D1,2 − ‖f − f0‖2 + op

(
1
√
nan

))
D−→ N

(
0,

2σ2

π

∥∥∥∥FfFψ
∥∥∥∥2
)
.
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