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BOOTSTRAP FOR THE SAMPLE MEAN AND FOR
U-STATISTICS OF STATIONARY PROCESSES

OLIMJON SH. SHARIPOV AND MARTIN WENDLER

Abstract. The validity of various bootstrapping methods has been proved
for the sample mean of strongly mixing data. But in many applications, there
appear nonlinear statistics of processes that are not strongly mixing. We
investigate the nonoverlapping block bootstrap for functionals of absolutely
regular processes, which occur from chaotic dynamical systems. We establish
the strong consistency of the bootstrap distribution estimator not only for the
sample mean, but also for U -statistics, which include examples as Gini’s mean
difference or the χ2-test statistic.

keywords: strongly mixing sequences, functionals of absolutely regular sequences,
U -statistics, block bootstrap
AMS 2000 subject classification: 62G09, 60G10

1. Introduction

1.1. U-Statistics. U -statistics play an important role in nonparametric statistics
because many estimators and test statistics can be written at least asymptotically
as U -statistics. Well-known examples include the sample variance, Gini’s mean
difference, and the χ2 goodness of fit test statistic. A more recent example is
the Grassberger-Procaccia dimension estimator. U -statistics can be described as
generalized means, i.e. means of the values of a kernel function h (Xi1 , . . . , Xik

).
For simplicity of notation, we concentrate on the case of bivariate U -statistics:

Definition 1.1. A U -statistic with a symmetric and measurable kernel h : R2 → R

is defined as

Un (h) =
2

n (n− 1)

∑
1≤i<j≤n

h (Xi, Xj) .

The key tool in the analysis of U -statistics is the Hoeffding-decomposition [13]
of Un (h) into a so-called linear part and a degenerate part

Un (h) = θ +
2
n

n∑
i=1

h1 (Xi) + Un (h2)

with

θ := Eh (X, Y ) ,

h1(x) := Eh(x, Y )− θ,

h2(x, y) := h(x, y)− h1(x)− h1(y)− θ.
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2 SHARIPOV AND WENDLER

for X, Y independent and with the same distribution as X1.
Under independence, the summands of the degenerate part Un (h2) are uncor-

related, so that VarUn (h2) = O
(
n−2

)
and the asymptotic behavior of Un is dom-

inated by the linear part 2
n

∑
h1 (Xi). For independent data, second moments of

the kernel are required. For mixing data, one needs higher moments, and in the
case of strong mixing and functionals of absolutely regular processes a continuity
condition:

Definition 1.2. Let (Xn)n∈N be a stationary process

(1) A kernel has uniform r-moments, if there is a M > 0 such that for all
k ∈ N0

E |h (X1, Xk)|r ≤ M and E |h (X, Y )|r ≤ M

for X, Y independent and with the same distribution as X1.
(2) A kernel h is called P -Lipschitz-continuous with constant L > 0, if

E
[
|h (X, Y )− h (X ′, Y )|1{|X−X′|≤ε}

]
≤ Lε

for every ε > 0, every pair (X, Y ) with the same common distribution as
(X1, Xk) for some k ∈ N or independent with the same distribution as X1

and (X ′, Y ) also with one of these common distributions. With 1A, we
denote the indicator function of a set A.

It is clear that every Lipschitz-continuous kernel function is P -Lipschitz-continuous,
but the above definition covers more examples:

Example 1.3 (Variance estimation). Consider stationary random variables with a
finite first moment and the kernel h (x, y) = 1

2 (x− y)2. The related U -statistic is
the well known variance estimator

Un (h) =
1

n− 1

n∑
i=1

(
Xi − X̄n

)2
.

Example 1.4 (Gini’s mean difference). Let h (x1, x2) = |x1 − x2| . Then the cor-
responding U -statistic is

Un (h) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj | ,

also known as Gini’s mean difference.

The P -Lipschitz-continuity of these two kernels follows by an easy lemma:

Lemma 1.5. (1) Let h be a polynomial kernel of degree d, that is

h (x, y) =
d∑

i=0

d−i∑
j=0

cij

(
xiyj + xjyi

)
.

If E |X1|d−1
< ∞, then h is P -Lipschitz-continuous.

(2) Let h be a P -Lipschitz-continuous kernel and f : R → R a Lipschitz-
continuous function. Then g ◦ h is P -Lipschitz-continuous.
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Proof. (1) We can concentrate on an expression of the form g (x, y) = xiyj ,
i + j ≤ d:

E
[
|g (X, Y )− g (X ′, Y )|1{|X−X′|≤ε}

]
=E

[∣∣(X −X ′)
(
Xi−1 + Xi−2X ′ + . . . + XX ′i−2 + X ′i−1

)
Y j
∣∣1{|X−X′|≤ε}

]
≤εE

[∣∣(Xi−1 + Xi−2X ′ + . . . + XX ′i−2 + X ′i−1
)
Y j
∣∣] ≤ εiE |X1|i+j

(2) This is obvious.
�

Example 1.6 (χ2 goodness of fit test). Let (Xn)n∈N be a stationary process such
that X1 can take only the values t1, . . . , tk. Furthermore, let be p1, . . . , pk > 0 with∑n

i=1 pi = 1 and

h (x, y) =
k∑

i=1

1
pi

(
1{x=ti} − pi

) (
1{y=ti} − pi

)
.

Then h is P -Lipschitz-continuous, as

E
[
|h (X, Y )− h (X ′, Y )|1{|X−X′|≤ε}

]
= 0,

if ε < mini 6=j |ti − tj |. The related U -statistic is

Un (h) =
1

n(n− 1)

k∑
l=1

 1
pl

(
n∑

i=1

(
1{Xi=tl} − pl

))2

− 1
pl

n∑
i=1

(
1{Xi=tl} − pl

)2
=

1
n− 1

χ2 − 1
n(n− 1)

k∑
l=1

1
pl

n∑
i=1

(
1{Xi=tl} − pl

)2
.

χ2 is used for testing the hypothesis that P [X1 = tl] = pi for l = 1, . . . , k.

Example 1.7 (Dimension estimation). Let t > 0. The kernel h (x, y) = 1{|x−y|<t}
is related to the Grassberger-Procaccia dimension estimator (see Borovkova et al.
[3] for details). It is P -Lipschitz-continuous, if there is an L > 0, such that for all
ε > 0 and every common distribution of X and Y from Definition 1.2:

P [t− ε ≤ |X − Y | ≤ t + ε] ≤ Lε

For proof: See Dehling, Wendler [7].

1.2. Mixing Random Variables. In many statistical applications the data does
not come from an independent stochastic process. A standard assumption of weak
dependence is given by the strong mixing condition:

Definition 1.8. Let (Xn)n∈N be a stationary process. Then the strong mixing
coefficient is given by

α(k) = sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Fn

1 , B ∈ F∞
n+k, n ∈ N

}
,

where F l
a is the σ-field generated by r.v.’s Xa, . . . , Xl., and (Xn)n∈N is called

strongly mixing, if α(k) → 0 as k →∞.

For further information on strong mixing and a detailed description of other
mixing conditions see Doukhan [10] and Bradley [4]. However, this class of weak
dependent processes excludes examples like linear processes with innovations that
do not have a density or data from dynamical systems.
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Example 1.9. Let (Zn)n∈N be independent r.v.’s with P [Zn = 1] = P [Zn = 0] = 1
2

and

Xn =
∞∑

k=n

1
2k−n+1

Zk.

Then (Xn)n∈N is not strong mixing, as∣∣∣∣∣∣P
X1 ∈

2(k−1)⋃
i=1

[
(2i− 2)2−k, (2i− 1)2−k

]
, Xk ∈

[
0,

1
2

]
−P

X1 ∈
2(k−1)⋃

i=1

[
(2i− 2)2−k, (2i− 1)2−k

]P

[
Xk ∈

[
0,

1
2

]]∣∣∣∣∣∣ = 1
2
− 1

2
· 1
2

=
1
4
.

We will consider functionals of absolutely regular processes, as this class of depen-
dent sequences covers the example above and data from other dynamical systems,
which are deterministic except for the initial value. Let T : [0, 1] → [0, 1] be a
piecewise smooth and expanding map such that infx∈[0,1] |T ′ (x)| > 1. Then there
is a stationary process (Xn)n∈N such that Xn+1 = T (Xn) which can be represented
as a functional of an absolutely regular process (see Hofbauer, Keller [14]).

Definition 1.10. Let (Xn)n∈N be a stationary process. Then the absolute regularity
coefficient is given by

β(k) = sup
n∈N

E sup{
∣∣P (A/Fn

−∞)− P (A)
∣∣ : A ∈ F∞

n+k},

and (Xn)n∈N is called absolutely regular, if β(k) → 0 as k →∞.

We call a sequence (Xn)n∈Z a two-sided functional of (Zn)n∈Z if there is a
measurable function defined on RZ such that

Xn = f
(
(Zn+k)k∈Z

)
.

Similarly we call a sequence (Xn)n∈N a one-sided functional of (Zn)n∈N if there is
a measurable f such that

Xn = f((Zn+k)k≥0).
In addition we will assume that (Xn)n∈Z satisfies the 1-approximation condition:

Definition 1.11. We say that (Xn)n∈Z satisfies the 1-approximating condition, if

E
∣∣X1 − E(X1/F l

−l)
∣∣ ≤ al l = 0, 1, 2 . . .

where liml→∞ al = 0 and F l
−l is the σ-field generated by Z−l, . . . , Zl.

Example 1.12. The process (Xn)n∈N in Example 1.9 satisfies the 1-approximating
condition, as∥∥X1 − E(X1/F l

0)
∥∥

1
=

∥∥∥∥∥
∞∑

k=l+1

1
2k+1

Zk

∥∥∥∥∥
1

≤
∞∑

k=l+1

1
2k+1

=
1
2l

=: al.

Whereas the limit theory for partial sums of weakly dependent processes is very
well developed, much less attention has been paid to nonlinear statistics like U -
statistics. The summands of Un (h2) can be correlated, if the random variables
(Xn)n∈N are dependent, so one has to establish generalized covariance inequalities
to derive moment bounds for Un (h2). Yoshihara [27] considered absolutely regular
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processes, Denker and Keller [9] functionals of absolutely regular processes, and
Dehling and Wendler [7] strongly mixing sequences.

1.3. Block Bootstrap. In many statistical applications, for example in the deter-
mination of confidence bands, one faces the task to compute the distribution of a
statistic Tn = Tn (X1, . . . , Xn). This is usually rather difficult, as the distribution
F of Xi is unknown, so one often has to use approximation by the normal distri-
bution. Efron [11] proposed the bootstrap as an alternative. For i.i.d. data, the
validity of the bootstrap was established by Bickel and Freedman [2], and Singh
[25]. Using Edgeworth expansion, one can often show that the bootstrap works
better than normal approximation, see Hall [12] for details.

Computation of the distribution of Tn becomes even more difficult when the
observations are dependent, e.g., in the case of the sample mean X̄n = 1

n

∑n
i=1 Xi,

one gets for weakly dependent data under some technical assumptions
√

n
(
X̄n − EX1

)
→ N

(
0, σ2

)
in distribution, where σ2 = Var [X1] + 2

∑∞
i=1 Cov [X1, Xi+1]. So one has not

only the variance to estimate, but also the autocovariances of the process. The
naive bootstrap can fail under dependence, as Singh [25] mentioned. Therefore,
block bootstrappings method are commonly used for nonparametric inference under
dependence. There are different ways to resample blocks, for example the circular
block bootstrap or the moving block bootstrap (for a detailed description of the
different bootstrapping methods see Lahiri [17]). For the circular block bootstrap,
Shao and Yu [24] have shown that under strong mixing the distribution of the
block bootstrap version X̄?

n of the sample mean converges almost surely to the
same distribution as the sample mean X̄n. Peligrad [19] has proved asymptotic
normality of X̄?

n under another set of conditions, which does not necessarily imply
the central limit theorem for X̄n. Radulovic [20] has established weak consistency
under very weak conditions.

We consider the nonoverlapping bootstrap, proposed by Carlstein [5], for the
sample mean and for U -statistics. Let (Xn)n∈N be a sequence of r.v.’s. Let p ∈ N
be the block length such that p = p(n) = o(n), p → ∞ as n → ∞. We introduce
the following blocks of indices and r. v.’s:

Ii =
(
X(i−1)p+1, . . . , Xip

)
,

Bi = {(i− 1)p + 1, . . . , ip} , i = 1, . . . , k

where k = k(n) =
[

n
p

]
is the number of blocks. We consider a new sample

X∗
1 , . . . , X∗

kp, which is constructed by choosing randomly and independently blocks
k times with

P
(
(X∗

1 , . . . , X∗
p ) = Ii

)
=

1
k

i = 1, 2, . . . , k.

As a bootstrap version of the sample mean we consider:

X̄∗
n,kp =

1
kp

kp∑
i=1

X∗
i .
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With P ?, E?, Var? we denote the probability, expectation and variance condition-
ally on (Xn)n∈N. Note that

E∗X̄∗
n,kp =

1
kp

kp∑
i=1

Xi =: X̄n,kp.

The first aim of this paper is to prove the strong consistency of the nonoverlap-
ping block bootstrap for functionals of absolutely regular sequences (Theorems 2.6
and 2.7), as this class of weak dependent processes covers examples that do not
satisfy the strong mixing conditions. The proof of this is based on Theorems 2.1 to
2.3 for general stationary processes, which are similar to the results of Peligrad [19]
and of Shao and Yu [24] for the circular block bootstrap. Additionally, we will show
the strong consistency of the nonoverlapping block bootstrap for strongly mixing
sequences (Theorems 2.4 and 2.5).

Our second aim is to prove the validity of the nonoverlapping block bootstrap
for U -statistics. Although the estimation of the distribution for U -statistics is even
more complicated than for the sample mean, there is only very little literature
on the bootstrap for U -statistics. Bickel and Freedman [2] proved the validity
of the bootstrap for nondegenerate U -statistcs of i.i.d. data, Arcones, Giné [1],
Dehling, Mikosch [6], and Leucht, Neumann [18] for degenerate U -statistics of i.i.d.
data. Dehling and Wendler [7] have shown that the bootstrap distributions of
a nondegenerate U -statistics converges to the real distribution in probability for
strongly mixing or absolutely regular sequences. We will not only extend this result
to functionals of absolutely regular processes, but show the almost sure convergence
(Theorem 2.8).

Instead of the nonoverlapping block bootstrap, one can use the following boot-
strap based on Bernstein blocking: Let n, p be as above and q such that q = q(n) =
o(p), q →∞ as n →∞. We introduce the following blocks of indices and r. v.’s:

I′i =
(
X(i−1)(p+q)+1, . . . , X(i−1)(p+q)+p

)
B′i = {(i− 1)(p + q) + 1, . . . , (i− 1)(p + q) + p} , i = 1, . . . , k′

where k′ is k′(n) =
[

n
p+q

]
. The bootstrap sample X∗

1 , . . . , X∗
k′p is constructed as

before by choosing randomly and independently blocks k′ times with

P
(
(X∗

1 , . . . , X∗
p ) = I′i

)
=

1
k′

i = 1, 2, . . . k′

This bootstrapping method is better adapted to the typical way of proving the
central limit theorem under mixing conditions. Especially when the sample size is
big, we do fewer calculations than with other blocking methods (nonoverlapping,
moving or circular). It is easy to see that Theorems 2.1 to 2.8 are also valid for the
Bernstein block bootstrap without any changes.

2. Main Results

2.1. Bootstrap for stationary sequences. In this section, and in what follows,
we denote by X̄n the sample mean of the observations X1, . . . , Xn, by N(0, σ2) a
Gaussian r.v. with mean zero and variance σ2 and by C a constant which may
depend on several parameters and might have different values even in one chain of
inequalities. First we will give theorems for general stationary sequences which are
analogues to the results of Peligrad [19], and Shao and Yu [24].
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Theorem 2.1. Let {Xi, i ≥ 1} be a stationary sequence of r.v’.s such that EX1 = µ
and VarX1 < ∞. Assume that the following conditions hold

Var n1/2(X̄n − µ) → σ2 > 0,(1)

n1/2(X̄n − µ) → N(0, σ2) in distribution,(2)

p1/2(X̄n,kp − µ) → 0 a.s. ,(3)

1
kp

k∑
i=1


 p∑

j∈Bi

(Xj − µ)

2

− E

∑
j∈Bi

(Xj − µ)

2
→ 0 a.s. ,(4)

1
kp

k∑
i=1

∑
j∈Bi

(Xj − µ)

2

1˛̨̨P
j∈Bi

(Xj−µ)
˛̨̨2

>εkp

ff → 0 a.s.(5)

for any ε > 0. Then the following takes place as n →∞

Var∗(
√

kpX̄∗
n,kp) → σ2 a.s.

sup
x∈R

∣∣∣P ∗
(√

kp(X̄∗
n,kp − X̄n,kp) ≤ x

)
− P

(√
n(X̄n − µ) ≤ x

)∣∣∣→ 0 a.s.

Theorem 2.2. Let (Xn)n∈N be a stationary sequence of r.v.’s. with EX1 =
µ,VarX1 < ∞. Assume that conditions (1), (2), (4) and for each fixed x ∈ R

(6)
1
kp

k∑
k=1

(
1n

1√
p

P
j∈Bi

(Xj−µ)≤x
o − P

(
1
√

p

p∑
i=1

(Xi − µ) ≤ x

))
→ 0 a.s.

hold. Then the statement of Theorem 2.1 remains true.

Theorem 2.3. Let (Xn)n∈N be a stationary sequence of bounded almost surely
r.v.’s with EX1 = µ. Assume that (3) and following conditions hold

p2

n
→ 0 as n →∞,(7)

1
n

VarSn → σ2 as n →∞,(8)

1
kp

k∑
i=1

∑
j∈Bi

(Xj − µ)

2

→ σ2 a.s. as n →∞.(9)

Then almost surely as n →∞

(10) Var∗(
√

kpX̄∗
n,kp) → σ2,

(11)
√

kp(X̄∗
n,kp − X̄n,kp) → N(0, σ2) in distribution.

2.2. Bootstrap for strongly mixing sequences. We formulate theorems under
assumptions on the strong mixing coefficients which are analogues to the results of
Peligrad [19] and Shao, Yu [24].

Theorem 2.4. Let (Xn)n∈N be a stationary sequence of strong mixing r.v.’s with
EX1 = µ and (E |X1|2+δ)

1
2+δ < ∞ for some 0 < δ ≤ ∞. Assume

α(n) ≤ C · n−r for some C > 0, r >
2 + δ

δ
,
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(12) p(n) ≤ Cnε for some 0 < ε < 1 and

(13) p(n) = p(2l) for 2l < n ≤ 2l+1, l = 1, 2, . . .

Then σ2 = EX2
1 + 2

∑∞
i=2 Cov(X1, Xi) < ∞ and in the case σ2 > 0 the statement

of Theorem 2.1 holds.

Theorem 2.5. Let (Xn)n∈N be a stationary sequence of almost surely bounded
strongly mixing r.v.’s. Assume that (8), (13) and the following conditions hold

∞∑
n=1

p2(n)α(p(n))
n

< ∞,(14)

∞∑
n=1

p3(n)
n2

< ∞.(15)

Then (10), (11) hold.

Remark. The condition (14) implies
∑∞

n=1
α(n)

n < ∞. We can reformulate Theo-
rem 2.5 under above condition on mixing coefficients instead of conditions (14) and
(15) claiming that there is a sequence (p (n)) that the statement of Theorem 2.5
holds, as it was done in Peligrad [19].

2.3. Bootstrap for functionals of absolutely regular sequences. To prove
the validity of the nonoverlapping block bootstrap for functionals of absolutely
regular sequences, we need assumptions not only on the decay of mixing coefficients,
but also on the decay of the approximation constants. Our mixing conditions are
the same as for the central limit theorem in Borovkova et al. [3].

Theorem 2.6. Let (Xn)n∈Z be a 1-approximating (with constants (al)l∈N) func-
tional of a stationary absolutely regular process (Zn)n∈Z . Assume that (12), (13)
and the following conditions hold for some δ > 0

E |X1|4+δ
< ∞,

∞∑
k=0

k2(a
δ

3+δ

k + (β(k))
δ

4+δ ) < ∞.

Then σ2 = EX2
1 + 2

∑∞
i=2 Cov(X1, Xi) < ∞ and in the case σ2 > 0 the statement

of Theorem 2.1 holds.

Theorem 2.7. Let (Xn)n∈Z be a 1-approximating (with constants {al}) functional
of stationary and absolutely regular process (Zn)n∈Z . Assume that (12), (13) and
the following conditions hold

|X1| ≤ C a.s. for some C > 0,
∞∑

k=0

k2(ak + β(k)) < ∞.

Then (10) and (11) hold.
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2.4. Bootstrap for U-Statistics. To bootstrap a U -statistic under dependence,
one can apply the nonoverlapping block bootstrap and plug the observations X?

1 , . . . , X?
n

in:

U?
n (h) =

2
pk (pk − 1)

∑
1≤i<j≤pk

h
(
X?

i , X?
j

)
= θ +

2
pk

pk∑
i=1

h1 (X?
i ) +

2
pk (pk − 1)

∑
1≤i<j≤pk

h2

(
X?

i , X?
j

)
.

Theorem 2.8. Let (Xn)n∈N be a stationary process and h a kernel with uniform
2 + δ-moments for a δ > 0. Assume that (12), (13), and one of the following three
conditions hold:

(1) (Xn)n∈N is absolutely regular and β (n) = O (n−ρ) for a ρ > 2+δ
δ ,

(2) (Xn)n∈N is strongly mixing, E |X1|γ < ∞ for a γ > 0, h is P -Lipschitz-
continuous with constant L > 0 and α (n) = O (n−ρ) for a ρ > 3γδ+δ+5γ+2

2γδ ,
(3) (Xn)n∈N is a 1-approximating functional of an absolutely regular process,

h is P -Lipschitz-continuous with constant L > 0 and E |h1 (X1)|4+δ. For

αL =
√

2
∑∞

i=L ai:
∑n

k=0 k2

(
β

δ
3+δ (k) + α

δ
4+δ

k

)
< ∞,

then a.s. as n →∞

(16) Var?
[√

pkU?
n (h)

]
−Var

[√
nUn (h)

]
→ 0,

(17) sup
x∈R

∣∣∣P ?
[√

pk (U?
n (h)− E? [U?

n (h)]) ≤ x
]
− P

[√
n (Un (h)− θ) ≤ x

]∣∣∣→ 0.

3. Preliminary results

3.1. Central Limit Theorem, Moment and Maximum Inequalities for Par-
tial Sums. In this subsection we will give some known results which will be used
in the next section in the proofs of the theorems. We set

Sn =
n∑

i=1

Xi.

Lemma 3.1 (Ibragimov [16]). Let (Xn)n∈N be a stationary sequence of strongly
mixing r.v.’s with EX1 = µ and (E |X1|2+δ)

1
2+δ < ∞ some 0 < δ ≤ ∞. Assume

that
∞∑

n=1

α
δ

2+δ (n) < ∞.

Then σ2 = VarX1 + 2
∑∞

k=2 Cov(X, X) < ∞ and VarSn

n → σ2. If in addition
σ2 > 0, then

n1/2(X̄n − µ) → N(0, σ2) in distribution.

Lemma 3.2 (Shao [23]). Let (ξn)n∈N be a strongly mixing sequence of r. v.’s with
Eξi = 0 and (E |ξi|s)1/s ≤ Dn for 1 ≤ i ≤ n and for some 1 < s ≤ ∞. Assume that

α(i) ≤ C0i
−θ for some C0 > 1 and θ > 0.
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Then there exists a constant K = K (C0, θ, s), such that for any x ≥ KDnn1/2 log n

P (max
i≤n

∣∣∣∣∣∣
i∑

j=1

ξj

∣∣∣∣∣∣ ≥ x) ≤ Kn(
Dn

x
)

s(θ+1)
s+θ (log

x

Dn
)θ.

Lemma 3.3 (Yokoyama [26]). Let (Xn)n∈N be a stationary strongly mixing se-
quence of r.v.’s with EX1 = µ and (E |X1|2+δ)

1
2+δ < ∞ for some 0 < δ ≤ ∞

suppose that 2 ≤ s < 2 + δ and
∞∑

n=1

n
s
2−1 (α(n))(2+δ−s)/(2+δ)

< ∞.

Then there exists a constant C depending only on s, δ and the mixing coefficients
(α(n))n∈N such that

E

∣∣∣∣∣
n∑

i=1

(Xi − µ)

∣∣∣∣∣
s

≤ Cns/2(E |X1|2+δ)
s

2+δ .

Lemma 3.4 (Rio [21], Peligrad [19]). Let (Xn)n∈N be a strongly mixing sequence
of r. v.’s with EXi = 0 and |Xi| ≤ C a.s. Then there is a universal constant K
such that for every x > 0 and n ≥ 1

P

(
max

1≤i≤n
|Si| > x

)
≤ Kx−2

(
n∑

i=1

EX2
i + C2 · n

n∑
i=1

α(i)

)
.

Lemma 3.5 (Borovkova et al. [3]). Let (Xn)n∈N be a 1-approximating functional
with constants (ak)k∈N of an absolutely regular stationary process (Zn)n∈Z with
mixing coefficients (β(k))k∈N. Suppose that one of the following conditions holds

(1) EX0 = 0, E |X0|4+δ
< ∞,∑∞

k=1 k2(a
δ

3+δ

k + (β(k))
δ

4+δ ) < ∞ for some δ > 0.
(2) X0 is bounded a.s., EX0 = 0,∑∞

k=1 k2(ak + β(k)) < ∞.

Then σ2 = EX2
0 + 2

∑∞
k=1 EX0Xk < ∞ and in the case σ2 > 0 we have

1√
n

n∑
i=1

Xi → N(0, σ2) in distribution as n →∞.

Lemma 3.6 (Borovkova et al. [3]). Let (Xn)n∈Z be a 1-approximating functional
with constants (ak)k∈N of an absolutely regular stationary process (Zn)n∈Z with
mixing coefficients (β(k))k∈N. Assume that one of the conditions of Lemma 3.5
holds. Then there exists a constant C such that

ES4
n ≤ Cn2.

Lemma 3.7 (Borovkova et al. [3]). Let (Xn)n∈Z be a 1-approximating functional
with constants (ak)k∈N of an absolutely regular process (Zn)n∈Z with mixing coef-
ficients (β(k))k∈N . Assume that EX0 = 0 and one of the following two conditions
holds:

(1) X0 is bounded a. s. and
∑∞

k=0(ak + β(k)) < ∞,

(2) E |X0|2+δ
< ∞ and

∑∞
k=0(a

δ
1+δ

k + (β(k))
δ

2+δ ) < ∞.
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Then there exists a constant C such that

ES2
n ≤ Cn.

Lemma 3.8 (Borovkova et al. [3]). Let (Xn)n∈Z be a 1-approximating functional
with constants (ak)k∈N of an absolutely regular process (Zn)n∈Z with mixing coef-
ficients (β(k))k∈N.
Then

(1) if |X0| ≤ M a. s. for all non-negative integers i ≤ j < k ≤ l, we have

|E(XiXjXkXl)− E(XiXj)E(XkXl)| ≤(
4(β([

k − j

3
]))

δ
2+δ (E |X0|2+δ)

2
2+δ + 8(a[ k−j

3 ])
δ

1+δ (E |X0|2+δ)
1

1+δ

)
·M2.

(2) if E |X0|4+δ
< ∞ for all non-negative i ≤ j < k ≤ l, we have

|E(XiXjXkXl)− E(XiXj)E(XkXl)|

≤ 4(β([
k − j

3
]))

δ
4+δ (E |X0|4+δ)

4
4+δ + 8(a[ k−j

3 ])
δ

3+δ (E |X0|4+δ)
3

3+δ .

3.2. Moment Inequalities for U-Statistics. To control the moments of degen-
erate U -statistics, we need bounds for the covariance of h2. Recall that h2 is defined
as

h2(x, y) := h(x, y)− h1(x)− h1(y)− θ.

In the following three lemmas, let be m = max
{
i(2) − i(1), i(4) − i(3)

}
, where i(1) ≤

i(2) ≤ i(3) ≤ i(4) and {i1, i2, i3, i4} =
{
i(1), i(2), i(3), i(4)

}
.

Lemma 3.9 (Yoshihara [27]). Let h be a kernel with uniform 2 + δ-moments for a
δ > 0. If (Xn)n∈N is a stationary process, then there is a constant C, such that

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ (m) .

Lemma 3.10 (Dehling, Wendler [7]). Let h be a P -Lipschitz-continuous kernel with
constant L and with uniform 2 + δ-moments for some δ > 0, (Xn)n∈N a stationary
sequence of random variables. If there is a γ > 0 with E |Xk|γ < ∞, then there
exists a constant C, such that the following inequality holds:

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| ≤ Cα
2γδ

3γδ+δ+5γ+2 (m) .

Lemma 3.11 (Dehling, Wendler [8]). Let h be a P -Lipschitz-continuous kernel with
constant L and with uniform 2 + δ-moments for some δ > 0, and (Xn)n∈N a 1-
approximating functional of an absolutely regular process with constants al. Define
αL as αL =

√
2
∑∞

i=L ai and (β (n))n∈N as the mixing coefficents of (Zn)n∈N.
Then:

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| ≤ Cβ
δ

2+δ

(
bm

3
c
)

+ Cα
δ

2+δ

bm
3 c

.

Yoshihara [27] deduced the following moment bound under condition 1. of the
lemma below with the help of Lemma 3.9. The result follows from conditions 2.
and 3. in the same way using the Lemmas 3.10 and 3.11 instead.

Lemma 3.12. Let (Xn)n∈N be a stationary process and h a kernel with uniform
2 + δ-moments for a δ > 0. Let be τ ≥ 0 such that one of the following three
conditions holds:
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(1) (Xn)n∈N is absolutely regular and
∑n

k=0 kβ
δ

2+δ (k) = O (nτ ).
(2) (Xn)n∈N is strongly mixing, E |X1|γ < ∞ for a γ > 0, h is P -Lipschitz-

continuous with constant L > 0 and
∑n

k=0 kα
2γδ

γδ+δ+5γ+2 (k) = O (nτ ).
(3) (Xn)n∈N is a 1-approximating functional of an absolutely regular process, h

is P -Lipschitz-continuous with constant L > 0 and for αL =
√

2
∑∞

i=L ai :∑n
k=0 k

(
β

δ
2+δ (k) + α

δ
2+δ

k

)
= O (nτ ).

Then:
n∑

i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| = O
(
n2+τ

)
.

4. Proofs of the theorems

4.1. Bootstrap for stationary sequences. The proofs of Theorems 2.1 - 2.5 are
mainly based on the methods developed in Peligrad [19] and Shao, Yu [24]. We will
give full proofs for completeness.

Proof of Theorem 2.1. We note that√
kp(X̄?

n,kp − X̄n,kp) =
1√
k

k∑
i=1

Z∗
i,n

where Z∗
i,n = 1√

p

∑
j∈Bi

(X∗
j − X̄n,kp), i = 1, . . . , k are i.i.d. r.v.’s (conditionally on

(Xn)n∈N). By simple calculations we have

E∗Z∗2
1,n =

1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − X̄n,kp))2 =
1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))2 − p(X̄n,kp − µ)2

=
1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))2 − E(
∑
j∈B1

(Xj − µ))2

+
1
p

VarSp − p(X̄n,kp − µ)2.

Conditions (1), (3) and (4) imply that a.s. as n →∞

(18) E∗Z∗2
1,n → σ2, and consequently Var?

[√
kpX?

n,kp

]
→ σ2.

For any ε > 0, we have

E∗Z∗2
i,n1{Z2

i,n>εk} =
1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − X̄n,kp))21˛̨̨P
j∈Bi

(Xj−X̄n,kp)
˛̨̨2

>kpε

ff

≤ 4
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))21n
(
P

j∈Bi
(Xj−µ))2> εkp

4

o

+
4
kp

k∑
i=1

p2(X̄n,kp − µ)21{p(X̄n,kp−µ)2> εkp
4 }

≤ 4
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))21n
(
P

j∈Bi
(Xj−µ))2> εkp

4

o + 4p(X̄n,kp − µ)2.
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Now (3) and (5) imply that

(19) E∗Z∗2
1,n1{(Z∗21,n>εk} → 0 a. s. as n →∞

what means that Z∗
i,n, i = 1, 2 . . . satisfies the Lindeberg condition. Thus (18) and

(19) imply the statement of the theorem. �

Proof of Theorem 2.2. We define

F̃n(x) =
1
k

k∑
i=1

1n
1
p

Pip
j=(i−1)p+1(X

∗
j −µ)≤x

o.

It is easy to see that the r.v.’s 1
√

p

ip∑
j=(i−1)p+1

(X∗
j − µ)

 , i = 1, . . . , k

are i.i.d. with distribution function F̃n(x). We denote by F̃
(m)
n the distribution

function of

(kp)1/2(X̄∗
n,kp − X̄n,kp) =

1√
k

k∑
i=1

 1
√

p

ip∑
j=(i−1)p+1

((X∗
j − µ)− E∗(X∗

j − µ))

 .

Note that∫
x2dF̃n(x) =

1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))2 − E(
p∑

j=1

(Xj − µ))2 + E(
p∑

j=1

(Xj − µ))2


=

1
kp

k∑
i=1

(
∑
j∈Bi

(Xj − µ))2 − E(
p∑

j=1

(Xj − µ))2

+
1
p
VarSp.

From (1) and (4) we have∫
x2dF̃n(x) → σ2 a.s. as n →∞.

Now conditions (2) and (6) imply

F̃n(x) → N(0, σ2) a.s.

The rest of the proof is the same as in the proof of Theorem 2.2 of Shao and Yu
[24]. �

Proof of Theorem 2.3. First we will prove the following proposition which is ana-
logue of Proposition 3.1 of Peligrad [19] (In this proposition we assume that (xn)n∈N
is a fixed realization of (Xn)n∈N).

Proposition 4.1. Let (xn)n∈N be a bounded sequence of real numbers. For each
n, let Tn1, Tn2, . . . Tnk be independent r.v.’s uniformly distributed on {1, 2, . . . , k} .
Assume that (7) and

(20) Vn =
p

k

k∑
i=1

(x̄pi − x̄n,kp)2 → σ2 > 0
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hold, where x̄pi = 1
p

∑
j∈Bi

xj, x̄n,pk = 1
kp

∑kp
i=1 xi. Then

√
kp(X̄∗

n,kp − x̄n,kp) =
√

kp(
1
k

k∑
j=1

k∑
i=1

1{Tnj=i}x̄pi − x̄n,kp) → N(0, σ2)

in distribution.

Proof. We have

VarX̄∗
n,kp =

1
k2

k∑
i=1

(x̄pi − x̄n,kp)2

and by (2) obtain

Var(
√

kpX̄∗
n,kp) =

p

k

k∑
i=1

(x̄pi − x̄n,kp)2 → σ2.

Note that√
kp(X̄∗

n,kp − x̄n,kp) =
√

kp(
1
k

k∑
j=1

k∑
i=1

1{Tnj=i}x̄pi − x̄n,kp)

=
√

kp(
1
k

k∑
j=1

k∑
i=1

1{Tnj=i}(x̄pi − x̄n,kp)) =
k∑

j=i

Unj ,

where

Unj =
√

p
√

k

k∑
i=1

1{Tnj=i}(x̄pi − x̄n,kp).

In our case Lindeberg condition holds if

E max
1≤j≤k

U2
nj → 0 as n →∞.

Taking into account that r. v.’s are bounded we have

|Unj | ≤
√

p

k
max
i≤i≤k

|x̄pi − x̄n,kp| = O(
√

p

k
).

and

|Unj |2 = O(
p

k
) = O(

p2

n
)

Now the condition (7) implies the statement of the proposition. �

In order to prove Theorem 2.3 we will show that

Vn =
p

k

k∑
i=1

(X̄pi − X̄n,kp)2 → σ2 a.s. as n →∞.

W.l.g. assume that µ = EX1 = 0. Set Spi =
∑

j∈Bi
Xj . Then

Vn =
p

k

k∑
i=1

X̄2
pi − pX̄2

n,kp =
p

k

k∑
i=1

S2
pi

p2
− pX̄2

n,kp

=
1
k

k∑
i=1

S2
pi − ES2

pi

p
+

VarSp

p
− pX̄2

n,kp.
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Conditions (3), (8) and (9) imply

Vn → σ2 a.s. as n →∞.

This completes the proof of Theorem 2.3. �

4.2. Bootstrap for strongly mixing sequences. Before giving the proofs of
Theorems 2.4 and 2.5, we want to remind the reader of a well-known fact that we
will use very often: In order to prove Sn = X1 + . . . + Xn → 0 a.s. it suffices to
show that

max
2k<n≤2k+1

|Sn| → 0 a.s. as k →∞.

Proof of Theorem 2.4. The proof is based on Theorem 2.2. Lemma 3.1 implies that
conditions (1) and (2) of Theorem 2.2 are satisfied. It remains to prove (4) and (6).
W.l.g. we can assume that µ = 0 and we will prove

1
kp

k∑
i=1

(
p∑

j=1

X(i−1)p+j)2 − E(
p∑

i=1

Xi)2

→ 0 a.s. as n →∞.

By the Borel-Cantelli lemma, it suffices to show that

∞∑
l=1

P

 max
2l<n≤2l+1

∣∣∣∣∣∣ 1
kp

k∑
i=1

(
p∑

j=1

X(i−1)p+j)2 − ES2
p


∣∣∣∣∣∣ > ε

 < ∞.

Taking into account that kp v n we have

Il := P

 max
2l<n≤2l+1

∣∣∣∣∣∣
k(n)∑
i=1

(
p(2l)∑
j=1

X(i−1)p+j)2 − ES2
p

∣∣∣∣∣∣ > εk(2l)p(2l)


≤ P

 max
n≤2l+1

∣∣∣∣∣∣
k(n)∑
i=1

(
p(2l)∑
j=1

X(i−1)p+j)2 − ES2
p(2l)

∣∣∣∣∣∣ > εC2l


≤ P

 max
m≤k(2l+1)

∣∣∣∣∣∣
m∑

i=1

(
p(2l)∑
j=1

X(i−1)p+j)2 − ES2
p(2l)

∣∣∣∣∣∣ > εC2l

 .

From Lemma 3.3 we have for s > 1 that

(21) (E

∣∣∣∣∣∣(
p(2l)∑
j=1

X(i−1)p+j)2 − ES2
p(2l)

∣∣∣∣∣∣
s

)1/s ≤ C(E
∣∣Sp(2l)

∣∣2s)1/s ≤ Cp(2l).

Now using Lemma 3.2 and taking into account (21), we obtain

Il ≤ Ck(2l+1)(
p(2l)
2l

)
s(r+1)

s+r logr(
2l

p(2l)
) ≤ C(

p(2l)
2l

)
(s−1)r

s+r logr(
2l

p(2l)
).

From the condition (12), it follows that

∞∑
l=1

P

 max
2l<n≤2l+1

∣∣∣∣∣∣ 1
kp

k∑
i=1

(
p∑

j=1

X(i−1)p+j)2 − ES2
p

∣∣∣∣∣∣ > ε

 ≤
∞∑

l=1

Il < ∞.
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It remains prove (6), i.e.

1
kp

k∑
i=1

(
1n

1√
p

Pp
j=1 X(i−1)p+j≤x

o − P

(
1
√

p

p∑
i=1

Xi ≤ x

))
→ 0 a.s.

Because of the Borel-Cantelli lemma, it suffices to show that

∞∑
l=1

P

(
max

2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

(
1n

1√
p

Pp
j=1 X(i−1)p+j≤x

o

−P

(
1
√

p

p∑
i=1

Xi ≤ x

))∣∣∣∣∣ > εk(2l)p(2l)

)
< ∞.

Using Lemma 3.4 we conclude

IIl :=P

 max
2l<n≤2l+1

∣∣∣∣∣
k(n)∑
i=1

(
1

1√
p(2l)

Pp(2l)
j=1 X(i−1)p+j≤x

ff

−P (
1√
p(2l)

p(2l)∑
i=1

Xi ≤ x)

∣∣∣∣∣ > εk(2l)p(2l)


≤P

(
max

m≤k(2l+1)

∣∣∣∣∣
m∑

i=1

(
1

1√
p(2l)

Pp(2l)
j=1 X(i−1)p+j≤x

ff

− P (
1√

p((2l)

p(2l)∑
i=1

Xi ≤ x)

∣∣∣∣∣ > εk(2l)p(2l)


≤

C(k(2l+1) + k(2l+1)
∑k(2l+1)

i=1 ᾱ(i))
ε2k2(2l)p2(2l)

.

where ᾱ(i) = α
(
(i− 1)p(2l) + 1

)
. As

∑∞
i=1 α (i) < ∞:

IIl ≤
Ck(2l+1)

ε2k2(2l)p2(2l)
.

From (12) we get that
∞∑

l=1

IIl < ∞.

This completes the proof of Theorem 2.4. �

Proof of Theorem 2.5. W.l.g. we assume that µ = EX1 = 0. Because of Theorem
2.3 we need to prove (3) and

(22)
1
k

k∑
i=1

S2
p,i − ES2

p,i

p
→ 0 a.s. as n →∞

where Sp,i =
∑

j∈Bi
Xj is the sum of the i-th block. We note that since |Xi| <

C a.s. i = 1, 2 . . . we have |Sp,i| ≤ C · p and the sequences Sp,2i and Sp,(2i−1),
i = 1, 2, . . . are strongly mixing with coefficients

α̃(i) = α((2i− 1)p + 1), i = 1, 2, . . .
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Lemma 3.4 implies that

(23) P ( max
1≤i≤k

∣∣∣∣∣∣
i∑

j=1

(S2
p,j − ES2

p,j)

∣∣∣∣∣∣ > 2x)

≤ P ( max
1≤i≤k

∣∣∣∣∣∣∣∣
i∑

j=1
j odd

(S2
p,j − ES2

p,j)

∣∣∣∣∣∣∣∣ > x) + P ( max
1≤i≤k

∣∣∣∣∣∣∣∣
i∑

j=1
j even

(S2
p,j − ES2

p,j)

∣∣∣∣∣∣∣∣ > x)

≤ Cx−2

kES4
p,1 + p4k

∑
1≤i≤ k

2

α̃(i)


for some constant C > 0. In order to establish (22) it suffices to show

∞∑
l=1

P ( max
2l<n≤2l+1

1
k (n)

∣∣∣∣∣∣
k(n)∑
i=1

S2
p,i − ES2

p,i

p

∣∣∣∣∣∣ > 2ε) < ∞.

Using (23) and (13) we obtain for any ε > 0

IIIl := P ( max
2l<n≤2l+1

1
k

∣∣∣∣∣
k∑

i=1

S2
p,i − ES2

p,i

p

∣∣∣∣∣ > 2ε)

≤ P ( max
m≤k(2l+1)

∣∣∣∣∣
m∑

i=1

(S2
p(2l),i − ES2

p(2l),i)

∣∣∣∣∣ > εp(2l)k(2l))

≤
C(k(2l+1)p4(2l) + p4(2l) · k(2l+1)

∑k(2k+1)
i=1 α̃(i)

ε2p2(2l)k2(2l)

≤ C(k(2l+1)p4(2l) + p4(2l)k2(2l+1)α(p(2l) + 1)
ε2p2(2l)k2(2l+1)

≤ C

(
p2(2l)

ε2k(2l+1)
+

p2(2l)α(p(2l) + 1)
ε2

)
.

By (14) and (15) we have that

∞∑
l=1

IIIl < ∞.

It remains to prove (3), i. e.

√
pX̄n,kp → 0 a.s. as n →∞.

It suffices to prove that for any ε > 0

∞∑
l=1

P ( max
2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

Sp(2l),i

∣∣∣∣∣ ≥ εk(2l)
√

p(2l)) < ∞.
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Using Lemma 3.4 we obtain

IVl :=P

(
max

2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

Sp(2l),i

∣∣∣∣∣ ≥ εk(2l)p
√

p(2l)

)

≤P

 max
2l<n≤2l+1

∣∣∣∣∣∣∣
k∑

i=1
i odd

Sp(2l),i

∣∣∣∣∣∣∣ ≥
ε

2
k(2l)

√
p(2l)


+ P

 max
2l<n≤2l+1

∣∣∣∣∣∣∣
k∑

i=1
i even

Sp(2l),i

∣∣∣∣∣∣∣ ≥
ε

2
k(2l)

√
p(2l)


≤

C(k(2l+1)p2(2l) + p2(2l)k(2l+1)
∑k(2l+1)

i=1 α̃(i)
εk2(2l)p(2l)

≤C(
p(2l)
εk(2l)

+
p(2l)α(p(2l) + 1)

ε
).

By conditions (14), (15) we have
∑∞

l=1 IVl < ∞. (3) follows by the Borel-Cantelli
lemma and Theorem 2.5 is proved. �

4.3. Bootstrap for functionals of absolutely regular sequences.

Proof of Theorem 2.6. The proof is based on Theorem 2.1. Lemma 3.5 implies the
conditions (1) and (2). W.l.g. we will assume that EX1 = µ = 0 and first we will
prove (5). In order to do that it suffices to show that for any ε > 0 and ε1 > 0

(24)
∞∑

l=1

P

(
max

2l<n≤2l+1

∣∣∣∣∣ 1
kp

k∑
i=1

S2
p,i1{|Sp,i|2>εkp}

∣∣∣∣∣ > ε1

)
< ∞

where Sp,i =
∑

j∈Bi
Xj . Using Markov, Hölder, Chebyshev inequalities, (13), and

Lemma 3.6 we obtain

P ( max
2l<n≤2l+1

∣∣∣∣∣ 1
kp

k∑
i=1

S2
p,i1{|Sp,i|2>εkp}

∣∣∣∣∣ > ε1)

≤P ( max
2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

S2
p,i1{|Sp,i|2>εk(2l)p(2l)}

∣∣∣∣∣ > ε1k(2l)p(2l))

≤
E(max2l<n≤2l+1

∣∣∣∑k
i=1 S2

p,i1{|Sp,i|2>εk(2l)p(2l)}
∣∣∣

ε1k(2l)p(2l)

≤

∑k(2l+1)
i=1 ES2

p,i1{|Sp,i|2>εk(2l)p(2l)}
ε1k(2l)p(2l)

≤
k(2l+1)ES2

p1{(|Sp|2>εk(2l)p(2l)}
ε1k(2l)p(2l)

≤
C(ES4

p)1/2(P (|Sp|2 > εk(2l)p(2l))1/2

ε1p(2l)
≤

C ES4
p

ε1 · εk(2l)p2(2l)

≤ C p2(2l)
ε1εk(2l)p2(2l)

≤ C

ε1 · εk(2l)
.
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The latter implies (24) and thus (5) is proved. Now we will prove (3). Note that
by stationarity and Lemma 3.7 we have for any a ≥ 1 and some C > 0

E

∣∣∣∣∣
a∑

i=1

Sp,i

∣∣∣∣∣
2

≤ Cap.

Theorem A of Serfling [22] implies that

(25) E

 max
1≤a≤m

∣∣∣∣∣
a∑

i=1

Sp,i

∣∣∣∣∣
2
 ≤ Cm(log2 2m)2p.

In order to prove (3) it suffices to show that for any ε > 0

(26)
∞∑

l=1

P ( max
2l<n≤2l+1

∣∣∣p1/2X̄n,kp

∣∣∣ > ε) < ∞.

By Chebyshev inequality and (25), it follows that

P ( max
2l<n≤2l+1

∣∣∣p1/2X̄n,kp

∣∣∣ > ε) ≤ P ( max
2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

Sp,i

∣∣∣∣∣ > k(2l)p1/2(2l)ε)

≤
Cε(max1≤j≤k(2l+1)

∣∣∣∑k
i=1 Sp,i

∣∣∣2)
k2(2l)p(2l)ε

≤ Ck(2l+1)(log(2 · k(2l+1)))2p(2l)
k2(2l)p(2l)ε

≤C(log(2 · k(2l+1)))2

k(2l)ε
.

The latter implies (26) and hence (3) is proved. It remains to prove (4). First we
will prove the existence of the constant C > 0 such that

(27) E

∣∣∣∣∣
m∑

i=1

(S2
p,i − ES2

p)

∣∣∣∣∣
2

≤ Cmp2

for m ≥ 1. Stationarity and Lemmas 3.6, 3.7 and 3.8 imply

E

∣∣∣∣∣
m∑

i=1

(S2
p,i − ES2

p)

∣∣∣∣∣
2

≤ 4E

∣∣∣∣∣∣∣
m∑

i=1
i odd

(S2
p,i − ES2

p)

∣∣∣∣∣∣∣
2

=4mE
(
S2

p − ES2
p

)2
+ 8

m−1∑
i=3

(m− i + 1)E(S2
p − ES2

p) · (S2
p,i − ES2

p)

≤Cmp2 + Cm

m−1∑
i=3

∑
i1,i2∈B1
j1,j2∈B2

|EXi1Xi2Xj1Xj2 − EXi1Xi2EXj1Xj2 |

≤Cmp2 + Cm

m−1∑
i=2

p4((a
[
(i−2)p

3 ]
)

δ
3+δ + (β([

(i− 2)p
3

]))
δ

4+δ )

≤Cmp2 + Cmp2
∞∑

k=1

k2((a[ k
3 ])

δ
3+δ + (β([

k

3
]))

δ
4+δ ) ≤ Cmp2.
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Now again using Theorem A of Serfling [22], we obtain

(28) E

 max
1≤a≤m

∣∣∣∣∣
a∑

i=1

(S2
p,i − ES2

p,i)

∣∣∣∣∣
2
 ≤ Cm(log2 2m)2p2.

If we can prove

(29)
∞∑

l=1

P ( max
2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

(S2
p,i − ES2

p)

∣∣∣∣∣ > εkp) < ∞,

(4) follows by the Borel-Cantelli lemma. Using Chebyshev inequality and (28) we
get

P ( max
2l<n≤2l+1

∣∣∣∣∣
k∑

i=1

(S2
p,i − ES2

p)

∣∣∣∣∣ > εkp)

≤P ( max
1≤m≤k(2l+1)

∣∣∣∣∣
m∑

i=1

(S2
p,i − ES2

p)

∣∣∣∣∣ > εk(2l)p(2l))

≤Ck(2l+1)(log2(2k(2l+1)))2 · p2(2l)
εk2(2l)p2(2l)

≤ C(log2(2k(2l+1)))2

εk(2l)
.

The latter implies (29) and hence (4), so Theorem 2.6 is proved. �

Proof of Theorem 2.7. This theorem can be proved in the same way as Theorem
2.6. Therefore the proof is omitted. �

4.4. Bootstrap for U-Statistics.

Lemma 4.2. Let (Xn)n∈N be a sequence of r.v.’s and A ⊂ {1, . . . , n}4. Then there
is a constant C, such that:∣∣∣∣∣∣EE?

 ∑
(i1,i2,i3,i4)∈A

h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)∣∣∣∣∣∣
≤ C

n∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| .

Proof of Lemma 4.2. By triangle inequality:∣∣∣∣∣∣EE?

 ∑
(i1,i2,i3,i4)∈A

h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)∣∣∣∣∣∣
≤ 1

(pk)2(pk − 1)2
∑

(i1,i2,i3,i4)∈A

|EE? [h (Xi1 , Xi2) h (Xi3 , Xi4)]| .

The bootstrapped expectation of h2

(
X?

i1
, X?

i2

)
h2

(
X?

i3
, X?

i4

)
(conditionally on (Xn)n∈N)

depends on the way the indices i1, i2, i3, i4 are allocated to the different blocks. First
consider indices i1, i2, i3, i4 lying in four different blocks Bj1 , Bj2 , Bj3 , Bj4 (there-
fore, X?

i1
, . . . , X?

i4
are independent for fixed (Xn)n∈N). From the construction of
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the bootstrap sample for any four different blocks Bj1 , Bj2 , Bj3 , Bj4 :∣∣E [E?
[
h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)]]∣∣
=
∣∣E[ 1

k4

∑
1≤i1+k1p≤n
1≤i2+k2p≤n
1≤i3+k3p≤n
1≤i4+k4p≤n

h2 (Xi1+k1p, Xi2+k2p) h2 (Xi3+k3p, Xi4+k4p)
]∣∣

≤ 1
k4

∑
1≤i1+k1p≤n
1≤i2+k2p≤n
1≤i3+k3p≤n
1≤i4+k4p≤n

|E [h2 (Xi1+k1p, Xi2+k2p) h2 (Xi3+k3p, Xi4+k4p)]|

⇒
∑

(i1,i2,i3,i4)
∈(Bj1×Bj2×Bj3×Bj4 )∩A

|EE? [h (Xi1 , Xi2) h (Xi3 , Xi4)]|

≤ 1
k4

n∑
i1,i2,i3,i4=1

|E [h (Xi1 , Xi2) h (Xi3 , Xi4)]|

As there are less than k4 possibilities to choose these four blocks, one gets:∑
(i1,i2,i3,i4)∈A
4 diff. blocks

|EE? [h (Xi1 , Xi2) h (Xi3 , Xi4)]|

≤
n∑

i1,i2,i3,i4=1

|E [h (Xi1 , Xi2) h (Xi3 , Xi4)]| .

As an example, let i1 and i2 now lie in the same block with i2 − ii = d < 0,
while i3, i4 lie in two further blocks. X?

i1
and X?

i2
are dependent, the value of X?

i2
is determinded by the value of X?

i1
(conditionally on (Xn)n∈N). To repair this, add

up the expected values for all i2 such that i2 in the same block as i1 and take into
account that there are at most k3 possibilities for i1, i3, i4:∣∣E [E?

[
h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)]]∣∣
≤ 1

k3

∑
1≤i1+k1p≤n−d
1≤i3+k3p≤n
1≤i4+k4p≤n

|E [h2 (Xi1 , Xi1+d) h2 (Xi3 , Xi4)]|

⇒
∑
i2

(i1,i2,i3,i4)∈A
i2 in same block as i1

∣∣E [E?
[
h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)]]∣∣

≤ 1
k3

n∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]|

⇒
∑

(i1,i2,i3,i4)∈A
i2 in same block as i1

∣∣E [E?
[
h2

(
X?

i1 , X
?
i2

)
h2

(
X?

i3 , X
?
i4

)]]∣∣
≤

n∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]|
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When the indices are allocated to the blocks in another way, analogous arguments
can be used, which completes the proof. �

Proof of Theorem 2.8. We first show that

P
[√

pkU?
n (h2) → 0

]
= E

[
P ?
[√

pkU?
n (h2) → 0

]]
= 1.

With Fubinis theorem, we will then conclude that

(30) P ?
[√

pkU?
n (h2) → 0

]
= 1 a.s.

We set

Q?
n =

∑
1≤i1<i2≤pk

h2

(
X?

i1 , X
?
i2

)
and bn =

1√
pk (pk − 1)

.

With the method of subsequences, it suffices to show that

b2lQ?
2l (h2) → 0 a.s.,(31)

max
2l−1≤n<2l

|bnQ?
n − b2l−1Q?

2l−1 | → 0 a.s.,(32)

as l → ∞. By the condition 1. or 2. or 3. of the theorem and Lemma 3.12, there
exists a η > 0 such that

(33)
n∑

i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| = O
(
n3−η

)
.

We use Chebyshev inequalitity and Lemma 4.2 to prove (31). For every ε > 0:
∞∑

l=1

P [|b2lQ?
2l (h2)| > ε] ≤ 1

ε2

∞∑
l=1

b2
2lEE?

[
Q?2

2l (h2)
]

≤C
1
ε2

∞∑
l=1

b2
2l

2l∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| ≤ C
1
ε2

∞∑
l=1

2−ηl < ∞.

(31) follows with the Borel-Cantelli Lemma. To prove (32), we first have to find a
bound for the second moments, using a well known chaining technique:

max
2l−1≤n<2l

|bnQ?
n − b2l−1Q?

2l−1 |

≤
l∑

d=1

max
i=1,...,2l−d

∣∣∣b2l−1+i2d−1Q?
2l−1+i2d−1 − b2l−1+(i−1)2d−1Q?

2l−1+(i−1)2d−1

∣∣∣ .
As for any random variables Y1, . . . , Yn: E (max |Yi|)2 ≤

∑
EY 2

i , it follows that

EE?

[(
max

2l−1≤n<2l
|bnQ?

n − b2l−1Q?
2l−1 |

)2
]

≤l

l∑
d=1

2l−d∑
i=1

EE?

[(
b2l−1+i2d−1Q?

2l−1+i2d−1 − b2l−1+(i−1)2d−1Q?
2l−1+(i−1)2d−1

)2
]
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≤l

l∑
d=1

2l−d∑
i=1

2b2
2l−1+i2d−1EE?

[(
Q?

2l−1+i2d−1 −Q?
2l−1+(i−1)2d−1

)2
]

+ l

l∑
d=1

2l−d∑
i=1

2
(
b2l−1+i2d−1 − b2l−1+(i−1)2d−1

)2
EE?

[
Q?2

2l−1+(i−1)2d−1

]

=
l∑

d=1

2b2
2l−1+i2d−1EE?

2l−d∑
i=1

(
Q?

2l−1+i2d−1 −Q?
2l−1+(i−1)2d−1

)2


+ l

l∑
d=1

2l−d∑
i=1

2
(
b2l−1+i2d−1 + b2l−1+(i−1)2d−1

) (
b2l−1+i2d−1 − b2l−1+(i−1)2d−1

)
· EE?

[
Q?2

2l−1+(i−1)2d−1

]
≤l26b2

2l−1

2l∑
i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2) h2 (Xi3 , Xi4)]| ≤ Cl22−ηl.

In the last line we used the fact that the sequence (bn)n∈N is decreasing, Lemma
4.2 and (33). It now follows for all ε > 0

∞∑
l=1

P

[
max

2l−1≤n<2l
|anQn − a2l−1Q2l−1 | > ε

]
≤ C

ε2

∞∑
l=1

l22−ηl < ∞,

the Borel-Cantelli Lemma completes the proof of (32). Furthermore, we have that

(E [Q?
n])2 ≤ E

[
Q?2

n

]
and conclude that 1√

pk(pk−1)
E [Q?

n] → 0 a.s. We use now the Hoeffding-decomposition

√
pk (U?

n (h)− E? [U?
n (h)]) =

2√
pk

pk∑
i=1

(h1 (X?
i )− E? [h1 (X?

i )])

+
2√

pk (pk − 1)

 ∑
1≤i<j≤pk

h2

(
X?

i , X?
j

)
− E?

 ∑
1≤i<j≤pk

h2

(
X?

i , X?
j

) .

By Theorem 2.4 (for absolutely regular or strongly mixing sequences) or 2.6 (for
functionals of absolutely regular sequences), we have that

sup
x∈R

∣∣∣∣∣P ?

[
2√
pk

pk∑
i=1

(h1 (X?
i )− E?h1 (X?

i )) ≤ x

]
− P

[
2√
n

n∑
i=1

h1 (Xi) ≤ x

]∣∣∣∣∣
→ 0 a.s.

and by Theorem 2.1 of Dehling, Wendler [8]
√

nUn (h2) → 0 a.s.

Since
√

pkU?
n (h2) → 0,

√
pkE?U?

n (h2) → 0 a.s. have been already proved, (17)
follows with the Lemma of Slutzky. To prove (16), first recall that by Theorem 2.4
or 2.6

Var?

[√
pk

kp∑
i=1

h1 (X?
i )

]
−Var

[
√

n

n∑
i=1

h1 (Xi)

]
→ 0 a.s.,
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and by Lemma 3.12 Var
√

nUn (h2) → 0. Similar to the proof of (30), one can show
that Var?√pkU?

n (h2) → 0 a.s., so (16) follows, which completes the proof. �
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