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LAW OF THE ITERATED LOGARITHM FOR U-STATISTICS OF
WEAKLY DEPENDENT OBSERVATIONS

HEROLD DEHLING AND MARTIN WENDLER

Abstract. The law of the iterated logarithm for partial sums of weakly dependent pro-
cesses was intensively studied by Walter Philipp in the late 1960s and 1970s. In this paper,
we aim to extend these results to nondegenerate U -statistics of data that are strongly mixing
or functionals of an absolutely regular process.

Dedicated to the memory of Professor Walter Philipp (1936–2006)

1. Introduction

Let (Tn)n≥1 be a sequence of random variables. We say that (Tn)n≥1 satisfies the law of
the iterated logarithm (LIL), if Var(Tn) > 0 for almost all n ≥ 1 and

lim sup
n→∞

Tn√
2 Var(Tn) log log Var(Tn)

= 1,

lim inf
n→∞

Tn√
2 Var(Tn) log log Var(Tn)

= −1

almost surely (a.s.). The LIL was originally established for partial sums of independent
identically distributed random variables by Khintchine in 1927 [22]. Hartman & Wintner [16]
were able to prove Khintchine’s result under the optimal condition that the random variables
have mean zero and finite second moments. Together with the law of large numbers and the
central limit theorem, the LIL is considered as one of the three classical limit theorems in
probability theory.

In a series of papers, starting in 1967 ([25],[26],[27],[29]), Walter Philipp investigated
the LIL for partial sums of weakly dependent processes. Independently, Iosifescu (1968
[19]) and Reznick (1968 [31]) studied the same problem; Oodaira & Yoshihara (1971 [24])
weakened their conditions. In [25] Walter Philipp studied the LIL for stationary processes
with finite moments of all order satisfying some multiple mixing condition. In his proof
Walter Philipp established sharp bounds on the (2p)-th moments of partial sums and classical
techniques such as the Borel-Cantelli lemma and maximal inequalities. In [27] Walter Philipp
investigated the LIL for ψ-mixing processes with finite 4-th moment. The proof is based on
a meta-theorem, stating that ’the LIL holds for any process for which the Borel-Cantelli
lemma, the central limit theorem with a reasonably good remainder and a certain maximal
inequality are valid.’ This observation provided a guiding principle for many of the early
proofs of the LIL for dependent processes.

Walter Philipp’s interest in dependent processes arose from specific applications to anal-
ysis and probabilistic number theory. In all of his work, Walter Philipp had very concrete
applications in mind to which he could apply his theoretical results. In a joint paper with
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2 HEROLD DEHLING AND MARTIN WENDLER

Stackelberg [29], Walter Philipp established the LIL for the denominator of the n-th approx-
imand in the continued fraction expansion. The relation to weakly dependent processes is
provided by the fact that the digits in the continued fraction expansion form a ψ-mixing
sequence. In [26], Walter Philipp investigated dynamical systems arising from expanding
piecewise linear transformations of the unit interval; the map T (x) = 2x [ mod 1] being a
special example. These processes can be shown to have a representation as functionals of an
absolutely regular process.

In [26], Walter Philipp considered uniform LIL, i.e. the LIL for the supremum of partial
sums of f(Xi)−E(f(X1)), where f ranges over a class of functions. As an example, Walter
Philipp could study the discrepancy of sequences arising from expanding piecewise linear
maps. This paper marked the beginning of Walter Philipp’s interest in the LIL for empirical
processes and for Banach space valued processes. In [28], Walter Philipp proved a Strassen-
type functional LIL for the empirical process of data that have a representation as a functional
of a strongly mixing process. In a joint paper with Kaufman [21], Walter Philipp studied
uniform LIL for classes of Lipschitz functions, among others for processes of the form Xk =
{nk ω}, ω ∈ [0, 1], where (nk)k≥1 is a lacunary sequence. The study of the uniform LIL
leads directly to Banach space valued random variables. The first LIL for weakly dependent
Banach space valued processes was proved by Philipp & Kuelbs [23] in the case of uniformly
mixing processes. Specializing to the case of Hilbert space valued random variables, Dehling
& Philipp [8] extended this to strongly mixing processes.

In the early 1970s, motivated by Strassen’s proof of the functional LIL, Walter Philipp
realized that almost sure invariance principles were ideal tools for proofs of the LIL. In
1974, in an AMS memoir coauthored with Stout [30], Walter Philipp established almost sure
invariance principles for a large class of weakly dependent processes, including functionals of
absolutely regular processes. Philipp & Stout were among the first to recognize the power of
the martingale approximation technique, invented in 1969 by Gordin [14]. Finally, in their
seminal 1979 paper [3], Berkes & Philipp invented a new technique for proving almost sure
invariance principles that can be used also for vector valued processes. The Berkes-Philipp
approximation technique has been the basis of most work on invariance principles and the
LIL in the following decades.

Many other authors have considered the LIL for partial sums of weakly dependent pro-
cesses. Berkes (1975 [2]) treats the LIL for trigonometric functions, Dabrowski (1985 [6])
establishes the LIL for associated random variables, Dabrowski & Dehling (1988 [7]) extended
this to weakly associated random vectors. For partial sums of strongly mixing processes, the
sharpest results presently available are due to Rio (1995 [32]).

In the present paper, we investigate the LIL for bivariate U -statistics of weakly dependent
data. Given a symmetric, measurable function h : R2 → R and a stationary stochastic
process, we define the U -statistic with kernel h by

Un(h) =
1(
n
2

) ∑
1≤i<j≤n

h(Xi, Xj).

Thus, Un(h) is the arithmetic mean of the values h(Xi, Xj), 1 ≤ i < j ≤ n, and in that sense
U -statistics are generalized means. Many sample statistics can be written as a U -statistic,
at least asymptotically, and thus U -statistics are very important in statistical theory. U -
statistics have been introduced independently by Halmos (1946 [15]) and Hoeffding (1948
[17]), in the case of i.i.d. observations. Halmos observed that Un(h) is an unbiased estimator



LIL FOR U -STATISTICS 3

of Eh(X1, X2), and in fact the minimum variance unbiased estimator in nonparametric
models. Hoeffding showed that Un(h) is asymptotically normal.

Example 1.1. Let h (x1, x2) = |x1 − x2| . Then the corresponding U-statistic is

Un (h) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj| ,

known as Gini’s mean difference.

Example 1.2. Let h (x1, x2) =
∫ 1

0

(
1{x1≤t} − t

) (
1{x2≤t} − t

)
dt. This leads to the following

U-statistic:

Un (h) =
1(
n
2

) ∑
1≤i<j≤n

h (Xi, Xj)

=
1

n (n− 1)

(
n∑

i=1

n∑
j=1

∫ 1

0

(
1{Xi≤t} − t

) (
1{Xj≤t} − t

)
dt−

n∑
i=1

h (Xi, Xi)

)

=
n

n− 1

∫ 1

0

(
F̂n (t)− t

)2

dt− 1

n (n− 1)

n∑
i=1

h (Xi, Xi)

:=
n

n− 1
Vn −

1

n (n− 1)

n∑
i=1

h (Xi, Xi)

Vn is called Cramer-von Mises-Statistik and can be used for testing the hypothesis that Xn

has a uniform distribution on [0, 1] as an alternative to the Kolmogorow-Smirnoff-statistic

Kn := supt∈[0,1] |F̂n (t)− t| (also called discrepancy).

Example 1.3. Let be t ∈ R and h (x1, x2) = 1 1
2
(x1+x2)≤t. This kernel is related to the

Hodges-Lehmann-estimator

Hn = median
Xi +Xj

2
,

as we will see later.

The key tool in the analysis of U -statistics is the Hoeffding decomposition, introduced
originally by Hoeffding (1948),

Un(h) = θ +
2

n

n∑
i=1

h1(Xi) + Un(h2)

Here, θ, h1(x) and h2(x, y) are defined by

θ := Eh(X, Y )

h1(x) := Eh(x, Y )− θ

h2(x, y) := h(x, y)− h1(x)− h1(y)− θ,

where X, Y are independent random variables with the same distribution as X1. The lin-
ear term in the Hoeffding decomposition, 2

n

∑n
i=1 h1(Xi), can be treated by standard limit

theorems for partial sum processes. Note that, by definition, h1(Xi) are centered (i.e. mean
zero) random variables. The kernel h2(x, y) has the property that for every x ∈ R

Eh2(x, Y ) = 0;
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kernels with this property are called degenerate. It turns out that Un(h2) is generally stochas-
tically dominated by the linear term, and thus as a result the asymptotic behavior of Un(h)
is the same as that of 2

n

∑n
i=1 h1(Xi). Depending on the type of limit theorem and the

conditions imposed on the process (Xi)i≥1, this can be more or less difficult to establish.
For degenerate U -statistics of i.i.d. observations, Dehling, Denker and Philipp (1985 [10])

and Dehling (1989 [9]) established the LIL. They could show that

lim sup
n→∞

1

n log log n

∑
1≤i<j≤n

h2(Xi, Xj) = ch2 ,

where ch2 is the largest eigenvalue of the integral operator with kernel h2. This was extended
to mixing random variables by Kanagawa and Yoshihara [20] under the condition that the
eigenvalues of h2 decreas quickly, that is hard to verify in practice.

Recall that strong mixing coefficients of a stationary stochastic process (Xn)n∈N are defined
by

α(k) := sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Fn

1 , B ∈ F∞
n+k, n ∈ N

}
where F l

a denotes the σ−field generated by the random variables Xa, . . . , Xl.. For a detailed
description of the various mixing conditions see Doukhan [13] and Bradley [5]. The absolute
regularity coefficients are defined as

β(k) := sup
n∈N

E sup{
∣∣P (A/Fn

−∞)− P (A)
∣∣ : A ∈ F∞

n+k},

We say that (Xn)n∈N is strongly mixing if limk→∞ α(k) = 0 and absolutely regular if
limk→∞ β(k) = 0. Absolute regularity is a stronger assumption than strong mixing, as
α (k) ≤ β (k).

We will consider strongly mixing sequences and functionals of absolutely regular sequences.
Let (Zn)n∈Z be a stationary sequence of random variables satisfying the absolute regularity
condition β (k) → 0 as k → ∞. We call a sequence (Xn)n∈N a one-sided functional of
(Zn)n∈N if there is a measurable function f : RN → R such that

Xn = f((Zn+k)k≥0).

In addition we will assume that (Xn)n∈N satisfies the r-approximation condition:

Definition 1.4. Let be r ≥ 1. We say that (Xn)n∈Z satisfies the r-approximating condition
with constants (an)n∈N if∥∥X1 − E(X1/F l

0)
∥∥

r
≤ al l = 0, 1, 2 . . .

where liml→∞ al = 0 and F l
0 is the σ− field generated by Z0, . . . , Zl.

Example 1.5. Let be (Zn)n∈N be independent with P [Xn = 1] = P [Xn = 0] = 1
2

and

Xn =
∞∑

k=n

1

2k−n+1
Zk.

(Xn)n∈N can be interpreted as data from a dynamical system, where xn+1 = T (Xn) :=
2Xn mod 1. (Xn)n∈N is not strong mixing, but this sequence satisfies the r-approximating
condition for every r ≥ 1, as∥∥X1 − E(X1/F l

0)
∥∥

r
=

∥∥∥∥∥
∞∑

k=l+1

1

2k+1
Zk

∥∥∥∥∥
r

≤
∞∑

k=l+1

1

2k+1
=

1

2l
=: al
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U -statistic have not only been studied for i.i.d. data, but also under various mixing
conditions. While under independence, the summands of Un (h2) are uncorrelated, they
can be correlated if the random variables (Xn)n∈N are dependent, so one has to establish
generalized covariance inequalities to derive moment bounds for Un (h2).

Under the strong assumption of ?-mixing and the existence of 4th moments, Sen [33]
showed that

√
nUn (h2) → 0 a.s . Yoshihara [35] weakened this to absolutely regular pro-

cesses. Convergence to zero in probability of
√
nUn (h2) was proved by Denker and Keller

[12] for functionals of absolutely regular processes and by Dehling and Wendler [11] for
strongly mixing sequences. The convergence of

√
nUn (h2) together with the Central Limit

Theorem for partial sums can be used to prove the asymptotic normality of nondegenerate
U -statistics.

In 1961, Hoeffding showed that Un (h2) → 0 a.s. for independent observations. If h is
continuous, this holds under the minimal assumption that (Xn)n∈N is ergodic, as Aaronson
et. al. [1] have proved. We give better rates of convergence for absolutely regular sequences,
strong mixing sequences and functionals of absolutely regular sequences. We will apply
moment inequalities and the method of subsequences. Together with the LIL for partial
sums, this will imply LIL for U -statistics.

For independent data, second moments of the kernel are required. For mixing data, one
needs higher moments:

Definition 1.6. Let (Xn)n∈N be a stationary process A kernel has uniform m-moments, if
or all k ∈ N0 ∫∫

|h (x1, x2)|m dF (x1) dF (x2) ≤M∫
|h (x1, xk)|m dP (x1, xk) ≤M

In the case of strong mixing and functionals of absolutely regular processes, one needs also
a continuity condition. We consider the P -Lipschitz condition (see Dehling, Wendler [11])
and the variation condition introduced by Denker and Keller [12]:

Definition 1.7. (1) A kernel h is called P -Lipschitz-continuous with constant L > 0 if

E
[
|h (X, Y )− h (X ′, Y )|1{|X−X′|≤ε}

]
≤ Lε

for every ε > 0, every pair X and Y with the common distribution PX1,Xk
for a k ∈ N

or PX1 × PX1 and X ′ and Y also with one of these common distributions.
(2) A kernel h satisfies the variation condition, if there is a constant L such that

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

|h (x, y)− h (x′, y′)|

]
≤ Lε,

where X, Y have the common distribution PX1 × PX1.

Example 1.8. Let h (x1, x2) = |x1 − x2| . As this kernel is Lipschitz-continuous, it is clear
that it satisfies the P -Lipschitz-condition and the variation condition.
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Example 1.9. Let h (x1, x2) =
∫ 1

0

(
1{x1≤t} − t

) (
1{x2≤t} − t

)
dt. This kernel is uniformly

bounded by 1 and P -Lipschitz-continuous with constant 1, as

E
[
|h (X, Y )− h (X ′, Y )|1{|X−X′|≤ε}

]
=E

[∣∣∣∣∫ 1

0

(
1{X≤t} − 1{X′≤t}

) (
1{Y≤t} − t

)
dt

∣∣∣∣1{|X−X′|≤ε}

]
≤E

[∣∣∣∣∫ 1

0

(
1{X≤t} − 1{X′≤t}

)
dt

∣∣∣∣1{|X−X′|≤ε}

]
= E

[
|X −X ′|1{|X−X′|≤ε}

]
≤ ε.

Example 1.10. Let be t ∈ R and h (x1, x2) = 1 1
2
(x1+x2)≤t. Then

sup
‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

∣∣∣1 1
2
(x+y)≤t − 1 1

2
(x′+y′)≤t

∣∣∣ =

{
1 if X+Y

2
∈
(
t− ε√

2
, t+ ε√

2

]
0 else

If X1 has a bounded density, then the density f 1
2
(X+Y ) of 1

2
(X + Y ) is also bounded, where

X, Y are independent random variables with the same distribution as X1. Then

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

|h (x, y)− h (x′, y′)|

]

≤ P

[
X + Y

2
∈
(
t− ε√

2
, t+

ε√
2

]]
≤
(√

2 sup
t∈R

f 1
2
(X+Y )

)
· ε

and h satisfies the variation condition.

Remark. The two continuity conditions are close in spirit. The main difference is that
one has to consider all common distributions of X, Y for checking P -Lipschitz continuity
(that can be difficult), but only the replacement of one of the arguments of h, while in the
variation condition, both arguments of h are replaced, but only the case that X and Y are
independent has to be considered.

2. Main Results

Theorem 1. Let (Xn)n∈N be a stationary process and h2 a degenerate, centered kernel with
uniform (2 + δ)-moments for some δ > 0. Let τ ≥ 0 be such that one of the following three
conditions hold:

(1) (Xn)n∈N is absolutely regular and
∑n

k=0 kβ
δ

2+δ (k) = O (nτ )
(2) (Xn)n∈N is strongly mixing, E |X1|γ < ∞ for a γ > 0, h2 satisfies the P -Lipschitz-

continuity or the variation condition and
∑n

k=0 kα
2γδ

3γδ+δ+5γ+2 (k) = O (nτ )
(3) (Xn)n∈N is a 1−approximating functional of an absolutely regular process and h2

satisfies the P -Lipschitz-continuity or the variation condition. For αL =
√

2
∑∞

i=L ai:∑n
k=0 k

(
β

δ
2+δ (k) + α

δ
2+δ

k

)
= O (nτ )

Then:

(1)
n1− τ

2

log
3
2 n log log n

Un (h2)
a.s.−−→ 0
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Remark. Since β(k) ≤ 1, condition (1) in Theorem 1 is always satisfied with some τ ∈ [0, 2].
In the extreme case when τ = 2, the conclusion of Theorem 1 is trivial, since Un(h2) → 0 by
the U -statistic ergodic theorem for absolutely regular processes, established by Aaronson et

al. [1]. In the other extreme case τ = 0, i.e. when the series
∑∞

k=1 k β
δ

2+δ (k) converges, the
conclusion of Theorem 1 is close to the optimal rate which follows in the independent case
from the LIL of Dehling, Denker and Philipp.

Theorem 2. Let (Xn)n∈N be a stationary process and h a centered kernel with uniform
2 + δ-moments for some δ > 0. Let be ε > 0 such that one of the following three conditions
hold:

(1) (Xn)n∈N is absolutely regular and
∑n

k=0 kβ
δ

2+δ (k) = O (n1−ε)
(2) (Xn)n∈N is strongly mixing, E |X1|γ < ∞ for a γ > 0, h2 satisfies the P -Lipschitz-

continuity or the variation condition and
∑n

k=0 kα
2γδ

3γδ+δ+5γ+2 (k) = O (n1−ε)
(3) (Xn)n∈N is a 1−approximating functional with constants (an)n∈N of an absolutely

regular process with mixing coefficients safisfying β (n) = O
(
n−

168δ+336
δ

)
and for αL =√

2
∑∞

i=L ai:
∑n

k=0 kα
δ

2+δ

k = O (n1−ε). h2 satisfies the P -Lipschitz-continuity or the
variation condition, (h1 (Xn))n∈N is 2+δ-approximating with constants (bn)n∈N, such

that bn = O
(
n−

2δ+7
δ

)
If additionally σ2

∞ := Var [h1 (X0)] + 2
∑∞

i=1 Cov [h1 (X0) , h1 (Xi)] > 0, then the LIL holds
for Tn =

∑
1≤i<j≤n h (Xi, Xj).

3. An application to robust estimation

The classical approach to estimate the location of a sequence of random variables (Xn)n∈N
is based on the sample mean X̄ = 1

n

∑n
i=1Xi, but this estimator is not robust in the sense

that a single extreme value can have a big influence on X̄. The median of X1, . . . , Xn is
robust to outliers, but has a low efficiency if the Xn are standard normal. As a compromise,
one can use a trimmed mean or the Hodges-Lehann estimator

Hn = median

{
Xi +Xj

2

∣∣1 ≤ i < j ≤ n

}
.

The Hodges-Lehmann estimator can be expressed with the generalized inverse of the empir-
ical U -distribution function

Hn = U−1
n

(
1

2

)
:= inf

{
t ∈ R

∣∣Un (t) ≥ 1

2

}
,

with

Un (t) :=
2

n(n− 1)

∑
1≤i<j≤n

1 1
2
(Xi+Xj)≤t.

Let U (t) = E
[
1 1

2
(X+Y )≤t

]
, where X and Y are independent. For functionals of absolutely

regular processes, Borovkova, Burton and Dehling [4] have proved the convergence of the
emperical U -process (√

n (Un (t)− U (t))
)

t∈R
to a Gaussian process. By a theorem of Vervaat [34], the same holds for the inverse process
(
√
n(U−1

n (t) − EU−1
n (t)))t, so Hn is asymptotically normal. Our aim is to prove the LIL
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for Hn. First note that Hn is smaller than t0 = U−1
(

1
2

)
, iff Un (t0) is bigger than 1

2
. This

converse behavior motivates a generalized Bahadur representation

(2) Hn = t0 −
Un (t0)− U (t0)

U ′ (t0)
+Rn,

where we need to assume that U ′ (t0) > 0 (so U (t) is invertible in a neighborhood and
U (t0) = 1

2
). The following short calculation shows that the remainder Rn is related to the

inverse of the empirical U -process centered in (t0, Un (to)) denoted by Zn:

Zn (x) := (Un (·+ t0)− Un (t0))
−1 (x)− x

U ′ (t0)
= inf

{
s
∣∣Un (s+ t0)− Un (t0) ≤ x

}
− x

U ′ (t0)

= inf
{
s
∣∣Un (s) ≤ x+ Un (t0)

}
− x

U ′ (t0)
− t0 = U−1

n (x+ Un (t0))−
x

U ′ (t0)
− t0

⇒Zn (U (t0)− Un (t0)) = Hn − t0 +
Un (t0)− U (t0)

U ′ (t0)
= Rn

By Theorem 2, U (t0)−Un (t0) = O

(√
log log n

n

)
a.s., so if we can show that for any constant

C

(3) sup
|t|≤C

√
log log n

n

(Un (t0 + t)− Un (t0)− U (t0 + t) + U (t0)) = o

(√
log log n

n

)
a.s.

then by a Theorem of Vervaat [34]

sup
|t|≤C

√
log log n

n

Zn (t) = o

(√
log log n

n

)
a.s.

⇒ Rn = Zn (U (t0)− Un (t0)) = o

(√
log log n

n

)
a.s.

The LIL for Hn follows then easily from the Bahadur representation (2) and the LIL for
Un (t0). We will only sketch the proof of (3). Un (t) and U (t) are nondecreasing, so for
t1 < t < t2:

|Un (t)− U (t)| ≤ max {|Un (t1)− U (t)| , |Un (t2)− U (t)|}
≤ max {|Un (t1)− U (t1)| , |Un (t2)− U (t2)|}+ (U (t2)− U (t1))

Furthermore, U (t) is differentiable in t0, so (U (t2)− U (t1)) = O (t2 − t1) as t1, t2 → t0 and
for every ε > 0 we can find a K such that

sup
|t|≤C

√
log log n

n

√
n

log log n
Zn (t) ≤ max

|k|≤K

√
n

log log n
Zn

(
kC

K

√
log log n

n

)
+ ε.

Zn

(
kC
K

√
log log n

n

)
is a U -statistic with kernel 1 1

2
(Xi+Xj)∈

“
t0,t0+ kC

K

√
log log n

n

i, which has decaying

moments. Similar to Theorem 2, one can show that Zn

(
kC
K

√
log log n

n

)
= o

(√
log log n

n

)
a.s.

if the mixing assumption (3) of Theorem 2 holds.
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4. Preliminary results

To control the moments of degenerate U -statistics, we need bounds for the covariance.
In the following three lemmas, let m = max

{
i(2) − i(1), i(4) − i(3)

}
, where {i1, i2, i3, i4} ={

i(1), i(2), i(3), i(4)
}

and i(1) ≤ i(2) ≤ i(3) ≤ i(4):

Lemma 4.1 (Yoshihara [35]). Let h2 be a centered, degenerate kernel with uniform (2 + δ)-
moments for a δ > 0. If (Xn)n∈N ist absolutely regular, then there is a constant C such
that

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ (m) .

Lemma 4.2. Let h2 be a centered, degenerate that satisfies the P -Lipschitz-continuity or
the variation condition and has uniform (2 + δ)-moments for a δ > 0, (Xn)n∈N a stationary
sequence of random variables. If there is a γ > 0 with E |Xk|γ < ∞, then there exists a
constant C, such that the following inequality holds:

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| ≤ Cα
2γδ

3γδ+δ+5γ+2 (m)

This lemma is due to Dehling, Wendler [11] for P -Lipschitz-continuous kernels. The proof
under the variation condition is very similar and hence omitted.

Lemma 4.3. Let h2 be a centered, degenerate that satisfies the P -Lipschitz-continuity or
the variation condition and has uniform (2 + δ)-moments for a δ > 0, and (Xn)n∈N a 1-
approximating functional of an absolutely regular process with constants al. Define αL as
αL =

√
2
∑∞

i=L ai and β (j) as the mixing coefficient of (Zn). Then:

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ

(
bm

3
c
)

+ Cα
δ

2+δ

bm
3
c

Proof. First, let h2 be P -Lipschitz-continuous. For simplicity, we consider only the case
O = i1 < i2 < i3 < i4 and m = i2 − i1 ≥ i4 − i3. With Corollary 2.17 of Borovkova et.
al. [4], there exists sequences (X ′

n)n∈Z and (X ′′
n)n∈Z with the same distribution as (Xn)n∈Z,

such that

(1) (X ′′
n)n∈Z is independent of (Xn)n∈Z,

(2) P
[∑∞

i=m |Xi −X ′
i| > αbm

3
c

]
≤ αbm

3
c + β

(
bm

3
c
)
,

(3) P
[∑∞

i=0

∣∣X ′
−i −X ′′

−i

∣∣ > αbm
3
c

]
≤ αbm

3
c.

As h2 is degenerated and X ′′
i1

and (Xi2 , Xi3 , Xi4) are independent, we have that

E
[
h2

(
X ′′

i1
, Xi2

)
h2 (Xi3 , Xi4)

]
= 0,

so we can now write

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]|
=
∣∣E [h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, Xi2

)
h2 (Xi3 , Xi4)

]∣∣
≤
∣∣E [h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)]∣∣
+
∣∣E [h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, Xi2

)
h2

(
X ′

i3
, X ′

i4

)]∣∣
+
∣∣E [h2

(
X ′′

i1
, Xi2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, Xi2

)
h2

(
Xi3 , X

′
i4

)]∣∣
+
∣∣E [h2

(
X ′′

i1
, Xi2

)
h2

(
Xi3 , X

′
i4

)
− h2

(
X ′′

i1
, Xi2

)
h2 (Xi3 , Xi4)

]∣∣ .
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In order to keep this proof short , we treat only the first of the four summands. Define

h2,K (x, y) =


h2 (x, y) if |h2 (x, y)| ≤

√
K√

K if h2 (x, y) >
√
K

−
√
K if h2 (x, y) < −

√
K

It is clear that h2,K is P -Lipschitz-continuous, too. We get that∣∣E [h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)]]
=
∣∣E [(h2

(
X ′

i1
, X ′

i2

)
− h2

(
X ′′

i1
, X ′

i2

))
h2

(
X ′

i3
, X ′

i4

)]∣∣
≤E

[∣∣(h2,K

(
X ′

i1
, X ′

i2

)
− h2,K

(
X ′′

i1
, X ′

i2

))
h2,K

(
X ′

i3
, X ′

i4

)∣∣1n
|X′

i1
−X′′

i1
|≤αbm

3 c

o]
+ E

[∣∣(h2,K

(
X ′

i1
, X ′

i2

)
− h2,K

(
X ′′

i1
, X ′

i2

))
h2,K

(
X ′

i3
, X ′

i4

)∣∣1n
|X′

i1
−X′′

i1
|>αbm

3 c

o]
+ E

[∣∣h2,K

(
X ′

i1
, X ′

i2

)
h2,K

(
X ′

i3
, X ′

i4

)
− h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)∣∣]
+ E

[∣∣h2,K

(
X ′′

i1
, X ′

i2

)
h2,K

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)∣∣]

Because of the P -Lipschitz-continuity and |h2,K (X ′
3, X

′
4)| ≤

√
K, the first summand is

smaller than 2Lε
√
K. By property 3 of (X ′

n)n∈Z and (X ′′
n)n∈Z, the second term is bounded

by

P
[∣∣X ′′

i1
−X ′

i1

∣∣ ≥ αbm
3
c

]
2K ≤ 2αbm

3
cK.

As h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
and h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
are random variables with (1 +

δ
2
)-moments smaller than M from the definition of the uniform 2+δ-moments, the third and

the fourth summand are bounded by M

K
δ
2
. Totally, we get

∣∣E [h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)]∣∣ ≤ 2Lε
√
K + 2αbm

3
cK + 2

M

K
δ
2

Setting K =
(
αb k

3
c + β

(
bk

3
c
))− 2

2+δ
M

2
2+δ , keeping in mind that this K is nondecreasing and

treating the other three summands in the same way, one easily obtains

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| ≤ CM
2

2+δ

(
β

δ
2+δ

(
bm

3
c
)

+ α
δ

2+δ

bm
3
c

)
for a constant C, which proofs the lemma for a P -Lipschitz-continuous kernel. Let now h2

satisfy the variation condition. Obviously, the same holds for h2,K and

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]|
≤
∣∣E [h2

(
X ′

i1
, X ′

i2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, Xi2

)
h2

(
X ′

i3
, X ′

i4

)]∣∣
+
∣∣E [h2

(
X ′′

i1
, Xi2

)
h2

(
X ′

i3
, X ′

i4

)
− h2

(
X ′′

i1
, Xi2

)
h2 (Xi3 , Xi4)

]∣∣ .
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Again, we concentrate on the first summand. By the variation condition, we have that

E

[∣∣(h2,K

(
X ′

i1
, X ′

i2

)
− h2,K

(
X ′′

i1
, Xi2

))
h2,K

(
X ′

i3
, X ′

i4

)∣∣1n
|X′

i1
−X′′

i1
|≤αbm

3 c,|X′
i2
−Xi2|≤αbm

3 c

o]

≤
√
KE

 sup
‖(x,y)−(X′′

i1
,Xi2

)‖≤√2αbm
3 c, ‖(x′,y′)−(X′′

i1
,Xi2

)‖≤√2αbm
3 c

|h2,K (x, y)− h2,K (x′, y′)|


≤ 2

√
2
√
KLε.

As P
[∣∣X ′′

i1
−Xi1

∣∣ ≥ αbm
3
c

]
≤ αbm

3
c, P

[∣∣X ′
i2
−Xi2

∣∣ ≥ αbm
3
c

]
≤ αbm

3
c + β

(
bm

3
c
)
, it follows

that

E

[∣∣(h2,K

(
X ′

i1
, X ′

i2

)
− h2,K

(
X ′′

i1
, Xi2

))
h2,K

(
X ′

i3
, X ′

i4

)∣∣1n
|X′

i1
−X′′

i1
|>αbm

3 c,|X′
i2
−Xi2|>αbm

3 c

o]
≤ P

[∣∣X ′′
i1
−X ′

i1

∣∣ ≥ αbm
3
c,
∣∣Xi2 −X ′

i2

∣∣ ≥ αbm
3
c

]
2K ≤ 4

(
αbm

3
c + β

(
bm

3
c
))

K.

The rest of the proof is the same as above.
�

Yoshihara [35] deduced the following moment bound under condition (1) with the help of
Lemma 4.1. The result follows from condition (2) and (3) in the same way using the Lemmas
4.2 and 4.3 instead.

Lemma 4.4. Let (Xn)n∈N be a stationary process and h2 a degenerate, centered kernel with
uniform 2 + δ-moments for a δ > 0. Let be τ ≥ 0 such that one of the following three
conditions hold:

(1) (Xn)n∈N is absolutely regular and
∑n

k=0 kβ
δ

2+δ (k) = O (nτ )
(2) (Xn)n∈N is strong mixing, E |X1|γ < ∞ for a γ > 0, h2 satisfies the P -Lipschitz-

continuity or the variation condition and
∑n

k=0 kα
2γδ

γδ+δ+5γ+2 (k) = O (nτ )
(3) (Xn)n∈N is a 1− approximating functional of an absolutely regular process and h2

satisfies the P -Lipschitz-continuity or the variation condition. For αL =
√

2
∑∞

i=L ai:∑n
k=0 k

(
β

δ
2+δ (k) + α

δ
2+δ

k

)
= O (nτ )

Then
n∑

i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| = O
(
n2+τ

)
Lemma 4.5. If h satisfies the P -Lipschitz-continuity or the variation condition, then the
condition holds also for h2

Proof. For P -Lipschitz-continuous kernels, we refer to Dehling, Wendler [11], proof of Lemma
3.3. Let now h satisfy the variation condition. As h2 (x, y) = h (x, y) − h1 (x) − h1 (y) − θ,
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it suffices to verify this condition for h1. Recall that h1 (x) = E [h (x, Y )]− θ, so

E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

|h1 (x)− h1 (x′)|

]

=E

[
sup

|x−X|≤ε, |x′−X|≤ε

|E [h (x, Y )]− E [h (x′, Y )]|

]

≤E

[
sup

|x−X|≤ε, |x′−X|≤ε

E |h (x, Y )− h (x′, Y )|

]

≤E

[
sup

|x−X|≤ε, |x′−X|≤ε

|h (x, Y )− h (x′, Y )|

]

≤E

[
sup

‖(x,y)−(X,Y )‖≤ε, ‖(x′,y′)−(X,Y )‖≤ε

|h (x, y)− h (x′, y′)|

]
≤ Lε.

�

5. Proofs of the theorems.

Proof of Theorem 1. : We define

Qn =
∑

1≤i1<i2≤n

h2 (Xi1 , Xi2)

an =
1

n1+ τ
2 log

3
2 n log log n

.

With the method of subsequences, it suffices to show that

a2lQ2l (h2)
a.s.−−→ 0(4)

max
2l−1≤n<2l

|anQn − a2l−1Q2l−1| a.s.−−→ 0(5)

as l → ∞. We use the Chebyshev inequality and Lemma 4.4 to prove the first line. For
every ε > 0:

∞∑
l=1

P [|a2lQ2l (h2)| > ε] ≤ 1

ε2

∞∑
l=1

a2
2lE

[
Q2

2l (h2)
]
≤ C

1

ε2

∞∑
l=1

1

l
3
2 log l

<∞

(4) follows with the Borel-Cantelli Lemma. To prove (5), we first have to find a bound for
the second moments, using a well known chaining technique:

max
2l−1≤n<2l

|anQn − a2l−1Q2l−1|

≤
l∑

d=1

max
i=1,...,2l−d

∣∣a2l−1+i2d−1Q2l−1+i2d−1 − a2l−1+(i−1)2d−1Q2l−1+(i−1)2d−1

∣∣
As for any random variables Y1, . . . , Yn: E (max |Yi|)2 ≤

∑
EY 2

i , it follows that
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E

[(
max

2l−1≤n<2l
|anQn − a2l−1Q2l−1|

)2
]

≤ l

l∑
d=1

2l−d∑
i=1

E
[(
a2l−1+i2d−1Q2l−1+i2d−1 − a2l−1+(i−1)2d−1Q2l−1+(i−1)2d−1

)2]

≤ l

l∑
d=1

2l−d∑
i=1

2a2
2l−1+i2d−1E

[(
Q2l−1+i2d−1 −Q2l−1+(i−1)2d−1

)2]

+ l

l∑
d=1

2l−d∑
i=1

2
(
a2l−1+i2d−1 − a2l−1+(i−1)2d−1

)2
E
[
Q2

2l−1+(i−1)2d−1

]

=
l∑

d=1

2a2
2l−1+i2d−1E

2l−d∑
i=1

(
Q2l−1+i2d−1 −Q2l−1+(i−1)2d−1

)2
+ l

l∑
d=1

2l−d∑
i=1

2
(
a2l−1+i2d−1 + a2l−1+(i−1)2d−1

) (
a2l−1+i2d−1 − a2l−1+(i−1)2d−1

)
E
[
Q2

2l−1+(i−1)2d−1

]

≤ l26a2
2l−1

2l∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| ≤ C
1

l log2 l
.

In the last line we used the fact that the sequence (|a|n)n∈N is decreasing and Lemma 4.4.
It now follows for all ε > 0

∞∑
l=1

P

[
max

2l−1≤n<2l
|anQn − a2l−1Q2l−1| > ε

]
≤ C

ε2

∞∑
l=1

1

l log2 l
<∞,

the Borel-Cantelli Lemma completes the proof.
�

Proof of Theorem 2. : We give the proof the theorem only under condition (1) and omit the
similar proofs under conditions (2) and (3) (where Lemma 4.5 is used to conclude that h2 is
P -Lipschitz-continuous and Rio’s result [32] has to be replaced by the result of Philipp and
Stout [30, chapter 7] under condition (3)).

First note that E |h1 (Xn)|2+δ ≤ E |h (X, Y )|2+δ < ∞ (X, Y being independent). By
standard arguments

1

n
Var

[
n∑

i=1

h1 (Xi)

]
n→∞−−−→ σ2

∞ = Var [h1 (X0)] + 2
∞∑
i=1

Cov [h1 (X0) , h1 (Xi)]
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an by Lemma 4.4 Var [Un (h2)] → 0. So we have

Var

[ ∑
1≤i<j≤n

h (Xi, Xj)

]
n→∞−−−→∞(6)

Var
[∑

1≤i<j≤n h (Xi, Xj)
]

Var [(n− 1)
∑n

i=1 h1 (Xi)]

n→∞−−−→ 1.(7)

As (β(n))n∈N is nonincreasing and
∑n

k=0 kβ
δ

2+δ (k) = O (n1−ε), it follows that

β (n)
δ

2+δ = O
(
n−(1+ε)

)
⇒

n∑
k=1

k
1

1+δα (k) ≤
n∑

k=1

k
1

1+δβ (k) <∞,

so by Theorem 2 of Rio [32] the LIL holds for
∑n

i=1 h1 (Xi). By Theorem 1 and Line 7, this
holds also for

∑
1≤i<j≤n h (Xi, Xj). �
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