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Abstract

It is well known that the empirical copula process converges weakly to a centered Gaus-

sian field. Because the covariance structure of the limiting process depends on the partial

derivatives of the unknown copula several bootstrap approximations for the empirical copula

process have been proposed in the literature. We present a brief review of these procedures.

Because some of these procedures also require the estimation of the derivatives of the un-

known copula we propose an alternative approach which circumvents this problem. Finally

a simulation study is presented in order to compare the different bootstrap approximations

for the empirical copula process.

1 Introduction

The empirical copula Cn is the most famous and easiest nonparametric estimator for the copula C

of a random vector. It is well known that the standardized process
√
n(Cn −C) converges weakly

towards a Gaussian field GC with covariance structure depending on the unknown copula and

its derivatives, see e.g, Fermanian, Radulovic and Wegkamp (2004). Because these quantities are

usually difficult to estimate several authors have suggested to approximate the limit distribution

by bootstrap procedures. Fermanian et al. (2004) proposed a bootstrap procedure based on

resampling and proved its consistency. A wild bootstrap approach based on the multiplier method

was recently proposed by Rémillard and Scaillet (2009) and applied to the problem of testing the
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equality between two copulas. Recently Kojadinovic and Yan (2009) and Kojadinovic, Yan and

Holmes (2009) used the same method to construct a goodness-of-fit test for the parametric form

of a copula.

The present paper has two purposes. On the one hand our work is motivated by the fact that

the multiplier approach proposed by Rémillard and Scaillet (2009) still requires the estimation of

the partial derivatives of the unknown copula. For this reason we propose a modification of this

method, which avoids this estimation problem. On the other hand we investigate the finite sample

properties of the resampling bootstrap, a slightly modified version of the bootstrap proposed by

Rémillard and Scaillet (2009) and the new direct multiplier bootstrap proposed in this paper. In

particular it is demonstrated that despite the fact that the new multiplier method has the most

attractive theoretical properties and avoids the problem of estimating derivatives, the procedure

proposed in Rémillard and Scaillet (2009) yields the best results in most cases.

The remaining part of this note is organized as following. In Section 2 we summarize some basic

results on empirical copulas and state the different concepts of the bootstrap. We also introduce

the modified multiplier method and prove its consistency. Finally in Section 3 we present a

small simulation study, which illustrates the finite sample properties of the different bootstrap

approximations.

2 The empirical copula process and three bootstrap ap-

proximations

For the sake of brevity, we restrict ourselves to the case of bivariate copula, but all results can

easily be transferred to higher dimensions. Let X1, . . . , Xn be independent identically distributed

bivariate random vectors with continuous cumulative distribution function (cdf) F , marginal dis-

tribution functions F1 and F2 and copula C. Due to the well known theorem of Sklar [see e.g.

Nelsen (1998)] there is the relationship

C(u1, u2) = F (F−1 (u1), F
−
2 (u2)),(1)

where H−(u) = inf{t ∈ R|H(t) ≥ u} denotes the generalized inverse of a real function H. The

empirical copula as the simplest nonparametric estimator for C [going back to Deheuvels (1979)]

simply replaces the unknown terms in equation (1) by their empirical counterparts, that is

Cn(u) = Fn(F−n1(u1), F
−
n2(u2))
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where

Fn(x) = Fn(x1, x2) =
1

n

n∑
i=1

I{Xi1 ≤ x,Xi2 ≤ x2},

Fnp(xp) =
1

n

n∑
i=1

I{Xip ≤ xp} , p = 1, 2.

denote the corresponding empirical distribution functions. The asymptotic behavior of Cn was

studied in several papers, including Gänssler and Stute (1987), Ghoudi and Rémillard (2004) or

Tsukahara (2005) among others. For the sake of completeness we will state the result in the form

given in a recent paper of Fermanian, Radulovic and Wegkamp (2004). Throughout this paper  

denotes weak convergence in the metric space l∞([0, 1]2) of all uniformly bounded functions on the

unit square [0, 1]2.

Theorem 2.1. If the Copula C possesses continuous partial derivatives ∂pC (p = 1, 2) on [0, 1]2,

then the empirical copula process
√
n(Cn − C) converges weakly towards a Gaussian field GC,

αn =
√
n(Cn − C) GC ,

where the limiting process can be represented as

GC(u1, u2) = BC(u1, u2)− ∂1C(u1, u2)BC(u1, 1)− ∂2C(u1, u2)BC(1, u2)(2)

and BC denotes a centered Gaussian field with covariance structure

r̃(u1, u2, v1, v2) = Cov(BC(u1, u2),BC(v1, v2)) = C(u1 ∧ v1, u2 ∧ v2)− C(u1, u2)C(v1, v2).

Remark 2.2. The literature provides several similar nonparametric estimators for the copula.

For example, Genest et al. (1995) studied the rank-based estimator

C̄n(u) =
1

n

n∑
i=1

I{Fn1(Xi1) ≤ u1, Fn2(Xi2) ≤ u2}.

In the latter expression the marginal edfs Fnp are often replaced by their rescaled counterparts

F̂np = n
n+1

Fnp. Both modifications do not affect the asymptotic behavior, see Fermanian et al.

(2004). See also Chen and Huang (2007) or Omelka, Gijbels and Veraverbeke (2009) for a smoothed

version of this process.

3



The limiting Gaussian variable GC(u1, u2) depends on the unknown copula C and for this reason

it is not directly applicable for statistical inference. In the following discussion we will present

two known and one new bootstrap approximations for the distribution of the limiting process. We

begin with the usual bootstrap based on resampling , which was proposed in Fermanian et al.

(2004). To be precise let Wn = (Wn1, . . . ,Wnn) be multinomial distributed random vectors with

success probabilities (1/n, . . . , 1/n) and set

C#
n (u) = F#

n (F#−
n1 (u1), F

#−
n2 (u2)),

where

F#
n (x) =

1

n

n∑
i=1

WniI{Xi1 ≤ x1, Xi2 ≤ x2},

F#
np(xp) =

1

n

n∑
i=1

WniI{Xip ≤ xp}, p = 1, 2.

Finally define

αresn :=
√
n(C#

n − Cn)

as the bootstrap process based on resampling. For a precise statement of the asymptotic properties

of this process we denote by
P
 
W

weak convergence conditional on the data in probability as defined

by Kosorok (2008), that is αresn
P
 
W

GC if

sup
h∈BL1(l∞([0,1]2))

|EWh(αresn )− Eh(GC)| P−→ 0(3)

and

Eξh(αresn )∗ − Eξh(αresn )∗
P∗−→ 0 for every h ∈ BL1(B∞(R̄2

+)),(4)

where

BL1(l
∞([0, 1]2)) =

{
f : l∞([0, 1]2)→ R | ||f ||∞ ≤ 1, |f(β)− f(γ)| ≤ d(β, γ) ∀ γ, β ∈ l∞([0, 1]2)

}
is the class of all uniformly bounded functions that are Lipschitz continuous with constant smaller

one, and EW denotes the conditional expectation with respect to the weights Wn given the data

X1, . . . Xn. Moreover, h(αresn )∗ and h(αresn )∗ denote measurable majorants and minorants with

respect to the joint data, including the weights Wn. The following result has been established by

Fermanian et al. (2004), the proof follows along similar lines as the proof of Theorem 2.6 below.
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Theorem 2.3. Under the preceding notations and assumptions the bootstrap approximation C#
n ,

of the empirical copula yields a valid approximation of the limit variable GC in the sense that

αresn =
√
n(C#

n − Cn)
P
 
W

GC

in l∞([0, 1]2).

In a recent paper Rémillard and Scaillet (2009) considered the problem of testing the equality

between two copulas [see also Scaillet (2005)] and proposed a multiplier bootstrap to approximate

the distribution of the limiting process GC . To be precise let Z1, . . . , Zn be independent identically

distributed centered random variables with variance one, independent of the data X1, . . . , Xn,

which satisfy ||Z||2,1 =
∫∞
0

√
P (|Z| > x) dx < ∞. Rémillard and Scaillet (2009) defined the

bootstrap process

C∗n(u) =
1

n

n∑
i=1

Zi I{Fn1(Xi1) ≤ u1, Fn2(Xi2) ≤ u2}

and showed that C∗n approximates the Gaussian field BC , i.e.

(√
n(Fn − C),

√
n(C∗n − Z̄nCn)

)
 (BC ,B′C)(5)

in l∞([0, 1]2)2, where Z̄n = n−1
∑n

i=1 Zi and B′C is an independent copy of BC . Since one is

interested in an approximation of GC one is able to utilize identity (2) by estimating the partial

derivatives of the copula C. As proposed by Rémillard and Scaillet (2009) we use

∂̂1C(u, v) :=
Cn(u+ h, v)− Cn(u− h, v)

2h
,

∂̂2C(u, v) :=
Cn(u, v + h)− Cn(u, v − h)

2h
,

where h = n−1/2 → 0 [for a smooth version of these estimators see Scaillet (2005)]. Under continuity

assumptions Rémillard and Scaillet (2009) showed that these estimates are uniformly consistent.

To approximate the limiting process GC set

αpdmn (u1, u2) := βn(u1, u2)− ∂̂1C(u1, u2)βn(u1, 1)− ∂̂2C(u1, u2)βn(1, u2),(6)

where the process βn is defined by βn =
√
n(C∗n− Z̄nCn). The upper index pdm in (6) denotes the

fact that these authors are using estimates of the partial derivatives and a multiplier concept. By

Slutskys Lemma and the continuous mapping theorem one obtains the following result.
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Theorem 2.4. Under the preceding notations and assumptions we have

(√
n(Cn − C), αpdmn

)
 (GC ,G′C)

in l∞([0, 1]2)2, i.e. αpdmn approximates the limit distribution unconditionally.

Remark 2.5. In the finite sample study presented in the following section we use a slightly

modified version of this bootstrap procedure. To be precise let ξ1, . . . , ξn denote independent

identically distributed nonnegative random variables, independent of the data X1, . . . , Xn, with

expectation µ and finite variance τ 2 > 0 such that

||ξ||2,1 =

∫ ∞
0

√
P (|ξ| > x) dx <∞.

We define ξ̄n = n−1
∑n

i=1 ξi as the mean of ξ1, . . . , ξn and consider the multiplier statistics

C̃∗n(u) = F ∗n(F−n1(u1), F
−
n2(u2)),

where

F ∗n(x) =
1

n

n∑
i=1

ξi
ξ̄n
I{Xi1 ≤ x1, Xi2 ≤ x2}

If we standardize the ξi to Zi = (ξi − µ)τ−1 we observe that both approaches are indeed closely

related by

√
n
µ

τ
(C̃∗n − Cn) ≈

√
n
µ

ξ̄n
(C∗n − Z̄nCn).

C̃∗n approximates the Gaussian field BC conditionally on the data in the sense that

β̃n(u1, u2) =
√
n
µ

τ
(C̃∗n(u1, u2)− Cn(u1, u2))

P
 
ξ

BC(u1, u2)

in l∞([0, 1]2). Estimating the partial derivatives we can now consider a multiplier bootstrap ap-

proximation

α̃pdmn (u1, u2) := β̃n(u1, u2)− ∂̂1C(u1, u2)β̃n(u1, 1)− ∂̂2C(u1, u2)β̃n(1, u2)(7)

similar to the one in (6) that yields a conditional approximation of GC .

The final resampling concept considered in this section is new and combines both approaches in
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order to avoid the estimation of the derivatives. On the one hand it makes use of multipliers and

on the other hand it is also based on identity (1) and the functional delta method. To be precise

we consider multipliers as defined as in Remark 2.5 and define the statistic

C+
n (u) = F ∗n(F ∗−n1 (u1), F

∗−
n2 (u2)),

where

F ∗n(x) =
1

n

n∑
i=1

ξi
ξ̄n
I{Xi1 ≤ x1, Xi2 ≤ x2},

F ∗np(xp) =
1

n

n∑
i=1

ξi
ξ̄n
I{Xip ≤ xp}.

As before set

αdmn =
√
n
µ

τ
(C+

n − Cn),

We call this bootstrap the direct multiplier method, which is reflected by the the superscript dm

in its definition. The following result shows that the process αdmn yields a consistent bootstrap

approximation of the empirical copula process. Note that this approach avoids the estimation of

the partial derivatives of the copula.

Theorem 2.6. Under the preceding notations and assumptions we have

αdmn =
√
n
µ

τ
(C+

n − Cn)
P
 
ξ

GC

in l∞([0, 1]2).

Proof. First note that it is sufficient to consider only the case of independent identically distributed

random vectors with U [0, 1]-marginals and copula C. Indeed, let U1, . . . ,Un be independent iden-

tically distributed random vectors with cdf C and set

Gn(x) =
1

n

n∑
i=1

I{Ui1 ≤ x,Ui2 ≤ x2},

Gnp(xp) =
1

n

n∑
i=1

I{Uip ≤ xp} , p = 1, 2.

Clearly,

Fn(x)
D
= Gn(F1(x1), F2(x2)),

Fnp(xp)
D
= Gnp(Fp(xp)) , p = 1, 2
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and from the definition of the generalized inverse we conclude

F−np(up)
D
= F−p (G−np(up)) , p = 1, 2,

so that

Cn(u)
D
= Gn(G−n1(u1), G

−
n2(u2))

as asserted. An analogue result holds for C+
n and for this reasoning we may assume in the following

that X1, . . . , Xn are independent identically distributed distributed according to the cdf C. Next,

note that Theorem 2.6 in Kosorok (2008) yields

√
n(Fn − C)  BC ,

√
n
µ

τ
(F ∗n − Fn)

P
 
ξ

BC .

For a distribution function H on [0, 1]2 let H1(x1) = H(x1,∞) and H2(x2) = H(∞, x2), denote

the marginal distributions, then the mapping

Φ : H 7→ H(H−1 , H
−
2 )(8)

is Hadamard differentiable [see Lemma 2 in Fermanian et al. (2009)]. Moreover, Cn = Φ(Fn) and

C = Φ(C), and consequently the functional delta method [see Kosorok (2008)] yields

√
n
µ

τ
(C∗n − Cn) =

√
n
µ

τ
(Φ(F ∗n)− Φ(Fn))

P
 
ξ

Φ′C(BC) = GC ,

where the derivative of the map Φ at the point C is given by

Φ′C(H)(u1, u2) = H(u1, u2)− ∂1C(u1, u2)H(u1,∞)− ∂2C(u1, u2)H(∞, u2).

This proves the assertion of Theorem 2.6.

3 Finite sample properties

In this section we present a small comparison of the finite sample properties of the three bootstrap

approximations given in the previous section. For the sake of brevity we consider the Clayton

copula with parameter θ = 1 (corresponding to Kendall’s-τ = 1/3), but other copulas yield similar

results. The sample size in our study is either n = 100 or n = 200.
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In our first example we show a comparison of the different resampling methods studying their

covariances. More precisely, we chose four points
{(

i
3
, j
3

)
, i, j = 1, 2

}
in the unit square and show

in the first row of Table 1 and 2 the true covariances of the limiting process. The second rows

in the two tables show the simulated covariances of the the process
√
n(Cn − C) on the basis of

106 simulation runs (note that this distribution cannot be used in applications because the “true”

copula is usually not known). We observe a rather good approximation of the covariances of

the limiting process by the empirical copula process αn. Rows 3 - 5 of Table 1 and 2 show the

covariances obtained by the bootstrap approximation. These covariances are based on the average

of 1000 simulation runs, where in each run the covariance is estimated on the basis of B = 1000

bootstrap replications. The corresponding results for the mean squared errors are shown in Table 3

and 4. The multipliers for the partial derivative and the direct multiplier bootstrap are simulated

from two-point distributions with variance 1. We have also investigated other multipliers but it

turns out that the two-point distributions with variance 1 yield the best results (the other results

are not presented here for the sake of brevity).

The results of Table 1 - 4 show that the partial derivative multiplier method yields the best approx-

imations in almost all cases, despite the fact that it requires the estimation of the partial derivatives

of the copula. The advantages of this approach are particulary visible in the estimation of the vari-

ances. The approximations based on the resampling bootstrap and the multiplier bootstrap are

similar but less accurate than the results obtained by the partial derivative method. It is also

worthwhile to mention that the pdm-method needs slightly more computational time to simulate

a bootstrap sample, since it requires evaluation of the multiplier process in the boundary-points.

In our second example we investigate the approximation of the 90% and 95% quantile of the

Kolmogorov-Smirnov statistic

Kn = sup
x∈[0,1]2

|fn(x)|(9)

and the Crámer van Mises statistic

Ln =

∫
[0,1]2

f 2
n(x) dx.(10)

The corresponding results are presented in Table 5, where the first and fifth row show the quantiles

of the “true” process fn = αn, which are calculated by 106 simulation runs. For the bootstrap

methods the quantiles are estimated by 1000 simulation runs with B = 1000 Bootstrap-replications

in each scenario. We observe again that the partial derivatives multiplier method yields the best

approximation of the quantiles, while the resampling bootstrap and the direct multiplier bootstrap

usually give too large quantiles, in particular for sample size n = 100. A similar observation for
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(1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)

True (1/3,1/3) 0.0486 0.0202 0.0202 0.0100
(1/3,2/3) 0.0338 0.0093 0.0185
(2/3,1/3) 0.0338 0.0185
(2/3,2/3) 0.0508

αn (1/3,1/3) 0.0489 0.0198 0.0198 0.0097
(1/3,2/3) 0.0334 0.0089 0.0181
(2/3,1/3) 0.0333 0.0180
(2/3,2/3) 0.0510

αpdmn (1/3,1/3) 0.0527 0.0205 0.0205 0.0093
(1/3,2/3) 0.0361 0.0092 0.0188
(2/3,1/3) 0.0360 0.0188
(2/3,2/3) 0.0554

αresn (1/3,1/3) 0.0619 0.0244 0.0236 0.0094
(1/3,2/3) 0.0460 0.0091 0.0211
(2/3,1/3) 0.0450 0.0208
(2/3,2/3) 0.0694

αdmn (1/3,1/3) 0.0627 0.0251 0.0248 0.0112
(1/3,2/3) 0.0456 0.0119 0.0213
(2/3,1/3) 0.0451 0.0233
(2/3,2/3) 0.0711

Table 1: Sample covariances for the Clayton Copula with θ = 1 and sample size n = 100. The first
and second rows show the true covariances and the covariances of the empirical copula process,
while rows 3 - 5 show the corresponding results for the bootstrap approximations.

the partial multiplier derivative and the resampling method has been made by Scaillet (2005) in

the context of testing hypothesis regarding the copula.

On the basis of the results presented in this study and further simulations (which are not shown

for the sake of brevity) we conclude our investigation with the statement that, despite the fact

that the partial derivatives multiplier bootstrap requires the estimation of the partial derivatives,

it outperforms the resampling and the direct multiplier bootstrap.

Acknowledgements. This work has been supported in part by the Collaborative Research Cen-

ter “Statistical modeling of nonlinear dynamic processes” (SFB 823) of the German Research

Foundation (DFG).
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(1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)

True (1/3,1/3) 0.0486 0.0202 0.0202 0.0100
(1/3,2/3) 0.0338 0.0093 0.0185
(2/3,1/3) 0.0338 0.0185
(2/3,2/3) 0.0508

αn (1/3,1/3) 0.0492 0.0203 0.0203 0.0100
(1/3,2/3) 0.0339 0.0093 0.0185
(2/3,1/3) 0.0339 0.0185
(2/3,2/3) 0.0508

αpdmn (1/3,1/3) 0.0513 0.0203 0.0201 0.0092
(1/3,2/3) 0.0356 0.0087 0.0184
(2/3,1/3) 0.0355 0.0185
(2/3,2/3) 0.0537

αresn (1/3,1/3) 0.0583 0.0228 0.0228 0.0098
(1/3,2/3) 0.0413 0.0092 0.0199
(2/3,1/3) 0.0417 0.0202
(2/3,2/3) 0.0609

αdmn (1/3,1/3) 0.0577 0.0226 0.0227 0.0104
(1/3,2/3) 0.0408 0.0103 0.0210
(2/3,1/3) 0.0412 0.0213
(2/3,2/3) 0.0634

Table 2: Sample covariances for the Clayton Copula with θ = 1 and sample size n = 200. The first
and second rows show the true covariances and the covariances of the empirical copula process,
while rows 3 - 5 show the corresponding results for the bootstrap approximations.

(1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)

αpdmn (1/3,1/3) 0.8887 0.5210 0.5222 0.3716
(1/3,2/3) 1.0112 0.1799 0.2988
(2/3,1/3) 0.9899 0.2818
(2/3,2/3) 0.6250

αresn (1/3,1/3) 2.2612 0.6640 0.5424 0.3447
(1/3,2/3) 2.3702 0.1781 0.3554
(2/3,1/3) 2.1336 0.3554
(2/3,2/3) 3.9469

αdmn (1/3,1/3) 2.6734 0.7566 0.7067 0.3037
(1/3,2/3) 2.3636 0.2461 0.5189
(2/3,1/3) 2.2544 0.5324
(2/3,2/3) 4.6142

Table 3: Mean squared error (multiplied with 105) of the different estimates for the covariance.
The underlying copula is the Clayton copula with θ = 1 and the sample size is n = 100.
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(1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)

αpdmn (1/3,1/3) 0.4595 0.2673 0.2798 0.1961
(1/3,2/3) 0.5211 0.1069 0.1577
(2/3,1/3) 0.5092 0.1681
(2/3,2/3) 0.2992

αresn (1/3,1/3) 1.3820 0.3476 0.3715 0.2102
(1/3,2/3) 1.0414 0.1133 0.1940
(2/3,1/3) 1.2112 0.1993
(2/3,2/3) 1.614

αdmn (1/3,1/3) 1.2682 0.3602 0.3471 0.2083
(1/3,2/3) 1.0394 0.1101 0.2484
(2/3,1/3) 1.0544 0.2642
(2/3,2/3) 1.9483

Table 4: Mean squared error (multiplied with 105) of the different estimates for the covariance.
The underlying copula is the Clayton copula with θ = 1 and the sample size is n = 200.

n fn 90% (L2) 95% (L2) 90% (KS) 95% (KS)
100 αn 0.04593 0.05722 0.59254 0.65000

αpdmn 0.04870 0.06086 0.62042 0.68611
αresn 0.07060 0.08700 0.80000 0.80000
αdmn 0.07402 0.09241 0.76154 0.83721

200 αn 0.04544 0.05660 0.58925 0.64829
αpdmn 0.04715 0.05867 0.61236 0.67528
αresn 0.06030 0.07425 0.70711 0.77782
αdmn 0.06066 0.07507 0.70192 0.77030

Table 5: Sample quantiles of the Crámer van Mises statistic (10) and the Kolmogorov-Smirnov
statistic (9) for the Clayton copula with parameter θ = 1.
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