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Abstract

We study the B− → D0π− and B− → D0K− decays and their charge conjugates, with D0

reconstructed in the CP -odd eigenstates (D0
CP−) K0

Sπ
0, K0

Sφ, K0
Sω, in the CP -even eigenstates

(D0
CP+) K+K−, π+π− and in the (non-CP ) flavor eigenstates (D0, D0) K−π+, K−π+π0,

and K−π+π+π−. We use a data sample of 467× 106 Υ (4S) decays collected with the BABAR

detector at the PEP-II e+e− storage ring, representing the final Υ (4S) dataset of the B-
factory. We measure the ratios of the branching fractionsRCP± and the directCP asymmetries
ACP±,

RCP± = 2
B(B− → D0

CP±K
−) + B(B+ → D0

CP±K
+)

B(B− → D0K−) + B(B+ → D0K+)
,

ACP± =
B(B− → D0

CP±K
−) − B(B+ → D0

CP±K
+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)
,

to be
RCP+ = 1.128 ± 0.081± 0.037,

RCP− = 1.041± 0.069 ± 0.030,

ACP+ = +0.197± 0.060 ± 0.031,

ACP− = −0.096± 0.064± 0.009,

where the first error is statistical and the second one systematic. The statistical significance of
ACP+ being non-zero is 3.4 standard deviations, constituting evidence for direct CP violation
in chargedB decays. We also express the results in terms of the so called Cartesian coordinates
x+, x−, and r2: x+ = −0.059±0.034(stat)±0.014(syst), x− = 0.102±0.036(stat)±0.015(syst),
r2 = 0.084 ± 0.054(stat) ± 0.024(syst). These results will help to better constrain the phase
parameter γ = arg(−VudV

∗
ub/VcdV

∗
cb) of the Cabibbo-Kobayashi-Maskawa quark mixing ma-

trix.
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1 Introduction

The Standard Model of particle physics describes the interactions of the most fundamental
particles. It is grounded on the U(1)×SU(2)L symmetry of the unified electro-weak interac-
tion, and on the SU(3) quark flavor symmetry of the strong interaction. The current experi-
mental data suggest nature is invariant under the transformations of these symmetry groups,
which is reflected by the according invariance of the Standard Model Lagrangian. However,
nature is not invariant under certain discrete symmetry transformations. This work explores
the violation of CP symmetry, where the CP operator is a junction of the parity operator P ,
which reflects all spacial dimensions through the origin, and the charge conjugation operator,
C. In the Standard Model, CP violation is a consequence of the weak interaction. Testing
the CP violation mechanism is a sensitive test of the Standard Model in general.

The couplings of the quark fields to the weak interaction are described by the 3 × 3 mixing
matrix V of the quark mass. It is called CKM matrix [1], named after Nicola Cabibbo,
who introduced the mixing idea in the u, d, s, c quark sector, and after Makoto Kobayashi
and Toshihide Maskawa, who in 1973 extended it to a then unknown third quark family,
t, b. Their extension introduces a free phase parameter, yielding a mechanism to explain CP
violation in the Standard Model. For this work, Kobayashi and Maskawa received the Noble
Price1 in 2008.

A powerful strategy to test the mechanism of CP violation is to measure the four independent
parameters of the unitary CKM matrix. These parameters are related to the angles α, β,
γ of an unitarity triangle in the complex plane. Out of the angles, the angle γ is the least
precisely known.

The goal of this work is to help in constraining the allowed parameter region of γ. It follows
the GLW method, which was suggested by Gronau, London, and Wyler in 1991 [2, 3], their
initials naming the method. The method exploits the interference between the B± → D0K±

and B± → D0K± decay amplitudes, where the D0 and D0-mesons decay to common CP
eigenstates. The charge averaged ratios

RCP± = 2
B(B− → D0

CP±K
−) + B(B+ → D0

CP±K
+)

B(B− → D0K−) + B(B+ → D0K+)
(1.1)

and the direct CP asymmetries

ACP± =
B(B− → D0

CP±K
−) − B(B+ → D0

CP±K
+)

B(B− → D0
CP±K

−) + B(B+ → D0
CP±K

+)
(1.2)

are related to the angle γ. We will extract RCP± and ACP± by means of a three-dimensional
simultaneous extended maximum likelihood fit to data collected by the BABAR Experiment.
The BABAR Experiment is hosted by the SLAC National Laboratory in California, USA,
and constitutes one of the two B-Factories in the world, the Belle Experiment at the KEK
laboratory in Japan being the second one. The data taking phase of BABAR ended in April
2008, concluding a very successful running period of almost ten years. The final dataset
consists of 467 million BB pairs.

1Together with Yoichiro Nambu.
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There have been three subsequent GLW measurements using BABAR data. The author con-
tributed to the more recent two of them, while the first GLW measurement was carried out by
different authors. The first measurement was based on 236×106 BB pairs and was published
in 2006 [4]. In 2007, a partial result on 382 × 106 BB pairs was obtained by an analysis
group consisting of the author and a fellow BABAR collaborator. The analysis strategy of
the first measurement was re-implemented: the author contributed the final event selection
and the final fitter part, while the collaborator developed the pre-selection part. The partial
result was published in 2008 [5]. The third analysis is the main analysis presented in this
document. It was performed on the final dataset of 467 million BB pairs, the author now
being the leading analyst. The author introduced additional D0 final states to the analysis,
as well as a new strategy for the final selection and a new and more powerful fit strategy.

This document is organized as follows. We first give an overview of the scientific background
of CP violation and the physics of B-Factories (Chapter 2). Then we introduce the GLW
method as well as the analysis technique (Chapter 3). Chapter 4 explains the main features
of the BABAR Experiment, before Chapter 5 presents the 2007 partial result. The following
Chapters 6, 7, and 8 define the event selection and compare the measured data to the expec-
tation from simulation. Chapters 9 and 10 introduce and validate the final fit strategy. A
non-reducible kind of peaking background is discussed in Chapter 11, and systematic uncer-
tainties are discussed in Chapter 12. Finally Chapter 13 presents the result on the parameters
ACP± and RCP± and discusses the implications on the angle γ.
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2 Scientific Background

2.1 CP Violation in the Standard Model

One distinguishes three kinds of CP violation (see, for instance, Reference [6]). The most
intuitive one is called direct CP violation. It implies, that the decay rate Γ of a particle
P decaying into a final state f is different from the rates observed for the CP -conjugate
process:

Γ(P → f) 6= Γ(P̄ → f̄). (2.1)

The second type is called CP violation in oscillation. Here, the rate at which a neutral
particle P 0 oscillates into its anti-particle P̄ 0 is different from the CP -conjugate process,
Γ(P 0 → P̄ 0) 6= Γ(P̄ 0 → P 0). The third type is called CP violation in interference between
oscillation and decay. Recalling the decay rate is the absolute square of the decay amplitude,
Γ = |A|2, the third type refers to the cases where the rate |A(P 0 → P̄ 0 → f) +A(P 0 → f)|2
is different from its CP -conjugate. For this work, only effects of direct CP violation are
important, whose formalism we briefly review in the following. Introducing the amplitudes
A(P → f) ≡ Af and A(P̄ → f̄) ≡ Āf̄ , Eq. 2.1 is equivalent to the asymmetry |Af |2 − |Āf̄ |2
being non-zero. One can rewrite any amplitude in terms of its magnitude and its phases,
A = |A|ei(δ+Φ), where δ refers to a strong phase, and Φ refers to a weak phase. They differ
in their behavior under CP transformation. The strong phase is invariant, eiδ → eiδ, while
the weak phase gains a sign, eiΦ → e−iΦ. Now Af and Āf̄ become

Af = |A|ei(δ+Φ),

Āf̄ = |A|ei(δ−Φ). (2.2)

From this it is apparent, that one will only see direct CP violation if there is interference
between different contributing amplitudes,

Af ≡
∑

n

|An|ei(δn+Φn). (2.3)

Then, the asymmetry becomes

|Af |2 − |Āf̄ |2 = −2
∑

n,m

|An||Am| sin(δn − δm) sin(Φn − Φm), (2.4)

which is only non-zero in case of more than two interfering amplitudes with both different
strong phases and different weak phases. Only then direct CP violation can occur. While
there are many sources of strong phases in the Standard Model, there is only one source of
weak phases: the quark mixing mechanism.

The Standard Model explains the fact fermions have mass, and quarks in particular, through
the Yukawa-Coupling to the Higgs-field. The ground state of the Higgs-field has a different
symmetry than the Lagrangian. Through this mechanism of spontaneous symmetry breaking
the fermion fields acquire mass terms in the Lagrangian. The situation is complicated by
the fact that the mass eigenstates of the down-type quarks, d, s, b, aren’t eigenstates to the
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electro-weak interaction at the same time. The mass eigenstates of the up-type quarks, u, c, t,
however, are. This has two important consequences. At first it allows an up-type quark of one
generation to decay into a down-type quark of another generation. For instance, a c-quark
is allowed to decay into a d-quark, c → W+d. At second, the complex unitary × 3 matrix,
which relates the mass eigenstates (d, s, b)T to the electro-weak eigenstates (d′, s′, b′)T ,





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ·





d
s
b



 (2.5)

contains a free phase parameter: the weak phase. This mass mixing matrix V is called CKM
matrix [1]. Its elements Vij govern the weak decays of up-type quarks to down-type quarks
and vice versa:

A(u→ dW+) ∼ Vud , A(ū→ d̄W−) ∼ V ∗
ud , (2.6)

where u and d stand for generic up- and down-type quarks. The fact that the complex
conjugate of the matrix element enters the amplitude for decays of the anti-quarks is crucial
for CP violation: here we have different amplitudes for particles and anti-particles. The CKM
matrix was introduced to diagonalize the mass matrix of the down-type quarks, hence VCKM

is unitary, VCKMV
†
CKM = 1. This yields nine unitarity conditions which the Vij need to fulfill,

one of which has gained special interest:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.7)

It is a sum of complex numbers, which equals zero, and can be depicted as a triangle in the
complex plane (Figure 2.1). The enclosed area of this triangle is a measure of the CP violation
in the Standard Model: the larger the area, the more CP violation is predicted. A lot of effort
has been put into measuring the dimensions of this triangle, including this work, to test the
unitarity of the CKM matrix. A violation of unitarity is considered a strong argument for
new physical processes beyond the scope of the Standard Model.

-�
�
�
�
�
�
�
��

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

6

γ

α

β

0
0

1 Re

Im (ρ, η)

VtdV ∗

tb

VcdV ∗

cb

VudV ∗

ub

VcdV ∗

cb

Figure 2.1: Unitarity triangle of the CKM matrix, corresponding to Eq. 2.7. The Wolfenstein
parameters ρ and η are defined in Eq. 2.8.

The CKM matrix has four independent parameters in total. Starting with the 18 parameters
of a general 3 × 3 complex matrix, on subtracts the above unitarity conditions (9), and 5
relative phases which can be absorbed by re-phasing the six quark fields, without loss of
generality. The remaining four parameters can be thought of as three Euler angles and one
complex phase. There are several parameterizations of the CKM matrix, approximating
it through four independent parameters. One of the more popular approaches is that of
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Wolfenstein [7], where the matrix elements are expressed in terms of powers of λ ≃ sin θc,
where θc is the Cabibbo angle:

VCKM =





1 − λ2

2 λ λ3A(ρ− iη)

−λ 1 − λ2

2 λ2A
λ3A(1 − ρ− iη) −λ2A 1



+ O(λ4). (2.8)

In the Wolfenstein parameterization, the only two CKM matrix elements which have a
complex phase are Vub and Vtd. The present values [8] of the Wolfenstein parameters are
λ = 0.2272 ± 0.0010, A = 0.818+0.007

−0.017, ρ = 0.221+0.064
−0.028, η = 0.340+0.017

−0.045. Using these values
one can obtain the magnitudes of the |Vij |, rounded to one significant digit:

|VCKM| =





1 0.2 0.004
0.2 1 0.04

0.008 0.04 1



 (2.9)

It has become common to call amplitudes involving |Vij | smaller than one CKM suppressed.
To emphasize the fact |Vub| and |Vtd| are especially tiny, one often speaks of doubly Cabibbo
suppressed amplitudes when referring to amplitudes containing these matrix elements.

A promising way to determine the dimensions of the unitarity triangle is to use the decays
of B-mesons. These particles are formed out of a b-quark and a light anti-quark, ū or d̄.1

They have about five times the proton mass, m(B±) = 5279.15± 0.31 MeV/c2 [8], providing
enough phase space to allow for a large variety of final states. Their lifetime is relatively
long, leading to a long flight length of cτ = 491.1µm, which is well accessible with modern
particle detectors. The primary decay chain involves the b → c amplitude, often producing
D-mesons in the final state: B(B+ → D0X) = 79 ± 4 % [8]. By combining carefully selected
amplitudes of B decays one can construct observables which are sensitive to one of the three
angles of the unitarity triangle:

β = arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, α = arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, γ = arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

. (2.10)

To measure the angle β, the decay channel B0 → J/ψK0
S

is most suitable. It is dominated
by a color suppressed2 b → c tree diagram, in which, following Eq. 2.8, the Standard Model
doesn’t predict a weak phase. But without a weak phase there is no direct CP violation in
this mode. Instead the measurement is based on CP violation in the interference between
oscillation and decay. The B0–B0 oscillations are described by a factor q/p, which in the
Standard Model is, to a good approximation, q/p = V ∗

tbVtd/VtbV
∗
td = e−2iβ. In the analysis

of B0 → J/ψK0
S decays one therefore extracts the quantity sin(2β), so one can determine β

up to discrete ambiguities. The B0 → J/ψK0
S decays have a relatively high branching ratio

of ≈ 10−3, and they are referred to as the golden mode. As a consequence, this analysis has
become a precision measurement at present B-Factories. BABAR determines sin(2β) to be
sin(2β) = 0.714± 0.032(stat)± 0.018(syst) [9].

The angle α is determined through the decay channels B0 → π+π− and B0 → ρρ, involving
the b→ u amplitudes. However, these channels only allow for a measurement of an effective
angle, αeff . This is because the main tree-level amplitude is polluted by a sizable contribution
of loop diagrams (so called penguins), which involve a different weak phase. The difference

1In general, mesons consist of a quark and an anti-quark. Whenever we refer to a meson’s quark content we
imply one of the quarks denotes an anti-quark.

2Color suppression is a effect of Quantum Chromo Dynamics. Real particles need to be color neutral. In
internal tree diagrams the color of the produced quarks is constrained to compensate that of the initial
quarks. Considering three colors, the factor is ≈ (1/3)2 ≈ 0.1.
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α − αeff can be estimated through an isospin analysis of the flavor SU(2) related modes.
Alternatively one can benefit from an angular analysis of the ρρ vector-vector final state to
disentangle the tree-level from the penguin contributions. BABAR measures α to be in the
range [83.3◦, 105.8◦] at the 68 % confidence level [10, 11].

The third angle, γ, is the most difficult to measure. At present the most relevant decay
channels are B±→D(∗)0K(∗)± and B±→D̄(∗)0K(∗)±. In fact, the goal of this work is to
constrain γ using B− → D0K− and B− → D0K− decays and their charge conjugates. The
methods to measure γ are based on the interference between a color-favored b→ c amplitude,
and a color and doubly Cabibbo suppressed b→ u transition, carrying the weak phase. Apart
from the low branching fractions due to the small value of |Vub|, the main difficulty is that
the interfering amplitudes have very different magnitudes. Thus the CP violating interference
term is small: |B → D0K/B− → D0K−| ≃ 0.1. As for the near future, other channels may
become equally important. These are, most prominently, the B0

s → D∓
s K

± decays, which will
be accessible at the LHCb experiment [12]. Here, the amplitude depends on γ+φs, where the
angle φs originates from B0

s–B̄0
s mixing and can be measured directly in B0

s → J/ψφ decays.
Also the B0 → π+π− and B0

s → K+K− decays will be well accessible at LHCb: through an
analysis of the time-dependent CP asymmetries one gets access to γ when both channels are
combined.

Figure 2.2 summarizes the current experimental status by constraining the apex the the
unitarity triangle in the complex plane using all measurements available to date. The diffi-
culties associated with the measurement of the angle γ are illustrated by the large error band
associated to it.

γ

α
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dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2
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Figure 2.2: Results of a global fit to all available measurements constraining the CKM unitarity
triangle (CKMfitter group, 2009 [13]). There is very good consistency with the Standard Model
prediction: the triangle is closing within current accuracy.

2.2 B-Factory

To perform measurements of the three angles of the unitarity triangle, one needs O(108) B
decays, because the relevant branching ratios are on the order of 10−6. Such large samples
have been collected in the recent past by the so called B-Factories. These are particle
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accelerators producing strong electron and positron beams, at an e+e− center-of-mass energy
of

√
s = 10.58 GeV. This equals the invariant mass of the Υ (4S) resonance, which is a bound

state of two b-quarks. The Υ (4S) decays in more than 96 % of the time into a BB pair,
allowing for an efficient production of B-mesons:

e+e− → Υ (4S) → BB. (2.11)

It is an interesting fact that the Υ (4S) invariant mass equals almost exactly the mass to two
B-mesons. The excess energy is only 21 MeV, resulting in a B-momentum of 328 MeV/c. This
provides an helpful kinematical constraint, because B-mesons are almost at rest in the center-
of-mass system. However, to be able to measure significant flight lengths of the B-mesons,
one needs relativistic momenta. Else one couldn’t determine the life time differences between
the B0 and the B0, which is crucial to measure B0–B0 oscillations needed for instance to
measure the CKM angle β. The solution to this problem is to use asymmetric beam energies,
resulting in a sufficient Lorentz boost of the e+e− center-of-mass system.

Because of the kinematical constraint provided by the initial Υ (4S) state, the energy of
each B-meson in the e+e− center-of-mass frame (CM) must be equal to

√
s/2. This can be

exploited by defining two variables, mES (energy-substituted mass) and ∆E (energy differ-
ence):

mES ≡

√

(

1

2
s+ p0 · pB

)2

/E2
0 − p2

B, (2.12)

∆E ≡ E∗
B − E∗

beam. (2.13)

The momenta pi, pB, and the energy E0 are measured in the laboratory frame and the
subscripts 0 and B refer to the e+e− system and the reconstructed B-meson, respectively;
E∗

B is the reconstructed CM energy of the B candidate. E∗
beam =

√
s/2 is the reconstructed

CM beam energy. For correctly reconstructed B decays mES peaks at the B mass, with a
resolution typically smaller than 3 MeV/c2, and ∆E peaks at 0, with a resolution on the order
of 20 MeV. Both the ∆E and mES variables are widely used at the B-Factories.

Only a fraction of the e+e− collisions actually produces an Υ (4S), all other collisions produce
either quark/anti-quark pairs or lepton/anti-lepton pairs. The cross sections for all of these
processes are given in Table 2.1. The e+e− → qq cross sections are of comparable size to the
bb cross section. When analyzing B-decays, one therefore expects a continuum background.

Table 2.1: e+e− production cross-sections at
√

s = m(Υ (4S)) within the experimental acceptance
of the BABAR detector.

e+e− → bb cc ss uu dd τ+τ− µ+µ− e+e−

σ [nb] 1.05 1.30 0.35 1.39 0.35 0.94 1.16 ∼ 40

The event rate in an experiment detecting events of colliding particles is proportional to the
interaction cross section. The relating factor is called the luminosity L: dN/dt = L · σ.
The luminosity is proportional to the beam currents. As a consequence, high luminosity
B-Factories aim for strong beam currents of 2-3A. The collected data samples are measured
in terms of the integrated luminosity, L =

∫

Ldt. Thus the expected number of events of a
certain type contained in the sample is N = L · σ.
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3 Outline of the Analysis

3.1 GLW Method

Many of the proposals on how to measure the CKM angle γ involve decays of B-mesons, both
neutral and charged ones, into a neutralD-meson and a kaon: theD-meson consists of a charm
quark (c) and a light quark (u, d), the kaon contains a strange quark (s) and a light quark.
Analyzing the decays of neutral B-mesons, however, comes with additional complications.
For instance, the self-tagging B → D0K∗0 final states, in which the charge of the kaon from
the K∗0 → K+π− decay indicates the flavor of the initial B-meson, are color-suppressed; in
non-self-tagging final states one faces B0–B0 oscillations. The decays of chargedB-mesons are
more promising: B±→D(∗)0K(∗)± and B±→D(∗)0K(∗)±. They proceed via two amplitudes,
b → cūs and the doubly Cabibbo suppressed b → uc̄s, the latter containing the weak phase.
These amplitudes interfere when the D-meson is being reconstructed in a final state common
to both D and D, giving access to the angle γ. Figure 3.1 shows Feynman diagrams of the
two interfering B decays.
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Figure 3.1: Feynman diagrams of the B → D0K and B → D0K decays. There are actually two
more tree level amplitudes contributing. They are smaller compared to those depicted and contain
the same weak phase.

The GLW method was suggested by Gronau, London, and Wyler in 1991 [2, 3]. It exploits
the interference between the non-excited B± → D0K± and B± → D0K± decay amplitudes,
where the common final state to the D0 and D0-mesons is chosen to be a CP eigenstate. A
great advantage of the GLW method is that it is theoretically very clean. This is because the
B → D0K decays are governed by tree level decays rather than penguin loop diagrams. Such
loop diagrams could potentially be affected by physics beyond the Standard Model, because
new processes are expected to enter with new particles in the loop. This could introduce new
weak phases, too, which would dilute the measurement of γ. In addition, the GLW method
extracts relevant hadronic parameters directly from the data, so there is no need to depend
on quantum-chromo-dynamical calculations introducing hadronic uncertainties.

At the heart of the original GLW method lie two equations of amplitudes, which can be
represented by triangles in the complex plane (Figure 3.2). It is possible to relate the sides
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to each other, and to identify 2γ as the angle between two of the sides. This enables one to
determine the weak phase γ through a measurement of branching ratios. Due to geometrical
reasons, γ can only be determined up to an eight-fold ambiguity: the sign of γ remains
unknown, one can’t distinguish γ from γ + π, and there is a possibility to confuse γ with the
relative strong phase of the final states. In the neutral D system, the two CP eigenstates are
defined as

∣

∣D0
CP±

〉

=
1√
2

(∣

∣D0
〉

±
∣

∣D0
〉)

, (3.1)

where CP+ refers to the CP -even eigenstate, and CP− to the odd one. For now let’s focus
on the CP+ eigenstate only. From Equation 3.1 one expects the following two CP conjugate
relations to hold:

√
2A(B+ → D0

CP+K
+) = A(B+ → D0K+) +A(B+ → D0K+),

√
2A(B− → D0

CP+K
−) = A(B− → D0K−) +A(B− → D0K−). (3.2)

We assume that there is no direct CP violation in the decay modes on the right hand side of
Equation 3.2,

|A(B+ → D0K+)| = |A(B− → D0K−)| , (3.3)

|A(B+ → D0K+)| = |A(B− → D0K−)| . (3.4)

This is a fairly safe assumption in the Standard Model: both amplitudes in Eq. 3.3 contain
the same weak phase, so do both amplitudes in Eq. 3.4. But without different weak phases,
there is no direct CP violation because of Eq. 2.4. The decay modes on the left hand side of
Eq. 3.2, however, can in principle violate CP , because their amplitudes are the sum of two
amplitudes with different weak phases:

|A(B+ → D0
CP+K

+)| 6= |A(B− → D0
CP+K

−)|. (3.5)

Introducing the magnitudes A and Ā of the amplitudes in Eqns. 3.3 and 3.4, respectively,
one can rewrite Eqns 3.2 in terms of the weak phase γ and the strong phases δ and δ̄:

√
2A(B+ → D0

CP+K
+) = |A|eiγeiδ + |Ā|eiδ̄,

√
2A(B− → D0

CP+K
−) = |A|e−iγeiδ + |Ā|eiδ̄. (3.6)

This shows explicitly how in the amplitudes containing V ∗
ub the weak phase acquires a sign

under CP transformation, while the other two amplitudes remain unaffected. Equations 3.6
form two triangles in the complex plane, depicted in Figure 3.2, the sides of which are related
through Equations 3.3-3.4. The amplitudes A(B+ → D0K+) and A(B− → D0K−) enclose
the angle 2γ:

A(B+ → D0K+) = e2iγA(B− → D0K−). (3.7)

Simple geometry yields an expression which relates γ to the length of the sides of the triangles,
up to the aforementioned eight-fold ambiguities (the possibility to confuse γ ↔ δ − δ̄ is not
shown):

sin(γ) =
1

4|AĀ|

(

±
√

[

(|A| + |Ā|)2 − 2|A+
CP+|2

]

×
[

2|A−
CP+|2 − (|A| + |Ā|)2

]

±
√

[

(|A| + |Ā|)2 − 2|A−
CP+|2

]

×
[

2|A+
CP+|2 − (|A| + |Ā|)2

]

)

,

12
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Figure 3.2: GLW triangle of related B → D0K amplitudes, enclosing the angle 2γ.

where A+
CP+ ≡ A(B+ → D0

CP+K
+), A−

CP+ ≡ A(B− → D0
CP+K

−). The geometrical inter-
pretation of the ambiguities is that the orientation of the triangles is unknown. Each of
them could be reflected either through its basis or vertically—the enclosed angle 2γ would
be different.

In principle, the measurement of γ is now straightforward. One has to measure six branching
ratios, two of which are equal, and determine the length of the sides of the triangles from
it. But in praxis, it is basically impossible to measure the suppressed rates of B− → D0K−

and B+ → D0K+. If one uses semileptonic decays to tag the flavor of the D0/D0, such as
D0 → l+νlXs, the background rates from the direct decay B+ → l+νlXc̄ are too high and the
signal reconstruction efficiency is too low. On the other hand, if one uses hadronic decays like
D0 → K+π−, then one has interference from B− → D0K−, D0 → K+π−: on the one hand
B− → D0K− is doubly Cabibbo suppressed but D0 → K+ π− is not. On the other hand
D0 → K+ π− is doubly Cabibbo suppressed but B− → D0K− is not. As a consequence, the
interference is large.

The solution is to use the modified GLW method [14]. It uses both CP+ and CP− eigenstates,
whereas the original method only required one. The D0

CP+-meson can be reconstructed for
instance in the CP -even final states K+K− and π+π−. The D0

CP−-meson can be identified in
the channels K0

S
π0, K0

S
ω, or K0

S
φ.1 The modified method doesn’t require to directly measure

the suppressed amplitudes of the B-meson, but only experimentally accessible branching
fractions. Then, the D0 can be identified in flavor specific state final states such asK−(n·π)+,
n ∈ N, neglecting the doubly Cabibbo suppressed decay of D0 to the same final state. To
this extent, we define four observables, namely the branching fraction ratios RCP± and the
direct CP asymmetries ACP±

RCP± =
Γ(B−→D0

CP±K
−) + Γ(B+→D0

CP±K
+)

[

Γ(B−→D0K−) + Γ(B+→D0K+)
]

/2
, (3.8)

ACP± =
Γ(B−→D0

CP±K
−) − Γ(B+→D0

CP±K
+)

Γ(B−→D0
CP±K

−) + Γ(B+→D0
CP±K

+)
. (3.9)

The latter asymmetries ACP± are of special relevance because they would indicate, if signifi-
cantly different from zero, direct CP violation in charged B decays. The new observables are
related to the three quantities γ, the magnitude ratio r

r =
|A(B+ → D0K+)|
|A(B+ → D0K+)|

, (3.10)

1These final states are, in fact, only true CP -odd eigenstates if one neglects CP violation in the K0 system:
˛

˛K0
S

¸

= |K1〉 + ε |K2〉, |K1〉 is the CP+ eigenstate |K1〉 = (
˛

˛K0
¸

+
˛

˛K̄0
¸

)/
√

2, and ε is on the order of
3 × 10−3.
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and the strong phase difference δs = δ − δ̄ of these amplitudes through the relations

RCP± = 1 + r2 ± 2r cos δs cos γ, (3.11)

ACP± =
±2r sin δs sin γ

RCP±
. (3.12)

Only three of the four observables are independent, and the following identity holds:

ACP+RCP+ = ACP−RCP−. (3.13)

The r parameter plays a crucial role, as can be seen from Equations 3.11 and 3.12: the
sensitivity to γ scales like 1/r. The ratio is predicted to be on the order of 0.1 [2, 3], in
agreement with recent results by BABAR (r = 0.091 ± 0.059 [15]) and Belle (r = 0.159 ±
0.074 [16]), obtained through the study of B → D0K, D0 → K+π−π0 and D0 → K0

S
π+π−

decays. This is the main drawback of the GLW method, because it limits the CP violating
interference effect.

Another potential difficulty arises from non-negligible D0–D0 mixing. The GLW method
assumes that it is possible to determine the CP eigenstate of a D0-meson from the final state it
decays to. This is not reliably possible in case of sizable D0–D0 mixing. Because in that case,
a D0 produced in a B decay could oscillate into a D0 before it decays, diluting the D0 sample.
Particle/anti-particle oscillations are measured in terms of the quantity x: the probability for
a D0 to oscillate into a D0-meson is given by P (D0 → D0) = 1/2 e−t/τ [1−cos(xDt/τ)], where
τ denotes the lifetime of the D0 state. Meca and Silva have shown [17] that a value of xD on
the order of 10−2 will affect the decay rates by as much as 10%. Recent work of the BABAR

Collaboration (2008) [18, 19] sees evidence of D0–D0 mixing. The observed value of xD in the
K−π+π0 final state is xD = [2.61+0.57

−0.68(stat) ± 0.39(syst)] × 10−2, the statistical significance
of this result is 3.2σ. The Belle Collaboration also measures xD [20]. But considering the
current level of statistics available for B → D0K decays, the GLW method remains unaffected
from D0–D0 mixing.

There are two important alternatives to the GLW method, still relying on B → D0K decays.
The first one was proposed in 1997 by Atwood, Dunietz, and Soni (ADS, [21, 22]). The idea
is to perform the analysis with non-CP eigenstates and to chose D0 final states such, that
D0 → fi is doubly Cabibbo suppressed, while D0 → fi is Cabibbo allowed. Then, the two
interfering amplitudes become comparable in size, maximizing the observable CP violation
effects. One can use for example K+π− as the final state—the exact opposite of the one used
in the GLW method. However, the ADS method comes at the prize of hadronic uncertainties.
In that sense, it is complementary to the clean GLW method. Currently the ADS analyses
give the most precise measurements of the ratio r.

The second alternative was proposed by Giri, Grossman, Soffer, and Zupan (GGSZ, [23]) in
2003. Their idea is to observe the interference between B → D0K and B → D0K decays
when the D0 and D0 decay to the self-conjugate Cabibbo-allowed final states K0

S
π+π− and

K0
S
K+K−. Then one determines γ from the comparison between the observed Dalitz-plot

distribution ofK0
Sh

+h−, (h = π,K) produced in B → D0K, D0 → K0
Sh

+h−, with the Dalitz-
plot distributions ofK0

S
h+h− observed in decays of flavor-taggedD0 andD0-mesons. A Dalitz

plot shows on each of its axes the square of an invariant mass formed of two out of the three
particles in the three-body final states: for instance m2

− = m(K0
Sπ

−)2 and m2
+ = m(K0

Sπ
+)2

in case of the D0 → K0
S
π+π− decay. In this kind of plot the resonant substructure of the

decay becomes clearly visible, which is different (intrinsically reflected) for a D0 and D0. The
GGSZ method yields the most precise single measurement of γ, see for instance the recent
work by the BABAR Collaboration [24]: they measure γ = (76± 22± 5± 5)◦, where the errors
are statistical, systematic, and related to the Dalitz model, respectively.
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The current experimental situation on the GLW parameters is summarized in Table 3.1 and
Figure 3.3. The values of RCP± and ACP± have been measured by the BABAR, Belle, and CDF
collaborations. Figure 3.3 compares the results also with the values measured in the excited
final states, B±→D(∗)0K(∗)±. It is interesting to note that in the B → D0

CP+K channel a
combined direct-CP -violating asymmetry is found of more than 3σ significance.

Table 3.1: Values of ACP± and RCP± measured by BABAR, Belle, and CDF for the GLW method
as of September 2008.

BABAR [5] Belle [25] CDF [26] HFAG [27]
NBB = 382 × 106 NBB = 275 × 106 1fb−1 Average

ACP+ +0.27±0.09±0.04 +0.06±0.14±0.05 +0.39±0.17±0.04 +0.24±0.07
ACP− −0.09±0.09±0.02 −0.12±0.14±0.05 – −0.10±0.08
RCP+ 1.06±0.10±0.05 1.13±0.16±0.08 1.30±0.24±0.12 1.10±0.09
RCP− 1.03±0.10±0.05 1.17±0.14±0.14 – 1.06±0.10
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Figure 3.3: Values of ACP± and RCP± measured by BABAR, Belle and CDF in B → DK, D∗K and
DK∗ decays.

3.2 Analysis Description

We now give an outline of the analysis strategy leading to a measurement of the four GLW
parameters ACP± and RCP±. When considering B → D0K decays one can benefit from
the flavor SU(2) related B → D0π decays, which are kinematically very similar to the signal.
Typically their branching ratio is about twelve times larger than the one of B → D0K decays,
therefore we have a powerful control sample at hand. We can use it to reduce the systematic
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uncertainty when measuring RCP±. To this extent we construct double ratios of the signal
channel and the control channel. Then those systematic uncertainties cancel, which enter as
a factor, and affect both samples at the same time. These are, for instance, uncertainties
from the D0 branching fractions, and reconstruction efficiencies of different D0 channels. In
detail, we define the ratios R±

K/π and Rflv
K/π:

R±
K/π ≡ B(B− → D0

CP±K
−) + B(B+ → D0

CP±K
+)

B(B− → D0
CP±π

−) + B(B+ → D0
CP±π

+)
, (3.14)

Rflv
K/π ≡ B(B− → D0K−) + B(B+ → D0K+)

B(B− → D0π−) + B(B+ → D0π+)
. (3.15)

Then we approximate RCP± by the double branching fraction ratios

RCP± ≈
R±

K/π

Rflv
K/π

. (3.16)

This approximation is exact in the limit A(B+ → D0
CP±π

+) = A(B− → D0
CP±π

−) ≈
1√
2
A(B− → D0π−), else one discards a term r × |VusVcd/VudVcs| ≈ 0.01. A systematic

uncertainty will be assigned due to this approximation when quoting the final numbers for
RCP±.

The outline of this analysis is now straightforward. To determine the four parameters ACP±
andRCP±, we have to measure how many events of a certain type are contained in a sufficiently
large dataset of decaying B-mesons. In particular, we will focus on eight D0 final states:
K+K− and π+π− (CP+), K0

S
π0, K0

S
ω, and K0

S
φ (CP−), K−π+, K−π+π0, and K−π+π+π−

(non-CP ).

The analysis has been implemented in the Root framework [28]. It is widely used in the
field, mostly because it has a strong developer base at CERN. Among many other features,
Root re-implements in C++ the software package Minuit [29], which since its creation in
the 1970s has become the standard package to perform function minimizations in particle
physics. Such minimizations are a crucial ingredient to regression (or fitting) algorithms. The
wide use of Root has inspired other authors to develop extension modules. Two of which
play an important role in this work: Tmva [30] and RooFit [31].

The Tmva package, for Toolkit for Multivariate Data Analysis with Root, implements many
different multivariate analysis techniques, such as neural networks, boosted decision trees,
and others. We will use Tmva to optimize our event selection, and to form a Fisher discrim-
inant.

The RooFit package is an interface to Root’s implementation of Minuit. It takes care of
many steps necessary in performing fits, such as building the probability density functions,
normalizing them, steering Minuit, and many more. A second functionality of RooFit

is to visualize the data and the models used to describe it. This non-trivial task is highly
automated. We will just highlight one topic: statistical meaningful error bars when plotting
histograms of datasets. RooFit implements the classical central intervals as described in [32].
These correspond to the 68% confidence intervals for Poisson statistics, which are generally
asymmetric.2 All fits performed in this project have been implemented using the RooFit

package.

2In case of a bin entry being zero, this results in a non-zero error bar.
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4 The BABAR Experiment

We have seen in the previous chapters how B-Factories play an important role in under-
standing the CP sector of the Standard Model. We shall now review the main features of the
BABAR Experiment.

The BABAR detector was designed to efficiently detect the decay products of B-mesons, which
are produced in e+e− collisions at the center-of-mass energy of 10.58 GeV. The particle
beams are accelerated by the laboratory’s 3 km long linear accelerator and stored in the
PEP-II storage rings. The full accelerator can reach energies up to 50 GeV, which is too high
for a B-Factory. This is why the beams are extracted before the end of the accelerator. Their
energies are tuned to be 9.0 GeV and 3.1 GeV for the electrons and positrons, respectively.
This results in a Lorentz boost βγ = 0.56 of the center-of-mass system. The boost is needed
in order to separate the two B decay vertices (βγcτ ≈ 270µm) to be able to measure the
proper time difference between the two decays, which is a crucial ingredient for some of the
golden measurements of BABAR.

The data taking phase of BABAR ended in April 2008, concluding a very successful running
period of almost ten years. The design luminosity of 3×1033 cm−2s−1 was reached in October
2000, and in October 2005 a record peak luminosity of 1 × 1034 cm−2s−1 was delivered to
the BABAR experiment. The period of active running was divided into seven parts, Run 1-7.
During the first six Runs, Υ (4S) → BB data was collected at 10.58 GeV, Run 7 explored other
energy regimes and the Υ (2S) and Υ (3S) resonances. About 10 % of the data was collected
approximately 40 MeV below the Υ (4S) resonance peak. This off-peak data doesn’t contain
B-mesons and can be used to study continuum background processes from e+e− → qq,
q = u, d, s, c. Data samples collected at the Υ (4S) peak energy will be referred to as on-
peak samples. The integrated luminosity for all data taking periods is shown in Figure 4.1.
Table 4.1 shows the size of the data samples collected in each Run. An overview of the BABAR

detector is shown in Figure 4.2. We shall now briefly describe the major subsystems as they
are traversed by a particle produced at the interaction point—a more detailed description of
various components can be found in [33].

Table 4.1: Data sample used for the analysis. The measured BB cross-section is 1.098 ± 0.012 nb.

Sample
∫

Ldt (fb−1) N(BB)/106

Run 1 20.40 22.4 ± 0.3
Run 2 61.08 67.4 ± 0.7
Run 3 32.28 35.6 ± 0.4
Run 4 100.28 110 ± 1
Run 5 133.26 147 ± 2
Run 6 78.37 84 ± 1
Total on-peak 425.68 467 ± 5
Total off-peak 44.44

The innermost part is the Silicon Vertex Tracker (SVT). It is one of the two BABAR tracking
devices and is designed to reconstruct decay vertices with high resolution. The resolution is
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Figure 4.1: BABAR and PEP-II integrated luminosity in units of fb−1.
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Figure 4.2: Layout of the BABAR detector: (1) Silicon Vertex Tracker (SVT); (2) Drift Chamber
(DCH); (3) Cherenkov Detector (DIRC); (4) Electromagnetic Calorimeter (EMC) (5) Magnet Coil;
(6) Instrumented Flux Return (IFR). The high energy electrons enter from the left side and the low
energy positrons from the right side of the figure.
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about 80µm for fully reconstructed B-mesons, and about 180µm for partially reconstructed
ones. The SVT consists of five cylindrical layers of double-sided silicon micro strip detectors,
with a total of approximately 150.000 readout channels. For charged tracks with transversal
momenta lower than pt ≈ 100 MeV/c, the SVT provides the only tracking information. The
inner radius of the SVT is 32 mm, the outer radius is 144 mm, the total strip length is 26 cm.

Charged tracks with momenta greater than 100 MeV/c do reach the next layer of the BABAR

detector, the Drift Chamber (DCH). The DCH is a cylinder with a length of 280 cm, an
inner radius of 24 cm, and an outer radius of 81 cm. It is filled with an Helium-isobutane
gas mixture, in which a traversing charged particle produces ions and electrons. The latter
drift towards one of the 7104 sense wires, where they produce an electric signal. Each of the
20µm thin sense wires is surrounded by six field wires, providing the electrical field causing
the drift. The wires are organized in 40 layers of drift cells. The geometrical acceptance of
the DCH is 90 %.

After leaving the DCH, a particle reaches the long synthetic quartz bars of BABAR’s ring
imaging Cherenkov detector (DIRC, Detector of Internally Reflected Cherenkov light). The
DIRC is designed to provide excellent particle identification, in particular to separate kaons
from pions. The DIRC is most efficient for track momenta basically from threshold up to
4 GeV/c. Separating kaons from pions is of special interest for the analysis presented in this
document, as we will have to find a way to distinguish B → D0K and B → D0π events. The
DIRC makes use of the fact that charged particles moving faster than the speed of light c
within a radiator of refractive index n emit Cherenkov light under a well-defined angle θC ,

cos θC =
1

nβ
, (4.1)

where β = v
c and v is the speed of the particle. So given a particle’s momentum is known,

one can infer its mass. The radiator consists of 144 straight fused silica bars (n = 1.473) with
rectangular cross section. Each bar has a profile of 1.7 cm×3.5 cm and a length of 4.9 m. The
light emitted by the charged particles travels through the radiator bars and after multiple
internal reflections it reaches the rear end, where the Cherenkov image is allowed to expand.
The expansion region is filled with 6000 liters of purified water, its back is closely packed
with 10572 photomultiplier tubes. The Cherenkov light forms rings in the back plane, from
which pattern recognition algorithms deduce θC . The geometrical acceptance of the DIRC is
80 %, which is a bit smaller compared to the DCH.

The next detector component a particle will reach is the Electromagnetic Calorimeter (EMC).
It is the main device for electron-pion separation and neutral pion and photon reconstruction.
It consists of 6580 Thallium-doped Cesium iodide crystals. The crystals are of trapezoidal
shape, their typical transverse dimensions are 5 × 5 cm2 at the front, flaring out to about
6 × 6 cm2 at the back. Their typical length is 30 cm, representing about X0 = 17 radiation
lengths. The EMC features a dedicated calibration system, which uses a neutron generator to
activate liquid fluorinert. The fluorinert is pumped through tubes in front of the crystals, the
crystals then detect the 6.1 MeV photons from the 16N β-γ cascade. The EMC also features
a monitoring system, the light pulser, which distributes the light of a single xenon lamp to
each individual crystal and is able to quickly test the readout chain. Each of the crystals
is being read-out by two photodiodes glued to the rear face, which are not affected by the
strong magnetic field they lie in.

The strong magnetic field (1.5 T) in which all of the above components lie, is provided by
a super-conducting solenoid. The flux return yoke is instrumented (IFR, Instrumented Flux
Return) to identify muons and to detect neutral hadrons. The yoke consists of 18 layers of
iron plates with increasing thickness, representing a total thickness of 65 cm. The 17 gaps
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between them house two kinds of detector systems, Resistive Plate Chambers (RPC) and
Limited Streamer Tubes (LST), the total active area exceeding 1000 m2. The initial design of
the IFR was entirely based on RPC layers. However, they had to be replaced in 2004 and 2006
by the LST layers, because the RPCs developed large inefficiency for muon reconstruction
due to unforeseen environmental conditions in the detector hall.

To summarize the physics parameters of the BABAR detector, Table 4.2 gives an overview of
the most important design parameters.

Table 4.2: Design parameters of the BABAR detector. Acceptance coverage in the e+e− center-of-
mass system.

Parameter Value [33]
Tracking coverage (/4π) 0.92
σpt/pt(%) (1 GeV pions at 90 deg) 0.36
σz0

(µm) (1 GeV pions at 90 deg) 52
Calorimeter coverage (/4π) 0.90
X0 in front of Calorimeter (at 90 deg) 0.25
σE/E(%) (1GeV γ at all angles) 1.8
γ efficiency within acceptance (at 100 MeV) 0.92
Charged Hadron ID coverage (/4π) 0.84

At high energy physics experiments the interaction rate is usually much higher than the rate
limits given by the detector readout system and by off-line computing. A fast trigger system
is needed, pre-selecting interesting events. For BABAR, however, the situation is not so bad.
The BABAR trigger has an efficiency greater than 99% for BB events while keeping the output
rate below 400 Hz. This rate basically contains all hadronic (95 %) and tau (90 %) events.
Only a simple pre-scaling is needed to suppress the rates of QED events: Bhabha scattering,
dimuon events, and diphoton events.

Finally, events are reconstructed off-line from the raw information provided by all detector
components. Such information includes for instance hits in the SVT, charges on the sense
wires of the DCH, and so on. From this information tracks are reconstructed, which yield
physical properties of the particles such as mass, energy and momentum. However, since one
can’t be sure about the true nature of a track, they are considered particle candidates. At
reconstruction level, these candidates are grouped into lists corresponding to certain basic
selection criteria, for instance, the ChargedTracks list contains all tracks obtained by fitting a
trajectory with track hits from SVT or DCH. The higher-level analysis software uses these lists
as input. To identify a charged track as a candidate pion, kaon, electron or muon, additional
particle identification (PID) information is used. Besides the aforementioned Cherenkov angle
provided by the DIRC, this is mainly the energy loss dE/dx along the track in the tracking
detectors, SVT and DCH. For tracks that don’t have enough momentum to reach the DIRC,
the SVT and DCH in fact provide the only PID information. All PID information is combined
into particle selectors, which particle candidates can either pass or fail. The KLHVeryTight

selector plays a special role in this analysis, it selects kaons based on a likelihood ratio
approach (see Section 6.1).

The physics analysis of datasets collected by modern particle detectors such as BABAR requires
a safe knowledge of the whole experimental setup. The way to gather this knowledge is long.
One performs calibrations of the subsystems, takes cosmic data, takes data from test beams,
collects data control samples, just to name a few things. This knowledge is implemented
into Monte Carlo simulations. Then one generates large simulated data samples of statistics
comparable to the real dataset. Such simulation is carried out stepwise: at first, an event
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generator simulates the primary e+e− reaction and the decays of the produced unstable
particles, taking into account up-to-date knowledge of the decay properties. For instance,
EvtGen [34] is used for exclusive B decays. Then the particles are traced through the detector
volume, simulating the interactions with the active and passive material [35]. Finally, the
detector response is simulated. To get a realistic description of the underlying background
processes, noise and beam background events, as picked up during data taking, are added.
Simulated events undergo the same reconstruction process as the data. In addition, a so
called truth match procedure is applied, which tries to match each reconstructed track to a
particle on generator level. A candidate particle will be called truth-matched, if its origin is
most likely a corresponding generated particle. This is a very powerful tool to understand
the MC samples.

In this analysis, we will distinguish a set of various dedicated MC samples: signal MC samples,
generic BB MC samples, and generic qq MC samples. In signal MC, only Υ (4S) decays are
generated, and one of the two B-mesons produced in the Υ (4S) decay is forced to decay into
the signal mode. The result are large samples with extremely high purity. They are used
to study the properties of the signal in great detail, such as reconstruction efficiencies and
distribution shapes. In BB MC, both B-mesons decay generically into final states, taking
into account full present knowledge of the branching ratios. In qq MC, only non-resonant
e+e− → qq processes are simulated, with qq = u, d, s, c. A Monte Carlo sample which closely
mimics real data therefore consists of a cocktail of signal, qq, and BB Monte Carlo, weighted
according to their equivalent luminosities.
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5 Partial Result

A partial result of this work was obtained in 2007 by an analysis group in which the author
participated. The result was published in 2008 [5]. It is based on 382 × 106 BB decays,
contained in the Run 1-5 datasets. The full Run 1-6 analysis implements many improvements
compared to this partial result. But some parts of it still follow the same lines. In this chapter
we review the partial result in some detail, serving as an outline for the following chapters.
We reconstruct B± → D0h± decays, where the prompt track h± is either a kaon or a pion,
and D0 is either a D0 or D0-meson. The D0 candidates are reconstructed in the CP -even
eigenstates π+π− and K+K− (D0

CP+), in the CP -odd eigenstates K0
S
π0 and K0

S
ω (D0

CP−),
and in the (non-CP ) flavor eigenstate K−π+. When reconstructing B-meson candidates by
combining a D0 candidate with a track h in the D0 → K−π+ mode, we require that the
charge of the track h matches that of the kaon from the D0-meson decay, selecting b → c
mediated B decays.

We optimize the event selection in order to minimize the statistical error on the expected
B → D0K signal yield, determined for each D0 decay channel using simulated signal and
background events. We apply cuts on invariant masses of intermediate particles. They are
required to be within 2.5 σ of the mean fitted mass. In case of the invariant mass of a D0

candidate, for instance, σ is ranging from 4 to 20 MeV/c2 depending on the D0 decay mode.
We also apply cuts to the particle-ID information of charged kaons and pions produced in
D0 decays, and in some cases we exploit different angular distributions between signal and
background.

To reduce background from e+e− → qq events (with q = u, d, s, c), we exploit the fact that
B-meson decays tend to be spherical in the e+e− center-of-mass system because they are
almost at rest, whereas qq events tend to be jet-like. We construct a linear Fisher (F)
discriminant based on four event-shape quantities, and cut on the value of F . We also cut
on the beam-energy substituted mass, mES, as defined in Equation 2.12. For events with
multiple B → D0h candidates, we choose the B candidate with the smallest χ2, defined
in Eq. 6.8. It is formed from the measured and true masses of the composite candidates,
and the resolutions and widths of the reconstructed mass distributions. This requirement
enhances the purity of the sample because the probability of having two real signal decays
in the same event is negligible, while that of having one or more additional fake candidates
is not. By removing the additional candidates while keeping the one with the smallest χ2

the background is reduced. The total reconstruction efficiencies are in the range of 6 %–36 %,
depending on the D0 final state. In Chapter 6 we describe the event selection of the main
analysis.

We selectB-meson candidates using the energy difference ∆E, as introduced in Equation 2.13.
The ∆E distribution depends on the mass assigned to the prompt track. We evaluate ∆E
with the kaon mass hypothesis so that the peaks of the distributions are centered near zero for
B → D0K events and shifted by approximately 50 MeV for B → D0π events. This provides
a measure to separate both decays. The ∆E resolution for B → D0K events is typically
16 MeV for all D0 decay modes under study.

In addition to background from qq events, there are contributions fromBB events. They come
from the processes B−→D∗h−, B−→D0ρ−, misreconstructed B → D0h, and from charmless
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B decays to the same final state as the signal: for instance, the process B−→K−K+K− is
a background for B−→D0K−, D0→K−K+. These charmless backgrounds have similar ∆E
distribution as the D0K− signal and are therefore referred to as peaking BB backgrounds
(B− → X1X2h

−). These peaking backgrounds are carefully estimated from D0 mass side-
bands. In case of D0 → K−π+, charmless backgrounds from B → Kπh are negligible
compared to the much more abundant signal.

We determine the signal and background yields for each D0 decay mode independently from a
two-dimensional extended unbinned maximum-likelihood fit to the selected data events. The
fit is performed simultaneously on the B+ and B− subsamples. The input variables to the
fit are ∆E and the Cherenkov angle θC of the prompt track as measured by the DIRC. The
extended likelihood L for N candidates is given by the product of the probabilities for each
individual candidate i and a Poisson factor:

L =
e−N (N)n

n!

n
∏

i=1

Pi(∆E, θC). (5.1)

The probability Pi is the sum of the signal and background terms,

Pi(∆E, θC) =
∑

J

NJ

n
PJ

∆E,i PJ
θC ,i , (5.2)

where J denotes the eight signal and background hypotheses D0h, qq̄(h), BB̄(h), and X1X2h.
The total event yield n is estimated by the fit, and NJ is the event yield in each category. The
∆E distribution for B → D0K signal is parameterized with a double Gaussian function. The
∆E probability density function (PDF) for B → D0π is the same as the B → D0K one, but
with an additional shift, ∆Eshift, which arises from the wrong mass assignment to the prompt
track. The shift is computed event by event as a function of the prompt track momentum p
and a Lorentz factor characterizing the boost to the e+e− center-of-mass frame. This crucial
point will be explained in more detail in Section 9.1. The particle identification PDF is a
double Gaussian as a function of θpull

C , which is the difference between the measured Cherenkov
angle θC and its expected value for a given mass hypothesis, divided by the estimated error.
In summary, the floating parameters in each of the five fits are the D0K and D0π signal yield
asymmetries, the total number of signal events in D0π, the appropriate ratios R and R±,
eight background yields (one for each charge), and two parameters of the ∆E signal shape
(common for positive and negative samples). The remaining shape parameters of the PDF
are fixed to values obtained from Monte Carlo simulation, the peaking background yields are
fixed to their values obtained from the m(D0) sideband study. The reliability of the Monte
Carlo simulation has been evaluated in control samples. For instance, the parameters of the
θpull

C PDF can be checked on a dedicated D∗0 → D0π0, D0 → K−π+ sample, which contains
kaon and pion tracks of high purity.

The results of the fits are summarized in Table 5.1. Figure 5.1 shows the distributions of ∆E
for the K−π+, CP+ and CP− modes after enhancing the B → D0K purity by requiring that
the prompt track be consistent with the kaon hypothesis: its Cherenkov angle be within 2 σ
of the expected value for kaons, and outside 3 σ of the expected value for pions.

In case of D0 → K0
Sω, ω→π+π−π0, the values of R

K0
Sω

CP− and A
K0

Sω
CP− need to be corrected to

take into account a possible dilution from a non-resonant CP -even background arising from
B−→D0h−, D0 → K0

S(π−π+π0)non−ω decays. We estimate the corrections using a fit to the
ω helicity angle in the selected data events. The ω helicity angle is the angle between the
normal to the decay plane and the direction of the ω in the D0 rest frame. We apply the
corrections to the according values of ACP and RCP . Then, the quantities R±/R and ACP±
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Table 5.1: Uncorrected yields as obtained from a maximum likelihood fit to Run1-5 data. The
quoted uncertainties are statistical.

D0 CP N(Dπ+) N(Dπ−) N(DK+) N(DK−)
K−π+ 12745± 120 12338± 120 954 ± 36 918 ± 36
K−K+ + 1109± 36 1051 ± 35 51 ± 10 113 ± 13
π−π+ + 390 ± 24 378 ± 24 39 ± 9 36 ± 9
K0

S
π0 − 1102± 37 1134 ± 38 100 ± 13 88 ± 12

K0
Sω − 422 ± 24 403 ± 26 29 ± 8 18 ± 8
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Figure 5.1: Distributions of ∆E for events enhanced in B± → D0K± signal: a) B− → D0
CP+K−;

b) B+ → D0
CP+K+; c) B− → D0

CP−K−; d) B+ → D0
CP−K+; B± → D0K±, D0→K±π∓ with (e) and

without (f) signal enhancement. Blue (continuous) curve: projection of the full PDF of the maximum
likelihood fit. Red (long-dashed): B± → D0K± signal on all backgrounds. Brown (short-dashed):
peaking component on qq and BB background. Green (dash-dotted): qq and BB background.

are computed by means of a weighted average over the CP+ and CP− modes. The results for
the CP+ and CP− combinations are reported in Table 5.2.

For the branching fraction ratios RCP±, a source of systematic uncertainty is associated with
the assumption that RCP± = R±/R. This assumption holds only if the magnitude of the ratio
rπ . 0.012 between the amplitudes of the B−→D0π− and B−→D0π− processes is neglected.
All considered systematic uncertainties in ACP± and RCP± are listed in Table 5.3.
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Table 5.2: Measured ratios RCP± and ACP± for CP -even (CP+) and CP -odd (CP−) D decay modes.
The first error is statistical; the second is systematic.

D0 mode RCP ACP

CP+ 1.06 ± 0.10 ± 0.05 0.27 ± 0.09 ± 0.04
CP− 1.03 ± 0.10 ± 0.05 −0.09 ± 0.09 ± 0.02

Table 5.3: Systematic uncertainties on the observables RCP± and ACP± in absolute terms. The
total is the squared sum of the contributions.

source ∆RCP+ ∆RCP− ∆ACP+ ∆ACP−
fixed fit parameters 0.036 0.019 0.010 0.002
peaking background 0.029 0.037 0.031 0.003
detector charge asym. - - 0.022 0.022
opp. CP bkg. in K0

Sω - 0.002 - 0.007
RCP± vs. R± 0.026 0.025 - -
K/π efficiency 0.002 0.007 - -
total 0.053 0.049 0.039 0.023

In conclusion, the combined uncertainties we measure for ACP± (RCP±) are smaller by a
factor of 0.7 (0.9) and 0.6 (0.6) than the previous BABAR [4] and Belle [36] measurements,
respectively. We also find ACP+ to deviate by 2.8 standard deviations from zero.

Compared to the strategy outlined above, the main analysis presented in this document
implements a list of improvements. First of all, it benefits from a 22 % increase in number
of BB pairs (from 382 × 106 to 467 × 106), representing the final BABAR dataset. Secondly,
the event selection has been improved: there is no longer a cut on the value of F , instead it
will be included in the fit. The efficiency of the previous cut on F was ranging from 74%
to 78% for B → D0K signal events [37], so we can retain a sizable part of signal events.
At third, a more sophisticated fit strategy was adopted. Apart from including F in the
fit, we also include mES and we drop θC . Instead we distinguish between B → D0K and
B → D0π events by means of a dedicated likelihood selector, KLHVeryTight, which is based
on dE/dx measurements in the tracking detectors in addition to θC . This choice increases
the particle-identification efficiency for prompt tracks at low momentum and outside of the
geometrical acceptance of the DIRC. Lastly, we will reconstruct the D0 in three additional
final states: the flavor channels D0 → K−π+π0 and K−π+π+π−, and the CP− channel K0

S
φ.

In the partial result presented in this section, the latter mode was not included to allow for
an easy combination of the GLW result with the one obtained by a BABAR GGSZ analysis of
B → D0K, D0 → K0

S
K+K− decays (see Section 3 and Reference [24]).

In combination, all of these measures will reduce the uncertainty of the ACP± and RCP±
parameters by a factor of ≈ 0.6. They will represent the most precise measurement of the
GLW parameters achievable with the B → D0K BABAR dataset.
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6 Event Selection

After the partial result has been presented in the previous chapter, we shall now turn to the
full analysis. The full analysis has been performed using the Run 1-6 datasets, corresponding
to 467.4 ± 5.2 million BB pairs. This represents the final BABAR on-peak dataset. We will
reconstruct the signal decays B → D0h, where the bachelor track h refers to both h = π,K.
The D0-meson will be reconstructed in eight different final states, the CP -even K+K− and
π+π−, the CP -odd K0

S
π0, K0

S
ω, and K0

S
φ, and the non-CP states K−π+, K−π+π0, and

K−π+π+π−. We consequently use a set of 16 signal Monte Carlo samples, each with at least
105 events. They are listed in Table 6.1, together with the decay modes used to reconstruct
the unstable D0 decay products which decay outside the detector volume. Table 6.2 lists the
generic Monte Carlo samples used in the analysis.

We shall quickly review the experimental situation of the branching fractions relevant for
this analysis. The branching fraction for the B → D0h processes are B(B− → D0π−) =
(4.84 ± 0.15) × 10−3 and B(B− → D0K−) = (4.02 ± 0.21) × 10−4 [8]. Taking into account
these numbers and the secondary branching fractions for the decays of the D0-mesons and of
their daughters, the total branching fractions for the B → D0K decays (D0 decaying into a
flavor mode) that are reconstructed in this analysis are in the range 1.6 − 5.5 × 10−5. The
total branching fractions for the B → D0

CP±h decays are in the range 6 − 40 × 10−7. The
overall branching fractions are summarized in Table 6.3.

Table 6.1: Signal MC samples used in the analysis. The number of generated events is driven by
computing performance. The equivalent integrated luminosity is calculated taking into account the
branching fractions from Table 2.1.

D0 mode B → D0K B → D0π
Events

∫

Ldt Events
∫

Ldt
×103 (fb−1) ×103 (fb−1)

K+K− 387 202814 387 18530
π+π− 387 570550 387 52127
K0

Sπ
0, K0

S → ππ 387 97974 387 8626
K0

S
ω, K0

S
→ ππ, ω → πππ0 387 121968 387 10738

K0
Sφ, K

0
S → ππ, φ→ KK 387 550821 387 48495

K−π+ 387 22539 1941 9389
K−π+π0 387 6308 1941 2628
K−π+π+π− 387 10824 387 899

The reconstruction and selection of events is performed in three major steps: skimming,
pre-selection, and final selection. In each of the steps the selection requirements get tighter,
until the final samples have the highest purity. The reason for this stepwise approach is the
limited performance of the computing facilities: at skim level, the total size of the samples
is on the order of terabytes, pre-selection reduces it to about 100 GB, the final samples are
on the order of 100 MB. In the following we will not discuss the skimming process, which
applies a looser (and faster in terms of CPU cycles) selection compared to the one used in
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Table 6.2: Generic MC samples used for the analysis: number of generated events and corresponding
integrated luminosity, according to the cross sections listed in the last column.

Sample Events/106
∫

Ldt (fb−1) Cross section (nb)
e+e− → qq, q = u, d, s 938 449 2.09
e+e− → cc 1132 871 1.30
e+e− → Υ (4S) → B0B0 736 1340 0.549
e+e− → Υ (4S) → B+B− 731 1332 0.549

Table 6.3: Total branching fractions for the B− → D0π− decays that are reconstructed in this
analysis.

D0 decay mode Overall B(B− → D0π−) Overall B(B− → D0K−)

K−π+ (18.8 ± 0.6) × 10−5 (15.6 ± 0.8) × 10−6

K−π+π0(γγ) (66.5 ± 3.2) × 10−5 (55.2 ± 3.5) × 10−6

K−π+π+π− (39.2 ± 1.6) × 10−5 (32.6 ± 1.9) × 10−6

K+K− (19.0 ± 0.7) × 10−6 (17.4 ± 1.7) × 10−7

π+π− (67.6 ± 2.5) × 10−7 (61.8 ± 6.1) × 10−8

K0
S(π+π−) π0(γγ) (40.4 ± 2.3) × 10−6 (35.5 ± 4.2) × 10−7

K0
S(π+π−) φ(K+K−) (72.7 ± 5.5) × 10−7 (64.0 ± 8.2) × 10−8

K0
S(π+π−) ω(π−π+π0(γγ)) (32.4 ± 6.0) × 10−6 (28.6 ± 6.1) × 10−7

the following steps of the analysis. We will focus on the pre-selection, and, most importantly,
on the final selection.

6.1 Particle Identification

A very important concept in event selection within the BABAR analysis framework is the
concept of particle identification (PID) selectors. They combine all the information the sub-
detectors provide regarding the nature of a particle, and supply an easy-to-use mechanism
to access this information. A particle candidate can be required to pass a certain selector.
The higher-class the selector it passes, the higher the probability of a candidate’s particle
hypothesis to be correct. Particle selectors bear speaking names: if a candidate kaon passes
the VeryTight selector, for instance, it has a higher probability to be a true kaon than if
it only passes the VeryLoose selector. One defines the efficiency ε of a particle selector as
the probability that a true particle passes the selector. The probability that another particle
is mis-identified is called m. Typical values of the KLHVeryTight selector, which stands for
kaon likelihood VeryTight, are ε ≈ 75 % and m ≈ 2 %.

There are many different implementations of PID selectors, but the ones most important for
this analysis are the selectors based on likelihood ratios. The idea is to calculate the likelihood
Li for each particle hypothesis i:

Li = LDIRC
i · LDCH

i · LSVT
i . (6.1)

The DCH and SVT likelihoods are calculated by comparing the measured energy loss per
track length, dE/dx (meas.), against the expected dE/dx from the Bethe-Bloch (B.B.)
formula. One defines the pull p, which in theory is distributed normally:

p =
1

σ

(

dE

dx

∣

∣

∣

∣

meas.

− dE

dx

∣

∣

∣

∣

B.B.

)

, (6.2)
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where σ is the measured uncertainty. Then the DCH likelihood is calculated based on a
Gaussian probability density, and the SVT likelihood is calculated based on an asymmetric
Gaussian with different widths on each side. The DIRC likelihood cannot be calculated in this
way, since there are significant tails on the distribution of the Cherenkov angle θC . To alleviate
these tails, a new likelihood is constructed from θC , the number of photons detected in the
DIRC, and the number of hits a track has in the SVT and the DCH. Finally, the likelihood
selectors consist of different requirements on the relevant likelihood ratios of particles l and
m:

Lr
l/m =

Ll

Ll + Lm
. (6.3)

Table 6.4 introduces the names of the kaon likelihood selectors, together with the defining
requirements on the kaon-pion likelihood ratio, the kaon-proton likelihood ratio, and the
pion-proton likelihood ratio. The selectors also incorporate information from the electromag-
netic calorimeter and the muon system. These are used to exclude the electron or muon
hypotheses.

Table 6.4: Kaon likelihood based PID selectors

K selector Lr
K/π Lr

K/p Lr
π/p ~p [GeV/c ] additional requirements

NotAPion > 0.2 - > 0.02 < 0.40 or not an e±

VeryLoose > 0.5 > 0.018 - < 0.40 or not an e±

Loose > 0.8176 > 0.018 - < 0.40 or not an e±

Tight > 0.9 > 0.20 - < 0.40 or not an e±

VeryTight > 0.9 > 0.20 - < 0.40 or not an e± not identified as
µ± by the IFR

6.2 Event Pre-Selection

In this section we describe how the unstable particles in the decay chains are reconstructed
from the stable ones, and which pre-selection requirements are applied.

Photon candidates, which are used to reconstruct π0-mesons, are clusters in the electromag-
netic calorimeter that are not matched to any charged track, have a raw energy greater than
30 MeV and a lateral shower shape consistent with the expected pattern of energy deposit
from an electromagnetic shower. The lateral energy distribution LAT is defined as

LAT =

∑n
i=3Eir

2
i

∑n
i=3Eir2i + E1r20 + E2r20

, (6.4)

with ordered crystal energies E1 > E2 > . . . > En. The sum extends over all crystals in a
shower, r0 = 5 cm is the average crystal width and ri is the distance between crystal i and
the shower center, computed as the center-of-gravity with linear energy weighting of every
crystal. We require LAT < 0.8.

We reconstruct K0
S candidates in the decay mode K0

S → π+π−. We select pairs of zero total
charge formed from all tracks reconstructed in the drift chamber and/or the vertex detector
(ChargedTracks list). The two charged tracks are assigned the pion mass hypothesis and are
constrained to have a common vertex. We accept candidates whose invariant mass lies inside
a ±25 MeV/c2 window around the nominal K0

S
mass [8]. The π+π− invariant mass is then

constrained to the nominal K0
S mass in order to improve the momentum resolution.
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The π0 candidates are reconstructed in the decay mode π0 → γγ. Pairs of photon candidates
(selected as described above) with invariant mass within the range 115–150 MeV/c2 and total
energy greater than 200 MeV are considered π0 candidates. At first, the event primary vertex
is assumed to be the origin of the two photons. To improve the momentum resolution, the π0

candidates are then fit kinematically with their masses constrained to the nominal π0 mass [8],
while the origin of the photons is constrained to be the decay vertex of the π0 mother (for
instance, the vertex of the two charged pions in ω → π+π−π0).

To reconstruct φ candidates in the decay mode φ→ K+K−, we select every pair of opposite-
charge tracks with invariant mass inside a ±30 MeV/c2 mass window1 around the nominal φ
mass [8]. The two charged tracks are assigned the kaon mass hypothesis and are constrained
to have a common vertex. They are taken from the GoodTracksVeryLoose list, that contains
all the reconstructed tracks which satisfy additional requirements: (a) the track momentum
measured in the laboratory frame must be less than 10 GeV/c; (b) the distance of closest
approach to the nominal interaction point must be less than 1.5 cm in the transverse plane
and less than 10 cm along the beam axis. The kaon candidates must also pass the NotAPion

PID selector.

We reconstruct ω candidates in the decay mode ω → π−π+π0. Two opposite-charge tracks are
selected from the GoodTracksVeryLoose list, are assigned the pion mass hypothesis and are
constrained to have a common vertex. π0 candidates are selected in the same way described
above, with the additional constraint that the point of origin of the two photons be the
common vertex of the two charged tracks. We require the invariant mass of the ω candidates
to be inside a ±50 MeV/c2 window2 around the ω nominal mass [8].

We reconstruct D0 candidates as follows. At first, all D0 daughters are constrained to have a
common vertex, assuming the correct mass hypotheses. Then we select D0 candidates with
center-of-mass momentum p∗ > 1.3 GeV/c and invariant mass inside a ±70 MeV/c2 window
around the nominal D0 mass [8] for the K−π+, K−π+π0, K+K−, π+π−, K0

S
φ, and K0

S
ω

modes, ±40 MeV/c2 for the K−π+π+π− mode, and ±110 MeV/c2 for the K0
Sπ

0 mode. To
improve the momentum resolution, selected D0 candidates are refitted with a constraint to
the nominal D0 mass. Only candidates are retained for which the probability of the vertex
fit is greater than 0.0001.

Combining a D0 candidate with a charged track h (bachelor or prompt track) finally gives
the B → D0h candidates. The prompt track is taken from the GoodTracksVeryLoose list.
It is assigned the kaon mass hypothesis regardless of the true nature of the bachelor track.
This has important consequences, as already mentioned in Chapter 5: the ∆E distribution
depends on the mass assigned to the prompt track. Due to the chosen mass assignment
∆E peaks near zero for B → D0K events, and at approximately 50 MeV for B → D0π
events, providing a measure to separate both decays. Additionally we require the prompt
track’s center-of-mass momentum be greater than 0.5 GeV/c. Both the prompt track and
the D0-meson are constrained to have a common vertex. A beam-spot constraint is applied
to the B production vertex, in order to improve the quality of the fit to the B decay tree
in the D0 → K0

S
π0 channel. For the flavor modes (D0 → K−π+, K−π+π0, K−π+π+π−),

the charge of the track h must match that of the kaon from the D0 decay, selecting b → c
mediated B decays. We pre-select B candidates requiring 5.2 < mES < 5.3 GeV/c2 and
−0.3 < ∆E < 0.3 GeV. We also apply a pre-selection cut on the quantity R2, which is
a measure of the event shape and will be introduced in Section 7. To reduce a significant
portion of e+e− → qq continuum background, we require R2 < 0.6.

1The φ width is Γφ = 4.26 ± 0.05 MeV/c2
2The ω width is Γω = 8.49 ± 0.08 MeV/c2
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The pre-selection efficiencies for allD0 decay modes has been evaluated on signal Monte Carlo,
requiring that the reconstructed B candidates are fully truth-matched to the generated ones.
Table 6.5 lists the numbers.

Table 6.5: B → D0h reconstruction efficiency after pre-selection, evaluated using signal MC.

D0 decay ε(D0K)(%) ε(D0π) (%)
D0 → K−π+ 60.42± 0.08 60.78 ± 0.04
D0 → K−π+π0 28.04± 0.07 28.39 ± 0.03
D0 → K−π+π+π− 37.91± 0.08 38.15 ± 0.08
D0 → K+K− 57.80± 0.08 58.39 ± 0.08
D0 → π+π− 64.36± 0.08 64.80 ± 0.08
D0 → K0

Sπ
0 32.15± 0.08 32.54 ± 0.08

D0 → K0
Sω 15.35± 0.06 15.43 ± 0.06

D0 → K0
Sφ 35.39± 0.08 35.79 ± 0.08

6.3 Final Selection

We describe in this section the final criteria adopted to select samples enriched in B →
D0K and B → D0π events, whose yields will be extracted through the final fit described in
Section 9. In general, it is a non-trivial task to find suitable discriminating variables and to
obtain optimal cuts on them. One usually focuses on maximizing the selection significance,
which is defined as

S =
NS√

NS +NB

, (6.5)

where NS is the expected number of signal B → D0K events, and NB is the expected
number of background events in the final sample which populate the same region as the
signal. Maximizing S corresponds to minimizing the final statistical uncertainties on the
B → D0K yields, and therefore on ACP± and RCP±. We are looking at an optimization
problem in a multi-dimensional parameter space, which in case of sizable correlations among
the parameters quickly gets hard to solve. Usually one starts with initial requirements on
a set of discriminating variables and optimizes them iteratively. However, considering the
number of different final states and the file sizes of the associated samples, this approach
seems impracticable. We will instead use an approach based on the toolkit for multivariate
analysis (Tmva, [30]). The advantage of Tmva is, that it is capable of optimizing rectangular
cuts on correlated variables using genetic algorithms to find an optimal working point in the
non-unique solution space. This spares the aforementioned complications associated with an
iterative procedure.

We will distinguish three sets of discriminating variables, the requirements on each of them
optimized in a different manner: the invariant masses of the intermediate particles, the parti-
cle ID of intermediate particles, and quantities other than the masses and the PID variables
which will be passed to Tmva. We will call the corresponding selection requirements mass
cuts, PID requirements, and Tmva requirements.

All requirements are optimized on the B → D0π control sample, which is kinematically
similar to the B → D0K sample. This allows us to finalize the selection without looking
at the signal, minimizing any possible experimenter bias. It also takes advantage from the
higher statistics of the control sample. To simulate the selection power of the final fit, we
impose requirements on the three fit variables ∆E, mES, and the Fisher discriminant. The
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latter needs to be tuned at this stage of the analysis (see Section 7). The cut values are
∆E ∈ [60, 125] MeV, mES ∈ [5.267, 5.289] GeV/c2, F > −0.08. For the whole optimization
procedure we pick one candidate at random, if multiple candidates survive the pre-selection.

There is also one selection requirement that we apply in advance. It is designed to remove
potentially peaking backgrounds: in the channel B− → D0K−, D0 → π+π−, a significant
contribution comes from the much more abundant processes B− → D0π−, D0 → K−π+, and
B− → K̄∗0

X [K−π+]π− (where K∗0
X can be K∗0(892), K∗0(1430) or nearby resonances), where

the prompt pion is incorrectly identified as a D0 daughter and the charged kaon from the D0

or K∗0
X is incorrectly identified as a B daughter. We remove this background contribution by

requiring that the invariant mass of the system given by the prompt track and the pion from
D0 with opposite charge be greater than 1.9 GeV/c2.

The following enumeration outlines the path of the optimization procedure. In the following
sections we will describe the selection requirements on each set of variables in more detail.

1. Extract the cuts on the invariant masses from truth-matched signal MC. Since we expect
the mass distributions to be slightly different in data and Monte Carlo, we will use these
cuts on Monte Carlo only.

2. Apply the MC mass cuts to background MC composed of the generic MC samples, and
to signal MC. Use these new samples to optimize the PID requirements and the Tmva

requirements.

3. Apply the so obtained PID and Tmva requirements, but not the Monte Carlo mass
cuts, to on-peak data. Use this sample to extract the mass cuts on data.

6.3.1 Mass Cuts on Signal Monte Carlo

We obtain the set of mass cuts we shall use on Monte Carlo by fitting the invariant mass
distributions in truth-matched B → D0π signal MC samples. The fit function is a double
Gaussian for all masses but the φ mass. The φ-meson has a non-negligible width. We use
a double Voigtian3 to describe its mass distribution. All parameters of the fit functions are
floating in the fit. For the masses described by a double Gaussian, the selection cut is derived
from the narrow component: we select the 2.5 σ interval around the mean. In case of the π0

and φ masses, there is no (obvious) narrow component. In this case, we take the intervals
which enclose 95 % of the integral of the double Gaussian, both on the left and right hand
side of the maximum of the double Gaussian. Figure 6.1 shows the fits on signal MC, in
representative D0 channels, including the fit parameters and the extracted cut values. The
cuts intervals are also listed in Table 6.6.

6.3.2 PID Requirements

The requirements on the particle ID of charged kaon and pion candidates reconstructed in
the D0 decay tree are optimized straightforwardly by maximizing S under the assumption
of vanishing correlations across the PID variables. We consider all charged kaons and pions
except the pions from K0

S
decays, because here the Tmva requirements are powerful enough.

We use truth-matched B → D0π signal MC over a cocktail of generic background MC.
We calculate the significance (Eq. 6.5) for each possible PID requirement and use the one
which maximizes the significance. The optimal PID selectors are summarized in Table 6.7.

3A Voigtian is a Breit-Wigner shape describing the resonance, convolved with a Gaussian describing detector
resolution.
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Table 6.6: Optimized cuts on ∆m = m−mPDG. Values in MeV/c2. In case of K0
Sω, the π0 is from

ω → π+π−π0. These values are being used in the final selection on MC.

D → ∆m(D0) ∆m(KS) ∆m(π0) ∆m(φ) ∆m(ω)
KK [−15.2, 15.0] - - - -
ππ [−18.9, 18.6] - - - -
K0

Sπ
0 [−44.2, 37.0] [−5.7, 5.7] [−16.4, 12.1] - -

K0
Sω [−22.8, 19.7] [−5.5, 5.6] [−18.7, 12.6] - [−22.4, 19.6]

K0
S
φ [−7.4, 7.4] [−5.4, 5.5] - [−6.6, 8.2] -

Kπ [−16.6, 16.5] - - - -
Kππ0 [−26.7, 23.3] - [−15.2, 11.2] - -
Kπππ [−12.0, 11.9] - - - -
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Figure 6.1: m − mPDG fits on truth-matched signal MC to extract cuts on the invariant masses.
The red lines indicate the obtained cut values.
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Figure 6.2 shows the fractions of signal and background events passing each PID selector for
B → D0K events reconstructed in the representative D0 → K−K+ channel.

Table 6.7: Optimal PID selectors. In case of K0
Sω the π’s are from ω → π+π−π0, in case of K0

Sφ
the K’s are from φ → K+K−. The subscripts enumerate the kaons and pions in the D0 final state.
See Table 6.4 for the selector definitions.

D → K±
1 K±

2 π±
1 π±

2 π±
3

K+K− VeryLoose VeryLoose - - -
π+π− - - Loose Loose -
K0

Sπ0 - - - - -
K0

Sω - - Loose Loose -
K0

Sφ NotAPion NotAPion - - -
K−π+

NotAPion - - - -
Kππ0

VeryLoose - Loose - -
Kπππ VeryLoose - Loose VeryLoose Loose
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Figure 6.2: Fractions of signal and background events passing each PID selector. The optimal
selector is indicated by the red vertical line. The mapping is 1–NotAPion, 2–VeryLoose, 3–Loose,
4–Tight, 5–VeryTight. See Table 6.4 for the selector definitions.

6.3.3 TMVA Requirements

We will consider requirements on five additional kinematic variables to enhance the purity of
the final samples: the D0 helicity angle, the K0

S
significant flight length, the ω helicity angles,

the φ helicity angle, and the energy of the π0. In the following, we describe each of these
variables in more detail, before we focus on how to find optimal cuts using Tmva.

The decay angle θhel(D
0) of the D0-meson, defined as the angle between the direction of one

of the D0 daughters in the D0 rest frame and the direction of the D0-meson in the B rest
frame, is expected to follow a flat cos θhel(D

0) distribution, because of angular momentum
conservation: each of the B, D, and h-mesons is scalar. In background e+e− → qq events,
where a fake D0 is picked from a random combination of tracks and neutral objects in the two
light quark jets, cos θhel(D

0) is peaked at ±1. This is shown in Figure 6.3 for the D0 → π+π−

mode.

We exploit the relatively long lifetime of the K0
S-meson by requiring its decay vertex to be

significantly displaced from the D0 decay vertex. The flight significance SK , defined as the
ratio between the separation of the decay vertices of the K0

S-meson and the D0-meson in the
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Figure 6.3: Distribution of the decay angle of the candidate D0 reconstructed in the B → D0K,
D0 → π+π− analysis in signal and background (qq and BB) simulated events.

plane transverse to the beam axis, and its error, is a suitable kinematic variable to cut on. In
addition, the angle αK between the flight direction of the K0

S, defined by a connecting line
between the D0 and K0

S
vertices, and the total momentum of the two pions in the transverse

plane is expected to be zero for correctly reconstructed K0
S
-mesons. We will require this angle

to be less than 90◦ by defining the signed flight significance, S′
K = sign(cosαK) · SK , and

retaining only positive values of S′
K . These variables are powerful enough so we don’t need

to apply PID requirements to the K0
S daughters.

In the ω→π−π+π0 decay the three daughter pions are produced in a plane in the ω rest
frame. The normal helicity angle θN is the angle between the normal to this plane and the
flight direction of the ω-meson in the D0 rest frame. It is distributed as cos2 θN : because of
angular momentum conservation the decay of the scalar D0-meson to a scalar K0

S-meson and
the ω-vector-meson (JPC = 1−−), the ω-meson has helicity 0, |S, Sz〉ω = |1, 0〉ω, where the
quantization axis is oriented along the K0

S
and ω flight line in the D0 rest frame. Then the

ω-meson decays into three pions. Let’s call L the angular momentum of the π+π− system
and l the relative angular momentum between the π0 and the π+π− system. The π+π−

system must have L = 1 for the following reasons: (i) Angular momentum conservation
yields S(ω) = 1 = L(π+π−) + l(π0, π+π−) and thus |L − l| ≤ 1 ≤ L + l. (ii) Since parity is
conserved in strong decays we have P (ω) = −1 = (−1)L · (−1)l · (−1)3, because for charged
pions it is JP = 0− and neutral ones have JPC = 0−+. Thus we infer L + l is even.
(iii) The π+π− system is bosonic, so the wave function must be symmetric under exchange
of the two pions: +1 = (−1)L · C(π+π−). (iv) At last we consider charge conjugation:
C(ω) = −1 = C(π+π−) · C(π0). We conclude C(π+π−) = −1. Together with (iii) we learn
L is odd, and with (ii) l must be odd, too. The natural choice is therefore L = l = 1, since
there are no known π+π− resonances with spin-3 and invariant mass below m(ω). Coming
back to the ω→π−π+π0 decay, since Sz = 0, we have |1, 0〉ω = |1, Lz〉π+π− ⊕ |1, lz〉π0 . Using
the Clebsch-Gordan coefficients gives |l, lz〉 = |1,±1〉 and |L,Lz〉 = |1,∓1〉. This implies
that the angular distribution of the angle θ between the momentum of the π+π− system and
the direction of the ω-meson in the ω rest frame is proportional to sin2 θ, thus it follows for
the normal helicity angle cos2(π/2 − θ) = cos2 θN . For unpolarized ω-mesons or for fake ω
candidates reconstructed from random combinations of two tracks and a π0-meson, the cos θN

distribution is roughly flat (see Figure 6.4). Another angular variable which characterizes the
three-pion system is the Dalitz angle θππ between the flight direction of one of the three pions
in the ω rest frame and the flight direction of one of the two other pions in their center-of-mass
frame. In true ω→π−π+π0 decays, cos θππ is distributed like sin2 θππ, as we have seen before.
Fake ω candidates reconstructed from random combinations of two tracks and a π0-meson
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exhibit an oppositely convexed cos θππ distribution (see Figure 6.4). We will consider a cut
on the quantity cos2 θN sin2 θππ.
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Figure 6.4: Distribution of the Dalitz angle cos θππ and of the normal helicity angle cos θN for
simulated signal and simulated qq background events reconstructed in the B− → D0K−, D0 → K0

Sω
channel. We select (fake) background ω candidates in the π+π−π0 mass sidebands. The distributions
are normalized to unit area.

In the case of D0 → K0
Sφ, similar arguments hold as in the D0 → K0

Sω decay. The φ-
meson is a vector meson, so angular momentum conservation requires that the φ-meson be
produced with helicity 0. The subsequent decay of the φ-meson into two scalar kaons yields
a distribution of the cosine of the φ decay angle cos θH (the angle of the kaon in the φ rest
frame with respect to the direction of the φ-meson in the D0 rest frame) which shows a
characteristic cos2 θH behavior. In background events the cos θH distribution is flat for fake
φ candidates reconstructed from random combinations of charged tracks, and is a sum of a
constant and a cos2 θH distribution—due to partial polarization—for true φ candidates. The
cos θH distribution for signal and background events is shown in Figure 6.5. We will consider
a cut on | cos θH |.
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Figure 6.5: Helicity angle distribution of φ → K+K− candidates reconstructed in the B− → D0K−,
D0 → K0

Sφ decay chain. The distributions are normalized to unit area.

Lastly, we will impose requirements on the total energy of the π0 in case of the D0 → K0
S
π0,

D0 → K−π+π0, and D0 → K0
S
ω (ω → πππ0) decays.

We use the Tmva package to find optimal cuts on the kinematic variables defined above.
Tmva works with two event samples, signal and background. We use truth-matched sig-
nal MC and a cocktail of generic background MC, as we did before to optimize the PID
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requirements. Tmva maximizes the background rejection r for a given signal efficiency εS

by scanning the parameter space of the cuts in question using a genetic algorithm. This
results in the so called Receiver Operating Characteristics (ROC) curve, r ≡ r(εS). The cut
configuration which maximizes the significance, Eq. 6.5, corresponds to a particular working
point on the ROC curve. This point can be found by rewriting Eq. 6.5 in terms of εB = 1− r
and εS:

S =
εSN

′
S

√

εSN ′
S + (1 − r(εS))N ′

B

, (6.6)

where N ′
S(B) is the signal (background) yield before applying the cuts. One can now find the

maximum by evaluating

dS

dεS
= 0. (6.7)

Tmva provides data points of the ROC curve rather than an analytic form. To be able to
solve Eq. 6.7 we fit these points to a polynom of fifth grade. Once the optimal working point
is known, the corresponding cut configuration is obtained from tables also provided by Tmva.
Figure 6.6 shows the distributions of selected input variables for B → D0K events, together
with the optimal cut values obtained from the B → D0π control sample. Figure 6.7 shows
a representative ROC curve, the fitted fifth order polynom, and the optimal working point
calculated from Eq. 6.7. In case of the φ helicity angle it turns out the MC samples are not
large enough to allow for the Tmva tuning procedure. Therefore we find the optimal cut
by maximizing S (Eq. 6.5) neglecting any correlations. We obtain | cos θH > 0.4|. Table 6.8
summarizes the optimal selection requirements.

Table 6.8: Optimized Tmva cuts. In case of K0
Sω, E(π0) is from inside the ω. In case of K−π+π0,

the optimization shows no cut needs to be applied.

D0 → εopt
S | coshel(D

0)| S′
K E(π0) ω angles | cos θH |

π+π− 0.88 > 0.74 - - - -
K0

Sπ0 0.99 > 0.986 > 1.9 > 241 MeV - -
K0

Sω 0.94 - > 2.2 > 210 MeV > 0.046 -
K−π+π0 1.00 - - don’t apply - -
K0

Sφ 0.64 - - - - > 0.4

6.3.4 Mass Cuts on Data

Optimizing the mass cuts on on-peak data is slightly different from the method we used on
MC because now the sample contains background. This background has to be taken into
account when fitting the invariant mass distributions. The signal is again parameterized with
a double Gaussian shape (Voigtian shape for m(φ)). For the background we use a straight
line. Again all parameters are floating in the fit. The method to determine the cut values
is the same as before, where in case of the π0 and φ masses the background component
is not considered when finding the 95% intervals. We first validate the fit procedure on
cocktail MC composed of the generic MC samples. We find good agreement between the cut
values obtained from signal MC and those obtained from generic MC, allowing us to apply
the procedure to on-peak data: Figure 6.8 shows the fits on on-peak data, and Table 6.9
summarizes the extracted mass intervals to be selected.
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Figure 6.6: Distribution of variables on which selection requirements are optimized by Tmva: the
energy of a π0 either from a D0 or ω decay, the signed K0

S flight significance, and the combined ω
helicity angles. Shown are B → D0K events. The distributions are normalized to data luminosity.

Table 6.9: Optimized cuts on ∆m = m−mPDG. Values in MeV/c2. In case of K0
Sω, the π0 is from

ω → π+π−π0. These values are being used in the final selection on data.

D → ∆m(D0) ∆m(KS) ∆m(π0) ∆m(φ) ∆m(ω)

KK [−16.9, 15.4] - - - -
ππ [−17.9, 16.8] - - - -
K0

Sπ0 [−43.1, 35.9] [−6.5, 5.9] [−17.1, 12.8] - -
K0

Sω [−22.6, 20.0] [−6.1, 5.6] [−20.0, 14.8] - [−19.0, 16.1]
K0

Sφ [−6.2, 6.3] [−4.4, 4.2] - [−5.8, 7.5] -
Kπ [−17.2, 15.5] - - - -
Kππ0 [−28.5, 24.5] - [−19.6, 14.8] - -
Kπππ [−12.6, 10.9] - - - -
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Figure 6.7: Fit of the ROC curve in D0 → π+π−. The vertical line depicts the optimal working
point.

6.4 Arbitration of Multiple Candidates

When reconstructing B candidates, it is possible that more than one combination of tracks
satisfies the selection criteria in the same event. The rate at which this occurs depends on the
reconstructed decay mode and on the selection cuts. It is very small when the D0-meson is
selected in the K−π+, K+K−, π+π− and K0

S
φ final states, but it increases when D0 → K0

S
π0

or D0 → K0
S
ω is reconstructed, because the probability to select a fake candidate (especially

due to misreconstructed ω or π0 candidates) is higher. The fraction of events with multiple
candidates ranges from 0.2% to 8%, depending on the channel. In order to select only one
candidate per event it is necessary to define a criterion that permits to identify, as good as
possible, the combination with the larger probability to be a true signal B → D0h decay. For
such a criterion the invariant masses are the first choice. We define a χ2-function as

χ2 =
∑

i

(mi − 〈mi〉)2
σ2

mi
+ Γ2

i

, (6.8)

where the sum ranges over all unstable particles (D0, K0
S
, π0, φ, and ω), σ is the resolution of

the reconstructed invariant mass distribution, and Γ is the width of the particle (only Γω is
significantly different from zero). In events with multiplicity greater than one, the candidate
with the minimum value of χ2 is selected. The right choice rate of this algorithm ranges from
71% to 94%. In the rare case two candidates have the same minimal χ2 value, we pick one
randomly.

6.5 Summary of the Final Selection Criteria

In Tables 6.10-6.13 we summarize the selection criteria for the various B → D0h candidates.
The selection efficiencies are given in Table 6.14, together with the B → D0K signal signif-
icance calculated from Eq. 6.5. In conclusion we must confess the Tmva approach turned
out to be less practical than we expected it to be. Especially the decision to optimize on
the B → D0π control sample rather than the B → D0K signal sample raised suspicions in
the BABAR collaboration. This decision was in part motivated by the fact Tmva performs
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Figure 6.8: m−mPDG fits on on-peak data to extract cuts on these masses. The red lines indicate
the optimal mass intervals to be selected.

poorly on low statistics samples. We decided to perform the iterative procedure afterwards
as a crosscheck. Although the iterative procedure indeed gives slightly better values of the
B → D0K signal significance, the improvement is not enough to justify reprocessing the full
analysis chain.

Table 6.10: B → D0h selection criteria that are common to all the eight D0 decay modes under
investigation.

Parameter Criterion

∆E (MeV) [−80, 120]
mES (GeV/c2) [5.2095, 5.29]
F [−1.5, 1.5]
|m(D0) − m(D0)PDG| < 2.5σ
D0 vertex probability > 0.01%
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Table 6.11: Selection criteria used to select the candidate samples on which the unbinned maximum
likelihood fit is performed.

D0→ K−π+ K−π+π+π− K−π+π0

PID K from D0
NotAPion VeryLoose VeryLoose

PID π(’s) from D0 - Loose Loose

|m(π0) − m(π0)PDG| (MeV) - - [−19.3, 12.1]

Table 6.12: Selection criteria used to select the candidate samples on which the unbinned maximum
likelihood fit is performed.

D0→ K+K− π+π−

D0 | cos θhel| - < 0.74
PID 1st D0 daughter VeryLoose Loose

PID 2nd D0 daughter VeryLoose Loose

other requirements - m(hπ) > 1.9 GeV/c2

(mh=mK)

Table 6.13: Selection criteria used to select the candidate samples on which the unbinned maximum
likelihood fit is performed. Masses in MeV/c2.

D0→ K0
Sπ0 K0

Sφ K0
Sω

D0 | cos θhel| < 0.98 - -
|m(K0

S)−m(K0
S)PDG| [−5.6, 5.2] [−5.6, 5.2] [−5.6, 5.2]

K0
S flight-length > 3σ > 3σ > 3σ

E(π0) (MeV) > 220 - > 207
|m(π0)−m(π0)PDG| [−18.4, 14.0] - [−17.3, 10.0]
|m(φ)−m(φ)PDG| - [−6.5, 6.4] -
| cos θH(φ)| - > 0.4 -
PID φ daughters - NotAPion -
|m(ω)−m(ω)PDG| - - [−17.9, 15.3]
PID ω daughters - - Loose
cos2 θN sin2 θππ - - > 0.046

Table 6.14: B → D0h reconstruction efficiency after final selection, evaluated using signal MC.
Errors are based on the Poissonian errors due to the sample size. We also give the values of the
significance S on B → D0K events, both for the Tmva and the iterative approach.

D0 decay ε(D0K)(%) ε(D0π)(%) ε(D0K)/ε(D0π) S (Tmva) S (it.)

D0 → K−π+ 52.53 ± 0.08 52.84 ± 0.04 0.994 ± 0.002 7.9 8.0
D0 → K−π+π0 25.12 ± 0.07 25.45 ± 0.03 0.987 ± 0.003 2.9 3.1
D0 → K−π+π+π− 30.36 ± 0.07 30.70 ± 0.07 0.989 ± 0.003 7.1 8.6
D0 → K+K− 44.75 ± 0.08 45.19 ± 0.08 0.990 ± 0.002 3.8 4.5
D0 → π+π− 38.58 ± 0.08 39.08 ± 0.08 0.987 ± 0.003 4.2 4.7
D0 → K0

Sπ0 24.29 ± 0.07 24.70 ± 0.07 0.983 ± 0.004 35.8 36.4
D0 → K0

Sω 9.28 ± 0.05 9.32 ± 0.05 0.996 ± 0.008 42.4 44.7
D0 → K0

Sφ 17.69 ± 0.06 17.97 ± 0.06 0.984 ± 0.005 45.3 45.4
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7 Fisher Discriminant

A large fraction of background candidates arise from e+e− → qq (q = u, d, s, c) events,
in which random combinations of tracks and photons in the event are picked up in the
reconstruction. In order to separate these qq events from signal events we make use of several
event shape variables. Event shape variables exploit the different topologies of qq and BB
events in the e+e− center-of-mass frame. The two B mesons produced in Υ (4S) → BB
decays are in fact almost at rest, so there is no direction preferred by their decay products,
thus the BB events are spherical. On the other hand, the light quarks from e+e−→qq are
produced with significant momentum, so their decay products are contained in two more or
less collimated back-to-back jets. We combine several event shape variables into a Fisher
discriminant [38], which gives a single value for each event, F , that we include in the final
fit.

A Fisher discriminant is a linear combination of the considered input parameters, where the
coefficients are chosen in such a way, that the separation between the F distributions of qq
and BB events is maximal. To obtain the coefficients, one first linearly decorrelates the input
parameters. Then one determines an axis in the uncorrelated parameter space. The axis is
chosen such that the signal and background distributions, when projected upon this axis, are
separated as far from each other as possible. The metric used to define the distance in the
uncorrelated space is the covariance matrix of the input parameters. The distribution of F
is shifted towards −1 for qq events, and towards +1 for BB events, the latter include the
signal.

Before we list the exact shape variables in use, we define two concepts: the rest-of-event
(ROE) is the set of all detected tracks and photons in the event that have not been used to
reconstruct the B → D0h candidate. The thrust T , and its axis T̂ are defined via

T = max

(

∑

i |T̂ · p∗
i |

∑

i |p∗
i |

)

, (7.1)

where T̂ is the direction in the center-of-mass frame that maximizes T , and p∗
i is the CM

momentum of the i-th (charged or neutral) particle. The thrust is computed by summing
over all tracks and photons belonging to the B decay tree. We consider the following four
event-shape variables, example distributions are given in Figure 7.2.

First, we use the ratio of the second and zeroth Legendre monomial, L2/L0. Legendre mono-
mials are a set of momentum-weighted sums of the tracks and neutral calorimetric energy
deposits in the rest-of-event:

Lj =

ROE
∑

i

p∗i × | cos(θ∗i )|j , (7.2)

where θ∗i is the CM angle between p∗
i and the thrust axis. We have considered only the

(L0, L2) pair, since many analyses in BABAR have shown that adding other Lj (j 6= 0, 2)
to the set of discriminating variables does not improve the signal/background separating
power.
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Second, we use the ratio of the Fox-Wolfram moments R2 = H2/H0, computed using tracks
and photons in the rest-of-event. The lth Fox-Wolfram moment is defined as [39]:

Hl ≡
∑

i,j

|p∗
i ||p∗

j |
E∗2

vis

Pl(cos θ∗ij), (7.3)

where the Pl are the Legendre polynomials, θij is the opening angle between p∗
i and p∗

j , and
E∗

vis is the total visible energy of the event. For jet-like continuum events cos θ∗ij is peaked at

±1, while for spherical BB events it is more uniformly distributed. Since the second Legendre
polynomial is P2(cos θ∗ij) = 1

2 (3 cos θ∗2ij − 1), the ratio R2 is shifted towards one in qq events

and towards zero in BB events. Previous studies in BABAR [40] have shown it is advantageous
to calculate R2 in the rest-of-event rather than the full event.

Third, we use the cosine of the angle of the B candidate momentum with respect to the beam
axis, | cos(θB)|. In Υ (4S) → BB decays it follows a sin2(θB) distribution because the Υ (4S)
are produced almost completely with helicity ±1. It is almost flat in qq events.

Fourth, we use | cos(θT )|, the cosine of the angle of the thrust axis with respect to the beam
axis. Signal events have an almost uniform distribution. It is not perfectly flat because
of the small—but non-zero—B momentum in the CM frame. Background events follow a
1 + cos2(θT ) shape, which is reminiscent of the 1 + cos2(θqq) distribution of the qq pair
produced in the QED e+e− → qq reaction. At values of | cos(θT )| > 0.7 both signal and
background distributions suffer from a detection efficiency drop-off.

To construct the Fisher discriminant, to find its optimal coefficients, and to calculate the
values of F for each event, we use again the Tmva software package. The coefficients have
been optimized using MC samples of true signal events, and off-peak data. Events in these
samples are only required to pass the pre-selection (see chapter 6.2); if multiple candidates
survive in an event, we select one at random to exclude any possible bias on the coefficients
due to the algorithm selecting the best candidate. Each D0 final state has been optimized
independently. An example ROC curve, plotting the signal efficiency εS versus qq background
rejection 1 − εB, is shown in Figure 7.1. Figure 7.3 shows the distributions of F in the
representative D0 → K−K+ channel.
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Figure 7.1: Signal efficiency εS versus continuum background rejection 1 − εB of the optimized
Fisher discriminant, evaluated on simulated B → D0K, D0 → K−K+ events and off-peak data.
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Figure 7.2: Distributions of the four event-shape variables considered in the Fisher discriminant, in
simulated B− → D0K− and off-peak events, D0 → K−K+ decay mode. Only pre-selection criteria
are required.
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8 Data-MC Comparison

The main component of this analysis is the final fit to data, extracting the B → D0h signal
yields. As we will see in the next chapter, many parameters of the fit will be fixed to values
obtained from the MC simulation. In this chapter we shall therefore investigate the reliability
of the simulation. We will perform two cross-checks before we discuss measures to account
for discrepancies.

As a first cross-check, we plot the ∆E, mES, and F distributions in both data and MC
samples after the final selection was applied. We present the plots of the D0 → K−K+

and D0 → K−π+π0 channels in Figure 8.1: D0 → K−K+ is representative for all channels
other than D0 → K−π+π0, which is the one channel with the most abundant background
contribution. In Figure 8.2 we show the same plots, but with the additional requirement that
the bachelor track passes the KLHVeryTight selector, greatly enhancing the B → D0K signal
component. The only two visible discrepancies are the overall normalization, and small shifts
in the ∆E and mES signal distributions.

As a second cross-check, we fit the invariant mass distributions of composite particles in
both data and Monte Carlo. We use an asymmetric Gaussian for the fit function, rather
than the double Gaussian we used before to extract the mass cuts (Section 6.3.4). This way
we are more sensitive to small asymmetries in the distributions. In order to minimize any
possible experimenter bias, we perform this cross-check on the B → D0π control sample.
To this extent we require |∆E(π)| < 40 MeV, |mES −mB| < 10 MeV/c2, and F > −0.8, in
addition to the final selection criteria but the one on the quantity that is being fit. ∆E(π)
is computed using the pion mass hypothesis for the bachelor track. The particles are the
B (mES) and D0-mesons; K0

S
, ω, and φ-mesons from D0 decays; and π0-mesons from both

D0 and ω decays. The corresponding plots for representative D0 final states are shown in
Figures 8.3-8.5. In addition to the invariant masses, we show a comparison of the ∆E(π)
variable. The agreement is good, and only small shifts of fractions of MeV(/c2) are seen in
some cases.

We will account for the observed discrepancies by floating the associated parameters in the
final fit. This way we make sure the model we use to describe the data is accurate. We also
emphasize we measure yield ratios, in which small efficiency differences between data and
Monte Carlo simulation cancel.
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Figure 8.1: ∆E, mES, and F distributions in both data and MC in the representative D0 → K−K+

channel and the one channel with most abundant background, D0 → K−π+π0. Additional signal
range cuts have been applied on the fit variables not plotted: F > 0.2, mES > 5.275 GeV/c2.

46



 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
0.

00
8 

G
eV

)

0

10

20

30

40

50 -K+ K→ 0K, D0 D→B 
-K+ K→ 0, Dπ0 D→B 

h=K pk. bg.
 pk. bg.πh=

(K)qq
)π(qq

(K)BB
)π(BB

data

passed Kaon selector

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
0.

00
8 

G
eV

)

0

200

400

600

800

1000
0π+π- K→ 0K, D0 D→B 
0π+π- K→ 0, Dπ0 D→B 

data
passed Kaon selector

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

200

400

600

800

1000

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

)2
E

ve
nt

s 
/ (

0.
00

1 
G

eV
/c

0

5

10

15

20

25

30

35

40

45
-K+ K→ 0K, D0 D→B 
-K+ K→ 0, Dπ0 D→B 

data
passed Kaon selector

5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29
0

5

10

15

20

25

30

35

40

45

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

)2
E

ve
nt

s 
/ (

0.
00

1 
G

eV
/c

0

100

200

300

400

500

600

0π+π- K→ 0K, D0 D→B 
0π+π- K→ 0, Dπ0 D→B 

data
passed Kaon selector

5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29
0

100

200

300

400

500

600

F
-1 -0.5 0 0.5 1

E
ve

nt
s 

/ 0
.0

50

0

10

20

30

40

50

60

70 -K+ K→ 0K, D0 D→B 
-K+ K→ 0, Dπ0 D→B 

data
passed Kaon selector

-1 -0.5 0 0.5 1
0

10

20

30

40

50

60

70

F
-1 -0.5 0 0.5 1

E
ve

nt
s 

/ 0
.0

50

0

100

200

300

400

500

600

700 0π+π- K→ 0K, D0 D→B 
0π+π- K→ 0, Dπ0 D→B 

data
passed Kaon selector

-1 -0.5 0 0.5 1
0

100

200

300

400

500

600

700

Figure 8.2: ∆E, mES, and F distributions in both data and MC in the representative D0 →
K−K+ and D0 → K−π+π0 channels. The prompt track is required to pass the KLHVeryTight

selector. Additional signal range cuts have been applied on the fit variables not plotted: F > 0.2,
mES > 5.275 GeV/c2.
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Figure 8.3: Distribution of ∆E and mES in the B → D0π control sample, D0 → K−K+ channel.
Left column: generic MC, scaled to data luminosity. Right column: on-peak data. The distributions
are fitted with the sum of an asymmetric Gaussian and a 2nd order polynomial.
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Figure 8.4: Distribution of the D0 invariant mass (∆m = mrec − mPDG) in the B → D0π control
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Figure 8.5: Distribution of invariant masses (∆m = mrec − mPDG) of composite D0 daughters in
the B → D0π control sample. Left column: generic MC, scaled to data luminosity. Right column:
on-peak data. From top to bottom: π0 (D0 → K0

Sπ0), K0
S (D0 → K0

Sπ0), ω, φ. The distributions
are fitted with the sum of an asymmetric Gaussian and a linear or a 2nd order background.
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9 Fit Procedure

The goal of this work is to measure the four GLW parameters RCP± and ACP±. The charge-
averaged ratios RCP are being expressed through the ratios RK/π = B(B → D0K)/B(B →
D0π), as described in Section 3, so we are left with the determination of ACP+, ACP−, and
the five values of RK/π : one for the B → D0

CP+h channels, one for the B → D0
CP−h channels,

and three for the flavor channels. We shall extract these parameters by means of a three-
dimensional simultaneous extended maximum likelihood fit.

The basic concept of a maximum likelihood fit is the following [41]: suppose we have n
measurements of a variable ~x, the underlying probability density function (PDF), f(~x;α),
shall be known up to the exact values of the parameters α. The maximum likelihood fit will
find an optimal estimate α̂ for the parameters α. One defines the likelihood function

L(α) =

n
∏

i=1

f(~xi;α), (9.1)

which represents, for a given sample ~xi, the likelihood to obtain this exact sample for a certain
choice of α. The optimal estimate α̂ corresponds to a maximum of L(α), hence the name.
For practical reasons it has become common to define the negative log-likelihood function,

l(α) = − lnL(α), (9.2)

and to search the minimum, which, due to the monotone nature of the logarithm, corresponds
to α̂, too. In case of one single parameter, the 68% confidence interval [α̂ − σl, α̂ + σr] is
defined by

l(α̂+ σl) = l(α̂) +
1

2
, l(α̂+ σr) = l(α̂) +

1

2
. (9.3)

In case of many parameters, however, one has to evaluate Eqns. 9.3 for a certain parameter
αi while staying at the minimum with respect to all other parameters. This quickly becomes
numerically demanding. An algorithm performing this calculation is implemented in Minuit

under the name Minos [29].

One also defines the significance S of a measurement, as the square root of the difference of
the minimum values of two log-likelihood functions, one including the signal PDF, the second
excluding it (null hypothesis):

S =
√

2|l(α̂) − lnull(α̂null)|. (9.4)

In case of decaying particles, where one measures a certain number of events, the number
of expected measurements N is itself a parameter. To account for this, one can extend the
definition of the likelihood function by a Poisson factor reflecting the probability of observing
n events while N have been expected (extended likelihood):

L(α) =
e−N (N)n

n!

n
∏

i=1

f(~xi;α). (9.5)
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The final dataset consists of disjoint subsamples (slices). Each slice is defined by a unique
set of values of appropriate discrete category variables. A certain slice contains information
on PDF parameters unique to this slice. However, there are also shared parameters, to which
more slices contribute information to. An obvious example are the slices defined by the
D0 final state. Both the K+K− and the π+π− slice contribute information to the ACP+

parameter, whereas the background yields can be different in both samples. In principle,
one could fit each slice independently, and combine the shared parameters by means of a
weighted average. By performing a simultaneous fit, one saves the averaging procedure and
the associated treatment of correlated uncertainties. One also gets an easy access to the
combined significance of the fit result through Equation 9.4.

We shall now look into the details of the final fit used in this analysis. The fit is three-
dimensional, the three fit variables are mES, ∆E, and F . The final dataset is split into 32
slices by the D0 final state (×8), the charge of the B-meson (×2), and whether or not the
bachelor track passes the KLHVeryTight selector (×2). The 32 slices are fit simultaneously by
five independent fits: 32 = 8(CP+) + 12(CP−) + 3 · 4(flavor). The generic likelihood function
for one of these simultaneous fits is given by

L(α) =
e−N (N)n

n!

∏

s

Ns
∏

i=1

P(mESi,∆Ei,Fi;α)s, (9.6)

where s ranges over the slices under consideration, Ns is the number of events in slice s,
n is the total number of events in the dataset n =

∑

sNs, and N is the expected num-
ber of events. The probability Pi,s ≡ P(mESi,∆Ei,Fi)s for an event i is the sum of six
signal and background components: B → D0K signal, B → D0π signal, e+e− → qq con-
tinuum background, combinatoric background of B decays, and peaking background arising
from charmless B → fK and B → fπ decays, which will be discussed in more detail in
Chapter 11:

NPi,s = N sig(π)
s Psig(π)

s,i +N sig(K)
s Psig(K)

s,i + (9.7)

N qq
s Pqq

s,i +NBB
s PBB

s,i +

Npk(π)
s Ppk(π)

s,i +Npk(K)
s Ppk(K)

s,i ,

with the normalization condition
N =

∑

s,j

N j
s , (9.8)

where j ranges over the six components and the N j
s are the expected yields in each component.

In case of negligible correlations among the fit variables, each P (we omit component and
slice indices for the moment) factors into

P(mES,∆E,F) = P(mES)P(∆E)P(F). (9.9)

In most cases this is a good description of the data. Only in the (mES,∆E)-plane of the BB
background there are significant correlations. We account for them by using a non-factoring
PDF, as we will describe in more detail in Section 9.2:

P(mES,∆E,F) = P(mES,∆E) · P(F)

P(mES,∆E) = f P1(mES)P1(∆E) + (1 − f)P2(mES)P2(∆E).

To perform the simultaneous fit of the charge slices, we rewrite the yields N j
s in equation 9.7

by means of the CP asymmetries Aj
CP , and the total number of events N j:

N j
± =

1

2
(1 ∓Aj

CP )N j (9.10)
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To be able to fit simultaneously the slices defined by the KLHVeryTight selector, we introduce
the efficiency ε and the mis-id ratem of the KLHVeryTight selector for B → D0h signal events
and B → fh peaking background events. Thus the signal event yields for events where the
bachelor track passes (p) or fails (f) the selector become

N sig(K)
p = εN sig(K) , N

sig(K)
f = (1 − ε)N sig(K)

N sig(π)
p = mN sig(π) , N

sig(π)
f = (1 −m)N sig(π). (9.11)

At last, we introduce the ratios RK/π through

N sig(K) = N sig(π) ·RK/π , (9.12)

assuming the ratio of selection efficiencies of B → D0K and B → D0π events is compatible
with unity (compare Table 6.14). Combining equations 9.10, 9.11, and 9.12 we get the
expressions for all the N j

s of Equation 9.7. The yield of the B− → D0K−, D0 → K−K+

signal events which fail the KLHVeryTight selector is, for example,

N
sig(K)
KK,−,f =

1

2

(

1 +A
sig(K)
CP

)

N
sig(π)
tot RK/π (1 − ε), (9.13)

where N
sig(π)
tot refers to the total number of B → D0π, D0 → K−K+ signal events, summed

over all charge and KLHVeryTight slices.

As mentioned before, we perform five independent fits: a fit on the CP+ final states of the D0

(K+K−, π+π−), a fit on the CP− states (K0
Sπ

0, K0
Sω, K0

Sφ), and three fits on the flavor final
states (K−π+, K−π+π0, K−π+π+π−). The latter can’t be fit simultaneously because due
to the high statistics in these modes we hit performance limits. Instead we will average the
Rflv

K/π parameters, that in principle would be shared, by means of a weighted average. Of the
flavor modes, only this quantity enters the final result. In the CP± fits, the shared parameters

are the asymmetries A
sig(K)
CP ≡ ACP and A

sig(π)
CP , and the ratios RK/π. The ratios will lead to

RCP± when combined with the averaged value of Rflv
K/π as obtained from the flavor modes.

The ε and m parameters are expected to be the same in all D0 modes. They are therefore
shared in the CP± fits.

In principle it is desirable to float as many parameters as possible in the final fit. The more
parameters can be determined directly from data, the less a-priori knowledge must be put in,
and the lower the associated systematic uncertainty will be. However, it is difficult to control
a fit with too many floating parameters. We decide for each parameter whether to float it or
to fix it to a value obtained from MC simulation.

There are two classes of parameters in the final PDF: yield related parameters, introduced
through Eq. 9.13 (and analogous ones), and shape parameters. The shape parameters will be
introduced in the following sections.

As for the yield parameters, we float all parameters related to the signal yields, and therefore
to the GLW parameters, except ε. A dedicated working group at BABAR provides the ε and
m values for the various PID selectors. Since the final fit doesn’t reach their precision on
ε we’ll fix this parameter to the provided value: ε = 0.77 ± 0.01. On the other hand, the
final fit is able to determine m to a better precision than the working group, so m will be
left free. In addition, we float as many background yields and CP -asymmetries as possible,
because from the previous Chapter 8 we know the MC samples don’t describe the overall
normalization very well. As a matter of fact, we can’t float all background yields, because
the fit becomes unstable if too many yield parameters are allowed to fluctuate to negative
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values. We therefore fix Npk to values obtained in Chapter 11; Apk
CP = 0; ABB

CP,p = 0; ABB
CP,f = 0

for CP− modes; NBB
K0

Sφ,p
to the MC value.

As for the shape parameters, we observed shifts between data and MC in the signal shapes
of ∆E and mES, so we float the according shape parameters. We also float most parameters
describing the distribution of the qq background component in the ∆E and F variables.

Table 9.1 gives an overview of the multiplicity of the floating parameters, both yield related
and shape parameters. The following sections will introduce the exact shapes an their floating
parameters. We will assign a systematic uncertainty due to the fixed parameters.

Table 9.1: Floating parameters of the final fit PDF.

Parameter multiplicity
CP+ CP− Kπ Kππ0 Kπππ

A
sig(K)
CP± , A

sig(π)
CP± 2 2 2 2 2

N
sig(π)
tot 2 3 1 1 1

RK/π 1 1 1 1 1

Nqq
p , Nqq

f 4 6 2 2 2

NBB
p , NBB

f 4 5 2 2 2

Aqq
CP,p, Aqq

CP,f 4 6 2 2 2

ABB
CP,f 2 - 1 1 1

m 1 1 1 1 1
signal ∆E shape 4 6 2 2 2
signal mES shape 6 9 3 3 3
qq ∆E shape 2 3 1 2 1
qq F shape 8 11 4 4 5

BB ∆E shape - - 1 - -

total 40 53 23 23 23

Finding reasonable parameterizations can be challenging. We will rely on the MC samples
to determine the functional form of the PDFs used to parameterize the six components in
the final fit. Out of the many possibilities to describe the observed shapes, we chose the
one with the lowest number of parameters still well describing the data. The agreement is
quantified by the probability P (χ2, ndof), see for instance chapter Probability in Reference [8].
The probability P is evaluated on histograms of the distributions, scaled to data luminosity.
The number of degrees of freedom of the PDF, ndof , is given by the number of non-zero bins
minus the number of free parameters of the PDF. The χ2 value is given by

χ2 =
∑

i

(

yi − PDF(xi)

σi

)2

, (9.14)

the sum ranging over all non-zero bins xi with bin entries yi. The probability P (χ2, ndof) is
given by

P (χ2, n) =
1

2n/2 Γ(n/2)

∫ ∞

χ2

zn/2−1e−z/2dz, (9.15)

Γ(k) being the gamma function. One usually considers P values of greater than 0.01 good
agreement. However, in the high statistics case one has to trade off the complexity of the
PDF and the P value.

We simplify the complexity of the final PDF by the assumption the shapes differ neither across
the charged subsamples, nor across the subsamples defined by the KLHVeryTight selector.
Again, we validate this assumption by means of P (χ2, ndof).
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For each component, an extraction fit is run on all available MC statistics to get the most
precise estimate of the parameters which eventually will be fixed in the final fit. However,
the MC is only an approximation to the real data, and when we obtain shapes from the MC
that are going to be fixed in the final fit, we potentially bias the fit result. We will estimate
these biases and correct for them in Section 10.2.

The following sections describe which functional forms we use for each component. The
shapes are fairly similar for all D0 final states under study. For brevity’s sake, we only
show the corresponding plots for the representative D0 → K−K+ channel, and we also omit
tables with the exact parameter values and plots which overlay the shapes to the charge and
KLHVeryTight slices. The full set of plots and tables is contained in [42].

9.1 Signal Parameterization

The mES signal components are being parameterized using a bifurcated Gaussian shape,
which is an asymmetric Gaussian function with different widths on each side. Its mean µmES

and left and right widths, σmES,l, σmES,r, will be floating in the final fit. We use the same
shape for B → D0K and B → D0π, so the mES signal shape will mostly be determined
by the more abundant control sample. In the D0 → K−π+π0 and the D0 → K−π+π+π−

channels we add a single Gaussian to account for a small self cross-feed component: the ratios
of the integral of the single Gaussian to the integral of the bifurcated Gaussian are 8.6% and
2.7%, in both channels respectively. In the final fit the parameters of the single Gaussian
will be fixed to values obtained from signal MC. Figure 9.1 overlays the mES signal shape to
D0 → K−K+ signal MC.
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Figure 9.1: mES signal PDF overlaid to a subsample of B → D0K, D0 → K−K+ signal MC. The
shape is a bifurcated Gaussian.

The B → D0K ∆E signal component is parameterized with a double Gaussian shape. To
be able to determine the crucial parameters from the fit to data, we fix the parameters of
the wide component to values obtained from the signal MC samples. In particular, we fix
the difference between the means of the wide and the narrow component, µs = µ1 − µ2, the
ratio of the widths of both components, rσ = σ1/σ2, and the ratio of the integrals, f . The
remaining two parameters, mean and width of the narrow Gaussian, µ∆E and σ∆E , will be
left free in the fit.

The B → D0π ∆E shape is not double Gaussian. This is due to the fact that we assigned the
kaon mass to the prompt track; if we would have used the pion mass to reconstruct B → D0π
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events, the shapes would be similar (see Section 6.2). The wrong mass assignment introduces
a shift to ∆E, which depends on the momentum ~p of the prompt track in the laboratory
frame,

∆Eshift(p) = γPEP−II

(

√

m2
K + ~p2 −

√

m2
π + ~p2

)

, (9.16)

where γPEP−II = Eee/E
∗
ee characterizes the boost to the e+e− CM frame. So the shapes

of B → D0K and B → D0π are in fact similar if the first one is evaluated as a function
of ∆E, while the second one is evaluated as a function of ∆E − ∆Eshift. Since we want
the more abundant B → D0π control sample to dominate the B → D0K signal shape, we
parameterize the B → D0π ∆E signal component with a conditional double Gaussian, whose
mean is shifted by ∆Eshift, computed event-per-event as

µ(D0π) = µ(D0K) + ∆Eshift(p), (9.17)

µ(D0K) and µ(D0π) denoting the means of the narrow Gaussians. We take the floating width
and mean of the narrow component, µ∆E and σ∆E , to be the same in both the B → D0K
and B → D0π PDFs.

In case of the high statistics flavor modes, we add a straight line to the double Gaussian
shape to account for a self cross-feed component, which peaks in mES but not in ∆E. This
is most important in D0 → K−π+π0 events.

Figure 9.2 overlays the PDF to scaled-down signal MC samples matching the data luminosity.
Since in the final fit µ∆E and σ∆E will mostly be determined by the B → D0π component,
we use the shape of the narrow Gaussian that was extracted from B → D0π also for the
B → D0K plot.

We emphasize the B → D0π ∆E PDF depends on an external parameter, ∆Eshift, which is
different for each event. Such PDFs are called conditional PDFs. The difference to regular,
non-conditional PDFs is the normalization condition. A regular (two-dimensional) PDF G is
normalized as

∫

G(x, y) dxdy ≡ 1, (9.18)

whereas a conditional PDF is normalized in x for each value of y as
∫

G(x|y) dxdy ≡ 1, ∀y. (9.19)

Fitting with conditional PDFs is well behaved, since it is straightforward to construct the
likelihood function. However, plotting is not straightforward. In order to visualize the distri-
bution of x in data and overlay the fitted PDF, one has to project (i.e. integrate) over the
variable y, requiring knowledge of the full PDF

H(x, y) = G(x|y) · F (y) (9.20)

in order to compute the integral

H(x) =

∫

H(x, y) dy =

∫

G(x|y)F (y) dy. (9.21)

To this purpose one can either determine an analytic expression for F (y), or in alternative use
the value of F (yi) for n events (i ∈ [1, n]) of an external (prototype) dataset to approximate
F (y) by an histogram of infinitesimal binning

F (y) ≈ 1

n

∑

i

δ(y − yi), (9.22)
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so that

H(x) =
1

n

∑

i

∫

G(x|y)δ(y − yi) dy =
1

n

∑

i

G(x|yi). (9.23)

An important consequence is, that the resulting curve depends on the external dataset. We
will use the first approach based on Eq. 9.20 for plotting and toy MC purposes as described
in Section 10.1.
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Figure 9.2: ∆E signal shape extracted applied to both B → D0K and B → D0π samples of same
equivalent luminosity as data. The shape is a double (conditional) Gaussian.

As for the third variable, F , the B → D0π signal component is parameterized by a double
bifurcated Gaussian. In case of the D0 → K0

Sφ channel, it can be simplified to a double Gaus-
sian shape. The B → D0K signal component is parameterized using the shapes extracted
from B → D0π. Figure 9.3 shows the F signal shape.
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Figure 9.3: F signal shape extracted from a fit to B → D0π signal MC, applied to both B → D0K
and B → D0π samples of same equivalent luminosity as data. The shape is a double bifurcated
Gaussian.

9.2 BB Background Parameterization

There are significant correlations among the (∆E, mES) variables arising from the fact that
there is a peak sitting on a continuous background from random combinations of particles in
the event. The peak is mainly due to B → D∗h and D0ρ0 events, where a soft neutral pion
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is missed when reconstructing the B decay tree: for this reason, mES (which depends on the
momentum of the B but not on its energy) is peaked at m(B) as for the signal, while ∆E
(which depends on the reconstructed energy of the B candidate) is shifted towards negative
values by about 130 MeV due to the missing π0-meson. As a consequence, the PDF doesn’t
factorize. As mentioned before, we parameterize it by means of two factoring components:

PBB(∆E,mES) = f gpeak(mES)hpeak(∆E)

+(1 − f) gcont(mES)hcont(∆E). (9.24)

The exact functional forms for the g and h components are listed in Table 9.2. The fit result
of the extraction fit in the D0 → K−K+ channel is shown in Figure 9.4 (projections), and in
Figures 9.5 (two-dimensional plots).

Virtually all parameters of the ∆E-mES PDF will be fixed to values obtained from MC, there

are only two exceptions: the width σBB
∆E,mES

of the Landau distribution [43] inD0 → K−π+ is
not modelled well by the MC sample [42], we will float this parameter. The second exception
is the parameter describing the kinematic cut-off in mES, mESc. We fix this parameter to a
value obtained from a dedicated fit to on-peak data in the B → D0π, D0 → K−π+ channel:
mESc = 5289.28± 0.49 MeV/c2.

The F BB background component is parameterized following the same lines as the signal
component, the extraction fit result is depicted in Figure 9.6.

Table 9.2: Details of the ∆E-mES BB background parameterization. Crystal Ball (CB) [44],
Gaussian (G), Novosibirsk distribution (N) [45], Landau distribution (L) [43], Exponential (Exp),
Argus (A) [46], polynom of first order (P).

Component K+K− π+π− K0
Sπ

0 K0
Sω K0

Sφ K−π+ K−π+π0 K−π+π+π−

gpeak(mES) CB G CB G G N CB CB
hpeak(∆E) Exp Exp Exp Exp Exp L Exp Exp
gcont(mES) A A A A A A A A
hcont(∆E) P P P P P P P P
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Figure 9.4: ∆E-mES BB PDF, D0 → K−K+ channel, applied to a subsample of same equivalent
luminosity as data. Left: ∆E projection. Right: mES projection. The dashed line shows the
continuous component.
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Figure 9.5: ∆E-mES BB PDF, D0 → K−K+ channel, two-dimensional plots. Left: generic BB
MC, right: fitted PDF.
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Figure 9.6: F BB PDF, D0 → K−K+ channel

9.3 qq Background Parameterization

ThemES qq background component is being parameterized by an Argus function [46]. Only in
case of B → D0π, D0 → K−π+π0, we need to use a different PDF to describe the shape. Here
we use an arc tangent multiplied by a power law, f(mES) = −atan((mES −mESc)C) ·mES

P .
Other than for the components described previously, for the qq background component we
have a data control sample at hand to validate the extracted shapes. For this purpose we
can use the off-peak data sample, which doesn’t contain B-mesons. We apply the qq PDF to
this sample, and calculate the χ2 probability values. All comparisons show good agreement
between the shapes obtained from generic qq MC and the off-peak data sample. The mES

plots are shown in Figure 9.7. All parameters of the qq mES shape are fixed in the final fit.
The mES cut-off parameter, mESc, is taken to be the same as in the previous section.

The ∆E qq background component is being parameterized by a linear shape. Only in the
channel B → D0π, D0 → K−π+π0, a linear shape is not sufficient, and we use a second order
polynom. The associated parameters, aqq

∆E and bqq
∆E, are left free in the fit. The ∆E plots

are shown in Figure 9.8.

The F qq background component is being parameterized by a double bifurcated Gaussian.
In D0 → K0

Sφ we simplify to a single bifurcated Gaussian. A double bifurcated Gaussian has
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Figure 9.7: mES shape extracted from qq MC, applied to both a subsample of same equivalent
luminosity as data, and to off-peak data. The mES range is reduced in the off-peak sample.
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Figure 9.8: ∆E shape extracted from qq MC, applied to both a subsample of same equivalent
luminosity as data, and to off-peak data.

seven parameters, two means, four widths σqq
F ,i,j , i = {l, r}, j = {1, 2}, and the ratio of the

integrals f qq
F . We fix the means in all channels to values obtained from MC, and we also fix

f qq
F in case of D0 → K0

S
π0 and D0 → K0

S
ω. The remaining parameters are left free in the fit.

The F plots are shown in Figure 9.9.

9.4 Peaking Background Parameterization

The B → fh charmless peaking background is discussed in detail in Chapter 11. Its mES

distribution is parameterized by re-using the mES signal shape.

The ∆E B → fh background components are being parameterized by a single Gaussian. Its
parameters are obtained from a fit to B → fh events in generic BB MC, in the B → D0K,
D0 → K−K+ channel. The width of this distribution is 38± 2 MeV, which is about twice as
wide compared to the one of B → D0h signal (16 MeV). This is due to the fact that in the
reconstruction of the signal decay tree a mass constraint is applied to the f system forming
the D0. The constraint improves the energy resolution of the f system if it originates from
a true D0, otherwise it worsens the resolution.
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Figure 9.9: F shape extracted from qq MC, applied to both a subsample of same equivalent
luminosity as data, and to off-peak data.

The F B → fh background component is being parameterized by a double bifurcated Gaus-
sian. Its parameters are obtained from a fit to B → fh events in generic BB MC, in the
B → D0π, D0 → K−π+ channel. Figure 9.10 shows the plots of all three distributions.

9.5 Start Parameters

To summarize this chapter, we give the start values of all floating parameters of the final
fits in Tables 9.3 and 9.4. The expected yields are extracted from the Monte Carlo samples
by applying the final selection and scaling to data luminosity, the same is true for the mis-
id parameter of the KLHVeryTight selector. The start values of the shape parameters are
extracted by fitting the corresponding MC samples, as described in the previous sections.
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Figure 9.10: The mES, ∆E, and F shapes of B → fh events extracted from BB MC.
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Table 9.3: Start parameters of the final PDF of the CP+ and CP− fits. Means and widths of ∆E
and mES parameters in MeV (MeV/c2). The slope aqq

∆E is in units of GeV−1.

Parameter KK ππ K0
S
π0 K0

S
ω K0

S
φ

A
sig(K)
CP 0.2 0.0

A
sig(π)
CP 0.0 0.0

RK/π 0.08 0.08
m 0.0247 0.0247

ABB
CP,f 0.0 0.0 0.0 0.0 0.0

Aqq
CP,p 0.0 0.0 0.0 0.0 0.0

Aqq
CP,f 0.0 0.0 0.0 0.0 0.0

f qq
F 0.343 0.494104 0.440 0.265287 n/a

σqq
F ,l,1 0.147 0.190 0.179 0.149 0.298

σqq
F ,l,2 0.1756 0.1930 0.1542 0.1957 n/a

σqq
F ,r,1 0.348 0.3610 0.3866 0.343 0.455

σqq
F ,r,2 0.232 0.278 0.294 0.240 n/a

aqq
∆E −0.88 −0.89 −1.386 −1.19 −0.477452
µ∆E −0.222 −0.300 −0.948 −1.16 −0.376
σ∆E 16.689 16.439 18.037 18.15 16.827
µmES

5279.496 5279.459 5279.499 5279.579 5279.516
σmES,l 2.871 2.866 2.956 3.080 2.889
σmES,r 2.349 2.380 2.411 2.400 2.355

NBB
p 77 141 86 89 3

NBB
f 925 651 816 1080 59

N qq
p 4282 3585 8114 3042 364

N qq
f 13173 17739 23148 8118 807

N
sig(K)
tot 374 115 408 140 60.0

N
sig(π)
tot 4284 1324 4886 1656 724

62



Table 9.4: Start parameters of the final PDF. Means and widths of ∆E and mES parameters in
MeV (MeV/c2). The parameters aqq

∆E and bqq
∆E are in units of GeV−1 and GeV−2, respectively.

Parameter Kπ Kππ0 Kπππ

A
sig(K)
CP 0.0 0.0 0.0

A
sig(π)
CP 0.0 0.0 0.0

RK/π 0.08 0.08 0.08
m 0.0247 0.0247 0.0247

ABB
CP,f 0.0 0.0 0.0

Aqq
CP,p 0.0 0.0 0.0

Aqq
CP,f 0.0 0.0 0.0

f qq
F 0.369 0.3698 0.373

σqq
F ,l,1 0.189 0.1676 0.1752

σqq
F ,l,2 0.1919 0.17716 0.1886

σqq
F ,r,1 0.3532 0.3676 0.3693

σqq
F ,r,2 0.257 0.2487 0.2657

σBB
∆E,mES

0.00325 n/a n/a

aqq
∆E −1.093 −1.629 −1.173

bqq
∆E n/a 4.96 n/a
µ∆E −0.191 −0.843 −0.067
σ∆E 15.996 17.402 16.13
µmES

5279.6359 5279.605 5279.512
σmES,l 2.8814 3.0140 2.856
σmES,r 2.3369 2.4682 2.327

NBB
p 177 1977 827

NBB
f 3184 28829 13325

N qq
p 4789 24468 8432

N qq
f 32033 170968 60205

N
sig(K)
tot 3952 6664 4732

N
sig(π)
tot 49667 84499 59552
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10 Fit Validation

Before trusting the outcome of a complex fitting scenario one should do a series of crosschecks
and validations. In this analysis three checks are performed: a Pure Toy Monte Carlo study
(Section 10.1) to validate the implementation and the abilities of the fit, an Embedded Toy
Monte Carlo study (Section 10.2) to estimate biases, and a fit of Cocktail Monte Carlo
(Section 10.3) as the most realistic simulation of real data.

10.1 Toy Monte Carlo

The first crosscheck is to fit a large number of datasets which have been generated according
to the final PDF, so called (pure) toy datasets or (pure) toy experiments. By doing so one
can study pull distributions and conclude whether or not the fitting algorithm is intrinsically
biased. In theory, such a study serves as a crosscheck of the implementation, since there is
only little reason why a maximum likelihood fit should be intrinsically biased (other than in
the low-statistics case). In praxis, there are many possibilities to acquire biases in complex
implementations: machine accuracy, parameter range issues, issues in the event generation
process, just to name a few.

The pull of a fit parameter α is defined as the ratio of the difference e between the true value
<α> and the parameter, and the parameter’s standard deviation σα, as obtained from the
fit:

pα =
α− <α>

σα
=

e

σα
. (10.1)

In case of asymmetric errors σ±
α (obtained by Minos), one generalizes σα = σ+

α , if e > 0,
and σα = σ−

α if e < 0. One expects p be distributed normally, that is to follow a Gaussian
distribution with mean µ = 0 and width σ = 1. It is possible to use the mean and the width
of the observed pull distributions to obtain unbiased estimates of the fit parameters. Consider
a parameter A, for which the final fit gives an estimate a±σa. The fit of the pull distribution
to a Gaussian shape shall give values of µp and σp. Then one calculates an unbiased corrected
value ac ± σc

a according to

ac = a− σaµ
p,

σc
a = σaσ

p. (10.2)

Before we can draw events from the final PDF we need to parameterize the ∆Eshift distri-
bution (compare Section 9.1). We chose a Fermi function,

f(∆Eshift) =
1

eb (µf−∆Eshift) + 1
, (10.3)

multiplied by a Gaussian shape G(µg, σg). We obtain the parameters from a fit to generic
BB Monte Carlo in the D0 → K−K+ channel. The corresponding extraction fit is shown
in the left hand side of Figure 10.1. The resulting parameters are b = 1641 ± 69 GeV−1,
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µg = 0.029 ± 0.001 GeV, µf = 0.03393 ± 0.00005 GeV, σg = 0.0240 ± 0.0004 GeV. This
description is not perfect, because it doesn’t take into account the different shapes observed
in BB and qq events. The latter case is shown on the right hand side of Figure 10.1. But
since the likelihood function of the final fit does not depend on the shape of the conditional
variable at all, this still is a reasonable approximation. We also tried to use a more accurate
description, consisting of three bifurcated Gaussians. However, due to a technical problem
in RooFit it is not possible to obtain reasonable fit results when using the more complex
shape. This problem is still under investigation [47].
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Figure 10.1: Parameterization of ∆Eshift in BB MC (left), and overlaid to qq MC (right), both in
the D0 → K−K+ channel.

Coming back to the pure toy experiments, we performed a few hundred toy MC experi-
ments for each of the five final fits: CP+ (188), CP− (190), K−π+ (186), K−π+π0 (135),
K−π+π+π− (90). The resulting pull distributions have been fit to a Gaussian shape, the
results for selected parameters are given in Table 10.1. Figure 10.2 shows plots of the pull
distribution of four representative parameters. The full set of plots and tables is contained
in Reference [42]. In Table 10.1 we also show the value of the relative corrections, ĉ, which
one would have to apply to correct for the observed biases. They are defined as

ĉ =
a− ac

σc
a

=
µp

σp
, (10.4)

following the notation of Equation 10.2. We will, however, not correct for the biases obtained
from the pure toy MC study. Instead we will apply the corrections found in the embedded
toy MC study described in the next section. In summary the pulls look reasonable. None
of the crucial parameters, that is parameters that will enter the final result, is affected by a
significant intrinsic bias.

10.2 Embedded Toy Monte Carlo

In the on-peak dataset, the fit variables are correlated. We consider a sizable correlation
explicitly in the final PDF, but we neglect the small correlations. This is expected to bias
the fit result. In addition, the PDF may be an imperfect model even if one doesn’t take
into account correlations. Especially in the high statistics modes one easily finds small, but
statistically significant deviations. These can introduce biases, too. The sizes of such biases
are reflected by the pulls of an embedded toy MC study.
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Figure 10.2: Pull distributions of four representative parameters, as obtained from a pure toy MC
study.

The second crosscheck is therefore to fit a large number of embedded toy MC datasets. Such
datasets ideally are drawn from the full MC samples, meaning events which were produced
by an event generator and then put through full detector simulation and reconstruction. In
praxis, it is only possible to draw a large number of independent datasets for the B → D0K
signal component, because here the equivalent luminosity of the signal MC samples exceeds
that of the on-peak dataset typically by factors on the order of 100. The simulated background
samples, however, are only 2-3 times larger than the on-peak dataset. By drawing from
samples of insufficient statistics, one inevitably introduces artificial biases due to the fact one
ends up using a large fraction of events multiple times. For this reason one usually chooses
to draw the signal components from the large enough signal MC samples, and to draw the
background components from their analytic PDFs. Hence the name embedded toy Monte
Carlo.

However, we don’t expect the backgrounds to be entirely uncorrelated. As a matter of fact we
take the correlations into account explicitly in case of the ∆E-mES BB PDF. So we will use
a different approach to overcome the limited statistics problem: we will construct a binned
PDF from the available MC samples, and we will draw embedded toy datasets from it using
an accept-reject method. There are several shortcomings to this method as well, but they
seem well controllable:

Technical difficulties. RooFit can’t generate datasets from a binned PDF of four dimensions
without printing warnings. That’s why we chose to only draw the fit variables (∆E, mES,
F) from the binned PDF, and to draw the conditional variable, ∆Eshift, from its analytic
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Table 10.1: Means µp and widths σp of the pull distributions of important parameters as obtained
in the Pure Toy MC study. We also give the relative correction ĉ defined in Equation 10.4.

Fit Parameter µp σp rel. corr.

CP+ A
sig(K)
CP −0.03 ± 0.08 1.13 ± 0.06 −0.03

A
sig(π)
CP 0.00 ± 0.08 1.03 ± 0.05 0.00

RK/π −0.06 ± 0.07 0.98 ± 0.05 −0.06
m −0.17 ± 0.07 0.98 ± 0.05 −0.17

CP− A
sig(K)
CP 0.02 ± 0.07 0.98 ± 0.05 0.02

A
sig(π)
CP 0.07 ± 0.08 1.09 ± 0.06 0.06

RK/π 0.02 ± 0.07 1.00 ± 0.05 0.02
m −0.25 ± 0.07 1.03 ± 0.05 −0.24

K−π+ A
sig(K)
CP −0.07 ± 0.07 0.98 ± 0.05 −0.07

A
sig(π)
CP 0.05 ± 0.08 1.03 ± 0.05 0.05

RK/π 0.02 ± 0.07 0.96 ± 0.05 0.02
m 0.04 ± 0.07 1.00 ± 0.05 0.04

K−π+π0 A
sig(K)
CP −0.08 ± 0.09 1.02 ± 0.06 −0.08

A
sig(π)
CP 0.04 ± 0.08 0.90 ± 0.05 0.05

RK/π −0.08 ± 0.09 1.06 ± 0.06 −0.07
m 0.02 ± 0.09 1.03 ± 0.06 0.02

K−π+π+π− A
sig(K)
CP −0.08 ± 0.11 1.09 ± 0.08 −0.08

A
sig(π)
CP −0.07 ± 0.10 0.99 ± 0.07 −0.07

RK/π 0.02 ± 0.09 0.89 ± 0.07 0.03
m −0.01 ± 0.11 1.08 ± 0.08 −0.01

PDF. To get the correct relation between ∆E and ∆Eshift in case of the B → D0π signal
component, we draw ∆E(π) rather than ∆E(K), and compute ∆E = ∆E(π) + ∆Eshift in a
second step.

Computing resources. It is a non-trivial task to perform accept-reject on a three-dimensional
binned PDF. Since by construction nothing factors out, one cannot limit the parameter space
a priori. That’s why the dataset generation demands strong computing resources.

Finite binning. In principle the finite binning of the binned PDF can introduce biases. We
chose 50 bins in ∆E, 50 bins in F , and 75 bins in mES. We emphasize we still perform an
unbinned fit on the embedded toy datasets.

The results of the pull fits are given in Table 10.2. The number of experiments is 215 (CP+),
186 (CP−), 244 (K−π+), 243 (K−π+π0), 198 (K−π+π+π−). We will correct the final values
of the parameters ACP and RK/π by the values obtained in this study using Equations 10.2.
A systematic uncertainty will be assigned based on the errors of the corrections (see Sec-
tion 12.3).

10.3 Cocktail Monte Carlo

The third crosscheck is to run the final fit on a luminosity weighted mixture of generic qq
MC, generic BB MC, and signal MC, which is supposed to mimic on-peak data as closely as
possible. This mixture is referred to as Cocktail Monte Carlo. From the fit results on Cocktail
MC, given in Tables A.1-A.3 in the Appendix A, we calculate the GLW parameters ACP±
and RCP±. First, we correct each fit result by the observed bias using Equations 10.2 and
the appropriate values from Table 10.2. Then we average the values for Rflv

K/π obtained from
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Table 10.2: Means µp and widths σp of the pull distributions of important parameters as obtained
in the Embedded Toy MC study. We will correct the final result for these biases. We also give the
relative correction ĉ defined in Equation 10.4.

Fit Parameter µp σp rel. corr.

CP+ A
sig(K)
CP 0.70 ± 0.06 0.93 ± 0.04 0.75

A
sig(π)
CP −0.18 ± 0.07 0.96 ± 0.05 −0.19

RK/π 0.66 ± 0.06 0.95 ± 0.05 0.69
m −0.63 ± 0.07 1.08 ± 0.05 −0.59

CP− A
sig(K)
CP 0.11 ± 0.07 0.97 ± 0.05 0.12

A
sig(π)
CP −0.11 ± 0.07 1.00 ± 0.05 −0.11

RK/π 0.38 ± 0.07 0.91 ± 0.05 0.42
m −0.42 ± 0.08 1.08 ± 0.06 −0.39

K−π+ A
sig(K)
CP −0.22 ± 0.07 1.03 ± 0.05 −0.22

A
sig(π)
CP −0.11 ± 0.06 0.99 ± 0.04 −0.11

RK/π 0.88 ± 0.06 1.00 ± 0.05 0.88
m −1.79 ± 0.06 1.01 ± 0.05 −1.77

K−π+π0 A
sig(K)
CP −0.42 ± 0.06 0.97 ± 0.04 −0.43

A
sig(π)
CP −0.31 ± 0.07 1.11 ± 0.05 −0.28

RK/π 0.76 ± 0.06 1.01 ± 0.05 0.75
m −3.34 ± 0.06 0.98 ± 0.04 −3.40

K−π+π+π− A
sig(K)
CP −0.63 ± 0.07 0.94 ± 0.05 −0.67

A
sig(π)
CP 0.25 ± 0.07 0.95 ± 0.05 0.26

RK/π 0.85 ± 0.08 1.07 ± 0.05 0.79
m −1.72 ± 0.07 1.05 ± 0.05 −1.64

the D0 → K−π+, K−π+π0, and K−π+π+π− channels. Finally we calculate RCP± using
Equation 3.16. The final result on Cocktail MC is given in Table 10.3. The numbers agree
well with the expected values which have been used to generate the cocktail MC sample:
ACP+ = 0.2, ACP− = 0.0 and RCP± = 1.

Table 10.3: Measured ratios RCP± and ACP− in cocktail MC. Generated values: ACP+ = 0.2,
ACP+ = 0.0 and RCP± = 1.

D0 mode RCP ACP

CP+ 0.998± 0.072 +0.207± 0.061
CP− 0.956± 0.060 −0.001± 0.058

There are various possibilities to visualize the fit result of simultaneous multi-dimensional fits.
We present twelve projections per final state of the D0, corresponding to the twelve slices
defined by fit variable, charge, and KLHVeryTight selector. They are shown in Figures 10.3
and 10.4 for the representative D0 → K−K+ channel. In order to better reflect the true
signal significance, signal range cuts have been applied to the variables not plotted: ∆E ∈
[−0.04, 0.1] GeV, mES ∈ [5.275, 5.285] GeV/c2, F ∈ [0.2, 1.0]. Table 10.4 introduces the color
code used in all plots showing results of the final fit.

For projecting out the conditional ∆Eshift (compare Section 9.1) we use the more accurate
parameterization already mentioned in Section 10.1: a triple bifurcated Gaussian, different
for each of the three components qq, BB, and B → D0h signal. We obtain the parameters
from a fit to the respective MC samples, in the representative B → D0π, D0 → K−π+π0

channel. In the D0 → K−π+π0 channel, there is a relatively large fraction of qq events
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compared to the signal events. Therefore in this channel the shape of ∆Eshift has the most
influence when producing plots in the ∆E projection.

Table 10.4: Color code for plots which show results of the final fit.

component color
overall PDF blue
B → D0K signal light red, stacked on all backgrounds
B → D0π signal dark red, stacked on all backgrounds
B → D0K qq light green, stacked
B → D0π qq dark green, stacked

B → D0K BB light orange, stacked
B → D0π BB dark orange, stacked
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Figure 10.3: CP+ fit of cocktail MC, events where the bachelor track passes the KLHVeryTight

selector, D0 → K−K+ projection. Color code in Table 10.4.
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Figure 10.4: CP+ fit of cocktail MC, events where the bachelor track fails the KLHVeryTight

selector, D0 → K−K+ projection. Color code in Table 10.4.
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11 Peaking Backgrounds

An irreducible type of peaking background arises from charmless B− → fh− decays, which
have the same final states as the B− → D0(→ f)h− signal. When exploiting the ∆E, mES,
and F variables, this background is therefore indistinguishable from the signal. The according
yields are fixed in the final fit. For this reason, the peaking background events are a source of
sizable systematic errors, both for the RCP and ACP parameters. The better the knowledge of
the peaking backgrounds, the more precise the final result will be. In this chapter we develop
a method to estimate the peaking background yields and present the resulting yields.

In the D0 flavor modes, the presence of significant charmless peaking background can be
excluded a priori. In case of the D0 → K−π+ mode, for instance, the branching ratio of the
according charmless decays are B(B− → K−π+K−) < 1.3 × 10−6 at 90% confidence level,
and B(B− → K−π+π−) = (5.5 ± 0.7) × 10−5. Taking into account a conservative estimate
of the selection efficiency of 5% which is 10% of the signal selection efficiency1, the expected
peaking events are about 20 for h = K and 600 for h = π. This is negligible compared to
more than 3900 B → D0K and more than 49000 B → D0π expected signal events. Table 11.1
summarizes the known branching ratios of charmless B decays potentially peaking in the D0

flavor channels.

In the CP modes, where the signal yields are lower than in the K−π+ case by a factor
of greater than ten, the upper limits for B → fh are at the 10−5 level, and with selection
efficiencies around 5% we cannot exclude a relevant peaking background contribution a priori.
In fact, in the previous Run 1-5 analysis, we found significant peaking components in the
D0 → K−K+ and D0 → K0

S
π0 channels. If we take the previous numbers and scale them

up by the ratio of integrated luminosities, L1−6/L1−5 = 1.23, and by the ratio of selection
efficiencies ε1−6/ε1−5, the latter being in the range of 1.5, we get an estimate of what to
expect in the present analysis. The scaled yields are shown in Table 11.2.

An independent estimate can be obtained from generic BB MC, by counting how many
simulated B → fh decays survive the final selection. These numbers are given in Table 11.3.
However, a few of the charmless decays that have been flagged as potentially peaking at
reconstruction level do not actually peak in all variables. Table 11.3 shows the potentially
peaking yields, not the actually peaking ones. Therefore one shouldn’t take the yields obtained
from generic BB MC too seriously. But nevertheless they mostly agree with the expectation
from the Run 1-5 analysis.

To estimate the peaking background yields the basic assumption is, that these peaking back-
grounds show the same behavior in both the signal and sideband regions of the D0 invariant
mass. Therefore, one can investigate the sidebands, where the signal is largely suppressed, to
get a handle on the peaking background yields. Since this is possible on data, we won’t rely
on MC simulations too much for this important component of the analysis.

1The ratio between the selection efficiency of B− → K−π+π− compared to B− → D0K− should be given at
first order by the fraction of B− → K−π+π− events in the Dalitz plot where m(Kπ) is within the D0 mass
window we are selecting. Fig. 2 in [48] shows this plot. The slice around m(Kπ)2 = M(D0)2 = 3.5GeV/c2

contains much less than 10% of events in the Dalitz plot (those are accumulating in the m(Kπ)2 < 3GeV/c2

and m(ππ)2 < 2GeV/c2 regions).
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Table 11.1: Branching ratios of potentially peaking charmless final states.

B− → D0h Branching Ratio [8]
K−π+, h = K− B(B− → K−π+K−) < 1.3 × 10−6, CL=90%
K−π+, h = π− B(B− → K−π+π−) = (5.5 ± 0.7)× 10−5

K−π+π0, h = K− B(B− → K∗−π+K−) · 2ndB < 1.8 × 10−6, CL=90%
K−π+π0, h = K− B(B− → K∗−K∗0) · 2ndB < 6.4 × 10−6, CL=90%
K−π+π0, h = π− B(B− → K∗−π+π−) · 2ndB = (2.3 ± 0.3)× 10−5

K−π+π0, h = π− B(B− → ωK−) · 2ndB = (6.0 ± 0.7)× 10−6

K−π+π+π−, h = K− B(B− → K∗−K∗0) · 2ndB < 5 × 10−8, CL=90%
K−π+π+π−, h = π− not seen
secondary B(K∗− → K−π0) ≈ 0.33
branching ratios B(K∗0 → K+π−) ≈ 0.67

B(K∗ → Kππ) < 7 × 10−4, CL=95%
B(ω → π+π−π0) ≈ 0.89

Table 11.2: Scaled peaking background yields in the m(D0) signal region, obtained by scaling the
numbers we found in the previous analysis of Run 1-5 data [5], which used a different method than
the one described here. The negative numbers are reasonably consistent with zero.

D0 mode prompt track K± prompt track π±

K+K− 85.8 ± 11.6 −30.5± 12.6
π+π− −14.2± 10.0 −45.8± 13.4
K0

S
π0 −37.6± 18.8 21.8 ± 35.8

K0
Sω 8.4 ± 5.9 −3.9 ± 10.5

K0
S
φ −12.0± 5.9 −0.7 ± 1.6

Table 11.3: Expected peaking background yields in the m(D0) signal region, obtained from generic
BB MC. These numbers are only a rough estimate for the true peaking background yields (see text).

D0 mode prompt track K± prompt track π±

K+K− 89 3
π+π− 22 19
K0

S
π0 6 47

K0
Sω 4 7

K0
S
φ 0 1

We will perform a fit of the m(D0) sidebands in data, and scale the yields by the ratios of the
widths of the m(D0) sideband and signal windows. The sideband definitions, together with
the resulting scale factors, are given in Table 11.4. Figure 11.1 shows the m(D0) distributions
in generic BB MC, together with the sideband definitions.

The fit strategy we are using for the m(D0) sidebands closely resembles the final fit described
in Section 9. We briefly summarize the key features: we fit three variables, (∆E, mES, F),
simultaneously in four slices (positively/negatively charged, passed/failed the KLHVeryTight

selector). The PDF consists of six components: signal(K) leaking into the m(D0) sideband,
leaking signal(π), qq, BB, peaking(K), and peaking(π), where K and π refer to B → D0K
and B → D0π candidates respectively.

It is important to note that, when exploring the D0 sidebands, one needs to calculate ∆E
without constraining the D0 mass to its PDG value: ∆Eunc. The advantage of using ∆Eunc
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Table 11.4: D0 mass sideband definitions, the scale factor defined as the ratio of the widths of the
D0 mass signal and sideband regions.

D0 m(D0) sideband region scale
mode (MeV/c2) factor
K+K− [1794.5− 1834.5], [1884.5− 1914.5] 0.43
π+π− [1814.5− 1839.5], [1889.5− 1934.5] 0.48
K0

Sπ
0 [1774.5− 1804.5], [1924.5− 1954.5] 1.67

K0
S
ω [1794.5− 1829.5], [1899.5− 1934.5] 0.69

K0
Sφ [1794.5− 1834.5], [1894.5− 1934.5] 0.28
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Figure 11.1: D0 mass sideband definitions in generic BB MC.
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over ∆E is that the distribution of charmless B candidates is not distorted. On the other
hand, however, the distribution of signal events leaking into the sidebands will be shifted to
higher or lower ∆Eunc values, depending on which sideband, upper or lower, the candidate
originates from. Figures 11.2-11.4 show the distributions of the three variables ∆Eunc, mES,
F , in cocktail MC and on-peak data. As already shown in Chapter 8, the overall normalization
of the MC doesn’t match the data very well, which is visible in the sidebands, too. We account
for this by floating all yields other than the BB yields.
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Figure 11.2: m(D0) sideband distribution of ∆Eunc in both MC and data. The color code of the
backgrounds is the same as in Figure 8.1 on page 46.

The following section describes the shapes of the PDFs of the six components introduced
above. The qq component is by far the most abundant one in the sidebands, and we can
afford to float all according parameters. We’ll fix the remaining shape parameters, however,
to values obtained from MC simulation. As for the yields, we will float the qq yields and
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Figure 11.3: m(D0) sideband distribution of mES in both MC and data. The color code of the
backgrounds is the same as in Figure 8.1 on page 46.

the leaking B → D0π signal yields; while the ratio of B → D0π and B → D0K signal will
be fixed to RK/π = 0.083 [8]. The BB yields will be fixed to their expectation from generic

BB MC. All yields have been expressed through their charge asymmetries ACP . Except for
the qq component, we fix ACP to zero. We’ll also fix the efficiency and mis-id parameters
of the KLHVeryTight selector, which enter through the yield definitions of the slices (see
Equation 9.11 on page 52), to values obtained from MC: ε = 75%, m = 1.8%. Table 11.5 lists
the expected m(D0) sideband yields for all of the six components. As already mentioned, not
all events considered peaking do actually peak. We’ll therefore add the according yields to
the regular BB background. That’s why Table 11.5 seemingly disagrees with Table 11.3.
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Figure 11.4: m(D0) sideband distribution of F in both MC and data. The color code of the
backgrounds is the same as in Figure 8.1 on page 46.

Table 11.5: Expected m(D0) sideband yields. Peaking background yields and BB yields are
obtained from generic BB MC, leaking signal yields from signal MC. The BB yields are fixed to
these values in the sideband fit.

Parameter KK ππ K0
Sπ0 K0

Sω K0
Sφ

N
pk(K)
tot 233 41 1 6 1

N
pk(π)
tot 5 0 0 4 1

Nqq
p 4972 5282 3624 3468 216

Nqq
f 19186 28630 11040 9910 476

NBB
p 157 280 46 125 5

NBB
f 1791 988 430 1468 43

N
sig(K)
tot 16 5 9 10 0

N
sig(π)
tot 187 60 153 135 2

76



11.1 D0 Mass Sideband PDF

The shape of the sideband PDF is very similar to the shape of the PDF used to describe the
signal region. We’ll therefore use similar parameterizations for the six components: charmless
peaking background B → fh (h = K,π), leaking B → D0h signal (h = K,π), qq, and BB.

To parameterize the B → fh shape in the sideband, we will actually re-use the final fit signal
parameterizations for mES and F . This is preferable even though the mES shape doesn’t
describe the B → fh events contained in generic BB MC too well, because eventually we
need to estimate how many background events will get picked up by the signal PDF. For
∆Eunc, however, we cannot re-use ∆E signal shape to describe B → fh events, because
without the mass constraint on the D0 mass the shapes are distorted. Instead we’ll rely
on the ∆Eunc distribution of the B → fh events contained in generic BB MC. Because of
the lack of MC statistics of the peaking background in channels other than D0 → K−K+

and D0 → π+π− we’ll re-use the shapes obtained in these modes for the lower statistics
channels.

The leaking signal component in ∆Eunc develops a double peak structure, as mentioned in
the previous section. We will parameterize this by two Gaussians and a linear shape.

All remaining shapes follow closely the parameterization of the signal band. The functional
form of each component of the D0 → K−K+ channel is summarized in Table 11.6, as well
as how the shape parameters are obtained. The according extraction fits are shown in Fig-
ure 11.5. The situation of the remaining modes is fairly similar [42].

Table 11.6: Functional form of the PDF used to fit the D0 mass sidebands, D0 → K−K+ channel.
Abbreviations: G–Gaussian, P–first order polynom, D–double, A–Argus [46], CB–Crystal Ball [44],
BF–bifurcated. As for the source of the fixed parameters: SB–fit to sideband MC, FF–same shape
as in the final fit.

component ∆Eunc mES F
leaking signal(K) DG+P (SB) same as lk. sig(π) FF sig(K)
leaking signal(π) DG+P (SB) DG (SB) FF sig(π)
qq P (floating) A (floating) DBFG (floating)
BB P (SB) A+CB (SB) DG (SB)
peaking(K) DG (SB) FF sig(K) FF sig(K)
peaking(π) G (SB) FF sig(π) FF sig(π)
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Figure 11.5: ∆Eunc D0 sideband PDFs, D0 → K−K+.
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Figure 11.6: mES D0 sideband PDFs, D0 → K−K+. The bottom plots overlay the mES signal
shape used to fit the signal band (see text).
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Figure 11.7: F D0 sideband PDFs, D0 → K−K+.
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11.2 Sideband Fit Validation

We validate the strategy to extract peaking background estimates from theD0 mass sidebands
on cocktail MC. Table 11.7 shows the fit results on the D0 → K−K+ and D0 → K0

S
π0

channels, where we saw the largest contributions in the Run 1-5 analysis. Figure 11.8 shows
the corresponding slice-combined plots. All reported yields agree with their expectation (see
Table 11.5).

Table 11.7: Fit results on D0 mass sidebands in cocktail MC, D0 → K−K+ and D0 → K0
Sπ0

channels. The slope aqq
∆E is in units of GeV−1. The parameters of the Argus function [46], cmES

and
pmES

, are in units of GeV/c2 and 1, respectively.

Parameter KK K0
Sπ

0

Aqq
CP,p 0.003± 0.014 0.002 ± 0.017

Aqq
CP,f 0.0020± 0.0075 0.0007 ± 0.0097

f qq
F 0.311± 0.035 0.73 ± 0.12

µqq
F ,l,1 −0.136 ± 0.032 −0.423± 0.036

µqq
F ,l,2 −0.437 ± 0.013 −0.695± 0.038

σqq
F ,l,1 0.157± 0.026 0.167 ± 0.011

σqq
F ,l,2 0.1776± 0.0048 0.108 ± 0.014

σqq
F ,r,1 0.349± 0.011 0.411 ± 0.012

σqq
F ,r,2 0.229± 0.013 0.311 ± 0.052

aqq
∆E −1.14 ± 0.11 −1.50 ± 0.13
cmES

−30.4± 2.1 −26.6 ± 2.6
pmES

0.617± 0.025 0.573 ± 0.030

N
pk(K)
tot 177 ± 22 0.7 ± 7.8

N
pk(π)
tot −8 ± 20 3 ± 12

N qq
p 5010 ± 72 3620± 61

N qq
f 19199± 146 10980± 108

N
sig(π)
tot 215 ± 40 203 ± 25

11.3 Sideband Fit to Data

The fit results of the fit to on-peak data in the D0 → K−K+ and D0 → K0
S
π0 channels

are shown in Table 11.8 and in Figure 11.9. The peaking background yields reported from
the fits have to be scaled to account for the different widths of the signal region and the
sidebands. We take the ratio of the widths from Table 11.4 and show the scaled yields in
Table 11.9. These yields are used in the final fit. The yields we find are in good agreement
with the expectations based on the previous estimate of the Run 1-5 analysis (Table 11.2)
and on generic BB MC (Table 11.3).
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Figure 11.8: Fit of the D0 sideband on cocktail MC, D0 → K−K+ and D0 → K0
Sπ0 channels.

Depicted is the sum of all slices in the signal region of the variables not plotted. Color code: light
red–peaking(K), dark red–peaking(π), violet–leaking signal, blue–full PDF. The peaking components
include leaking signal. All components include qq and BB background.
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Table 11.8: Fit results on the m(D0) sidebands in on-peak data, D0 → K−K+ and D0 → K0
Sπ0

channels. The slope aqq
∆E is in units of GeV−1. The parameters of the Argus function [46], cmES

and
pmES

, are in units of GeV/c2 and 1, respectively.

Parameter KK K0
S
π0

Aqq
CP,p 0.002 ± 0.015 −0.030± 0.016

Aqq
CP,f −0.0042± 0.0084 −0.014± 0.010

f qq
F 0.293 ± 0.028 0.848 ± 0.027

µqq
F ,l,1 −0.136± 0.026 −0.4908± 0.0089

µqq
F ,l,2 −0.428± 0.012 −0.830± 0.014

σqq
F ,l,1 0.137 ± 0.027 0.1611± 0.0058

σqq
F ,l,2 0.1829± 0.0047 0.0426± 0.0097

σqq
F ,r,1 0.3517± 0.0098 0.4249± 0.0074

σqq
F ,r,2 0.216 ± 0.012 0.513 ± 0.060

aqq
∆E −1.24± 0.12 −1.53 ± 0.14
cmES

−21.66± 0.94 −24.8 ± 2.7
pmES

0.522610± 0.000038 0.553 ± 0.030

N
pk(K)
tot 216 ± 23 −2.4 ± 5.3

N
pk(π)
tot −11 ± 19 39 ± 14

N qq
p 4651± 70 3847± 62

N qq
f 15424± 131 10275± 104

N
sig(π)
tot 126 ± 36 137 ± 22

Table 11.9: Result of the peaking background estimate. These numbers will be used in the final
fit.

D0 mode prompt track K± prompt track π±

K+K− 93 ± 10 −5 ± 8
π+π− 4 ± 6 0 ± 9
K0

S
π0 −4 ± 9 65 ± 23

K0
Sω 3 ± 6 0 ± 8

K0
Sφ 0.5 ± 0.7 1.4 ± 1.0
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Figure 11.9: Fit of the D0 sideband in on-peak data, D0 → K−K+ and D0 → K0
Sπ0 channels.

Depicted is the sum of all slices in the signal region of the variables not plotted. Color code: light
red–peaking(K), dark red–peaking(π), violet–leaking signal, blue–full PDF. The peaking components
include leaking signal. All components include qq and BB background.
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12 Systematic Uncertainties

In this section we consider eight sources of systematic uncertainty possibly affecting the GLW
parameters ACP± and RCP±. Their contributions are summarized in Table 12.1. The total
systematic error has been calculated by taking into account the correlations between the
ACP± and RCP± parameters for each source. We calculate the systematic covariance matrix
V(syst)[~y], ~y = (ACP+, ACP−, RCP+, RCP−)T , as the sum of the covariance matrices due to each
of the eight sources. The resulting matrix is

V(syst)[~y] =









9.4 × 10−4 6.8 × 10−6 −5.6 × 10−5 0.0
6.8 × 10−6 8.5 × 10−5 0.0 5.1 × 10−6

−5.6 × 10−5 0.0 1.4 × 10−3 3.9 × 10−5

0.0 5.1 × 10−6 3.9 × 10−5 9.3 × 10−4









. (12.1)

Table 12.1: Summary of systematic errors. The total systematic error is the square root of the
diagonal elements of V(syst) of Eq.12.1.

source ACP+ ACP− RCP+ RCP−

fixed fit parameters 0.0039 0.0062 0.028 0.024
peaking background 0.030 0.0043 0.018 0.012
bias correction 0.0038 0.0043 0.0055 0.0048
signal self cross-feed 0.0002 0.0010 - -
detector charge asym. 0.0026 0.0026 - -
S-wave contribution to CP− states - 0.0004 - 0.0029
ε(π)/ε(K) - - 0.018 0.017
RCP± vs. R± - - 0.015 0.014

Total 0.031 0.0092 0.037 0.030

12.1 Parameterization of the PDF

The final PDF we use to describe the data is only an approximation to the true PDF, chosen
by nature, and laying at heart of the on-peak dataset. Therefore it is crucial to estimate
the quality of the approximation. A good way to do this is to vary all parameters which are
fixed in the final fit, by a reasonable amount. In this work, the parameters of the component
PDFs are obtained from extraction fits to appropriate MC samples (Section 9). Thus their
standard deviations are known, and also the correlations among the parameters belonging to
a certain component PDF. To estimate the systematic error on the final result, we perform a
large number of test fits on on-peak data, similar to the final fit. In each of these test fits the
fixed parameters of the final PDF are varied according to their covariance matrices, correctly
taking into account (first order) correlations. By diagonalizing the covariance matrix V of
the parameters ai one obtains the rotation matrix which transforms ~a to the uncorrelated
parameter space, ~a′. In the uncorrelated parameter space, values for the a′i are drawn from
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Gaussian functions whose means and widths are given by a′i and σ′
i =

√

V ′
ii. Using again the

rotation matrix one transforms the generated ~a′ back to the correlated space.1

The widths of the resulting distributions for the floating fit parameters are taken to be the
systematic uncertainties due to the parameterization of the final PDF. Figure 12.1 shows
the distributions of the crucial fit parameters ACP± and RK/π of the CP+ and CP− fits,
after the nominal values have been subtracted. The distributions of the flavor fits are shown
in Figure B.1 in Appendix B. Some of the distributions are poorly described by a single
Gaussian. There is usually a prominent narrow peak, but also a wider continuum component.
We therefore fit the distributions to a double Gaussian. There can be many reasons for this
behavior. One possibility is a nearby second minimum in the likelihood function. In that
case, only little variations of the fixed parameters may be sufficient to make the fit converge
to the second minimum. Hence the double Gaussian structure. We define a naive total width
σtot of the double Gaussian shape f G(µ1, σ1) + (1 − f)G(µ2, σ2),

σtot = f σ1 + (1 − f)σ2 + g |µ1 − µ2|, (12.2)

where g = 2 f for f ≤ 0.5, and g = 2 (1 − f) otherwise2. The resulting uncertainties of each
parameter which enters the final result are given in Table 12.2.

The covariance matrix VPDF[~y] for the parameters ~y = (ACP+, ACP−, RCP+, RCP−)T is ob-
tained in the following way. We first build the covariance matrix VPDF[~x] for the parameters
~x = (ACP+, ACP−, R

+
K/π, R

−
K/π , R

flv
K/π)T , where Rflv

K/π is the weighted average of the RK/π val-

ues from the flavor fits (see next Chapter 13). We take the non-trivial correlations between
ACP+ and R+

K/π (ACP− and R−
K/π) to be the same as in the nominal fit to data. Then we

transform (see for instance [41])

VPDF[~y] = B VPDF[~x]BT , (12.3)

with B denoting the matrix of derivatives Bij = ∂yi/∂xj , calculated from Eq. 3.16. The
square root of the diagonal elements of VPDF[~y] is reported in Table 12.1.

Table 12.2: Systematic errors on the crucial parameters due to the fixed shape of the final PDF, as
obtained from a series of test fits varying all fixed parameters according to their covariance matrices.

fit σtot(ACP ) σtot(RK/π)
CP+ 0.0039 0.0017
CP− 0.0062 0.0014
Kπ 0.0013 0.00092
Kππ0 0.0020 0.0011
Kπππ 0.0021 0.0013

12.2 Peaking Backgrounds

The uncertainties in the numbers of peaking background events estimated from the D0 mass
sidebands introduce a systematic uncertainty in the B → D0

CP±h yields and therefore in

1This procedure neglects correlations among parameters of separate components.
2It was checked the square root of the 2nd moment of the double Gaussian shape yields comparable values

for the width in all cases.
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Figure 12.1: Distributions of the crucial parameters as obtained from a series of systematic fits,
varying all fixed parameters according to their covariance matrices. The nominal value has been
subtracted. Top row CP+, bottom row CP−. The shape is the sum of two Gaussians (dashed and
dotted lines).

RCP±. As for the asymmetries, any charge asymmetry in the peaking background would
directly affect the measured values of ACP±.

We perform a series of test fits on on-peak data floating the B → fh yields and the B →
fh asymmetries by their uncertainties. While the errors on the yields are obtained from
the sideband study (Table 11.9), the errors on the asymmetries could not be obtained that
way because the sideband samples don’t contain sufficient statistics. Here we assign an
uncertainty of ±20 %. For comparison, the measured value of ACP in B+ → K+K−π+ is
ACP = 0.00 ± 0.10, in B+ → K+K−K+ it is ACP = −0.017 ± 0.030 (both values taken
from [8]). Despite the fact ACP depends on which part of the Dalitz plot is selected, ±20%
is a conservative estimate that is consistent with not having observed CP violation in those
decays.

We take the total width (Eq. 12.2) of the resulting distributions to be the systematic un-
certainty. The uncertainties of each parameter which enters the final result are given in
Table 12.3. Figure 12.2 shows the distributions of the ACP and RK/π parameters as obtained
from the CP test fits. We construct the covariance matrices VPKBG[~x] and VPKBG[~y] in full
analogy to the previous section. The square root of the diagonal elements of VPKBG[~y] is
reported in Table 12.1.
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Figure 12.2: Distributions of the crucial parameters as obtained from a series of systematic fits,
where the fixed peaking background parameters have been varied according to their uncertainties.
The nominal value has been subtracted. Top row CP+, bottom row CP−. The shape is the sum of
two Gaussians (dashed and dotted lines).

Table 12.3: Systematic errors on the crucial parameters due to the peaking background, as obtained
from a series of test fits varying the B → fh yields and asymmetries based on their error estimates
(Table 11.9 for the yields, ±20% for ACP ).

fit σtot(ACP ) σtot(RK/π)
CP+ 0.030 0.0014
CP− 0.0043 0.00087

12.3 Bias Correction

As described in Section 10.2, we correct the results of the final fits for biases. We will
consider the uncertainties of the corrections to assign a systematic uncertainty due to the bias
correction. The corrections are given in Table 10.2. At first we propagate their uncertainties
through the correction procedure (Eq. 10.2). Then we construct the covariance matrices
VBIAS[~x] and VBIAS[~y] in full analogy to Section 12.1. The square root of the diagonal elements
of VBIAS[~y] is reported in Table 12.1.
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12.4 Detector Charge Asymmetry

A source that must be investigated arises from a potential charge asymmetry of the BABAR

detector, due to a possible charge bias in tracking efficiency (e.g., K+ vs K−) and/or particle
identification. In order to understand if this effect can bring a significant bias to the asymme-
try measurement, a number of control samples are studied. These samples are the B → D0π
samples, and in addition the B → D0K flavor modes, in both categories the CP asymmetry is
expected to be negligible. The same check has been performed on Cocktail Monte Carlo. The
results of the measured charge asymmetries are reported in Table 12.4. All results show that
there is no evidence of a charge asymmetry of the BABAR detector. We take the uncertainty
on the weighted average of the ACP values as measured in the data control samples to be the
systematic error: σACP = 0.0025. When building the covariance matrix for this source, we
consider the errors on ACP+ and ACP− to be 100% correlated.

Table 12.4: Charge asymmetries measured on signal Monte Carlo and data for different B decays.

decay mode ACP (data) ACP (MC)
B → D0

CP+π 0.006± 0.014 0.001± 0.014
B → D0

CP−π −0.007 ± 0.014 −0.007± 0.013
B → D0π, D0 → K−π+ −0.0111± 0.0050 −0.0018± 0.0047
B → D0π, D0 → K−π+π0 −0.0105± 0.0048 0.0027± 0.0051
B → D0π, D0 → K−π+π+π− −0.0007± 0.0046 −0.0007± 0.0043
B → D0K, D0 → K−π+ −0.004 ± 0.022 −0.001± 0.021
B → D0K, D0 → K−π+π0 −0.021 ± 0.019 −0.003± 0.019
B → D0K, D0 → K−π+π+π− 0.001± 0.019 −0.002± 0.018
weighted avg. −0.0068± 0.0026 −0.0005± 0.0025

12.5 S-Wave Pollution in CP -odd Final States

The measured CP asymmetry in B → D0K, D0 → K0
Sφ, can be diluted by the presence of

B → D0K decays with D0 decaying to the same final state K0
S
K+K− as K0

S
φ, φ→ K+K−,

but with opposite CP content. The same can happen in the B → D0K, D0 → K0
S
ω analysis

with backgrounds from B → D0K, D0 → K0
Sπ

−π+π0. Moreover, also the measured ratio
RCP− can be affected by the presence of this peculiar background. It is possible to obtain
correction factors to both ACP− and RCP− from a fit to the distributions of the relevant
helicity angles, cos θN and cos θH for K0

Sω and K0
Sφ, respectively. These angles have been

defined in Section 6.3.3. The fit is performed on dedicated B → D0π samples, in which the
selection requirements on the helicity angles have not been applied. It can be shown [49], that
for these two final states the observed charge asymmetry should be corrected by a factor

Atrue
CP = Aobs

CP · 1 + f |z|2R′

1 − f |z|2 , (12.4)

while the ratio RCP should be corrected by

Rtrue
CP = Robs

CP · 1 + f |z|2
1 + f |z|2R′ . (12.5)
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Here, R′ is the ratio of the RCP± values where RCP− is calculated using the D0 → K0
Sπ

0 final
state only (as opposed to using all three CP− final states under study),

R′ =
RCP+

R
K0

Sπ0

CP−

, (12.6)

f is the ratio of the efficiencies of the selection criterion on the helicity angles: fω = 0.71
obtained from the cut on the quantity cos2 θN sin2 θππ > 0.046, fφ = 0.64 obtained from the
cut on the quantity cos θH > 0.4. The parameter |z|2 can be extracted from a |z|2 + 3 cos2 θ
fit to the samples introduced above. In these samples, we apply four additional selection
criteria to simulate the selection power of the final fit, and to select B → D0π events: a 2.5σ
cut on ∆E(π) around zero, the prompt track is required to pass the KLHVeryTight selector,
mES > 5.275 GeV/c2, and F > 0.2. We subtract the background expected from the Monte
Carlo simulation. As shown in Figure 12.3, we find |z|2 = 0.061 ± 0.032 in case of K0

Sω, and
|z|2 = 0.220± 0.063 in case of K0

S
φ. The corresponding asymmetry corrections are:

Atrue
CP (K0

Sω) = Aobs
CP (K0

Sω) × (1.093 ± 0.055),

Atrue
CP (K0

Sφ) = Aobs
CP (K0

Sφ) × (1.344 ± 0.125).

For the ratios it is

Rtrue
CP (K0

Sω) = Robs
CP (K0

Sω) × (1.004 ± 0.005),

Rtrue
CP (K0

Sφ) = Robs
CP (K0

Sφ) × (1.012 ± 0.013).
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Figure 12.3: Left: cos θN distribution of B → D0π, D0 → K0
Sω candidates selected in data. Right:

cos θH distribution of B → D0π, D0 → K0
Sφ candidates selected in data. Background expected from

qq and BB (non peaking) MC is shown with a dashed line.

We note both correction factors for the ratios RCP are consistent with unity. Thus we will
not apply these factors, we will, however, assign a systematic error based on the uncertainties
of the correction factors. The corrections for the asymmetries are less consistent with unity.
Since the final result on ACP− is obtained from a maximum likelihood fit, simultaneously
running on the D0 → K0

S
π0, D0 → K0

S
ω, and D0 → K0

S
φ subsamples, we will apply the

correction factors inside the final fit procedure. This allows the likelihood fitter to correctly
estimate their influence.

We assign a systematic error in the following way. At first, we fit the three CP− final states
independently. Then, we combine their fit results by means of a weighted average, using
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the squared inverse of the statistical error as the weight. This is done for both relevant
parameters, R−

K/π and ACP−. Finally, we use standard error propagation to propagate the

systematic uncertainties through the averaging procedure. The resulting uncertainties are
reported in Table 12.1. When building the covariance matrix for this source, we consider the
errors on R−

K/π and ACP− to be 50% anti-correlated, since the error on |z|2 dominates over

the error on R′ in Eqns 12.4 and 12.5.

12.6 Derivation of RCP± From R±

The ratios R± are defined by:

R± =
B(B → D0

CPK)

B(B → D0
CPπ)

B(B → D0π)

B(B → D0K)

=
|A(B− → D0K−)|2(1 + r2B ± 2rB cos δB cos γ)

|A(B− → D0π−)|2(1 + r2Bπ ± 2rBπ cos δBπ cos γ)

|A(B− → D0π−)|2
|A(B− → D0K−)|2

=
RCP±

1 + r2Bπ ± 2rBπ cos δBπ cos γ
, (12.7)

where rBπ = |A(B− → D̄0π−)/A(B− → D0π−)| and δBπ is the strong phase difference
between the two amplitudes. The denominator is usually considered equal to 1, hence RCP± =
R±. However, the denominator is not exactly one and a systematic uncertainty related to
this assumption must be evaluated when quoting the final results in terms of RCP± instead
of the measured quantities R±. The diagrams of B− → D0/D0π− are the same as those of
B− → D0/D0K−, after the replacement of the s quark with a d quark. Therefore the ratio
rBπ is:

rBπ ≡
∣

∣

∣

∣

A(B− → D0π−)

A(B− → D0π−)

∣

∣

∣

∣

=
|A(B− → D0K−)||Vcd/Vcs|
|A(B− → D0K−)||Vud/Vus|

=

∣

∣

∣

∣

A(B− → D0K−)

A(B− → D0K−)

∣

∣

∣

∣

· tan2 θC

= rB tan2 θC . (12.8)

We take sin θC = 0.2257 ± 0.0010 from [8], and rB = 0.103+0.017
−0.023 from [13]. We obtain

rBπ = (5.5± 1.2)× 10−2 and a relative systematic uncertainty on RCP± of ±2 · 6.7× 10−3 =
±1.34×10−2 (the term r2Bπ is neglected). Note that this systematic uncertainty is 100% anti-
correlated between RCP+ and RCP−. The resulting values are summarized in Table 12.1.

12.7 Signal Self Cross-Feed

We define the signal self cross-feed (SCF) as reconstructed signal MC events which are not
truth-matched. The ratio NSCF/Ntotal ranges from 0.3% to 12% in B → D0

CPK events,
depending on the channel. We treat this component as signal. By doing so, we implicitly
assume, that the charge asymmetries of both components are equal. If the self cross-feed
component had a significantly different charge asymmetry compared to the signal, it would
dilute the observed values. We use the signal MC samples to estimate the influence of the
self cross-feed on the measured values of ACP . The detailed calculation is contained in
Section B.2 in Appendix B. We obtain a systematic error on ACP as given in Table 12.5.
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We consider the errors uncorrelated and propagate them analogously to Section 12.5. The
resulting uncertainties are summarized in Table 12.1.

Table 12.5: Systematic uncertainties on ACP due to signal self cross-feed. Values calculated from
Table B.1 and Eq. B.8.

D0 → KK ππ K0
S
π0 K0

S
ω K0

S
φ

σSCF 0.00021 0.00011 0.00082 0.0019 0.00030

12.8 Differences in Selection Efficiency

The selection efficiencies for B → D0K and B → D0π signal events are not exactly equal.
From Table 6.14 we calculate the weighted average of the ratios ε(D0K)/ε(D0π) to be
0.9896± 0.0010, where the error results from the limited size of the MC samples. We assign
a relative systematic error to the measured values of RK/π of 1 − 0.9896 + 0.0010 = 0.0114.
This systematic uncertainty is 100% correlated between RCP+ and RCP−. The resulting un-
certainties are summarized in Table 12.1.
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13 Final Result

We present the final result of the GLW parameters ACP± and RCP±, as obtained from a fit to
the Run 1-6 dataset of the BABAR Experiment. Table 13.1 shows the final values. We combine
the values of RK/π, as measured in the flavor modes, by means of a weighted average:

Rflv
K/π =

1

w

∑

i

wiRK/π , i, (13.1)

where wi = 1/σ2
RK/π,i, w =

∑

iwi, and i ranges over K−π+, K−π+π0, and K−π+π+π−. The

combined statistical uncertainty is given by the standard deviation σRflv
K/π

= 1/
√
w. Then we

calculate the values RCP± as

RCP± =
R±

K/π

Rflv
K/π

. (13.2)

Table 13.1: Final result on RCP± and ACP± as measured in the Run 1-6 on-peak dataset of BABAR.
The first error is statistical, the second systematic.

D0 mode RCP ACP

CP+ 1.128± 0.081 ± 0.037 +0.197 ± 0.060± 0.031
CP− 1.041± 0.069 ± 0.030 −0.096± 0.064± 0.0092

The statistical covariance matrix V(stat)[~y], ~y = (ACP+, ACP−, RCP+, RCP−)T , of the final
result is obtained using the covariances as reported by the final fits and error propagation
according to Eq. 12.3. The matrix is

V(stat)[~y] =









0.0036 0.0 −0.00041 0.0
0.0 0.0041 0.0 0.00013

−0.00041 0.0 0.0065 0.00022
0.0 0.00013 0.00022 0.0047









. (13.3)

The statistical significance of ACP+ being greater than zero is S = 3.4 standard deviations.
It is calculated from the minimal values of the likelihood function of the nominal fit and a
dedicated null-hypothesis fit, where ACP was fixed to zero, using Eq. 9.4. This constitutes
evidence for direct CP violation in charged B decays.

To constrain the CKM angle γ from the present measurement we follow Reference [24]. We
define a χ2-function as

χ2(γ, δ, r) = −2 lnL(γ, δ, r), (13.4)

L(γ, δ, r) =
1

(2π)2
√

|V |
exp

(

−1

2
(~y − ~yt)V

−1(~y − ~yt)
T

)

, (13.5)
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where V is the combined covariance matrix V = V(stat)[~y] + V(syst)[~y]. The vector ~yt =
~yt(γ, δ, r) is the vector of truth variables defined as a function of γ, the amplitude ratio r, and
the strong phase difference δ, through Eqns. 3.11 and 3.12. The optimal values for γ, δ, and r
correspond to a minimum of the χ2-function. Due to the inherent eight-fold ambiguity of the
GLW method there are eight equivalent minima. We calculate the one most consistent with
the current experimental situation as summarized by the Particle Data Group (PDG, [8]) to
be

γ = 1.64+0.12
−0.11, (13.6)

δ = 2.87+0.10
−0.24, (13.7)

r = 0.29+0.09
−0.13, (13.8)

where the errors represent the intervals corresponding to a change in χ2 of ∆χ2 = 1 as
obtained by Minos. Figure 13.1 shows the χ2 function as function of γ and δ, with r set to
its value at the minimum.
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Figure 13.1: The χ2-function (Eq. 13.4) with r fixed to its optimal value (Eq. 13.8). The white
marker depicts the result on γ and δ (Eqns. 13.6, 13.7). The red marker shows the PDG values taken
from Reference [8], together with a naive one-standard-deviation error ellipse.

However, one has to exercise care interpreting the errors in Eqns. 13.6-13.8. Due to the fact
that two minima lie closely together at γ ≈ 1.5, the errors do not reflect the true 68.3%
confidence levels (CL). Instead we perform a CL scan for γ: for each given value of γ, γ0, we
take the value of the χ2 function at the new minimum, χ2

min(γ0, δ0, r0). Then we calculate
the difference of this value and the global minimum of χ2,

∆χ2 = χ2
min(γ0, δ0, r0) − χ2

min. (13.9)

We compute the probability that ∆χ2 is exceeded for a χ2-distribution with one degree of
freedom,

1 − CL =
1√

2 Γ(1/2)

∫ ∞

∆χ2

e−t/2t−1/2 dt. (13.10)

We obtain the 68.3% confidence intervals of γ to be

γ ∈ [0.16, 0.51], [1.39, 1.75], [2.63, 2.97] @68.3% CL, (13.11)
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the 95% confidence interval is

γ ∈ [0.08, 3.06] @95% CL, (13.12)

where each interval shifted by π is a solution, too.1 Figure 13.2 plots the quantity 1 − CL
for each value of γ. From Eq. 13.12 it is clear, that this measurement does not put hard
constraints on the angle γ.
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0 0.5 1 1.5 2 2.5 3

1-
C

L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13.2: Confidence level of a given value of γ. Both statistical and systematic uncertainties
are taken into account. The plot is restricted to [0, π], it is identical in the range [π, 2π]. The vertical
line depicts the PDG value [8]. The horizontal lines show the 68.3% CL (dashed) and the 95% CL
(dotted).

It is possible, however, to combine this result with the most precise measurement of γ in
BABAR, which follows the GGSZ method2. To this extent we express the CP -sensitive ob-
servables in terms of three independent quantities x+, x−, and r2, which are part of the so
called Cartesian coordinates. They are related to the CP parameters that are measured in
the GGSZ method. The connection of the Cartesian coordinates to γ, r, and δ, is given by
x± = r cos(δ± γ) and y± = r sin(δ± γ). The GLW parameters give access to x+, x−, and r2

through

x± =
RCP+(1 ∓ACP+) −RCP−(1 ∓ACP−)

4
, (13.13)

r2 = x2
± + y2

± =
RCP+ +RCP− − 2

2
. (13.14)

We measure

x+ = −0.059± 0.034(stat)± 0.014(syst) , (13.15)

x− = 0.102 ± 0.036(stat)± 0.015(syst) , (13.16)

r2 = 0.084 ± 0.054(stat)± 0.024(syst), (13.17)

1The integral in Eq. 13.10 is evaluated using the TMath::Prob(χ2, ndof) function in Root.
2Compare Section 3.1. Note that the result presented here contains the D0 → K0

Sφ channel, which is also
contained in the GGSZ analysis through D0 → K+K−K0

S .
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with covariances V [~c], ~c = (x+, x−, r2)T ,

V(stat)[~c] =





119 11 7.5
11 131 38
7.5 38 293



× 10−5, V(syst)[~c] =





21 5.7 1.7
5.7 23 9.2
1.7 9.2 59



× 10−5. (13.18)

At the time this work was carried out the GGSZ result on the full BABAR dataset was not
available. Therefore the combination will be left for future publications.

The fit results of the five final fits are visualized in Figures 13.3-13.8, which show different
projections of the multidimensional simultaneous maximum likelihood fits: one set of four
plots for each fit variable, ∆E, mES, and F . In each set, the left hand side corresponds to
the the negatively charged subsample (B− → D0h−), the right hand side to the positively
charged subsample. By comparing both sides the direct CP asymmetry, ACP , becomes visible.
The upper row shows events in which the bachelor track, h, passes the KLHVeryTight selector
and therefore has a great likelihood of originating from a true kaon. The lower row shows
events in which h fails the selector. The figures show the combination of the CP -even channels
(D0 → K−K+, π+π−), and the of the CP -odd channels (D0 → K0

Sπ
0, K0

Sω, K0
Sφ). The plots

of the remaining flavor channels (K−π+, K−π+π0, K−π+π+π−) are shown in Figures C.11-
C.16 in Appendix C, as well as projections of each of the CP channels separately. Also in
Appendix C are tables with the final values of each floating fit parameter, they are Tables C.1-
C.3.
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Figure 13.3: ∆E projections of the CP+ final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.

96



 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45 - h0 D→ -B
,0πS

0 K→ 0D
,ωS

0 K→ 0D
φS

0 K→ 0D
passed KLHVT
signal range
data

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45 + h0 D→ +B
,0πS

0 K→ 0D
,ωS

0 K→ 0D
φS

0 K→ 0D
passed KLHVT
signal range
data

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200
- h0 D→ -B
,0πS

0 K→ 0D
,ωS

0 K→ 0D
φS

0 K→ 0D
failed KLHVT
signal range
data

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )
0

20

40

60

80

100

120

140

160

180

200

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )
0

20

40

60

80

100

120

140

160

180

200
+ h0 D→ +B
,0πS

0 K→ 0D
,ωS

0 K→ 0D
φS

0 K→ 0D
failed KLHVT
signal range
data

Figure 13.4: ∆E projections of the CP− final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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Figure 13.5: mES projections of the CP+ final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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Figure 13.6: mES projections of the CP− final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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Figure 13.7: F projections of the CP+ final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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Figure 13.8: F projections of the CP− final fit to B → D0h Run1-6 on-peak data. Top (bottom):
the bachelor track h is required to pass (fail) the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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14 Summary

In summary we reconstructed B− → D0π− and B− → D0K− decays and their charge
conjugates. The D0-meson was reconstructed in eight final states: the CP -even K+K− and
π+π−, the CP -odd K0

Sπ
0, K0

Sφ, and K0
Sω, and the flavor eigenstates K−π+, K−π+π0, and

K−π+π+π−. We used a data sample of 467×106 Υ (4S) decays, representing the final Υ (4S)
dataset of the BABAR Experiment.

We measured the CP sensitive parameters ACP± and RCP±, as they are defined in the GLW
method. These parameters have been measured through five maximum likelihood fits to the
data: two simultaneous fits to the CP± states and three fits to the flavor states. The resulting
values are

RCP+ = 1.128± 0.081 ± 0.037,

RCP− = 1.041 ± 0.069± 0.030,

ACP+ = +0.197± 0.060± 0.031,

ACP− = −0.096± 0.064 ± 0.009.

We considered eight possible sources of systematic errors. The two most important ones
are the uncertainty in a non-reducible charmless peaking background contribution, and the
uncertainty in the shapes of the probability density functions of the five fits.

The statistical significance of ACP+ being non-zero is 3.4 standard deviations, constituting
evidence for direct CP violation in charged B decays.

We also express the results in terms of the so called Cartesian coordinates x+, x−, and r2:
x+ = −0.059±0.034(stat)±0.014(syst), x− = 0.102±0.036(stat)±0.015(syst), r2 = 0.084±
0.054(stat)± 0.024(syst). They are related to the CP parameters that are measured using a
Dalitz analysis of B → D0K, D0 → K0

S
π−π+ decays [24]. This choice allows the results of

the two measurements to be expressed in a consistent manner in future publications.

This work improved the accuracy of a previous BABAR measurement of ACP± and RCP± [4]
using additional 231× 106 Υ (4S) decays as well as a new analysis strategy. Considering the
statistical errors on both the ratios and asymmetries scale like the square root of the ratio of
luminosities,

√

L1/L2, the improvement due to the new analysis strategy can be quantified
to be equivalent to ≈ 600 × 106 additional Υ (4S) decays. But in spite of this improvement,
the statistical uncertainties are still dominating.

The results of this work help to better constrain the phase parameter γ = arg(−VudV
∗
ub/VcdV

∗
cb)

of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. We determine γ up to a six-fold
ambiguity at the 68.3% confidence level. The value most consistent with the current exper-
imental situation [8] is γ = 1.64+0.11

−0.25 = [94+7
−14]

◦, at the 68.3% confidence level, where the
errors are a combination of the systematic and statistical uncertainties.
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A Additional Material to Chapter 10

Table A.1: Fit result of the CP+ final fit to cocktail MC.

Parameter KK ππ

A
sig(K)
CP 0.252± 0.065

A
sig(π)
CP −0.002± 0.015

RK/π 0.0847± 0.0060
m 0.0166± 0.0027

ABB
CP,f 0.033± 0.065 −0.089± 0.079

Aqq
CP,p −0.004 ± 0.016 −0.004± 0.017

Aqq
CP,f −0.0020± 0.0096 0.0052± 0.0086

f qq
F 0.389± 0.083 0.49

σqq
F ,l,1 0.158± 0.019 0.201 ± 0.019

σqq
F ,l,2 0.168± 0.011 0.1870± 0.0064

σqq
F ,r,1 0.357± 0.022 0.362 ± 0.012

σqq
F ,r,2 0.249± 0.025 0.304 ± 0.036

aqq
∆E −0.91 ± 0.13 −0.81± 0.12
µ∆E −0.05 ± 0.31 0.31 ± 0.59
σ∆E 16.44± 0.26 15.66 ± 0.50
µmES

5279.58± 0.10 5279.71± 0.22
σmES,l 2.765± 0.078 2.94 ± 0.17
σmES,r 2.164± 0.069 2.06 ± 0.15

NBB
p 72 ± 33 147 ± 44

NBB
f 953 ± 81 986 ± 145

N qq
p 4277 ± 72 3582± 73

N qq
f 13133± 136 17417± 192

N
sig(π)
tot 4295 ± 71 1308± 43
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Table A.2: Fit result of the CP− final fit to cocktail MC.

Parameter K0
S
π0 K0

S
ω K0

S
φ

A
sig(K)
CP 0.006 ± 0.059

A
sig(π)
CP −0.008± 0.013

RK/π 0.0794± 0.0052
m 0.0193± 0.0026

Aqq
CP,p 0.000± 0.011 0.002 ± 0.019 0.007± 0.053

Aqq
CP,f 0.0028± 0.0068 0.000 ± 0.012 0.011± 0.037

f qq
F 0.766± 0.028 0.27 n/a

σqq
F ,l,1 0.1603± 0.0063 0.145 ± 0.039 0.302± 0.017

σqq
F ,l,2 0.0881± 0.0062 0.1954± 0.0053 n/a

σqq
F ,r,1 0.4204± 0.0060 0.344 ± 0.014 0.448± 0.021

σqq
F ,r,2 0.471± 0.044 0.238 ± 0.019 n/a

aqq
∆E −1.379± 0.095 −1.24 ± 0.16 −0.48
µ∆E −0.96 ± 0.33 −2.24 ± 0.60 −1.10 ± 0.74
σ∆E 17.27± 0.28 17.58 ± 0.49 16.49± 0.58
µmES

5279.65± 0.10 5279.84± 0.17 5279.60± 0.23
σmES,l 2.961± 0.078 3.10 ± 0.14 2.98 ± 0.17
σmES,r 2.173± 0.070 2.09 ± 0.12 2.15 ± 0.15

NBB
p 94 ± 37 113 ± 46 3

NBB
f 1067 ± 92 948 ± 110 79 ± 18

N qq
p 8109 ± 97 3011± 69 373 ± 20

N qq
f 23011± 173 8275 ± 131 801 ± 31

N
sig(π)
tot 4791 ± 77 1642± 47 707 ± 28
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Table A.3: Fit results of the three final fits to cocktail MC in the flavor final states of the D0.

Parameter Kπ Kππ0 Kπππ

A
sig(K)
CP −0.005± 0.020 −0.012 ± 0.020 −0.014± 0.019

A
sig(π)
CP −0.0024± 0.0048 0.0013± 0.0045 0.0004± 0.0045

Abb
CP,f −0.012± 0.028 −0.036 ± 0.011 −0.001± 0.025

Aqq
CP,p 0.000 ± 0.015 0.0024± 0.0068 0.007± 0.017

Aqq
CP,f 0.0057 ± 0.0062 0.0058± 0.0028 0.0000± 0.0073

f qq
F 0.624 ± 0.061 0.568± 0.011 0.5878± 0.0031

σqq
F ,l,1 0.184 ± 0.013 0.1570± 0.0061 0.157± 0.011

σqq
F ,l,2 0.1595 ± 0.0079 0.1503± 0.0027 0.1603± 0.0043

σqq
F ,r,1 0.4026 ± 0.0099 0.3931± 0.0047 0.3889± 0.0095

σqq
F ,r,2 0.294 ± 0.024 0.2811± 0.0091 0.278± 0.023

RK/π 0.0811 ± 0.0017 0.0830± 0.0019 0.0831± 0.0017

aqq
∆E −1.052± 0.093 −1.675 ± 0.058 −1.21± 0.10

bqq
∆E n/a 5.03 ± 0.81 n/a
µ∆E −0.215± 0.089 −0.662 ± 0.092 −0.12± 0.12
σ∆E 15.650± 0.071 16.369± 0.075 15.565± 0.099
µmES

5279.621± 0.031 5279.523± 0.028 5279.455± 0.037
σmES,l 2.778 ± 0.022 2.785± 0.022 2.700± 0.031
σmES,r 2.298 ± 0.020 2.370± 0.020 2.288± 0.027

NBB
p 79 ± 24 2206 ± 124 661 ± 118

NBB
f 3479± 109 29694± 494 13194± 485

N qq
p 4905± 76 24497± 185 8550 ± 171

N qq
f 32026± 206 171442± 592 60659± 588

N
sig(π)
tot 49333± 238 82794± 360 59128± 396

m 0.02433± 0.00088 0.02131± 0.00085 0.0240± 0.0012
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B Additional Material to Chapter 12

B.1 Parameterization of the PDF
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Figure B.1: Distributions of the crucial parameters as obtained from a series of systematic fits.
The rows from top to bottom: K−π+, K−π+π0, K−π+π+π−.

B.2 Signal Self Cross-Feed

We define the fractions f+ (f−) between positively (negatively) charged self cross-feed events
and true signal events in Monte Carlo, will assume these ratios are the same in the data
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sample:

f± =
N±

scf,MC

N±
sig,MC

. (B.1)

With the abbreviations f̂ = (f+ + f−)/2 and ∆f = (f+ − f−)/2 the observed event yields
in the positive and negative slices are

N±
obs = N±

sig +N±
scf = N±

sig(1 + f±) = N±
sig(1 + f̂ ∓ ∆f). (B.2)

Thus the measured charge asymmetry is a function of the true charge asymmetry,

Aobs
CP =

N−
obs −N+

obs

N−
obs +N+

obs

=
Asig

CP (1 + f̂) + ∆f

(1 + f̂) +Asig
CP ∆f

. (B.3)

From Equation B.3 we get an expression for the true charge asymmetry,

⇔ Asig
CP =

Aobs
CP (1 + f̂)

(1 + f̂)
(

1 − ∆fAobs
CP

(1+f̂)

) − ∆f

(1 + f̂)
(

1 − ∆fAobs
CP

(1+f̂)

) . (B.4)

To express Equation B.4 in terms of additive and multiplicative corrections, we approximate

1

1 − x
≈ 1 + x, for x≪ 1, (B.5)

and obtain

Asig
CP = Aobs

CP

(

1 +
∆fAobs

CP

1 + f̂

)

− ∆f

1 + f̂

(

1 +
∆fAobs

CP

1 + f̂

)

(B.6)

= Aobs
CP · cmult + cadd. (B.7)

Since the involved numbers are small, Aobs
CP < 1, ∆f/(1 + f̂) ≈ 10−4, yielding cmult − 1 ≈

cadd ≈ 10−4, we conclude no correction has to be applied. Conservatively assumingAobs
CP = 0.5

we obtain the correction factors given in Table B.1. The dilution in the B → D0π channels
is negligible. From Equation B.7 we’ll assign a systematic error of

σsyst =
√

(0.5 σcmult
)2 + σ2

cadd
. (B.8)

Table B.1: Correction factors to ACP due to the signal self cross-feed component, B → D0K
channel. We will not apply these factors. We will, however, assign a systematic error based on their
uncertainties.

D0 → f+ (B → D0K) f− (B → D0K) cmult cadd

KK 0.0054 ± 0.0003 0.0065 ± 0.0003 1.0003 ± 0.0001 −0.0006 ± 0.0002
ππ 0.0025 ± 0.0002 0.0030 ± 0.0002 1.0001 ± 0.0001 −0.0003 ± 0.0001
K0

Sπ0 0.0558 ± 0.0012 0.0568 ± 0.0012 1.0002 ± 0.0004 −0.0005 ± 0.0008
K0

Sω 0.1326 ± 0.0030 0.1312 ± 0.0029 0.9997 ± 0.0009 0.0006 ± 0.0018
K0

Sφ 0.0053 ± 0.0004 0.0057 ± 0.0004 1.0001 ± 0.0001 −0.0002 ± 0.0003
Kπ 0.0074 ± 0.0003 0.0069 ± 0.0003 0.9999 ± 0.0001 0.0002 ± 0.0002
Kππ0 0.2423 ± 0.0028 0.2505 ± 0.0029 1.0016 ± 0.0008 −0.0033 ± 0.0016
Kπππ 0.0460 ± 0.0009 0.0446 ± 0.0009 0.9997 ± 0.0003 0.0007 ± 0.0006
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C Additional Material to Chapter 13

Table C.1: Fit result of the CP+ final fit to the Run 1-6 on-peak dataset.

Parameter KK ππ

A
sig(K)
CP 0.242 ± 0.064

A
sig(π)
CP 0.003 ± 0.015

RK/π 0.0899± 0.0063
m 0.0205± 0.0030

ABB
CP,f −0.004± 0.045 −0.045 ± 0.047

Aqq
CP,p 0.012 ± 0.016 −0.016 ± 0.018

Aqq
CP,f −0.004± 0.011 −0.0047± 0.0098

f qq
F 0.326 ± 0.026 0.49

σqq
F ,l,1 0.160 ± 0.016 0.258± 0.024

σqq
F ,l,2 0.1742± 0.0020 0.2047± 0.0024

σqq
F ,r,1 0.312 ± 0.011 0.329± 0.011

σqq
F ,r,2 0.230 ± 0.014 0.269± 0.018

aqq
∆E −0.96 ± 0.14 −0.72 ± 0.14
µ∆E −2.62 ± 0.32 −1.36 ± 0.57
σ∆E 16.63± 0.27 14.82 ± 0.49
µmES

5278.56± 0.12 5278.61± 0.20
σmES,l 2.207 ± 0.081 2.12 ± 0.15
σmES,r 2.896 ± 0.081 2.83 ± 0.15

NBB
p 79 ± 28 345 ± 52

NBB
f 1428± 81 1516 ± 143

N qq
p 4005± 69 3457 ± 76

N qq
f 10893± 125 13030± 176

N
sig(π)
tot 4091± 70 1230 ± 41
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Table C.2: Fit result of the CP− final fit to the Run 1-6 on-peak dataset.

Parameter K0
S
π0 K0

S
ω K0

S
φ

A
sig(K)
CP −0.088± 0.066

A
sig(π)
CP −0.009± 0.014

RK/π 0.0812± 0.0056
m 0.0207± 0.0029

Aqq
CP,p −0.002± 0.011 0.012± 0.020 −0.069± 0.060

Aqq
CP,f 0.0021± 0.0071 −0.004± 0.013 0.001 ± 0.039

f qq
F 0.520± 0.030 0.27 n/a

σqq
F ,l,1 0.206± 0.014 0.175± 0.034 0.2758± 0.0092

σqq
F ,l,2 0.1546± 0.0015 0.1963± 0.0028 n/a

σqq
F ,r,1 0.3541± 0.0068 0.317± 0.019 0.447 ± 0.014

σqq
F ,r,2 0.275± 0.020 0.238± 0.013 n/a

aqq
∆E −0.926± 0.099 −1.04 ± 0.18 −0.48
µ∆E −1.80± 0.35 −2.88 ± 0.59 −0.95 ± 0.75
σ∆E 17.01 ± 0.29 16.10± 0.52 15.82 ± 0.60
µmES

5278.62± 0.12 5278.50± 0.22 5278.99± 0.25
σmES,l 2.299± 0.084 2.11 ± 0.16 2.33 ± 0.17
σmES,r 2.922± 0.084 3.08 ± 0.16 2.72 ± 0.17

NBB
p 176 ± 43 180 ± 48 3

NBB
f 1929 ± 102 1195± 109 119 ± 20

N qq
p 8588 ± 101 2675 ± 68 284 ± 17

N qq
f 21659± 172 6673± 124 716 ± 29

N
sig(π)
tot 4181 ± 73 1440 ± 45 648 ± 27

108



Table C.3: Fit results of the three flavor final fits (D0 → K−π+, K−π+π0, K−π+π+π−) to the
Run 1-6 on-peak dataset.

Parameter Kπ Kππ0 Kπππ

A
sig(K)
CP −0.008± 0.022 −0.030± 0.019 −0.012± 0.020

A
sig(π)
CP −0.0116± 0.0050 −0.0118± 0.0044 0.0005± 0.0048

Abb
CP,f −0.043± 0.017 −0.0228± 0.0081 −0.017± 0.011

Aqq
CP,p −0.027± 0.016 −0.0218± 0.0069 −0.020± 0.011

Aqq
CP,f −0.0017± 0.0068 −0.0056± 0.0030 −0.0007± 0.0048

f qq
F 0.397± 0.018 0.357 ± 0.011 0.394 ± 0.012

σqq
F ,l,1 0.198± 0.014 0.1646± 0.0058 0.1390± 0.0052

σqq
F ,l,2 0.1965± 0.0017 0.17673± 0.00067 0.1868± 0.0010

σqq
F ,r,1 0.3068± 0.0061 0.3197± 0.0044 0.2808± 0.0057

σqq
F ,r,2 0.237± 0.010 0.2419± 0.0066 0.1944± 0.0075

RK/π 0.0753± 0.0018 0.0768± 0.0017 0.0806± 0.0018

σBB
∆E,mES

0.01048± 0.00057 n/a n/a

aqq
∆E −0.88 ± 0.10 −1.547± 0.063 −1.075± 0.068

bqq
∆E n/a 6.33 ± 0.90 n/a
µ∆E −1.527± 0.092 −2.075± 0.098 −2.280± 0.091
σ∆E 15.424± 0.076 16.493± 0.081 15.518± 0.075
µmES

5278.586± 0.033 5278.591± 0.032 5278.549± 0.033
σmES,l 2.210± 0.022 2.249 ± 0.023 2.137 ± 0.023
σmES,r 2.852± 0.023 2.948 ± 0.024 2.901 ± 0.024

NBB
p 327 ± 40 3133 ± 127 1523± 85

NBB
f 7719± 170 43753± 487 20437± 337

N qq
p 4722 ± 77 24285± 183 10382± 123

N qq
f 28009± 205 151106± 551 63269± 380

N
sig(π)
tot 44630± 232 76848± 352 52723± 261

m 0.02143± 0.00089 0.02061± 0.00089 0.02123± 0.00090
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C.1 D0 → K−K+

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

35

40

45 - h0 D→ -B
-K+ K→ 0D

passed KLHVT
signal range
data

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

5

10

15

20

25

30 + h0 D→ +B
-K+ K→ 0D

passed KLHVT
signal range
data

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

5

10

15

20

25

30

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

5

10

15

20

25

30 - h0 D→ -B
-K+ K→ 0D

passed KLHVT
signal range
data

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

5

10

15

20

25

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

5

10

15

20

25 + h0 D→ +B
-K+ K→ 0D

passed KLHVT
signal range
data

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

5

10

15

20

25

30

35

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

5

10

15

20

25

30

35
- h0 D→ -B
-K+ K→ 0D

passed KLHVT
signal range
data

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

5

10

15

20

25

30

35

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

5

10

15

20

25

30

35
+ h0 D→ +B
-K+ K→ 0D

passed KLHVT
signal range
data

Figure C.1: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−K+ slice.
The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.2: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−K+ slice.
The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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C.2 D0 → π+π−
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Figure C.3: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → π+π− slice.
The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.4: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → π+π− slice.
The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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C.3 D0 → K0
S
π0
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Figure C.5: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sπ0 slice.

The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.6: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sπ0 slice.

The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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C.4 D0 → K0
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Figure C.7: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sω slice.

The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.8: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sω slice.

The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.9: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sφ slice.

The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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Figure C.10: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K0
Sφ slice.

The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right: B+

subsample. Color code in Table 10.4 on page 69.
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C.6 D0 → K−π+
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Figure C.11: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+

slice. The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample.
Right: B+ subsample. Color code in Table 10.4 on page 69.
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Figure C.12: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+

slice. The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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C.7 D0 → K−π+π0

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200
- h0 D→ -B

0π+π- K→ 0D
passed KLHVT
signal range
data

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200

220

 E (GeV)∆
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

0

20

40

60

80

100

120

140

160

180

200

220
+ h0 D→ +B

0π+π- K→ 0D
passed KLHVT
signal range
data

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

50

100

150

200

250

300

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

50

100

150

200

250

300
- h0 D→ -B

0π+π- K→ 0D
passed KLHVT
signal range
data

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

50

100

150

200

250

300

)2 (GeV/cESm
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

 )2
E

ve
nt

s 
/ (

 0
.0

00
8 

G
eV

/c

0

50

100

150

200

250

300
+ h0 D→ +B

0π+π- K→ 0D
passed KLHVT
signal range
data

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

50

100

150

200

250

300

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

50

100

150

200

250

300
- h0 D→ -B

0π+π- K→ 0D
passed KLHVT
signal range
data

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

50

100

150

200

250

300

F
-1.5 -1 -0.5 0 0.5 1 1.5

E
ve

nt
s 

/ (
 0

.0
6 

)

0

50

100

150

200

250

300 + h0 D→ +B
0π+π- K→ 0D

passed KLHVT
signal range
data

Figure C.13: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+π0

slice. The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample.
Right: B+ subsample. Color code in Table 10.4 on page 69.
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Figure C.14: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+π0

slice. The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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C.8 D0 → K−π+π+π−
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Figure C.15: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+π+π−

slice. The bachelor track h is required to pass the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69.
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Figure C.16: Projections of the CP+ final fit to B → D0h Run1-6 on-peak data, D0 → K−π+π+π−

slice. The bachelor track h is required to fail the KLHVeryTight selector. Left: B− subsample. Right:
B+ subsample. Color code in Table 10.4 on page 69. The mismatch in ∆E is due to a plotting issue.
The parameterization of the conditional ∆Eshift used to make the projection plots was optimized to
describe the D0 → K−π+π0 channel (see Section 10.3).
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