
\To those who have borne
with us during our studies"

Acknowledgments

We would like to thank Prof. V. Ambriola, Prof. E. E. Doberkat and Prof. W. Sch�afer

for o�ering us the opportunity to gain this excellent experience at the University of

Dortmund and for all the provided useful suggestions.

We also want to express our gratitude to Doris Schmedding for her advice and sup-

port throughout the development of our work, and for her helping hand at all times in

private manners whether being big or small.

A special thank goes to J�org Brunsmann and Wolfgang Emmerich for their sugges-

tions and precious contribution, and for their readiness to reply to our regular outcry:

"hilfe". The �rst mentioned also corrected the last version of this thesis, for which we

are truly grateful.

Others who have contributed to this work are J. L. Knudsen and E. Sandvan of the

Mjolner Project. We wish to thank them because, during a face to face discussion, they

o�ered us the opportunity to check the correctness of the theoretical part of this work.

Last but not least, we want to thank Werner Beckmann and our Dutch friends for their

help in �nding English mistakes.

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Structure of the Thesis . 2

2 Object Oriented Languages 5

2.1 Object Oriented Programming and Beta 6

2.2 Beta and Its Basic Language Mechanisms 9

2.2.1 Object Attributes . 10

2.2.2 Pattern Attributes . 11

2.2.3 Virtual Patterns . 12

2.2.4 Pattern Variable . 13

2.2.5 Composition . 13

3 Rational for Graphical Design 17

3.1 Software Design . 17

3.2 Graphical Representation . 19

3.3 Summary . 21

4 OOAD Methodologies 23

4.1 A Comparative Study of Nine Methodologies 24

4.1.1 Coad & Yourdon . 27

4.1.2 Shlaer & Mellor . 28

i

ii CONTENTS

4.1.3 Booch . 28

4.1.4 Rumbaugh's Object Modelling Technique 29

4.2 Rational for Choosing OMT . 29

4.3 OMT Basic Concepts . 31

4.3.1 Classes and Objects . 32

4.3.2 Relationships . 32

5 Mapping from OMT to BETA 37

5.1 OMT Versus Beta . 37

5.1.1 Class De�nition . 38

5.1.2 Operations . 39

5.1.3 Derived Attributes . 41

5.1.4 Creating Objects . 42

5.1.5 Calling Operations . 43

5.1.6 Inheritance . 44

5.1.7 Implementing Associations . 47

5.1.8 Aggregation . 57

5.1.9 Summary . 62

5.2 Multiple Inheritance . 64

5.2.1 More Independent Classi�cation Hierarchies 64

5.2.2 The Multiple Override Criterion 65

5.2.3 Code Reuse . 66

5.2.4 Summary . 68

6 Tool Modelling 69

6.1 Requirements . 69

6.2 Design . 71

6.2.1 Architecture of the Tool . 72

CONTENTS iii

6.2.2 The Graphical Editor Implementation Subsystem 74

6.2.3 The Textual Editor Implementation Subsystem 76

6.3 Summary . 77

7 Selecting a Graphical Editor 79

7.1 daVinci . 79

7.2 Tcl and the Tk Toolkit . 80

7.3 GraphProject . 81

7.4 Comparisons and Conclusions . 83

8 Selecting a Textual Editor 85

8.1 Requirements of Our Textual Editor . 86

8.2 Cornell Synthesizer Generator . 87

8.3 Centaur . 88

8.4 IPSEN . 89

8.5 GENESIS . 90

8.6 Comparisons and Conclusions . 91

9 Tool Implementation 93

9.1 Graphical Editor . 93

9.1.1 First Level of the User Interface 94

9.1.2 Speci�cation of the Graphical Language 96

9.1.3 Method Implementation . 98

9.1.4 Summary . 104

9.2 Textual Editor . 106

9.2.1 A New Version of the Beta Grammar 107

9.2.2 Inheritance View . 112

9.2.3 Entity/Relationship View . 113

9.2.4 Implementation . 114

iv CONTENTS

9.2.5 Summary . 117

9.3 Tool Integration . 118

9.3.1 The Communication Protocol Subsystem 119

9.3.2 Messages De�nition . 120

9.3.3 Examples of Message Use . 121

9.3.4 Summary . 122

10 Conclusions and Further Work 125

10.1 Conclusions . 125

10.2 Further Work . 127

A Graphical Editor Speci�cation 135

A.1 De�ned Arcs . 136

A.1.1 One to One Association . 136

A.1.2 One to Many Association . 137

A.1.3 Many to Many Association . 139

A.1.4 Ternary Association . 140

A.1.5 Aggregation . 141

A.1.6 Aggregation With Multiplicity 142

A.1.7 Generalization . 143

A.1.8 Instantiation . 144

A.2 De�ned Nodes . 144

A.2.1 Class . 144

A.2.2 LinkAttribute . 146

A.2.3 Instance . 147

A.2.4 Aggregation node . 147

A.2.5 Ternary node . 148

A.2.6 Generalization node . 148

CONTENTS v

A.3 De�ned Hypernodes . 148

A.3.1 OMT Graphical Editor . 149

A.3.2 Object Model . 149

A.3.3 Functional Model and Dynamic Model 150

B Beta Grammar 153

C Textual Editor Speci�cation 163

C.1 BetaProgram . 163

C.2 DeclList . 164

C.3 Decl . 166

C.4 Class Pattern . 167

C.5 Attributes . 168

C.6 AttributeDecl . 170

C.7 PartObject . 171

C.8 Repetition . 172

C.9 FunctionalPattern and ProcedurePattern 173

C.10 EnterPart . 176

C.11 DoPart . 177

C.12 ExitPart . 178

C.13 Associations . 179

C.14 One and One to Many . 180

C.15 Many to Many and Ternary . 182

C.16 InstanceDecl . 184

C.17 Instance . 185

C.18 BiTree and ThreeTree . 186

D De�ned Messages 189

D.1 Class . 189

vi CONTENTS

D.2 Association . 193

D.3 Generalization . 195

D.4 Aggregation . 196

Chapter 1

Introduction

1.1 Motivations

In the past few years, Object Oriented techniques have �nally made the passage from

the programming-in-the-small island to the mainland of the programming-in-the-large.

These techniques have found a natural application in di�erent segments of computer

science, from database systems to the representation of arti�cial intelligence and soft-

ware engineering.

Object Orientation is a new way of thinking about problems using models organized

around real word concepts. Object Oriented analysis, design and implementation are

examples of areas associated with Object Orientation and they are often considered as

constituting the most signi�cant part of the software life cycle.

During the analysis phase the problem is understood. In this phase the relevant con-

cepts and phenomena of the real word are identi�ed and described. Then, the design

phase is concerned with the construction of a precise description of these individualized

concepts. During this phase the structure of the system to be developed is generated in

terms of modules (classes) and the relationships between them. The resulting system

is �nally re�ned into an executable software system during the implementation phase.

The language used to express the result of the analysis phase is usually natural and/or

graphical. Instead, graphical notations are often preferred for designing languages,

while the implementation phase is supported by a variety of actually available Object

Oriented languages. Object Orientation aims to integrate these three phases but some

problems, depending on the di�erences between the used languages, still exist. For this

reason many Object Oriented Analysis and Design (OOAD) methodologies have been

developed in order to close the semantic gap between analysis and design, while the

bridge between design and implementation is still an open problem.

Since it may be impractical to use a graphical notation without the support of a

computer-based tool, a number of so called CASE tools have been developed to support

1

2 CHAPTER 1. INTRODUCTION

the di�erent OOAD methodologies. In general such tools allow the construction and

manipulation of a graphical notation for analysis and/or design. In addition, such tools

may support the generation of code skeleton in a programming language which may

then be �lled in to produce an executable software system. Unfortunately, in these

tools it is di�cult to recognize the original design in the code skeleton produced. This

is due to the fact that usually there are some mechanisms in the graphical languages

which are not directly supported by the programming languages.

Our work faces the problem to minimize the intellectual distance between real world

problems and software solutions. This thesis shows how it is possible to integrate the

three most important phases of the software development process and, in particular,

how to close the gap between design and implementation.

The design methodology and the programming languages used are OMT [RBP+91] and

Beta [LMN93]. A comparative study of several OOAD methodologies shows how OMT

is the most suitable to be integrated with the Object Oriented language Beta. Our

work realizes this integration by means of a mapping between the two languages. This

mapping translates the most fundamental OMT concepts into those Beta concepts that

are semantically equivalent. Moreover, the integration is concretely supported by the

realization of a integrated Software Engineering Environment.

This Environment is created by developing a CASE tool complying a new approach that

uses editor generators instead of common toolkits. The textual and graphical editor

generators used to build the CASE tool are GENESIS [GOO94] and GraphProject

[CI94].

By developing this tool, the bridge that closes the gaps between analysis and design,

and between design and implementation does not remain only in a theoretical phase

but became a useful and concrete solution. Moreover, by giving a description of the

phases followed during this development, we also prove the utility of Object Oriented

technology in the realization of an integrated Software Engineering Environment.

1.2 Structure of the Thesis

This thesis will further structured as follows.

In chapter 2 we give a brief introduction to the main features of Object Oriented lan-

guages. Moreover, we give an evaluation of Beta as Object Oriented language compar-

ing it with the most known languages, and underlining those features that are Object

Oriented and those that are not.

In the third chapter we give a rational for introducing a designing phase that supports

the implementation in any Object Oriented programming language. In particular we

point on the importance in using graphical notations during this phase.

In chapter 4 several OOAD methodologies are shown and compared, and their degree

1.2. STRUCTURE OF THE THESIS 3

in supporting Object Oriented concepts is discussed. Four of these are investigated

in more detail and the Rumbaugh methodology is chosen as the most suitable to be

integrated with an implementation phase in Beta. Therefore the most fundamental

OMT concepts and their notation are shown.

In chapter 5 we give a proposal of integration between the graphical language supported

by OMT and the Object Oriented language Beta. Some solutions to simulate multiple

inheritance in Beta are also given.

The following chapters discuss the realization of the tool.

In the sixth chapter the �rst two phases of the development of our tool are treated. We

�rst give the analysis of the requirements our tool must satisfy and then a design in an

OMT-like notation that follows these requirements.

In chapters 7 and 8 a comparative study of several approaches to build the graphical

and the textual editor composing the tool is presented. These chapters show how

GraphProject and GENESIS provide the means to build e�cient and well integrated

tools.

The implementation of the tool and its user interface are described in chapter 9. In

this chapter the two editors and the realization of the integration mechanism between

them are treated separately.

Finally, chapter 10 contains some considerations about the realized work underlining

the experiences made in developing this thesis. Some suggestions for further works are

given as well.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Object Oriented Languages

In this chapter the characteristics of the Object Oriented languages (later called O.O.

languages) are presented. Then the Beta language is introduced estimating it on the

basis of these characteristics and a comparison with other well know O.O. languages.

Finally, in order to increase the comprehension of the next chapters, the most important

Beta constructs are explained.

Wegner De�nitionsAwidely accepted de�nition of the term Object Oriented is provided byWegner [Weg92]

who presents a necessary and su�cient set of criteria for O.O. languages. Wegner

distinguishes three categories of languages:

� Object Based languages

� Class Based languages

� Object Oriented languages

We see now the de�nitions and the relation between the three categories.

De�nition: A language is Object Based if it supports objects as features.

De�nition: An Object Based language is Class Based if every object belongs to a

class.

De�nition: An Object Based language is Object Oriented if every object belongs

to a class, and if a class hierarchy can be de�ned by a inherit mechanism.

Object Based languages are a proper subset of Class Based languages which in turn

are a proper subset of O.O. languages. Ada is an example of non Class Based language

and CLU [Kee89] is an example of non Object Oriented language.

CharacteristicsThe basic O.O. languages characteristic is that they are close to our own natural per-

ception of the real world. They allow to model the real world by a set of objects -

5

6 CHAPTER 2. OBJECT ORIENTED LANGUAGES

computational entities each having a particular well de�ned behaviour, which commu-

nicate each other by message exchange. Moreover, objects are instances of classes which

de�ne the interface for the external world, and the objects behaviour by the de�nition

of the operations. Each object in a class has a proper state that evolves independently

from the other objects, and in particular from the other objects in the same class.

The state depends from the value of the attributes. Moreover, classes can be arranged

into hierarchies, o�ering in this way a natural and powerful mechanism to model the

reality. Besides, allowing hierarchy organization of classes, O.O. languages give rise to

strong constructs for supporting incremental program modi�cations - operations may

be changed or added without changing the underlying model, and software developers

are able to reuse existing software components when develop new one. For these reas-

ons a large number of programmers practice Object Oriented programming. They use

a number of di�erent languages such as Simula, Smalltalk, C++ [SR90], Ei�el [Swi93]

and CLOS. These languages have a common core of language constructs which to some

extent makes them look alike.

2.1 Object Oriented Programming and Beta

Beta and the Mjolner

Beta System
Object Oriented programming originated with the Simula language developed at the

Norvegian Computing Center, Oslo, in the 1960s. Beta is a modern language in the

Simula tradition. The Beta project was initiated in 1975 as part of the so called The

Joint Language Project. People from Aarhus University, Aalborg University Center,

and the Norwegian Computing Center, Oslo, participated in that project. The Mjolner

Beta System is a software development environment supporting the Beta language

which includes an implementation of the Beta language. In addition the system includes

a number of other tools and a collection of libraries that provide a number of prede�ned

patterns and objects. The Mjolner Beta system was originally developed as part of the

Nordic Mjolner project with participants from Sweden, Norway, Finland and Denmark.

Draft version of the Beta language we have seen and pre-releases of the Mjolner Beta

System have been used for teaching Object Oriented programming as a second years

course in programming language in two departments at Aarhus University. They have

also been used, and they are actually used, for teaching at number of others places

including the Universities of Copenhagen, Oslo, Bergen, Odense and Dortmund. Draft

versions have also been used for Beta tutorials given in the OOPSLA '89, 90, 91'

conferences, at the TOOLS '91 and '92 conferences, and at EastEurOOPe '91, [LMN93].

Although Beta is primarily intended for the Object Oriented style of programming, it

contains comprehensive facilities for procedural and functional programming (is amulti-

perspective language). As pointed out by others (Cox, 1981: Nygaard and Sorgaard,

1987), a programming language should support more than one style. Simula and C++

are multi-perspective languages too. We think that, even if in this case the programmer

has more possibilities in writing programs, the use of a multi-perspective language

in a teaching environment is not a good way if you want to learn Object Oriented

methodology.

2.1. OBJECT ORIENTED PROGRAMMING AND BETA 7

We discuss now the various features of O.O. languages that are supported by Beta,

sometimes making some comparisons with others well known O.O. languages like C++,

Smalltalk-80 and Ei�el.

A Single Abstraction

Mechanism: the Pat-

tern

Beta replaces classes, procedures, functions, attributes and types by a single abstraction

mechanism called the pattern. Pattern is a further generalization of the Simula class

construct, and pattern attributes of a pattern correspond to interface operations in

Smalltalk classes.

EncapsulationBy the use of this abstraction, Beta provides uniform access to both attribute and

operations (as in Ei�el) but unlike them it does not provide encapsulation. In Beta,

code associated with one class can directly access the attributes of another class without

\asking for it" by invoking an operation of the object. Ei�el provides perhaps the �nest

control of encapsulation through its export statement, which lists attributes that can be

read and operations that can be executed from outside. Many other languages (such as

Smalltalk) forbid direct access to the attributes of another object or (as in C++) permit

attributes to be declared either public or private. Beta contains no such mechanism

that allows to divide modules into interface and implementation modules. We think

that it is a big lack for an O.O. language. Encapsulation is important because it

prevents a program from becoming so interlaced that a small change has massive ripple

e�ects. Without any facilities that ensure this property, it is a programmer task to

ensure encapsulation by limiting the scope to any one method. He needs to exactly

de�ne the boundaries of visibility that each method requires.

Inheritance and Poli-

morphismBeta contains facilities for inheritance, method resolution and, like C++, the ability

to override an operation in a subclass is only available if the operation is declared

virtual in the superclass. Therefore, we can have objects that belong to distinct classes

that react to messages with the same name to perform similar tasks even if the code

that implements the methods can be di�erent in the various classes. This situation

reveals that we have polimorphism: we can access di�erent implementations of the same

operation using the same name. Virtual operations, superclasses and subclasses are

generalized as patterns too. In particular, respectively as virtual patterns, superpatterns

and subpatterns. Declaring virtual operations, the need to override a method must be

anticipated and written into the origin class de�nition. Unfortunately, the writer of

a class may not anticipate the need to specialize subclasses or may not know what

operations will need to be re�ned by a subclass. This means that the superclass often

must be modi�ed when a subclass is de�ned. We think that this places a serious

restriction to the ability of reusing library classes by creating subclasses.

How Beta Sees Inher-

itanceAlthough inheritance of 'code' is often considered the major bene�t of sub-classing, in

Beta language inheritance is mainly intended for hierarchical classi�cations of concepts

(even if it may be used for code sharing as well). This is one of the major di�er-

ences between the American and the Scandinavian school of Object Oriented program-

ming [Coo88]. Moreover, O.O. languages di�er in their implementation of inheritance.

[KL88] discusses three independent dimensions for classifying inheritance mechanisms:

static or dynamic, implicit or explicit, and per object or per group.

On the basis of this classi�cation, Beta language is:

8 CHAPTER 2. OBJECT ORIENTED LANGUAGES

� static: in the sense that inheritance is bound at compiler time;

� implicit: the behaviour of the object depends on its class that cannot be changed;

� per group: inheritance characteristics are speci�ed for a class and not for speci�c

objects;

Multiple Inheritance Unlike many O.O. languages like Ei�el, CLOS and C++, Beta does not support multiple

inheritance, due to the lack of a profound theoretical understanding, and also because

the current proposal seems technically very complicated, [LMN93,p.107]. Multiple

inheritance will be treated in more detail in the next sections.

Beta Is Strongly

Typed Beta is a strongly-typed language in the sense that attributes and references may be

declared as belonging to a particular class or one of its descendents (in a Beta concept:

they are quali�ed). The premise behind strong typing is that it is easier to detect and

correct static semantic errors at compile-time rather than at run-time; the compiler will

generate more e�cient code, and the quali�cation improves the readability of the code.

The price for this choice is, of course, less
exibility for the programmer. However, the

use of untyped reference in Smalltalk-like languages has the bene�t that a recompilation

of a class does not have to take related documents of the program into consideration.

Membership of Classes Moreover, Beta allows the test for class pattern membership even if this attribute is

considered a bad programming style. This is allowed by the meaning of pattern variable.

In Simula and in Smalltalk it is also possible to perform this test. In C++ they have

been deliberately left out, since they are viewed as violating the advantages of Object

Orientation. As we will see in the next chapters, for us pattern variable has been

useful during our study of multiple inheritance. We have used this facility to simulate

inheritance of features that in our opinion can be seen as another way of information

hiding violation.

Composition and

Block Structure Beta also contains facilities for supporting composition. Composition is a means to

organize phenomena and concepts as a composition of other phenomena and concepts.

Beta supports three kinds of composition: Whole-Part composition, Reference compos-

ition and Localization. Block structure is the Beta mechanism to support Localization.

This is a natural and powerful mechanism that gives many advantages as locality and

de�nes the scope rules of the language. Despite of this, block structure is found for

example in Simula but abandoned in Smalltalk-80. Moreover, in Simula the use of nes-

ted classes is limited by a number of restrictions; Beta does not have this restriction.

Whole-Part composition and Reference composition will be explained later in detail.

Library Like several other O.O. languages, Beta contains a standard class library as part of

its environment. The availability of the class library means that many components

need not to be implemented, expecially general purpose data structures. Classes im-

plementing various kinds of associations should be also available in a class library

[RPB+91,p.319] but since Beta does not explicitly supports associations, it does not

provide this facility.

2.2. BETA AND ITS BASIC LANGUAGE MECHANISMS 9

Automatic Garbage

Collection
Beta supports automatic memory management: objects that are no longer referenced

are detected and the memory allocated to them is released without requiring (or al-

lowing) any explicit deallocation. This approach relieves the programmer of the re-

sponsibility of deciding when to allocate memory and avoids the risk of dangling object

references that can be heated by explicit deallocation. Automatic garbage collection is

supported also by CLOS, Ei�el and Smalltalk, while C++ requires the programmers to

deallocate unneeded objects allowing the programmer to de�ne a destructor function

for every class, automatically called when a variable goes out of the scope.

2.2 Beta and Its Basic Language Mechanisms

In this section we introduce the most important constructs of the Beta language. This

will be useful for the understanding of the next chapters, but readers familiar with Beta

may skip this section.

A Beta ProgramA Beta program execution consists of a collection of objects and patterns. An objects is

characterized by a set of attributes and an action-part. Patterns are used to represent

categories of objects with the same properties [LMN93]. The object descriptor is the

basic syntactic construct in Beta and may be used to describe a pattern or a singular

object. An object descriptor has the following form:

(# Decl1; Decl2; ... Decln

enter In

do Imp

exit Out

#)

and its elements have the following meaning:

� Decl1; ...; Decln is the list of the attribute declarations. The possible kinds of

attributes are further described below.

� In is a description of the enter-part of the object. The enter-part is a list of input

parameters which may be entered prior to execution of the object.

� Imp is the do-part of the object. The do part is a list of imperative statement

that describes the actions to be performed when the object is executed.

� Out is the description of the exit-part of the object. The exit-part is a list of

output parameters which may be produced as a result of execution of the object.

Enter, do and exit-parts are called together action-part and each of these elements may

be omitted. It is strange that an object has an action-part, for example Ei�el does not

10 CHAPTER 2. OBJECT ORIENTED LANGUAGES

support this kind of facility, but it is due to the fact that Beta has a single abstraction

mechanism (the pattern) that is used also for describe operations in which the action

part is needed.

Example The example below illustrates most of the language mechanisms de�ned in Beta lan-

guage. It gives a de�nition of a pattern Address.

(# Street:@Text;Address:
 StreetNo:@integer;
 Town:@(# Name:@Text;
 CAP:@integer
 #);
 theCountry:^Country;

do
do

 {print Street,
 StreetNo, Town};
 INNER;

#);
#)

printLabel:< (#
 whichCountry :(# theContry.Display #);

Figure 2.1:

Address is the name of the pattern and has the attributes Street, StreetNo, Town,

theCountry, whichCountry, and printLabel but does not have an action-part. We show

below the various kind of used attributes.

2.2.1 Object Attributes

In our example, the attributes Street, StreetNo, Town and theCountry are object at-

tributes.

Part Objects Street, StreetNo and Town are part-objects of an Address object in the sense that they

denote the same object during the lifetime of the containing Address object. This kind of

declaration is also called static reference since Street, StreetNo and Town always denote

the same static objects. It is also possible to specify part-objects of any pattern, that

is also of user-de�ned patterns. Consider a pattern Person de�ned as below. Here the

pattern Address, that has been just de�ned by the user, is used to de�ne a part-object

of Person.

Person: (# Name:@Text;

Addr:@Address;

#)

Basic Patterns The patterns of the part-objects Text and Integer correspond more or less to what in

some languages would be standard, prede�ned simple (type) classes. In Beta this kind of

2.2. BETA AND ITS BASIC LANGUAGE MECHANISMS 11

patterns are called Basic patterns. A number of prede�ned basic patters for commonly

used data types such as integer, boolean, char, text and real and their operations are

available. Any instance of Address will have a Text object, an Integer object and a

Town object as �xed parts. These objects are generated as part of the generation of

Address.

Dynamic ReferencetheCountry is a Dynamic reference, i.e. it is a reference to a separate object since

this application keeps information on countries in a separate object. The attribute

theCountry is said to be quali�ed by Country. In addiction such reference is variable in

the sense that it may denote di�erent objects (instances of the same class) at di�erent

points of time. A dynamic reference may be given a value by means of a reference-

assignment. There are two di�erent ways to use a dynamic reference. For example if

you have declared the following static reference:

Coun:@Country;

a reference assignment of the form:

Coun[]->theCountry[]

implies that the object denoted by Coun is also denoted by theCountry.

It is also possible to dynamically create objects by the execution of actions. The fol-

lowing evaluation creates an instance of the pattern Country and the result of the

evaluation is a reference to the newly created object that is assigned to theCountry.

&Country[]->theCountry[]

The symbol & means \new" and the symbol [] means that the reference to the ob-

ject is returned as the result of the evaluation.

2.2.2 Pattern Attributes

whichCountry and printLabel are Pattern attributes used as procedures. A pattern

attribute may be used as a template for generating objects that have a state that

changes over time (Class pattern), or as a template for generating an action sequence.

Class patternA class patterns is a pattern describing a certain number of attributes. The content of

the attributes de�nes the state of the objects (of this class) that can be changed by the

other objects by invoking operations that change their values.

Procedure and Func-

tional PatternPatterns used as templates for generating actions sequence are divided into Procedure

patterns and Functional patterns. From a modelling point of view, a Procedure pattern

is used to represent temporary state information when an object that belongs to the

pattern is generated. A Functional pattern is a pattern that computes a value on the

basis of a set of input parameters. The input values are entered in the enter-part, and

the computed value is returned via the exit-part. The computed value depends solely

12 CHAPTER 2. OBJECT ORIENTED LANGUAGES

on the input values and, in addiction, the computation of the value does not change

the state of any other object (there is no side-e�ect) [LMN93,p.43]. For example, T is

a functional pattern that takes as input two integers, and can be part of the following

evaluation:

(1,2)->T->A

The execution assigns the integers 1 and 2 to the enter-part of the inserted item T, and

causes the instance to be executed. Finally, the exit-part of the T instance is assigned

to A. In this example an instance of T is generated as a permanent part of the object

that computes the evaluation. In this case, T is called inserted item and it could be

either a functional or a procedure pattern. In reality the di�erence between procedure

and functional patterns is something vague states. We have not found a de�nition

that clearly describes the di�erences between the two kinds of patterns, while we have

seen examples of procedure patterns with exit-part and functional patterns that give

in output values of an own attribute. In the example above, the pattern Address is a

class pattern, while printLabel should be a procedure pattern.

2.2.3 Virtual Patterns

A virtual pattern is a particular kind of procedure or functional pattern. In the above

example the pattern printLabel is declared as a Virtual pattern attribute. A virtual

pattern can not be completely rede�ned, but only further extended in subclass patterns

of Address. An example is the following:

AddressOfCompany: Address

(# Name:@Text;

printLabel::<(# ..fprint Nameg..#)

#)

Here AddressOfCompany is a subpattern of Address and printLabel is specialized print-

ing the Name attribute. This declaration of printLabel is called binding declaration.

Extending a virtual pattern implies to de�ne it as a subpattern of the de�nition given

as part of the virtual pattern speci�cation. In subpatterns, attributes can be added

and the execution of the special imperative INNER implies the execution of the actions

of the subpattern. In this way a subpattern is a specialization of another pattern -

the superpattern and the INNER imperative is used for specialization of actions. The

enter-part for a subpattern is a concatenation of the enter-part of the superpattern and

the enter-part speci�ed in the subpattern, and similarly for the exit-part.

We describe now some other constructs and concepts supported by Beta that are not

used in the above example.

2.2. BETA AND ITS BASIC LANGUAGE MECHANISMS 13

2.2.4 Pattern Variable

A pattern variable is another dynamic concept of patterns. It may be assigned to dif-

ferent patterns during program execution. A pattern variable is de�ned as follows:

F:## T

where F is the name of the pattern variable and T its quali�cation. F may be as-

signed to any pattern which is T or a subpattern of T.

Consider the following subpattern de�nition:

T1:T(# ... #)

then:

T1##->F##

assigns T1 as a pattern to F, that means that the entire structure of the pattern

T1 is assigned to F. F may be also used to create instances like in the evaluation of the

following forms:

F &F &F[]

just as for ordinary patterns. F may be assigned to a new pattern or to another

pattern variable.

Testing Pattern Mem-

bershipOne of the interesting use of patterns variable is for testing pattern membership. In fact

it is possible to compare patterns variable like:

F## = T1## F## < T1## F## <= T1##

where = means the same pattern, < means that the left-side is a subpattern of the

right-side, and <= means that the left-side is either equal to the right-side or a sub-

pattern of the right-side. Patterns variable make patterns �rst class values in the sense

that a pattern can be assigned to a variable, passed as a parameter to a procedure

pattern, and returned as a result of a procedure pattern.

2.2.5 Composition

Composition is important in modelling real world. It is a means to organize phenom-

ena and concepts in terms of components of other phenomena and concepts. There

are a number of di�erent ways for making composition. Beta supports three dif-

ferent approaches: Whole-Part composition, Reference composition and Localization

[LMN93,p.308].

14 CHAPTER 2. OBJECT ORIENTED LANGUAGES

Whole-Part Composition

One important form of composition is the structuring of phenomena into wholes and

parts.

De�nition. The part-of relation is a relation between a phenomenon and one of its

part phenomena.

Example A Microcomputer may be considered as consisting of parts like Mouse, Monitor, and

a Keyboard, i.e. Mouse, Monitor etc. are part-of a Microcomputer. The following ex-

ample shows how Whole-Part composition is supported in Beta. The example shows a

pattern describing the concept of a microcomputer:

Microcomputer:

(# theMonitor:@Monitor;

theMouse:@Mouse;

theKeyboard:@Keyboard;

#)

The part-of relationship gives rise to a part hierarchy in which Microcomputer is the

aggregate object and theMonitor, theMouse and theKeyboard are the part objects.

Reference Composition

A reference is a component of a phenomenon that denotes another phenomenon. Com-

position of references gives rise to a has-ref-to relation.

De�nition: The has-ref-to relation is a relationship between a phenomenon and one

of its components, being a reference to another phenomenon.

Example The following example shows how reference composition is supported in Beta. The

example describes the concept of a Hotel Reservation:

HotelReservation:

(# aPerson:^Person;

aHotel:^Hotel;

aRoom:^Room;

#)

The components aPerson, aHotel, aRoom are reference components of a HotelReserva-

tion. The di�erence from the concept of Whole-Part composition is that, in this case,

a person, an hotel, and a room are not parts of an hotel reservation, but they are only

references that can be useful to take informations.

2.2. BETA AND ITS BASIC LANGUAGE MECHANISMS 15

Localization

Localization is a means for describing the fact that the existence of phenomena is

restricted to the context of a given phenomenon.

De�nition: The is-local-to relation is a relationship between a compound phenomenon

and a locally de�ned dependent component phenomenon.

ExampleAn example of localization is a grammar symbol. A grammar symbol cannot exist

apart to a grammar: it has not an independent existence. This example is translated

in Beta with the following patterns:

Grammar: (#

...;

GrammarSymbol:(# ... #);

...;

#)

16 CHAPTER 2. OBJECT ORIENTED LANGUAGES

Chapter 3

Rational for Graphical Design

The designing strategy, as both a decomposition problem and system development

paradigms, has made impressive inroads into the various areas of computer sciences.

Substantially, it has been demonstrated that during the software development process,

the introduction of a designing phase removes several barriers to programming [RS95].

Speci�cally, designing methodologies should not force users to:

� Build up desired program behaviour from low-level programming constructs as

iteration and conditionals;

� Bridge the \semantic" gap between their conceptual model of the problem to be

solved and the computation model of the program.

This chapter discusses how these barriers can be lowered through techniques with famil-

iar, visible representations that let the user express software systems in terms pertinent

to the problem to be solved. The most important thing is a way of thinking abstractly

about a problem using real world concepts, rather than computer concepts. For this

purpose some designing methods have been developed to inject some discipline in this

abstraction process. Despite their di�erences, all these methods have elements in com-

mon: the notation, i.e. a language for expressing each model, the process followed

during the construction and the tools that support the designing. In this process,

we experienced that a graphical notation is more useful for a software developer in

visualizing a problem in a more concise way and without prematurely resorting to

implementation.

3.1 Software Design

Software Development

Process
The software development process is a modeling process which involves the identi�ca-

tion of relevant concepts and phenomena in the system being modelled (the Referent

system) and the representation of these concepts in a model system. The (possibly

17

18 CHAPTER 3. RATIONAL FOR GRAPHICAL DESIGN

informal) description of phenomena and concepts identi�ed during an analysis phase

has to be transformed into a formal description (Model system). The construction of

this formal description, i.e. our physical model, is realized during the designing phase

and can be later re�ned into an executable program during the implementation phase.

problem-specific

abstraction

phenomena objects

concepts

abstraction

realized
concepts

Modelling

(Analysis) (Design)

Implementation

Referent system Model system

Executable

program

Figure 3.1: Software Development Process

Restrictions The designing process is faced with the problem that not does the designer restrict the

realism of his model by considering only a part of the word. Moreover, the modelling

process has also to take into account the restriction imposed by the environment in

which the model system is built. For example, in general the expressiveness is limited

by the language used to describe the model.

Designing For complex systems it is often di�cult to individualize the whole structure and it is

important to �nd out all facts, choices, assumptions and decisions, and make them

explicit. In fact, designing means making decisions about the artifacts being designed:

terminology, components, system structure, user interface and data structures. The

result of this phase is a design. A design is a structure which includes a set of the

components of the system, speci�cations of their interfaces and the way in which the

components are related to each other.

A Good Design A good design can be veri�ed and analyzed with respect of its user requirements and

resource constraints. Yet, a good design allows implementation freedom in the choice

of the details of the components and sub-components. In fact the level of abstraction

chosen by the user should be expressive enough to allow to state a solution for the

problem, but at hight level enough to shield users from implementative decisions and

details he does not want to be concerned with [RS95].

Importance of Design-

ing Design is one of the main issues in software engineering. However, other issues like

requirements analysis, process metrics, coding, event reporting, cost control, testing,

etc. are of great interest too [ZSG79]. Even if designing is useful to describe a vari-

ety of relationships among problem and/or solution concepts of interest, it has some

limitations. In fact, it covers only the syntactic level of the analysis, making rigorous

investigation of semantic properties di�cult. Nevertheless, the design system however

3.2. GRAPHICAL REPRESENTATION 19

is the most important, because it determines the structure of the system and because

of that it will a�ect all other aspects of the system development sooner or later.

Graphical NotationsWe share the view of many authors, such as [RBP+91, WN95, CY91], who propose

using a graphical notation instead of a textual notation during the designing phase of

systems. In most cases the di�erence between a design language and a programming

language is just the use of a graphical notation instead of a textual notation. Graphical

notations have been used for many years to support analysis and design and they are

taking place in the teaching environment. For instance, also here at the University of

Dortmund, during the Software Praktikum course, the students develop their graphical

designs with the tool Opus. Opus is developed by STZ (Gesellschaft f�ur Software-

Technologie mbH) and it is composed of three editors: a graphical editor, to describe

the structure of the system, and two syntax-driven textual editors for re�ning the code

by specifying the module interfaces and their bodies. The Opus graphical notation

[Lew88] in fact, structures the system in di�erent kinds of modules, related only by

means of a use-relationship. Hence, the language is not able to support designing for

O.O. programming languages. This is one example of how the semantic gap between

designing and implementation phases is still an actual problem to be solved. The

next section explains the reasons why we have given a so big importance to the use of

graphical representation during software development.

3.2 Graphical Representation

Graphical notation provides the most expressive power to capture the concepts of a

design.

Why Graphical Rep-

resentationThe reason for using graphical notation is that generally the best way of capturing

descriptions and reasoning is with knowledge representation systems - a system in which

everyone has its own representation of the knowledge [IJK90]. Although knowledge

representation systems are usually applied to speci�c application domains, they also

need to be applied to graphical systems. If the visual reasoning of the graphical system

is described at the same higher-level language as the application domain reasoning, new

ways of displaying complex ideas can be synthesized more
exibly and quickly.

Understand a DesignUsually a graphical system is a kind of representation used to easily describe complex

problems in a natural notation. Alternatively, a user may use a standardized notation

whose meaning is known by everyone in the culture, like an algebra in a scienti�c

context. But, in either case, there is a speci�c association between visual objects and

description for these objects. There are di�erences amongst individuals concerning the

degree to which pictures are essential for them, and only few people do not need them

at all. Therefore it is no surprise that many software development methodologies have

certain pictorial representations built-in, and that some methods started as a graphical

representation, with the semantics, methodology, and tools added later. The graphical

representation and its semantics constitute the graphical notation of the method.

20 CHAPTER 3. RATIONAL FOR GRAPHICAL DESIGN

As for any other notation, a graphical notation as well is useful only if it is well de�ned.

This is why we now want to individualize the most important features a good graphical

notation should have. We also see how its organization is usually divided on the basis

of the semantic framework.

Guidelines for Graph-

ical Notations For an easy usage, a graphical notation should be composed of simple symbols that

can be easily sketched by hand or automated on a computer. The number of di�erent

basic symbols should be small. In fact the terms of the visual vocabulary should be

enough to describe all the possible situations. On the other hand, the number should

be small in order to let the developer free to design without the bore of repeatedly

looking into the manual. Moreover the visual impact of the arrangements of the basic

symbols should connote the semantics of situations they represent - the notation should

be intuitive. As an element must be recognized as being in a certain semantic category,

the overall notation must be unambiguous and the same symbol cannot be used to

represent di�erent features in the same context. But when semantic is analogue in

di�erent contexts, that analogy should be exploited by reusing the same symbol to

visually reinforce the analogy.

Graphical Notation

Subdivision An increasing number of graphical notations has been developed in order to de�ne ex-

pressive designing methodologies. Usually these methodologies have di�erent semantic

frameworks but most of them are structured into pictures in the same way (as described

in [FLP]).

treat

(components (state transition)
procedure definition)and relationships)
(function and (components or

subsystem)

System structure

Static Dynamic

Graphical notation

System behaviour

in Design

Level of operations Level of Modules

Figure 3.2: Graphical Notation Subdivision

Roughly speaking, we use to divide pictures on the basis of two options: either the

picture represents some aspects of the behaviour of the system being designed, or the

picture is about the system structure description. In the case it is concerned with the

behaviour of the system, usually this behaviour is divided into static and dynamic beha-

viour. By \static behaviour" we mean all facts that apply to an individual state, or that

apply in a static world view. This behaviour is usually represented by the de�nition of

3.3. SUMMARY 21

the system's components and the relationships between them. By \dynamic behaviour"

we mean all aspects of system behaviour which are related to state transitions such as

write operations on data structures, dynamic object creation, movement of physical

devices, etc. As shown in �g. 2.2, if the picture is concerned with the structure of the

system, usually we �nd a further subdivision depending on the level of detail repres-

ented in the picture. This can be the level of the operations (function and procedure

de�nitions, but also assertion and expression), or the level of modules (components or

subsystems). The reason for this division stands in fact that the abstraction level of

the language component should match the user's conceptualization of the problem. In

this way, the developer is not constrained by a deep and detailed description of the

system too early.

3.3 Summary

In this chapter we have focused on the importance of graphical designing methodologies.

In fact even if usually the current emphasis is on implementation rather than analysis

and design, this leads to restricting design choices very early and to a product that is

not of a good quality. Therefore, we think that it is only when the inherent concepts

of the application are identi�ed, organized and understood that the details of data

structures and functions can be addressed e�ectively. Moreover, we have seen that

using graphical notations instead of textual notations helps the developers to visualize

the real world concepts they are going to model, and to express problems in terms of

real world concepts on an abstract level. Finally we have seen the characteristics a

good graphical notation should have and how the graphical notation is used by design

methodologies to express aspects of the system being designed. These considerations

provide the basis for a good choice of an OOAD methodology that graphically supports

the designing phase. Several of these methodologies and some comparisons between

them are presented in the next chapter.

22 CHAPTER 3. RATIONAL FOR GRAPHICAL DESIGN

Chapter 4

OOAD Methodologies

In this chapter we present a comparative study about several OOAD methodologies in

order to �nd the most suitable to be integrated with an implementation in Beta. Four

of these methodologies are treated in more detail, and the reasons to choose OMT as

the methodology to adopt for our mapping are given. Moreover, the last section gives

an overview of the most fundamental OMT concepts and their notation.

Structured Analysis

and DesignThe Object Oriented software development approach has complex and deep roots which

it evolves from. In traditional software analysis and design, the most widely used

methodologies are the Structured Analysis/ Structured Design (SA/SD), from Yourdon

and De Marco, and the Jackson Structured Design (JSD) [Hsi92]. These traditional

analysis and design methodologies use various notations as data
ow diagram, process

speci�cation, data dictionaries, state transition diagrams, and Entity Relationships

(ER) diagrams to logically describe the software system.

Why OOADHowever, in the last years, the emergence of Object Oriented technologies has changed

the process and practice on how contemporary software systems are built. There

is a growing evidence in literature that SA cannot be used e�ectively when sub-

sequent design and implementation has to be done in an Object Oriented manner.

Moreover, the same opinion has come out as a result from a panel discussion at the

OOPSLA/ECOOP'90' conference. The reasons for this strong assertion are based on

the fact that SA �rst characterizes and only subsequently derives the members in the

data dictionary. In this way the identi�cation of the classes is precluded; it does not

exploit inheritance, and prevents encapsulation storage and behaviour features. Hence,

to remedy these disadvantages and to accommodate the need for modelling the O.O.

programming languages applications, research in new OOAD technologies has been

developed in both academic and industrial community.

23

24 CHAPTER 4. OOAD METHODOLOGIES

New OOAD Methodo-

logies
Moreover, not only technologies but also new OOAD methodologies have been de-

veloped. Between them we have seen those that support a graphical notation in the

design phase in order to choose the most valid to use in our work. These are Bailin

[Bai89], Booch [Boo91], Coad & Yourdon [CY91], Edwards [Edw89], Shlaer & Mel-

lor [SM89], Gibson [Gib90], Wirfs-Brock [WBW+90, MP92], Wasserman [WPM90],

Rumbaugh [RBP+91], Kurtz [KWE91], Odell [OM], BON [WN95] and Page-Jones

[PJC+90, MP92]. During our research, we have seen that Coad & Yourdon, Shlaer &

Mellor, Booch, and Rumbaugh are the four dominant methodologies that have been

used and practiced by various applications and user communities. As the methods of

Bailin, Edwards and Gibson do not support inheritance, they can not be considered

to be Object Oriented, while Kurtz and Odell are Object Oriented, but support an

unusual freedom which allows classes to have multiple names and allows objects to

change class membership. In the next section some of these methods will be classi-

�ed by means of a table (�g. 4.1) complying a list of important components in OOAD

based on the Colter [Col84] and Pressman [Pre87]. This will be useful to show what the

methodologies have in common and where they di�er. Unfortunately, because of the

shortness and not well documented publications available for some methods, we have

not been able to complete the table with all the methodologies seen. On the contrary,

because of their characteristics, the most important methodologies, which are Coad &

Yourdon, Shlaer & Mellor, Booch, and Rumbaugh, will be explained in details in the

next section.

4.1 A Comparative Study of Nine Methodologies

In order to compare some of the OOAD methodologies we have listed above, we want

to explain them basing on Colter and Pressman criteria. They describe a number of

analysis and design methodology characteristics that can be applied also in the object

arena. OOAD components include:

� An OOA process: A general domain analysis technique (i.e. an analysis procedure,

the \how to's");

� An OOD process: A solution domain modelling technique (including speci�cation

of interface objects and other solution domain objects);

� OOAD representations: For structure, function and control at di�erent levels of

abstraction;

� An OOAD complexity abstraction and management mechanism: For portioning

the problem and managing the complexity of the system.

Nine of the mentioned methodologies are classi�ed in �g. 4.1 that shows a table that

follows the Colter and Pressman criteria. The table contains static (structural) and

4.1. A COMPARATIVE STUDY OF NINE METHODOLOGIES 25

dynamic (control) considerations in each of the four major areas. The �rst area is about

the OOA Process. OOA models the problem domain by identifying and specifying a set

of semantic objects that interact and behave according to system requirements. The

second area is the OOD process. It models the solution domain, which includes the

semantic classes and interface, applications, and base/utility classes identi�ed during

the design process. OOD should also be language independent in order not to restrict

implementation choices which will be taken only during the physical design. These are

the two primary components in OOAD. In addition an OOAD method must graphically

or textually represent its results. Also OOAD representations are needed for static and

dynamic views of the system. Static representation should portray objects, relation-

ships, attributes, and methods. Dynamic representation should depict communications

(message passing) and control. In addition, the constraints speci�ed for a system may

be supported by the notation. The last major component of OOAD is the complexity

management. Complexity management is important from both the conceptual and the

visual standpoint. Di�erent views of a system have been de�ned. These views are all

meaningful and can help in managing a large, complex design.

First Evaluation of the

TableIn a �rst overall view of the table, it is obvious that the methodologies of Page-Jones

and Wasserman provide only a representation, i.e. their focus is on visually representing

a design and not on how to derive a particular design. For this reason, we think that

these kinds of methodologies are not complete and they have been discarded from our

choices.

Observation on OOA

ProcessAnalyzing the �rst section of the table, we can see that most of the problem domain

analysis components have been addressed by (at least) several authors. The identi�ca-

tion of semantic classes (problem domain) and behavior has been extensively covered.

However, it is interesting to note that identifying attributes has not been addressed

as often as behaviour. A reason for this choice is that an object can be seen as an

encapsulation of both structure and behaviour which can be accessed only via its in-

terface. We agree with this point of view, even if we think that, at a conceptual level,

the characteristics (attributes) are an important integral aspect of an object's semantic

de�nition too. So we think that attribute names and any internal object should be

speci�able.

Observation on OOD

ProcessOOD involves the same processes used during analysis, applied to di�erent kinds of

objects. Some authors address the base/utility classes that usually are new abstract

data types which may be identi�ed during design and added to the system library.

Instead, surprisingly, interface objects are rarely addressed although we think that the

user interface should be a part of any software analysis and design methodology. An-

other important point is the activity of re�ning classes. In fact, this involves examining

the class structure for opportunities to abstract common behavior and attributes and

�nd better hierarchies.

Observation on Rep-

resentationOne of the �rst things to note is the large number of static representation models even

if the used constructs and how they are emphasized vary greatly. Moreover, there are

more O.O. static models than O.O. dynamic models most of which consist of state

26 CHAPTER 4. OOAD METHODOLOGIES

1. OOA PROCESS
Problem Domain Analysis

REPRESENTATION
PROCESS AND

Yourdon
Coad & Rum-

(a) Identification of:

(b) Placement of:
 Classes
 Attributes

(c) Specification of:

 (i.e., message passing)

 Semantic classes
 Attributes

 Relationships:
 Generalization
 Aggregation
 Other

Comparison of OOAD Representations and Processes

Solution Domain Design
(a) Identification of:
 Interface classes
 Base/Utility classes
(b) Optimization of classes

Wirfs-

2. OOD PROCESS

3. REPRESENTATIONS
(a) Static View
 Objects
 Attributes

 Relationships:
 Generalization
 Aggregation
 Other
(b) Dynamic View
 Communication
 Control/Timing
(c) Constraints
 On structures

4. COMPLEXITY MGT.
(a) For structural complexity
(b) For behavioral complexity
(c) Representation of:
 Static structure

No. of issues Addressed

REPRESENTATION
ONLY

Wasser-

15142019

Shlaer
and Page-

5 21 5 818

Bailin Booch

 Behaviour

 Behaviour

 Dynamic behaviour

 Behaviour

 On dynamic behaviour

 Dynamic behaviour

baugh Mellor Brock BON Jones man

Figure 4.1:

4.1. A COMPARATIVE STUDY OF NINE METHODOLOGIES 27

transition diagrams. Another important point regarding notation is the representation

of relationships. Most representations support generalization relationships. Aggrega-

tion is supported but with a lesser extend, while other relationships are mentioned but

rarely well supported by representation or accepted by many authors.

Observation on Com-

plexityRelatively few authors provide a conceptual grouping mechanism to manage the com-

plexity of large design, but they do not provide many heuristics for identifying sub-

system. Subjects and subsystems are supported by Coad and Yourdon's and Wirfs-

Brock's representations while BON (Better Object Notation) o�ers clusters which allow

to build this feature. Rumbaugh discusses modules as a way of grouping classes and

relationships. However, he does not provide a notation for showing the module level.

A solution for this problem may be the de�nition of various \abstraction layers" of

the system. A model that synthesizes the static and dynamic features of a system at

various levels of abstraction may be the most important need in OOAD research. For

example, Rumbaugh and Shlaer & Mellor include object-diagrams, data-
ow diagrams,

and state transition diagrams. These diagrams, all together, represent three di�erent

important views of the system.

Last Evaluation of the

TableThe last line of the table shows how many issues are addressed by the treated meth-

odologies. The results show that the methodologies of Coad & Yourdon, Shlaer &

Mellor, Booch, and Rumbaugh are within the most complete. Also the Wirfs-Brock's

and BON methodologies have got a considerable number of points; despite of this, they

are not so popular. A drawback for the Wirfs-Brock methodology is the lack in its

graphical and textual representation of associations, aggregation and attributes. In

addition attributes are not addressed also in the OOAD processes. We think, in fact,

that in reality this method puts more emphasis on Analysis than on Design. Therefore,

since this methodology is able only for getting an idea about the problem, no tools have

been developed to support the designing phase and this restricts its usage. Instead,

we deem that the principal reason of the unpopularity of BON is only due to the fact

that this methodology is really new. It has the advantage of clusters, that allow to

build subsystems. But though it supports dynamic models, they are too weak because

of their little expressiveness. Another characteristic we consider an important lack is

that it does not distinguish between attributes and methods that are all called features.

Moreover, studying this methodology we have seen that it supports features, as inter-

faces, invariants and assertions. This makes BON very close to the Ei�el language but

not useful to be mapped to a language as Beta which does not supports these concepts.

Below the methodologies of Coad & Yourdon, Shlaer & Mellor, Grady Booch and

Rumbaugh are treated in more detail.

4.1.1 Coad & Yourdon

Yourdon's traditional structured [CY91] design methodology is a composition of design

strategies, evaluation aids, and graphical documentation techniques. The methodology

emphasizes that both OOA and OOD are distinct disciplines - whether applied in

sequence or in some intertwined fashion. A previously developed OOA model serves

28 CHAPTER 4. OOAD METHODOLOGIES

as input for the OOD process, and the same notation is used for both the OOA and

OOD models. The Coad & Yourdon OOA is illustrative and easy to understand for

novice users and beginners. However, experienced Object Oriented practitioners may

�nd its notation and concepts overly simpli�ed [Hsi92]. It also lacks rigorous de�nitions

of both concepts and advanced modeling techniques such as abstract classes that have

been proposed by other methodologies. So the simplicity of this methodology is a

strength but also its biggest weakness. For example, for de�ning associations, it does

not provide a precise de�nition and implementation. Another de�ciency is in de�ning

object attributes. According to the context of their book, their OOA methodology

allows only primitive class types for object attributes. This is similar to the standard

relational database model. The OOD is a simple, readable design cookbook. The

methodology is helpful to those with little or no experience in the �eld. It essentially

shows how to subdivide the design of an application into certain components. However,

the practitioner may also be left a little hungry for details.

4.1.2 Shlaer & Mellor

The �rst step of this methodology [SM89] is the construction of an information model

(or object model) in order to identify the conceptual entities of the world. Its inform-

ation model formalizes knowledge about the world in terms of objects, attributes, and

relationships (or associations). The information model is produced in two forms: one is

a set of textual de�nitions and the second is a graphical representation which provides

a global view of the world to be modelled. One lack of this step is that this meth-

odology does not support the concept of aggregation as a relationship. The second

step is to model the dynamic behaviour of the conceptual entities and associations.

The methodology assumes that all objects and relationships have their life cycles. Life

cycles are formalized in state models with states, events, and actions. The third step

is the construction of a set of Process Models. In this step a separate data
ow dia-

gram is constructed for each state in every state model. The data
ow diagram for a

state graphically depicts the actions processes associated with that state. The strength

of Shlaer & Mellor OOA is its ability to provide a comprehensive dynamic model for

developing critical Object Oriented software applications. However, the current meth-

odology only supports the analysis phase and it is also weak in supporting semantic-rich

applications due to its primitive object relationship modeling mechanism.

4.1.3 Booch

Booch's OOAD [Boo91] is the oldest among the discussed methodologies because of its

�rst appearance in [Boo] where he proposed a method for using some of the features

of Ada in Object Oriented style. Now in [Boo91] this methodology includes de�nitions

for Object Oriented analysis and design concepts, object model, classes and objects,

objects classi�cation, and methods. It also de�nes Object Oriented modeling notations

which include: Class diagrams, State transition diagrams, Object diagrams, Timing

diagrams, Module diagrams and Process diagrams. Booch distinguishes three roles

4.2. RATIONAL FOR CHOOSING OMT 29

of objects: Actors, Servers and Agents. A fairly consistent graphical notation for

the relationships between classes is proposed, which uses di�erent types of lines to

indicate use, inheritance and other relationships. Also a notation for object creation

and destruction is introduced for the design phase; on the contrary, attributes and

operations in classes do not have a graphical notations. The granularity of objects is

one of the key design decisions. Booch recommends a form of layering so that classes are

categorized into \categories" containing several related classes, similarly to the concept

of \module". The dynamic behaviour of Booch's methodology is accomplished in two

ways. A state transition diagram shows the dynamic behaviour of classes. The instance

level dynamics shows by timing diagrams borrowed from the �eld of hardware design.

Although Booch's OOAD methodology covers a wide spectrum of topics and concepts

that are needed for Object Oriented practitioners to follow, his methodology is more

descriptive than prescriptive. For example, many of its concepts and guidelines can

be interpreted and practiced di�erently by individual users. This results in the lack of

precision that many Object Oriented practitioners look for.

4.1.4 Rumbaugh's Object Modelling Technique

Rumbaugh`s OOAD [RBP+91] methodology proposes a set of Object Oriented concepts

and a language independent graphical notation, called the Object Modeling Technique

(OMT) that can be used in throughout the entire software development process. OMT

supports the entire software life cycle using a full Object Oriented approach. One key

feature, we found to be unique about OMT, is its formal de�nition of the inter-objects

relationships, or object associations. OMT de�nes various kinds of object association

semantics to the same level of the classes. This feature eliminates the ambiguity which

we have found to be a common de�ciency in other methodologies, and makes OMT

the most precise OOAD methodology currently available. It also supports su�cient

dynamic modelling capabilities based on events, states, and concurrency. OMT also

clearly de�nes the boundary between Object Oriented analysis, design, and implement-

ations phases. Note that other methodologies also draw boundaries between di�erent

phases, however OMT makes strong emphasis on this point. Moreover, as mentioned

before, OMT uses three di�erent kinds of diagrams (Object Model, Functional Model

and Dynamic Model) which also represent three important di�erent abstraction levels

in the description of a system. The only drawback is that they are not well integrated.

4.2 Rational for Choosing OMT

This comparison between OOAD methodologies has been done in order to choose a

good methodology to follow in the construction of a design which has to be translated

in Beta.

During the analysis of the methodologies taken in consideration, some choices have

been made very soon. For example, we have discarded those methodologies we have

30 CHAPTER 4. OOAD METHODOLOGIES

thought not complete, such as the Page-Jones's and Wasserman's, which consider only

the representation without treating the phases of analysis and design. Other meth-

odologies, such as Kurt's and Odell's, have been discarded because they support some

freedom we consider out of the Object Oriented mentality or, straightway, because they

do not support inheritance, as for Bailin's, Edward's and Gibson's methodologies. For

the other methodologies the evaluation has been done on the basis of more re�ned char-

acteristics. Basically, these methodologies adopt similar base Object Oriented concepts

in their earlier analysis phase and almost all of them support a graphical notation

for developing the two phases. However, they vary to large extend in their support

of advanced object modelling concepts. Moreover, each methodology emphasizes on

di�erent target users and practitioners.

Coad & Yourdon methodology [Coa91a, Coa91b, Coa91c, Coa91d] is more suitable

for novice professionals who start practicing OOAD. However as users become more

experienced, they may want to reference other methodologies to gain more precision.

We also deem that Shlaer & Mellor's methodology provides a very practical solution

to the world of OOAD. Although, we consider their methodology weak in support-

ing formalized object associations. For example, it misses support for the concept of

aggregation. Moreover, another lack is that it does not support the designing phase

which, as we have said, is fundamental.

Although it is within the most complete, Wirfs-Brock's methodology has been discarded

because of its lack in graphical representation. We think this is a very important

issue a methodology should support. Moreover, some concepts as attributes are not

represented in a textual form.

By far Booch's and Rumbaugh's methodologies are the most complete. The similarities

between the approaches are more striking than the di�erences, and both approaches

complement each other. A major distinction between Booch's approach and the OMT

approach is the emphasis that the second places on associations. Hence, in order

to choose between this two methodologies we have thought about the language we

are going to treat - Beta. This has been useful to decide which is the most suitable

to be implemented in this language. Looking for the representation used by each

methodology, we have seen that Booch provides means of documenting the meanings

of each graphically de�ned class in the Object Diagram. This is realized textually by

means of class templates which, in particular, allow the developer to de�ne the interface

of each class �lling a private, public and protected part of the template. As we have

seen, Beta neither supports encapsulation nor de�nes interfaces for objects as C++

does. So we have decided that the most suitable method for the Beta language is the

OMT method since it puts both attributes and operations at the same level of access.

Instead we consider Booch as the most suitable methodology for implementing C++

applications. Moreover, we feel that Rumbaugh's methodology contains the highest

precision and completeness practitioners can follow without lost or confusion. It also

supports a clear and well de�ned graphical notation that covers both the analysis and

design phases of the software development process. The unique lacks that we have

found in this methodology has been the bad supported integration between the Object,

4.3. OMT BASIC CONCEPTS 31

Functional, and Dynamic models and the absence of a graphical notation allowing the

organization of an Object Model in subsystems. As we will see in the next section, the

�rst problem turns out to be not very important for our aim because we will decide to

consider only the Object Model.

4.3 OMT Basic Concepts

This section presents the OMT methodology and a language independent graphical

notation for expressing Object Oriented models. We give an overview of the most

important OMT concepts and their notation. These concepts constitute the guideline

for the next chapter in which we give a description of the mapping from OMT to Beta.

The graphical notation adopted is an extended version of the notation proposed in

[Rum87] and showed in [RBP+91].

Uses Three Kinds of

ModelThe OMT notation uses three kinds of models to describe a system [RBP+91,p.6]:

� the Object Model describes the static structure of the objects in a system and

their relationships using a graph called Object Diagram;

� the Dynamic Model describes the interactions among objects in the system, i.e.

by a state diagram it describes the aspects of the system that change on the time;

� Functional Model describes the data transformations of the system by a data
ow

diagram.

The three models are orthogonal parts of the description of a complete system, they

are related but give three di�erent viewpoints, each capturing important aspects of the

system.

Object Model Is the

FundamentalThe Object Model is the most fundamental, however, because it is necessary to describe

what is changing or transforming before describing when or how it changes. It provides

the essential framework into which the Dynamic and Functional models can be placed.

Therefore, of the three OMT models we will treat only the Object Model while we will

omit the Dynamic and the Functional models.

Object DiagramsAn Object Model is graphically represented with object diagrams. Object diagrams

provide a formal graphic notation for modelling objects, classes, and their relation-

ships. An Object diagram is a graph whose nodes are object classes or objects instances

(later called classes and objects respectively) and whose arcs are relationships among

them. Classes are arranged into hierarchies sharing common structure and behaviour,

organized in aggregations, and associated with other classes. Object diagrams are con-

cise, easy to understand and work well in practice.

The formal notation for an object diagram will be described in the following. Here only

the basic concepts will be shown, while some advanced concepts will be treat in the

next chapter.

32 CHAPTER 4. OOAD METHODOLOGIES

4.3.1 Classes and Objects

The OMT symbol for a class is a box with the class name in bold face, while the OMT

symbol for an object is a rounded box with the name of the class to which it belongs

between brackets and in bold face.

(Class_Name) Class_Name

Figure 4.2: Symbols for Classes and Objects

Classes de�ne the attributes carried by each object instance and the operations that

each object performs or undergoes. For this reason the class box is divided in at most

three regions. The regions contain, from the top to the bottom: class name, list of

attributes, and list of operations. Each attribute name can be followed by optional de-

tails such as type and default value. Each operation name may be followed by optional

detail such as argument list and result type. Attributes and operations may or not may

be shown; it depends on the level of detail desired [RBP+91,p.26].

Class Name

....

attribute

attribute:data_type

attribute:data_type=init_value

operation

operation(arg_list):return _type

....

Figure 4.3: Class with Attributes and Operations

4.3.2 Relationships

Generalization

In OMT the notation for generalization is a triangle connecting the superclass to its

subclasses. The superclass is connected by a line to the apex of the triangle and the

subclasses are connected by lines to an horizontal line attached to the base of the tri-

angle.

4.3. OMT BASIC CONCEPTS 33

Superclass

Subclass-1 Subclass-n.....Subclass-2

Figure 4.4: Generalization

Generalization provides the means for re�ning a superclass into one ore more subclasses.

The superclass contains features common to all classes; the subclasses contain features

speci�c to each class. Inheritance may occur across an arbitrary number of levels and

each object accumulates features from each level of the generalization hierarchy.

Association

An association describes a group of links between classes with common structure and

common semantics. The notion of association is certainly not a new concept. Associ-

ations have been widely used through the database modeling community for years.

Class-1 Class-2Role-1 Role-2

Associations Name

Figure 4.5: Association

Since OMT uses the natural language to specify associations, in an abstract sense,

associations are inherently bidirectional and it is only the name of the association that

establishes a direction.

Role NamesIf the association is binary, than it can be traversed in both directions and in reality

both directions of traversal are equally meaningful and refer to the same underlying

association. In this case usually role names are used to uniquely identify one end of

the association [RBP+91,p.34]. The use of role names provides a way of traversing the

association from one object to another.

MultiplicityThe number of related objects in an association is constrained by Multiplicity. Object

diagram indicates multiplicity with special symbols at the end of the association line.

In �g. 4.6 the various type of multiplicity supported by OMT are shown.

34 CHAPTER 4. OOAD METHODOLOGIES

Class

ClassClass

Class

Class

Exactly one Many (zero or more)

One or MoreOptional (zero or one)

Numerically specified

1-2,4

1+

Figure 4.6: Types of Multiplicity

However, the most important multiplicity distinction is between Exactly one and Many

that are also the most used.

Aggregation

The OMT notation for aggregation is similar to generalization but it has a diamond

instead of a triangle.

.Part-1-class Part-2-class Part-3-class

Assembly Class

Figure 4.7: Aggregation

In reality, aggregation is a strong form of association between an aggregate object and

its component parts with extra semantics:

� Transitivity: if A is part of B and B is part of C, then A is part of C.

� Antisymmetry: if A is part of B, then B is not part of A.

4.3. OMT BASIC CONCEPTS 35

The aggregate object is semantically an extended object that is treated as a unit in

many operations, although it is physically made of several lesser objects. A single

aggregate object may have several parts connected with the aggregate by mean of a part

whole relationship. Each part whole relationship is treated as a separate aggregation in

order to emphasize the similarity to the association. Like association, also aggregation

supports the concept of the multiplicity with the same notation. The use of multiplicity

gives rise to three di�erent kinds of aggregation:

Three Kinds of Ag-

gregation
� FIXED: In a �xed aggregation a �xed aggregate has a �xed structure: number and

types of subparts are prede�ned.

For example, Car may be naturally viewed as consisting of parts like a \Motor",

a \Body", and \Wheel", i.e. \Wheel" is a part-of a Car, \Body" is a part-of a

Car, etc.

� VARIABLE: A variable aggregate has a �nite number of levels, but the number

of parts may vary.

For example a 'Company' may be composed of many 'Division', and each Division

of a Company may be composed of many 'Departments'. In this example a

company is a variable aggregate with two-level-tree structure.

� RECURSIVE: A recursive aggregate contains, directly or indirectly, an instance

of the same kind of aggregate. The number of potential levels is unlimited.

For example a program may be composed by blocks nested in arbitrary depth.

Instantiation

Instantiation is a relation between a class and an object that is an instance of this class.

This is the OMT notation:

(Class_Name) Class_Name

Figure 4.8: Instantiation

Usually this kind of relationship is not useful during the design of an object diagram.

Relationships between objects are used in another kind of diagram, the Instance dia-

gram, that we are not going to treat. Instance diagrams are useful for discussing

examples. Since an in�nite number of objects may belong to a class, in�nite instance

diagrams belong to an Object diagram.

36 CHAPTER 4. OOAD METHODOLOGIES

Chapter 5

Mapping from OMT to BETA

This chapter discusses how to take a general OMT Object Model and implement it with

the O.O. language Beta. Our goal is to produce a Beta skeleton for a software system

corresponding to this model. The realization of this chapter would be a proposal to

integrate the OMT design language with the O.O. language Beta. This part consti-

tutes the theoretical basis for the development of our tool that we will describe in the

chapters 6 and 9. The OMT concepts shown in the previous chapter will be treated and

translated in Beta code. Moreover, some other concepts, in [RBP+91] called advanced

concepts, will be introduced and translated during this \mapping". We will see that,

because of the characteristics of Beta, it will not be possible to directly translate and,

unfortunately, either simulate some of the OMT concepts. One example is multiple

inheritance of which we give some proposals to simulate all those aspects that make it

useful.

5.1 OMT Versus Beta

The following considerations apply when implementing an Object Oriented design in

an O.O. language:

1. Class de�nition

2. Creating Objects

3. Calling Operations

4. Using Inheritance

5. Implementing Associations

6. Aggregation

This is the schema followed by this section to describe our mapping.

37

38 CHAPTER 5. MAPPING FROM OMT TO BETA

5.1.1 Class De�nition

Object Class An object class describes a group of objects with similar properties (attributes), be-

haviour (operations), common relationships with other objects and common semantics

[RBP+91,p.22]. The �rst step in implementing an Object Oriented design is to declare

object classes. Each attribute and operation in an Object diagram must be declared as

a part of its corresponding class. Furthermore, it is a good practice to carry forward

the names from the design diagram and assign data types to attributes. For example,

to represent the concept of a bank account, in which you have the balance and the

operations of deposit and withdraw, in OMT we can use the following class:

Account

Balance

Deposit

Withdraw

attributes

operations

Figure 5.1: Class

Implementation with

Class Pattern
In Beta the concept of class is mapped into the concept of class pattern. So, in Beta

language the declaration of the class Account can be represented by the following pat-

tern Account with Balance, Deposit and Withdraw as attributes.

Account: (# Balance:;

Deposit:;

Withdraw:;

#)

Now we will see in particular how to translate class attributes and operations.

Attributes

OMT De�nition An attribute in OMT is a data value held by the objects in a class. An attribute should

be a pure datavalue, not an object, because, unlike objects, pure data-values do not

have identity. Moreover, its name must be unique within this class.

In OMT an attribute is de�ned in the following way:

attribute name:data type (=data type value)

5.1. OMT VERSUS BETA 39

where we assume that data type may be one of the basic pattern included in Beta

or a repetition of a basic pattern, and the sentence between brackets is the optional

default value.

Translation with Pat-

tern AttributeThis declaration will be translated in Beta in one of the following attribute patterns:

attribute name:@data type

if data type is a name or a Beta basic pattern or simply a name:

attribute name:[eval]@basic pattern name

if data type is a repetition of a basic pattern.

In this case the basic attribute will be initialized to its default value, but if in OMT the

attribute is initialized to a particular default value, in Beta, in the do part of the pat-

tern containing the attribute, it should be an assignment of the value to the attribute.

Moreover, since Beta does not support redeclaration of attributes in the same pattern,

it is not possible to translate an object with more than one attribute with the same

name.

5.1.2 Operations

OMT De�nitionAn operation in OMT is a procedure or a function that may be applied to or by an

object in a class. All objects in a class share the same operations. Each operation has

a target object as an implicit argument and the behaviour of the operation depends on

the class of its target. In fact an object knows its class, and hence the right implement-

ation of the operation. Remember that a method is the implementation of an operation

in a class and, when an operation has methods on several classes, it is important that

all methods have the same signature (member and type of arguments, type of the result

value). As a rule, an OMT operation has the following syntax:

operation name(arg1:Type1; ...; argn:Typen):result Type

where we assume that Type1, ...Typen, are names of Beta basic patterns, repetitions

or a name of a structured data type and the result type may be a list. We also assume

that Type1, ..., Typen may be pointers to a particular object class. This is useful for

the user when he wants to declare operations to handle associations (see section Associ-

ation). The result type should not to be omitted, because it is important to distinguish

operations that return values from those that do not. Operations can be translated in

Beta by means of procedure or functional pattern.

Translation with Pro-

cedure PatternSuppose to have an OMT operation that does not return values like the one shown

below:

40 CHAPTER 5. MAPPING FROM OMT TO BETA

operation name(arg1:Type1, ... argn:Typen)

in Beta this operation can be translated in the following procedure pattern:

operation name:

(# arg1:Type1; ... argn:Typen;

. . . fother useful declarationsg. . .

enter(arg1,. . . , argn) fenter-partg

do

. . .

fdo-partg

. . .

#)

From the modelling point of view, a procedure pattern is used for generating an ac-

tion sequence that implements the method of the operation. To represent temporary a

state information during this action sequence, an instance of this procedure is gener-

ated. (See also section Calling Operations).

Translation with

Functional Pattern On the contrary, if an OMT object has an operation that returns values:

operation name(arg1:Type1, ..., argn:Typen):result Type1, ..., result Typem

in Beta this can be translated in the following functional pattern:

operation name:

(# arg1:Type1; . . . ; argn:Typen;

result1:result Type1; . . . ; resultm:result Typem:

. . . fother useful declarationsg . . .

enter(arg1, . . . , argn)

do

. . .

exit(result1,. . . , resultm) fexit-partg

#)

A functional pattern means a pattern intended for computing a list of values on the

basis of a set of input parameters. The result values are computed in the do-part of

the object descriptor which implements the method of the operation. In addition the

computation of the value should not change the state of any other object. Unfortu-

nately Beta does not support encapsulation and, since the method of an operation is

independent from the design, it is not possible to prevents the user to produce these

side e�ects.

5.1. OMT VERSUS BETA 41

5.1.3 Derived Attributes (Advanced Concept)

De�nition:During modelling it is useful to distinguish operations that have side e�ects from those

that merely compute a functional value without modifying any objects. The later,

in OMT, is called query. Queries with no arguments except the target object may be

regarded as derived attributes. A derived attribute is like an attribute in the way that it

is a property of the object itself, and when computed it does not change the state of the

object. An Object Model should generally distinguish \independent" basic attributes

from \dependent" derived attributes. The choice of basic attributes is arbitrary but

should be made to avoid the overspeci�cation of the state of the object.

ExampleFor instance if you have two classes, Person and Current Date, as shown in �g. 5.2 ,

age provides a good example of a derived attribute.

Birthdate

/Age

Person Current
 Date

Figure 5.2: Derived Attribute (Age = CurrentDate - Birthdate)

Age can be derived from birthdate and the current date. As you can see, the OMT

notation of a derived attribute is a slash, or a diagonal line, in front of the name of the

attribute.

ImplementationThe concept of derived attribute may be compared with the Beta concept of measurable

property. A measurable property is a property of a class that does not have substance

in the real or imaginary part of the world being modelled. For this reason it is better

to implement it as a pattern which represents the measurement of the property rather

than directly as a basic pattern. Because of this consideration, the derived attribute

Age may be implemented with the following functional pattern:

Age: (# V:@integer;

do

fhere the age is computed on the basis of

the Birthdate attribute and Current date valuesg

exit V

#)

42 CHAPTER 5. MAPPING FROM OMT TO BETA

5.1.4 Creating Objects

De�nition In the previous section we have seen how a class de�nes the interface for a set of ob-

jects. These are called instances of the class and usually can be created dynamically

by a \new" or \create" operation. The OMT notation for an object appears in an Ob-

ject Model together with the concept of instantiation. Although classes and instances

can appear in the same OMT diagram, in general it is not useful to mix classes and

instances. However, we think that it is important to show how to generate objects

corresponding to class objects.

Two Way for Creating

Objects In Beta there are two di�erent ways to generate objects. An object may be created

statically by the declaration of a static reference, or created dynamically by a \new"

imperative. These di�erent ways of creating objects give rise to two categories of objects

respectively called static or dynamic objects.

Static Objects

A static object (or part object) is generated by a declaration of static reference like:

X:@T

where X is the name of the reference and T is a pattern; or by a singular static/part

object which is declared in the following way:

Y:@(# #)

The OMT concept of instantiation of a class (T) corresponds to the declaration of

a static object (as shown before) made at the same level of the declaration of the

classes composing the Object Model. We will see later that static objects are also

useful in modelling part hierarchies, i.e. objects which consist of part objects.

Dynamic Objects

It is possible to create objects dynamically by the execution of actions. The following

evaluation creates an instance of the T pattern and the result of the evaluation is a

reference to the newly created object (X).

&T[]->X[]

Dynamic generation of objects is used to describe systems where new objects are

generated during program execution, as it is often the case when modeling real life

phenomena. For example, from a technical point of view recursive data structures give

5.1. OMT VERSUS BETA 43

rise to the dynamic generation of objects. For this reason objects that are created

dynamically are not shown in an OMT diagram.

5.1.5 Calling Operations

We have seen that objects which are instances of the same class have the same behaviour

because of the same operations. So, after having seen how to create an object, in this

section we will see how it is possible to \generate" its behaviour.

How to Call an Opera-

tion in BetaIn Beta, all OMT operations are methods associated to a pattern and, as we have seen,

in Beta all arguments and variables of operations are objects. In the do-part of an

object we can call an operation invoking the pattern that implements the operation as

a procedure or functional pattern by the evaluation of:

&T

where T is the name of the pattern that implements the operation; or generating a

singular object by the execution of

&(##)

In this way, the invocation of a pattern as a function or a procedure gives rise to

the generation of an object for representing the action sequence being generated by

executing the procedure/function.

Inserted Item for Stor-

age Management Sys-

tem

These ways of \calling operations" lead to the generation of a large number of small

objects. These objects have to be generated and removed by the storage management

system, which may be quite expensive. For this reason, it is possible to declare that

such procedure/functional objects are generated as a permanent part of the object in-

voking the pattern. This can be done by the generation of an inserted item in one of

the following ways:

E� > T� >A

E1� >(#.#)� >A

The T object (the inserted object) will be an integral part of the enclosing object. This

inserted item will then be executed when control reaches the evaluation statement.

The state of T will be unde�ned before each execution. Apart from the allocation, the

execution of the inserted item is like the execution of any other object. The motivation

of inserted items is a matter of e�ciency, since the compiler may compute the storage

requirement of the calling object. Inserted objects are similar to static objects in the

sense that they are allocated as part of the enclosing object and they cannot be used to

describe recursive procedures, since this will lead to an in�nite recursion. (Remember

44 CHAPTER 5. MAPPING FROM OMT TO BETA

that static items cannot be used for describing recursive data structures).

As we have said in the �rst section, an object class also describes the relationships

with the other objects. In the next sections we will see the implementation of the most

important relationships, such as inheritance, association and aggregation. These are

important because they show how objects can communicate.

5.1.6 Inheritance

As we have said in chapter 2, Beta classi�es inheritance in static, implicit and per group.

Also OMT has this kind of view of inheritance. In fact, in OMT the developer draws

the Object Model during the design of the system he wants to develop, and the features

that are inherited or overridden are also part of the Object Model. Moreover, an Object

Model has classes as nodes in the part that describes inheritance. In the following, we

will use the words generalization or specialization to refer to the relationships among

classes, and the word inheritance to refer to the mechanism of sharing attributes and

operations using the relationship given above.

Example We would like to be able to model situations that you could �nd in a travel agency

that handles reservations of several kinds including
ight and train reservations. The

common properties and the way in which these reservations di�er give rises to a simple

classi�cation hierarchy. Fig. 5.3 shows the situation described above.

Flight_Reservation

Reserved Flight

Train_Reservation

Reserved Train

Reserved Carriage

Reservation

Date
Costumer

Pay Extra

Figure 5.3: Inheritance

Remember that in OMT generalization and inheritance are transitive across an arbit-

rary number of levels. Each subclass not only inherits all the features of its ancestor

but adds its own speci�c attributes and operations.

5.1. OMT VERSUS BETA 45

Translation with Sub-

patterns and Virtual

Patterns

Generalization and specialization are directly supported in Beta by subpatterns and

virtual patterns. The example described in �g. 5.3 can be translated in Beta in the

following patterns and subpatterns:

Reservation: (# Date: . . . ;

Customer: . . . ;

#);

FlightReservation: Reservation (# ReservedFlight:;

#);

TrainReservation: Reservation (# ReservedTrain: . . . ;

ReservedCarriage: . . . ;

PayExtra: . . . ;

#)

Here TrainReservation and FlightReservation are subpatterns of Reservation and Reser-

vation is the superpattern. (Note that in both OMT and Beta inherited attributes need

not to be repeated). The objects created as instances of the three patterns will form

three disjoint sets (have disjoint extensions). Subpattern features can be accessed from

any subclass but features from any subpatterns cannot be accessed from the superclass.

Overriding OperationsMoreover, OMT allows subclass to override a superclass feature by de�ning features

with the same name in the subclass. You may override methods of operations and

default values of attributes but you should never override the signature or form of the

features. Inherited features can be renamed in a restriction. Suppose that in our travel

agency we want to print the attributes of the reservations. In OMT this could be

represented in the following way:

Flight_Reservation

Reserved Flight

Train_Reservation

Reserved Train

Costumer

Reservation

Date

Display

 Display

 Display

Reserved Carriage

Pay Extra

Figure 5.4: Overriding the Operation Display

46 CHAPTER 5. MAPPING FROM OMT TO BETA

where the operation Display in Reservation displays the attributes Date and Customer

while Display in FlightReservation specializes the namesake operation of Reservation

displaying its proper attributes. In Beta, if a method is overridden by a subpattern,

the pattern representing the operation must be declared as virtual pattern in its �rst

appearance in a superpattern. The subpattern and superpattern's action-parts are

combined using the INNER statement.

The example in �g. 5.4 can be translated as follow:

Reservation:
(#...{attributes};

Display:< (# enter (...)
do

{display Date and Costumer}

INNER
exit (...)

#)
#);

TrainReservation Reservation
(# ...{attributes}

Display ::< (# do

#)
#);

FlightReservation: Reservation
(# ...{attributes}

Display ::< (# do
{display ReservedFlight}

#)
#);

 :

{display ReservedTrain
 and ReservedCarriage}

Figure 5.5: Implementation of the Operation Display

As for attributes, operations declared in the superclass are also inherited. Methods that

override inherited methods must be declared as binding in the subclass. Inherited (and

not overridden) attributes need not to be repeated. To ensure that a signature of an

operation cannot be overridden, the enter and the exit part (if exist) of the operation

should be de�ned only in the �rst appearance of the virtual pattern implementing the

operation. The way in which the INNER works ensures that the user can override only

the methods while he has the same enter and exit part for all the specialized operations.

5.1. OMT VERSUS BETA 47

Override Default At-

tribute Value and At-

tribute Renomination

Since Beta does not support pattern renomination, it is not possible to override the

default value of attributes; instead, if in a superclass you have an attribute A, that you

want to rename with B in a speci�c subclass, in Beta you can have the following code:

Superclass: (# A: ...;

...;

#);

Subclass:Superclass

(# B:@(# enter A exit A #);

...;

#)

Renomination of Op-

erationsRenomination of operations is allowed using patterns and subpatterns in the following

way:

operation:(# ... #);

new name:operation (# ...#)

Where operation is declared in the superclass and new name in the subclass.

Multiple InheritanceThe subpattern mechanism only supports tree-structured classi�cation hierarchies. The-

refore Beta does not supportmultiple inheritance, i.e. it does not support the possibility

of a class to have more than one superclass. We have tried to simulate multiple inher-

itance with others Beta concepts, in particular using part objects, but we have been

able to treat only the principal aspects of it without �nding a unique simulation able

to capture all of these. The various aspects we have seen are:

� How to have more than one classi�cation hierarchy for the same class of objects;

� Overriding inherited operations (multiple override criteria);

� Code reuse;

This argument will be explained in more detail in section 5.2 (Multiple Inheritance).

5.1.7 Implementing Associations

Associations are the \glue" of our Object Model, providing access paths between ob-

jects. An association describes a group of links between classes with common structure

and common semantics. In this section we formulate a strategy for implementing as-

sociations of an Object Oriented Model in Beta language. An association is a logical

48 CHAPTER 5. MAPPING FROM OMT TO BETA

construct of which a pointer is an alternative implementation. Most existing Object

Oriented programming languages ([Cox86], [GR83], and [Mey88]) lack the notion of

association and require the use of pointers. Associations are also translated by distinct

association objects. Since Beta does not explicitly support associations, we had to

implement them for some kinds of association. Moreover, whichever implementation

strategy you choose, a good translation should hide the implementation using access

operations to traverse and update the associations. We have implemented associations

trying to satisfy the constraints, but we will see that for some associations, that have

been implemented with single pointers, it has not been possible. In this section the vari-

ous implementations will be classi�ed on the basis of the number of instances involved

in each instance of the relationship [LMN93,p.310].

One to One Association

De�nition: In a One to One association, in each instance of the relationship at most

one instance of a class can be in relation with at most one of another.

This kind of association can be a one way or two way association, depending on the

way in which the association is traversed.

One Way Association

Example In OMT an example of a one way association can be the following:

Country

Name

CityHas Capital

Name

Figure 5.6: One Way Association

Each country has a capital city so that you have a \reference" from the class Country

to the class City. This kind of association can be implemented as a simple pointer - an

attribute that contains an object reference.

Implementation In Beta the pointer can be implemented by a dynamic reference attribute. The previous

example could be translated as follow:

5.1. OMT VERSUS BETA 49

Country:

(# Name: . . . ;

Has Capital:^City;

#);

City:

(# Name: . . . ;

#)

Two Way Association

In practice many associations are traversal in both directions. An OMT example for

this kind of association is:

Example

Company

Name
Works_for

Name

Person Employee Employer

Figure 5.7: Two Way Association

Use of Role NamesIn this relation, a person assumes the role of employee of a company and a company

assumes the role of employer. These role names may be useful in Beta translation. In

fact, they can be used as the names of the references that implement the pointers in

both directions.

The example in �g. 5.7 can be translated in Beta in the following way:

Person:

(# Name: . . . ;

Employee:^Company;

#);

Company:

(# Name: . . . ;

Employer:^Person;

#)

Since role names are used to distinguish among objects directly connected to a given

object, all role names must be unique [RBP+,p.35]. Although the role name is written

next to the destination object on the association link, it is really a derived attribute

of the source class and unique within it. Since we translate role names in pattern

50 CHAPTER 5. MAPPING FROM OMT TO BETA

names, it is impossible to use more than one role with the same name because Beta

does not support multiple declaration of attributes inside a pattern. If role names are

not used, then the name of the association may be used as the names of the references

implementing the association instead of roles.

Inconsistent Links This approach in implementing associations allows fast access but, unfortunately, asso-

ciations cannot be simulated by attributes on classes without violating encapsulation

of classes because the paired attributes composing the association are not independent.

Updating one pointer in the implementation of one association implies that the other

pointer must be updated as well to keep the link consistent. The individual attributes

should not be made freely available externally because they must not be updated sep-

arately. C++ allows limited relaxation of encapsulation using the friend construct, and

Ei�el provides export of features to selected classes but, for example, there are no clean

ways to encapsulate associations as attributes in Smalltalk as well. Unfortunately, Beta

does not support this kind of features too. For this reason, and because of other char-

acteristics of the language, it is not possible to �nd a way to ensure this consistency.

Note, however, that this problem is not a real problem for our �nal purpose because

we will be able to ensure the consistency of the link at the level of the syntax tool.

One to Many Association

De�nition: In this kind of association, in each instance of the relationship at most

one instance of a class can be in relation with many instances of the other.

For example, the class Company of the previous example in reality assumes the role of

employer for many persons. This new situation could be the following:

Company

Name
Works_for

Name

Person Employee Employer

Figure 5.8: One to Many Association

Now a pointer from Company to Person is not su�cient. We need a set of pointers. A

set may be implemented using an appropriate available data structure - often a linked

list or an array. An hash table or a binary tree may be used as well for greater e�ciency.

Implementation Using

Set The two way relations can be seen as in �g. 5.9 that suggests a Beta translation using

part object:

5.1. OMT VERSUS BETA 51

Person:

(# Name: ..;

Employer:^Company;

#);

Company:

(# Name: . . . ;

Employees:@Set(# Element::Person#);

#)

where Set is a pattern de�ned in the Beta basic libraries. The pattern Set also de�nes

the operations that can be used to handle the association.

Company

NameName

Person

employeremployee

Set

Figure 5.9: How to See One to Many Association

Implementation Using

Repetition
The translation can also be done using repetition of references (see �g 5.9a). In practice

this representation may be inconvenient because the dimension of the data structure is

�xed.

Company:

(# Name:. . . ;

Employees:[. . .]^Person;

#)

Figure 5.9a

Fixed MultiplicityInstead, repetition of references may be convenient to represent One to Many relation

in which the multiplicity is �xed. For example, if the company engages only seven

persons, the example is the following:

52 CHAPTER 5. MAPPING FROM OMT TO BETA

Company

Name
Works_for

Name

Person

7

Employee Employer

Figure 5.10: Fixed Multiplicity

Company:

(# Name:. . . ;

Employees:[7]^Person;

#)

Figure 5.10a

Association Fixed and

Ordered
An advanced concept of the OMT allows the objects on the many side of the association

to have an explicit order that must be preserved (See the example in �g. 5.11 and the

corresponding Beta translation in �g. 5.11a).

Screen
{ ordered }

Visible_onWindow
5

Figure 5.11: Ordered Association

Window:

(# Visible on:^Screen;

#);

Screen:

(# Visible on:[5]^Window;

#);

Figure 5.11a

This example shows a workstation screen containing �ve overlapping windows. The

windows are exactly ordered, so that only the topmost window is visible at any point

of the screen.

Association Ordered

and Not Fixed If the multiplicity is not �xed, repetitions may be used but, to hide the implementation

of the association, some operations on repetition must be rede�ned to support the

expandibility of the structure. Otherwise, the association can be implemented with a

linked list using the structure List prede�ned in the Beta basic library.

5.1. OMT VERSUS BETA 53

Many to Many Association

De�tion: In a Many to Many association, in each instance of the relationship, many

instances of a class can be in relation with many instances of the other.

ExampleFor example, a Many to Many association may be useful to represent a relation between

�les and users. The OMT notation for this kind of relation may be the following:

User
Accessible_by

File

Figure 5.12: Many to Many Association

One �le is accessible by a lot of users and a user can access a certain number of �les.

This Many to Many association can be seen in �g. 5.13.

Accessible_by

(User)

(User)

(File)

(File)

(File)

(File)

Figure 5.13: View of Many to Many Association

Here, the association is a set of pair of associated objects stored in a single variable

size object. For e�ciency, this can be implemented using two dictionary objects, one

for the forward direction and one for the backward direction. Access is slightly slower

than with attributes pointers, but if an hash table or a binary tree is used, then access

is still constant time.

ImplementationAlthough Hash Table is de�ned in the Beta basic libraries, we have decided to imple-

ment the structure shown in �g. 5.13 with a binary tree (called Tree) in which each

node represents a link between two objects. As for the pattern Set, we have also im-

plemented some operations on the structure that can be used by the user to handle

the association. Implementing the association with a binary tree means to have a vari-

54 CHAPTER 5. MAPPING FROM OMT TO BETA

able size structure on which you can de�ne e�cient operations. By using hash table

it would have been more complex to de�ne and implement the operations needed by

the developer. In Beta the implementation of the association shown in �g. 5.12 is a

pointer to the structure Tree de�ned in the patterns File and User as shown below:

File: (# Accessible by:^Tree;

...;

#);

User: (# Accessible by:^Tree;

...;

#);

and in the main program, an instance of the binary tree must be declared and spe-

cialized with the type of objects involved in the association:

Accessible by:@Tree (# Type1:<File;

Type2:<User;

#);

With this implementation, an instance of a link is an instance of the class implemented

by mean of the Beta pattern Tree. This kind of association, like the One to Many, has

been modelled as a class.

Higher Order Association

Associations may be binary, ternary or of higher order, but in practice the most used

are binary associations, only few ternary association are exploited and higher order are

never needed [RPB+91,p.28]. Moreover you have to beware of ternary associations that

sometimes can be restated as two binary association.

Example An example of ternary association is the following:

Project Language

Programmer

Figure 5.14: Ternary Association

In this association, programmers use computer languages on projects. This association

is an atomic unit and cannot be subdivided in two binary associations without losing

5.1. OMT VERSUS BETA 55

information.

ImplementationWe have decided to implement ternary associations as the Many to Many association,

i.e. we have used a binary tree where each node has three pointers, instead of two, to

the related objects (see �g. 5.15). This kind of binary tree is called Ternary.

(Project) (Language)

Pointers to the subtrees

(Person)

Figure 5.15: Node in Ternary Association

The declaration that must be generated in the Beta code is almost the same: you must

declare a pointer to the structure Ternary in each class involved in the association. The

link is an instance of the structure Ternary specialized with the three kinds of objects

involved in the association; in our case:

Ternary ass:@Ternary (# Type1:<Project;

Type2:<Person;

Type3:<Language

#);

Link Attributes (Advanced Concept)

Sometimes it is useful to use Link Attributes. As an attribute is a property of an object

in a class, a Link Attribute is a property of the link in an association.

ExampleIn �g. 5.16, for example, an OMT example is shown in which a Link Attribute is used:

Access Permission is an attribute of the association Accessible by.

Accessible_by
UserFile

Permission
Access

Figure 5.16: Link Attributes

56 CHAPTER 5. MAPPING FROM OMT TO BETA

The OMT notation and the fact that each Link Attribute has a value for each link,

emphasizes the analogies between attributes in an object and Link Attributes.

Implementation AMany to Many association provides the most compelling rational for Link Attributes.

Such attribute is unmistakably a property of the link and cannot be attached to either

object without losing information. For this reason, the implementation of associations

with attributes depends on the multiplicity. If the association is One to One, the Link

Attributes can be stored as simple attributes of either object. If the association is

One to Many, the link attributes can be stored as attributes of the object at the many-

end, since each \many" object appears only once in the association. If the association is

Many to Many, the best approach is usually to implement the association as a distinct

class, in which each instance represents one link and its attributes.

Many to Many Asso-

ciation For this reason Link Attributes in Many to Many associations have been implemented

declaring a class Attributes that contains all the Link Attributes in the tree implement-

ing the association. A pointer to an instance of this class is inserted in each node of the

tree. In this way, each node represents a link between two objects with its attributes.

Fig. 5.7 shows how a node can be seen and the Beta code that must be generated to

translate the association shown in �g. 5.16.

Pointers to the subtrees

(File) (User)

(Attributes)
Access = r--
Permission

Figure 5.17: Node for Link Attributes

File: (# Accessible by:^Tree;

...;

#);

User: (# Accessible by:^Tree;

...;

#);

5.1. OMT VERSUS BETA 57

Accessible by:@Tree (# Type1:<File;

Type2:<User;

Attr:<Attributes

#);

Attributes: (# AccessPermission: ...; #);

We have also implemented the operations that allow the user to get all the Link At-

tributes. We would have liked to allow the user to access a single Link Attribute, but

this feature cannot be allowed without showing him the internal representation of the

One to One

and One to Many As-

sociation

association.

For a One to One association or a One to Many association, the translation is obvious.

It is su�cient to add the Link Attributes as simple pattern attributes in the appropriate

class pattern/s that implement the related objects, as explained above. Unfortunately,

with this kind of implementation, in the binary association the consistency of the link

attributes is not ensured. So it will be a task of the user to pay attention to this kind

of inconvenients.

5.1.8 Aggregation

Aggregation is a strong form of association in which an aggregate object is made of

components. Components are part of the aggregate. Aggregation is inherently transitive

and an aggregate may have parts which in turn may have parts. In OMT, this gives rise

to an aggregation tree composed of object instances that are all parts of the composite

object. In Beta, aggregation is supported by composition. We think that, of the

many ways for making composition, aggregation is directly supported by Whole-Part

composition while Reference composition shows that aggregation is really a special form

of association and not an independent concept. In OMT, aggregation may be �xed,

variable, or recursive. In this section we show how the various types of aggregation

should be implemented. At the end we will see that these implementations give rise to

some problems.

Fixed Aggregation

ExampleAs we have seen in the last chapter, an example of �xed aggregation can be a car. A

car may be naturally viewed as consisting of parts like a Motor, a Body, and Wheel, i.e.

Wheel is a part-of a Car, Body is a part-of a Car etc. The following �gures show how

this example can be expressed in the OMT notation and how this example is translated

in Beta:

58 CHAPTER 5. MAPPING FROM OMT TO BETA

Car

BodyMotor Wheel

4

Figure 5.18: Fixed Aggregation

Implementation

Car: (# CarMotor:@Motor;

CarBody:@Boby;

Wheels:[4]@Wheel;

#);

Motor: (# . . .#);

Body: (# . . .#);

Wheel: (# . . .#);

Declaring the component objects as part object inside the pattern representing the

aggregate you can generate the instances of all the parts of the composed object that

compose the aggregation tree.

Variable Aggregation

In the OMT example in �g. 5.19, Company is a variable aggregate with a two-level-tree

structure.

Example

Company Division Department

Figure 5.19: Variable Aggregation

There are many divisions per company and many departments per division. This

example may be implemented in Beta in the following way:

Implementation

Company: (# Composed of:@Set1(# element::Division#);

. . .

#);

5.1. OMT VERSUS BETA 59

Division: (# Composed of:@Set1(# element::Department#);

. . .

#);

Department: (# . . .#)

Where Set1 is a structure similar to set which implements a set of instances instead of a

set of references (pointers). This example and the example in �g. 5.18, show that some

kinds of aggregations are implemented with the same idea of One to Many association.

This emphasizes the similarity between these relations. This kind of implementation

of �xed and variable aggregations maintains the most signi�cant property of aggreg-

ation that is the transitivity. Aggregation is also antisymmetric and this property is

preserved by the implementation.

Recursive Aggregation

We have seen that in a recursive aggregation, the number of potential levels is unlim-

Example
ited.

Compound
statement

Simple
statement

Block

Program

Figure 5.20: Recursive Aggregation

Fig. 5.20 shows an example of recursive aggregation in which a computer program is

composed of blocks that can be nested in arbitrary depth.

ImplementationThe Beta translation of this example is the following:

Program: (# Composed of:@Set1(# element::Block #);

. . .

#);

Block: (# . . .#);

60 CHAPTER 5. MAPPING FROM OMT TO BETA

CompoundStatement: Block

(# Composed of:@Set1(# element::Block #);

. . .

#);

SimpleStatement: Block (# . . .#)

PROBLEMS: As we said before, we have found some problems in implementing aggregation.

Repetition of

Instances We have implemented �xed aggregation by means of repetition of instances. This im-

plementation should work, but up to now, repetition of instances of non-basic patterns

has not been implemented yet. We plan to solve this problem by declaring an attribute

for each instance needed. The number of the attributes is de�ned by the multiplicity

of the aggregation.

Set of Instances In implementing variable aggregation, we used set of instances similarly to the set of

references available in the Beta basic libraries. We are not able to implement this kind

of set and we think that it is not possible. In fact, because of some limitations of

Beta, it is not possible to handle instances using statements similar to those that are

de�ned for references. This lack does not allow an implementation of a set of instances

similar to the set of references. However, we do not want to use set of pointers even

if aggregation is a particular kind of association and in Beta composition may be

viewed also as Reference composition. We think that using pointers a real association

is realized losing the additional meaning of the part-of concept and some properties of

the aggregation like, for example, transitivity. For these reasons we have decided that

is not possible to translate variable aggregation in Beta.

Propagation of Operations (Advantced Concept)

De�nition Another advanced concept of the OMT notation is the propagation of operations.

Propagation is the automatic application of an operation to a network of objects when

the operation is applied to some starting object. For example, moving an aggregate

means to move all its parts; the Move operation propagates from the aggregate to

the parts. Moreover, propagation of operations to parts is often a good indicator of

aggregation. Fig. 5.21 shows an OMT example of propagation.

Example A Man is composed of a Body, two Legs, two Arms and a Head which in turn are com-

posed of other objects. If you move a man, you move every signi�cant part of it. As

we can see, in the OMT notation the names of the propagated operations are written

near an arrow up to the classes in which they are propagated. The Move operation can

be implemented by invoking a corresponding Move operation in the parts.

A Beta implementation of the Move operations in the aggregate Man (�g. 5.21) is

shown in the �gg. 5.22 and 5.23.

5.1. OMT VERSUS BETA 61

Move

Man

Move(Pos:...)

2

Move(Pos:...) Move(Pos:...)

Leg Arm

2

Body

Move(Pos:...)

Head

Move(Pos:...)

Foot

Move

Hand

Move(Pos:...) Wave

Toe

Wriggle

Figure 5.21: Propagation of Operation

Implementation

 (# Pos:;

 #);

Move:

 Pos->Manbody.Move; Pos->Manhead.Move;do
for repeat

for repeat

Pos enter

for (i:Arm.Range Pos->Arm[i].Move);

for (i:Leg.Range Pos-> Leg.Move);

Figure 5.22: Move in the Man Attribute

Move:

 (# Pos: ...;

...{Implementation of the
operation Move} ...

 #);

 enter Pos

 do

Figure 5.23: Move in the Foot Attribute

62 CHAPTER 5. MAPPING FROM OMT TO BETA

If the operation is propagated, the aggregate implements the operation calling the

corresponding operation on its parts while, if the operation is no more propagated,

in the do-part of the pattern that implements the operation, the real method of the

operation is implemented.

5.1.9 Summary

In this section we have considered the most important OMT concepts proposed in the

[RBP+91] and some of the advanced. We have translated this subset in the Object

Oriented language Beta. Unfortunately, because of some lacks of the Beta language

and of its compiler, we have not been able to translate some of these concepts in a

complete correct way. Of the six points treated in our mapping, we have translated all

the concepts related to class, object, and operation, while we have some problems for

a complete translation of the concepts of inheritance, associations and aggregation.

We decided not to implement variable aggregation because in Beta it is not possible to

implement a set of instances of a class, and because we think that the implementation

with pointers is not the proper translation.

We had some problems in implementing bidirectional associations since we cannot

ensure the consistency of the link, even if this problem is overcome at the level of the

tool. Moreover, in One to One association, we are not able to ensure the consistency

of Link Attributes, if this feature is used.

Multiple inheritance is supported by the OMT notation but it is not possible to translate

this concept in Beta. Some aspects of this concept that can be translated have been

given even if this problem is dealt in more details in the next section. Moreover, also in

the single inheritance it is not possible to override default value of attributes because

Beta does not support renomination of attributes inside a class.

Other Advanced Con-

cepts The OMT notation proposed in [RBP+91] also supports other advanced concepts that

are not treated in this section. These concepts are not to treated because in our point

of view some of them are optional in the design of a system, especially during early

stages of modeling. Below we brie
y show below these concepts and our motivations.

In the OMT notation, it is possible to add constraints on classes and associations.

Constraints improve the odds that the behaviour of a class or of an association matches

the expectations of its client and are written in natural language. They can be viewed as

a way of expressing declaratively what might otherwise has to be written as procedural

code. Unfortunately, Beta has no features like assert macro in C or the assertion in

Ei�el in which these constraints could be mapped, and there is no way to translate

whichever natural or mathematical languages in a Beta code that could be inserted in

the do-part of a pattern. Also the concept of ordered association and the multiplicity are

constraints, in this case on arcs. They have been implemented because their de�nitions

are not so generic even if for the multiplicity we decided to translate only the one, the

many and the �xed because we think that are the most important di�erences.

5.1. OMT VERSUS BETA 63

A One to Many association can be quali�ed. In the association shown in �g. 5.10 ,

for example, you can decide that each employee is quali�ed by a number and draw

the appropriate notation. This is a way to transform a One to Many association in a

One to One because, in this way, each person is referred by its own number. We have

not implemented this kind of association because, following our implementation for the

One to Many association, we have seen that in Beta it is not possible to de�ne Set

of pointers accessible by a string or a number. So the only possibility was the �xed

multiplicity, but since from the OMT diagram is not possible to know the singular value

of the quali�cator, the result of the translation would have been the same that you have

in the normal case with a repetition of pointers or a number of unnamed pointers.

64 CHAPTER 5. MAPPING FROM OMT TO BETA

5.2 Multiple Inheritance

Classi�cation and

Composition
When modeling phenomena and concepts from the real world, classi�cation hierarchy

and composition are fundamental methods of organization for abstracting the real

world. A modeling language should have direct support for classi�cation and com-

position, in particular O.O. languages have support for classi�cation by means of the

class/subclass mechanism. Moreover, some languages only support tree structured

classi�cation whereas others support non-tree structured hierarchies by means of the

so-called multiple inheritance. On the other hand, in most O.O. languages there is

little direct support for composition. This is usually supported directly through in-

stance variables, or it is simulated using multiple inheritance. Beta does not support

multiple inheritance because it provides inheritance by the use of super/sub-patterns

that give rise to tree structured classi�cation hierarchies. Instead, Beta directly sup-

ports composition and, as we have seen, contains facilities for three kinds of composition

{ Whole-Part composition, Reference composition and Localization. Now we want to

see how the lack of facilities for directly support multiple inheritance is not a so big

lack, since all the di�erent uses of multiple inheritance may be simulated by means of

part objects and virtual patterns.

De�nition Multiple inheritance has come up as a generalization of single inheritance. In case of

single inheritance, a class may have at most one super-class, whereas multiple inher-

itance allows a class to have several super-classes. In this way, the subclass will have

direct access to the attributes of the superclasses and virtuals of the superclasses may

be rede�ned in the subclass in order to express adaptation to special needs.

When It Is Useful In our experience in using multiple inheritance, we have seen that multiple superclasses

are useful for several reasons. In fact, modeling the real world we often �nd more

than one classi�cation hierarchy for the same class of objects, or we need to apply

the so-called multiple override criterion. Moreover, multiple inheritance is often used

to combine unrelated classes for the purpose of reuse of code, but this (mis-)use of

multiple inheritance often leads to complicate inheritance relationships. Later a way

for simulating these various aspects of multiple inheritance by the use of the available

Beta mechanisms is shown.

5.2.1 More Independent Classi�cation Hierarchies

When It Is Used In practice one often ends up with a classi�cation hierarchy that is not tree structured.

This may be the case if one is classifying the same phenomena according to independent

properties. In this case, a non tree structured hierarchy can always be made tree

structured, which, therefore, often gives rise to clumsy hierarchies [LMN93,p.305]. For

this kind of classi�cation, it is also possible to use part objects instead of multiple

superclasses as shown in [CG90].

Example For example, consider two possible classi�cation hierarchies for persons: one classi�es

them according to which kind of sportsman they are (e.g. TennisPlayer,GolfPlayer,...)

5.2. MULTIPLE INHERITANCE 65

and another classi�es them into how they are students (e.g. FullTime, PartTime). Each

of these are represented by subclasses (of e.g. Sportsman and Student, respectively).

The class of persons being both a Sportsman and being a Student, SportyStudent, may

obviously be de�ned as a class with Sportsman and Student as superclasses. In this

way, however, this class is excluded from being specialized to e.g. a person that is a

speci�c kind of sportsman and a speci�c kind of student. The superclasses are �xed

and may not be rede�ned in subclasses of SportyStudent. This example is taken from

an example found in [CG90], but in the following it is just indicated how part objects

may be used instead of multiple superclasses. By the use of part objects and virtual

classes we can realize this kind of classes organization in the following way:

SportyStudent: (# TypeOfSportsman:< Sportsman;

TypeOfStudent:< Student;

TheSportsman:@ TypeOfSportsman;

TheStudent:@ TypeOfStudent;

. . .

#);

Also in this implementation, the constraint of the virtual classes implies that TypeOf-

Sportsman may only be extended to one of the subclasses of Sportsman, while TypeOf-

Student may only be extended to one of the subclasses of Student. A sporty student

being, for example, a tennis player and part time student will then be de�ned by the

following subclass:

(# TypeOfSportsman::TennisPlayer;

TypeOfStudent::PartTimeStudent;
#)

 TennisPlayerPartTimeStudent : SportyStudent

Figure 5.24:

5.2.2 The Multiple Override Criterion

In [Car91] and [Gui91] we can �nd one example of using multiple inheritance where the

so called multiple override criterion is applied.

ExampleSuppose to have the following two classes:

A: (# f1:< (# . . . #);

f2:< (# . . . #);

f3:< (# . . . #);

#)

66 CHAPTER 5. MAPPING FROM OMT TO BETA

I: (# f: (# . . .#);

g: (# . . .#);

h:< (# . . .#);

#)

Now we want a class R, derived from both A and I, which has to map A's virtual

functions into external facilities o�ered by I. In the example above f1 is supposed to be

mapped into f and f2 into g. The class I may also impose some behaviour in A which

is satis�ed by R. In the example h is supposed to be mapped into f3.

Implementation Using

Part Object and Bind-

ing Declaration

Using part objects and binding declarations the class R may be expressed as follows:

R:A (# x:@ I(# h:: (# do f3 #) #);

f1:: (# do x.f #);

f2:: (# do x.g #);

f3:: (# do . . .#);

#)

R has as superpattern A and as a part object an instance of I (x) where the vir-

tual procedure h is mapped into f3 that is inherited by A. The virtual procedures f1

and f2 are mapped into x.f and x.g respectively. Note that even though I is not a

superclass pattern of R, a rede�nition of the virtual h still has access to attributes of

R: f3 is visible in the extension because the rede�nition is de�ned in the scope of R.

5.2.3 Code Reuse

When It Is Used There are of course also objects and classes that are used purely for implementation

purposes and which may not represent phenomena and concepts from the application

domain. In this case, probably, it is more correct to refer to code sharing rather than

to inheritance even if it is often realized in this way. For this reason many authors dis-

tinguish between inheritance of speci�cation and inheritance of code. Moreover, trying

to combine unrelated classes, often leads to complicated inheritance relationships.

Subtype Relation When inheriting a speci�cation, there is a subtype relation between a subclass and its

superclass. If a subclass is viewed as a subtype of its superclass, then the subclass

should be applicable whenever the superclass is applicable. When inheriting code a

subtype relation does not have to exist. It may be di�cult (and it turned out to be

di�cult) to design one language mechanism that supports inheritance of speci�cation

and inheritance of code equally well.

Implementation As proposed in [RL89] code reuse does not have to be obtained solely by inheritance,

but may also be obtained by part objects. For this purpose he introduced a new

Beta constructs for renaming of patterns. Since this construct is not supported by the

Beta language, we have tried to implement his ideas using the available mechanisms of

pattern variable and part object.

Example Using Part

Object and Pattern

Variable

Suppose we want to de�ne a pattern Stack and to have already de�ned a pattern Deque

(double queue). Stack can be de�ned as a subpattern of Deque, but it would work only

5.2. MULTIPLE INHERITANCE 67

by using some of the features of Deque. Therefore there will be no a sub-type relation

between Deque and Stack. So this is not an appropriate use of subclassing since in Beta

subclassing is supposed to be subtyping. We may alternatively describe Stack using

inheritance by means of part object and rename the desirable properties as follows:

Stack: (# d:@Deque;

push:##d.enterInFront;

pop:(# ... #);

intOfStack:@(# enter intOfDeque; exit intOfDeque #);

...;

do

d.enterInFront##->push##;

...;

#)

In general in Beta the attributes of d are remotely accessible. So Stack can use all

the properties that are in Deque using remote accesses, rename procedure patterns or

attribute as for push and intOfStack respectively, or de�ne its proper features as for

pop. Renomination of procedure or functional patterns is done by the use of pattern

variables. push is de�ned in the declaration-part of Stack as a pattern with the same

structure of the procedure pattern enterInFront of Deque. Then in the do-part the

pattern has to be assigned to push.

If Also Specialization

Is NeededIn the above example, if push is not only a renomination, but a specialization of the

enterInFront of Deque, then this implementation gives rise to some problems since re-

nomination with specialization as suggested by [RL89] (push:d.enterInFront(# ... #)

), has to be reviewed in one of the following ways:

1) d:@Deque(# enterInFront::<(# ... #) #);

push:##d.enterInFront;

declaring enterInFront as virtual pattern in Deque and specializing it in Stack. However,

the compiler does not accept the declaration of patterns variable of virtual patterns;

2) d:@Deque;

push:##d.enterInFront(# ... #);

modifying the pattern at the level of the pattern variable, but also in this case the

declaration of a pattern variable quali�ed by a modi�ed pattern is not accepted by the

compiler. So, reuse of code of specialized operations cannot be simulated in Beta.

68 CHAPTER 5. MAPPING FROM OMT TO BETA

In Multiple Inherit-

ance
The reuse-of-code-by-part-objects approach above may easily be generalized also to

cover the need for multiple inheritance. Suppose we have two patterns A and B and

that T may be described by inheriting from A and B. Using part objects T may be

declared in the following way:

T: (# a:@A;

b:@B;

#)

in which the same considerations on attributes and operations of the example before

may be done. Note that this form of multiple inheritance resembles the one implemen-

ted for C++ [Sto86].

Name Con
icts In order to resolve name con
icts and in order to avoid the compound identi�ers, re-

naming of attributes (as introduced before) may be used. In case there are only a few

name con
icts, then singular part objects with renaming speci�ed will be the solution.

For example if there is a con
ict with the attribute z in the patterns A and B, a solution

can be the following:

T: (# a:@A;

b:@B(# bz:(# enter z; exit z #) #)

#)

In this way, the attribute z in T will be the one from A, since the attribute z in B

has been renamed with bz.

5.2.4 Summary

In this paragraph we have demonstrated that some of the various uses of inheritance

may be provided by the use of part objects and other features as pattern variables

and/or virtual patterns. Using virtual patterns and part objects, we can declare classes

that depend on more independent classi�cation hierarchies. By specifying singular part

objects that are specializations of some general classes, it is possible to add attributes

and to rede�ne virtual procedures/functions. So, for each part object a specialization

may be obtained realizing the multiple override criterion. Code reuse by renaming

attributes and operations has been realized by the use of part objects and patterns

variable but we have not been able to realize renomination of operations with special-

ization. Moreover, the provision of multiple subtyping is not covered by part objects.

This is a relevant drawback for a programming language, like Beta, that mainly intends

inheritance for hierarchical classi�cation of concepts. For this last reason and for the

fact that we have not been able to �nd an unique implementation able to cover all the

aspects of multiple inheritance, we conclude that in Beta it is not possible to simulate

the concept of multiple inheritance.

Chapter 6

Tool Modelling

What we have to construct is a tool able to be inserted in an Object Oriented software

development environment in which Beta is the used programming language. Since Beta

is a multi-perspective language, this allows the programmer to have some freedoms

during the implementation of a system that makes the implementation realized not

in a pure Object Oriented style. For this reason we have chosen OMT as the Object

Oriented methodology the user has to follow in drawing an Object Oriented Diagram,

which will be implemented in a textual notation. So, what we want is a tool composed

of a graphical and a textual editor. The user should be able to draw an OMT Object

Model with the graphical editor and to complete a correspondent Beta skeleton with the

textual editor. Before implementing our tool we had some interactions with students

who study Beta and use the Mjolner Beta system to program with this language, in

order to know the requirements that they would like to have in a tool as we ware going

to construct. Moreover, we had some experiences with the tool \Software Through

Picture" [IDE93] - an OMT graphical tool that is available in this university - to

evaluate the characteristics that could be important for our graphical editor. This

chapter shows the requirements we think are important for the construction of our tool

and the speci�cation of the tool made in a OMT-like formalism.

6.1 Requirements

Realization of the

Mapping fromOMT to

Beta

The �rst requirement is that the tool should be able to realize the mapping of the OMT

concepts in the Beta concepts how it is explained in section 5.1. The graphical editor

should allow the user to draw all the concepts that can be translated maintaining the

original OMT notation as much as possible. The textual editor should provide the user

with an automatically generated Beta skeleton following the mapping and being always

consistent with the graphical notation.

ExpandibilitySince we have chosen to translate only the Object Model from the three models o�ered

by OMT, we have decided that the tool should be expandable for future implement-

69

70 CHAPTER 6. TOOL MODELLING

ations in which other developers could decide to treat also the Functional and the

Dynamic Models.

Contemporary Use

of the Graphical and

Textual Editor

We require our tool let the user to have the freedom to implement his system work-

ing contemporaneously with the graphical and textual editor without waiting for the

complete drawing description of the system. However, we have decided that our tool

should not require reverse engineering. Reverse engineering is considered to be the

problem of going back to design diagrams from the code [LMN93,p.50], but we only al-

low the user to change the implementation of his system changing the graphical version.

Moreover, the user should not have the possibility to textually modify the generated

code correspondent to the drawing. This is to subtract the user the freedom of the

Beta language that allows to write a not Object Oriented program, and constraints a

right implementation that follows the OMT Object Model.

Implementing

more than one Object

Model Contemporan-

eously

The tool should provide the possibility for the user to implement more than one Object

Model contemporaneously. Multiple graphical main windows should appear on the

screen in which the user can draw his models and multiple text editor windows should

be opened simultaneously displaying the code correspondent to the diagrams as well as

the contents of separate fragments.

A Syntax Driven Tool

+ a Free Textual Ed-

itor

Moreover, we want our tool syntax driven in both the graphical and the textual editors.

We think that syntax driven tools provide users with the best support. In fact, they

can assist inexpert users in producing syntactically and semantically correct documents

right away and relieve them of the mundane task of repeatedly typing concrete syntax

which is generated automatically. For instance, here in Dortmund the students use

OPUS as a graphical tool that is syntax driven, and they said that they have good

experiences with it. In addition, however, our tool should also support the facilities to

freely complete the generated Beta skeleton with a conventional textual editor. This

might be useful for more expert users for which these facilities might provide the faster

way for programming.

Clear Drawing After having seen other tools, we consider that the clearness is an important require-

ment of the graphical design drawn with the graphical editor. In each moment during

the design phase, the user should be able to have a global and clear view of the Object

Model he is drawing as much as possible. The OMT tool we have seen, for example,

was not useful for designing systems in large because of the �nal representation of the

Object diagram that resulted too big to be visualized in a window. It was also not easy

to understand because it was too complicated. Moreover, these tools are resulted not

easy to use. For these reasons, we have thought about the simpleness of our tool.

A Tool Easy to Be

Used Our tool should be easy to use in two principal ways.

� It should be as much natural and intuitive as possible, i.e. the user should see

our tool as a facility for building a system instead of drawing it by hand.

� Moreover, the capability o�ered by the tool during the design phase should be

clear for the user. This implies, for example, the use of icons to show the OMT

graphical symbols the user is allowed to draw in a certain moment, and the

6.2. DESIGN 71

meaning of the main functions he can use.

Possibility to Insert

Documentation
Another requirement that we deem important, after our experience in using graphical

tools, is the possibility for the user to complete the design with an opportune docu-

mentation. The tool should give the possibility to add comments during the insertion

of operations and attributes in the graphical design. The comments should also be

automatically inserted in the Beta skeleton when this is generated.

Communication of Ap-

plication Action to the

User

Obviously, the tool should support those features that all the tools should support

as the communications of application actions to the user [OSF92]. These include the

possibility of the the tool to:

� Give the user feedback, i.e. let the user know that the tool has received his inputs,

moreover, give users feedback whenever they have selected a component or menu

item by highlighting the component or the menu item in some way.

� Anticipate errors. The tool should be able to recover from the unintended or

erroneous operations. Whenever an inappropriate mouse button is pressed or

an inapplicable menu option is selected, an error box with the corresponding

message should appear. The user should not be able to continue without acknow-

ledging the error (by pressing the OK button). Moreover, it should be able to

provide more information when asked. We have thought that context-sensitive

help improves understanding, reduces errors and eases recovery e�orts.

� Use explicit destruction. Explicit destruction means that, when an action has an

irreversible negative consequences, it should require the user to take an explicit

action to perform it. We think that warnings protect the user from inadvertent

destructive operations, yet allow the user to remain in control of the application,

and encourage him to experiment without fear of lost.

6.2 Design

An Extended OMT

Graphical Notation
In this paragraph we are going to explain the design phase followed during the real-

ization of our tool. We have decided to design our tool complying with the OMT

methodology which has been extended to include the concept of Subsystem [Emm95].

This concept has been introduced to increase the comprehension of the diagram by

adding one abstraction level. In this way each subsystem has been re�ned by another

OMT diagram. The graphical notation chosen to represent a subsystem is a shadowed

box, as shown in �g. 6.1.

Subsystem

Figure 6.1: Graphical Representation of a Subsystem

72 CHAPTER 6. TOOL MODELLING

In a diagram, each class or subsystem that has a relationship to a subsystem is given as

a port in the diagram that re�nes the subsystem. We represent these ports by means of

colored boxes as in �g. 6.2. We have decided that ports representing subsystems may

contain de�nitions of operations that are de�ned in one of the classes that composes

the subsystem.

Port

Figure 6.2: Graphical Representation of a Port

In the following sections we show the general design of our tool and we re�ne two of

the most interesting of its subsystems.

6.2.1 Architecture of the Tool

In developing this phase, we have followed the requirements presented in the previous

section. This section gives a presentation of the developed design and an explanation

in which the points satisfying the requirements are underlined. In the following the

�rst level of the tool design is shown.

TOOL

Message Wind.

Save
Load
Verify
Help

Load
Verify
Help

Save

Verify
Load

Save

Help

Integration
Mecchanism

Graphical
Editor

Textual
Editor

Interface
Graph. Editor

Implement.
EditorText.

Interface
Editor

Implement.
Text.

Request the
Beta concept

Beta_concept

Ask to
Interpret

OMT concept

User

Is_Interpreted

Translation

Is_Implemented

Graph. Editor

Use

Is_Visualized

Figure 6.3: First Level of the Tool Design

6.2. DESIGN 73

ToolIn this diagram the class Tool represents our tool. Since we have required our tool to

realize the mapping from an OMT diagram into Beta code, Tool is composed of:

� A class Graphical Editor: to allow the user to draw an OMT Object Model;

� A class Textual Editor: to visualize the Beta skeleton corresponding to the

Object Model drawn with the graphical editor, and to allow the user to complete

this skeleton;

� A class Integration Mechanism: to integrate the two editors and to implement

the theoretical mapping from OMT to Beta. This allows the automatic generation

of the Beta skeleton.

As we can see from the diagram in �gure 6.3, we have foreseen a Tool's attribute

to realize the Communication of Application Actions to the user and also some basic

operations that each syntax-driven tool should have [OSF92], such as Verify, Save, Load

andHelp (which is one of our requirements). In the design, theGraphical andTextual

Editor are divided into an Editor Interface and an Editor Implementation design

by means of subsystems.

Graphical Editor In-

terfaceThe Graphical Editor Interface provides the user with the means to draw an OMT

diagram. These means are, for example, the operations Move, Delete and Create, that

are de�ned for each OMT concept and are implemented in the Graphical Editor

Implementation.

Graphical Editor Im-

plementationThe Graphical Editor Implementation recognizes the kind of graphical OMT con-

cepts and asks the Integration Mechanism to realize the mapping from the received

OMT concepts into the appropriate Beta concepts.

Integration Mech-

anism and Textual Ed-

itor Implementation

Once the right translation has been decided, the Integration Mechanism asks the

Textual Editor Implementation to translate the Beta concepts into the correspond-

ing textual representation.

Textual Editor Inter-

faceFinally the textual representation is visualized by the Textual Editor Interface. This

sequence of interactions allows the automatic generation of the Beta skeleton. Moreover

the user may require to complete the skeleton by the Textual Editor Interface.

For this reason, the Textual Editor Interface must provide operations, such as

Expand Placeholder, InsertText, and ChooseMode, which allow the insertion of code in

a syntax-driven or free-textual input mode.

The next sections analyzes the Graphical Editor Implementation and the Tex-

tual Editor Implementation subsystems in more detail, while we omit a detailed

explanation of the Graphical Editor Interface and the Textual Editor Interface

subsystems in which the declaration of the structures of the two editors is designed.

Moreover, we have also decided to omit the re�nement of the Integration Mechanism

subsystem since its structure strictly depends of the implementation of the graphical

and textual editor.

74 CHAPTER 6. TOOL MODELLING

6.2.2 The Graphical Editor Implementation Subsystem

The Graphical Editor Interface provides the means to draw OMT diagrams, which

are recognized from the Graphical Editor Implementation.

Element Implementa-

tion As shown in �gure 6.4, the implementation of each OMT concept is realized by Ele-

ment Implementation, which is the superclass of an inheritance hierarchy de�ning

all these concepts. In Element Implementation the operations to handle the inser-

tion and the deletion of the elements are de�ned. These operations are then inherited

and properly specialized in the subclasses.

Graph. Editor

Move
Create

Interface

Delete

Element

Is_Implemented

Implement.

Handle_Delet.
Handle_Insert.

Nodes
Implement.

Name

Class
Object Instantiation Generalization

Aggregation Association

Name
Roles
Link_Attributes

Change_Name
Handle_Insert.

Set_Roles
Add_link_Attr.
Del_link_Attr.

Propagated_Op.
Propagate_Op.

Arcs
Implement.

Aggregation
with

Multiplicity

Multiplicity

Handle_Insert.

Attribues
Operations

Change_Name
Handle_Delet.
Handle_Insert.
Add_Attribute
Add_Operation
Del_attribute
Del_Operation

Set_Name

Class_Name

One_to_One
One_to_Many

Many_to_Many Ternary

Ordered
Multiplicity

Handle_Insert.

Integration
Mecchanism

Ask to
Interpret

OMT concept

Graphical
Editor

Figure 6.4: Diagram Re�ning the Graphical Editor Implementation Subsystem

Nodes Implementation

and Arcs Implementa-

tion

Since the elements of an Object Model are nodes and arcs, the direct specialization

of Element Implementation is given by the Nodes Implementation and Arcs

Implementation classes. These two subclasses are in turn specialized by all the

elements de�ned in the OMT notation.

Attributes and Opera-

tions on Classes In each subclass, in fact, the attributes and the operations to handle these attributes are

6.2. DESIGN 75

de�ned. The attributes, as they should, represent features that characterize the OMT

concept the class represents. We only want to underline the designing choices made for

the class representing One to Many associations (One to Many) and variable aggreg-

ations (Aggregation with Multiplicity). These classes have the multiplicity, as an

attribute, but the operation to explicitly set it is not de�ned. In fact we think that the

insertion of this feature should be realized during the insertion of the whole relationship

which it belongs to. Indeed, with the chosen hierarchy schema, the multiplicity must be

an integral part of the relationship and not an additional property. For this reason, in

these classes, the operation Handle Insertion is specialized to also allow the insertion of

this feature. Moreover, as we can see from the �gure, the operations Handle Insertion

and Handle Deletion are also specialized in other classes. This happens, for example,

in the class Class, because it should not exist a class without name, and because there

could be situations in which a class can not be simply deleted - for example if it is in the

middle of a generalization tree. The operation Handle Insertion is also obviously spe-

cialized in the class Association to allow the insertion only between classes (and not

for example in the middle of an empty screen) and because this is the only relationship

that needs an inserted name.

Relationships in the

DiagramA particular treatment in setting the name is also necessary forObjects. The association

Set Name between the classes Object and Instantiation means that the name of an

object can be set only when an instantiation relationship between an object and a class

is created. The Link Attribute Class Name allows to set the object name with the same

name of the class which it belongs to. Instead, the association Ask to Interpret, between

Element Implementation and Integration Mechanism, allows the interpretation

of each OMT concept implemented in the Graphical Editor Implementation. This

association, because of the inheritance structure, is in fact inherited by all the subclasses

that specialize the Link Attribute. The request of interpretation represents the last step

the subsystem has to perform. Note that in the port Graphical Editor Interface,

representing the namesake subsystem, the operations Move, Create, and Delete are

declared. These operations must be de�ned in the interface of the textual editor to

allow the designing of OMT diagrams.

76 CHAPTER 6. TOOL MODELLING

6.2.3 The Textual Editor Implementation Subsystem

As we have explained at the beginning, the Textual Editor Implementation trans-

lates the Beta concepts received from the Integration Mechanism and asks the

Textual Editor Interface to visualize them. The designed diagram re�ning the cor-

respondent subsystem is shown below.

Is_Interpreted
Textual Text. Editor

Expand
Choose_Mode

Interface

Insert_Text

Server
User Interac.

ImperativePart ObjectPattern

Integration

Request the
Beta concept
Translation

Beta_concept

Is_Translated

Is_Visualized

Editor

Mecchanism Implement.
Beta concept

Figure 6.5: Diagram Re�ning the Textual Editor Implementation Subsystem

The most important class is Beta Concept Implementation. This class is the

superclass of an inheritance hierarchy in which all Beta concepts are de�ned. Beta

Concepts Implementation implements all those Beta concepts required by the In-

tegration Mechanism which are then visualized by the Textual Editor Interface.

Moreover, when the user interacts with the textual interface, this interaction is inter-

preted by the User Interface Server, which recognizes the kind of requested service

and asks the proper translation to the Beta Concept Implementation. Also in

this case, Beta Concept Implementation translates the request and implements

the Beta concepts which will be visualized by the Textual Editor Interface. Note

that all the implemented Beta concepts are visualized by means of the same associ-

ation (Is Visualized). In fact, whether the request of implementation comes from the

Integration Mechanism, or from the Textual Editor Interface, the Beta concept

to be visualized must be textually represented in the same way. As shown before, the

port representing the Textual Editor Interface subsystem contains the declaration

of operations needed to textually complete the Beta skeleton. These are synthesized in

Choose Mode, Expand and Insert Text and allow the user to write in a syntax driven

or free textual mode.

6.3. SUMMARY 77

6.3 Summary

In this chapter we have seen which are the most important requirements of our tool.

We said that we want a syntax-driven tool which lets the user draw an OMT diagram

and which is able to translate this diagram in the corresponding Beta code.

Moreover, we gave the design of the complete tool underlining when some requirements

are satis�ed. During this phase we have individualized a graphical, a textual editor and

an integration mechanism as the main components of our tool. Of these components

we have only analyzed the design of the graphical and textual interface that in the �rst

level are drawn as subsystems in more detail.

The whole design has been realized complying an OMT notation extended with the

concept of subsystem. This notation has allowed us to express all the needed concepts

in an elegant manner and on the basis of a well known Object Oriented methodology.

This choice has been done in order to give an example of a design using OMT meth-

odology and to show the advantages of the OOD. Our experience has reinforced the

consideration made in section 4.2 about the subsystems. We have, in fact, ascertained

that subsystems are useful in designing big systems and that the lack of a graphical

notation for this feature in the OMT methodology is a disadvantage when you want to

design in large.

The next chapters will present the choices made in order to �nd the means to realize

our design. Then, the �nal implementation of the tool will be described as a following

phase of the design showed in this paragraph.

78 CHAPTER 6. TOOL MODELLING

Chapter 7

Selecting a Graphical Editor

The �rst step in the construction of our tool is to build up a graphical editor which

enables the user to draw an OMT Object Model as well as to become easily integrated

with a textual editor, in order to transform the OMT diagram into the correspondent

Beta skeleton. Recently there has been much interest in the graphical editing model of

interaction, with which the user can manipulate data structures by editing their visual

representation in a syntactically and semantically consistent fashion. Although graph

visualization is accepted as indispensable for many domains, the use of this technique is

not very common in today's computer applications. Frequently a user has to deal with

uncomfortable textual interfaces or poor ad-hoc drawings of graphs. The reason for

this de�cit is the great e�ort to implement a satisfying graph layout and to make the

tool able to be integrated in a software development environment. There are several

powerful tools for generating graphical user interfaces but, unfortunately, most of the

existing systems are designed as isolated viewing components and do not o�er good

interaction capabilities for use as a full user interface for application programs.

In this chapter we analyze three di�erent ways to generate a good graphical user in-

terface: daVinci, the Tk Toolkit and GraphProject. These constitute three di�erent

approaches which will be compared in the next sections. This comparison will show

that GraphProject is the most suitable for implementing our graphical editor.

7.1 daVinci

daVinci is a generic visualization system for generating high quality drawings of direc-

tional graphs. It has been developed by the Institute for Formal Methods in Software-

Engineering at the University of Bremen, Germany, since the end of 1992 by Michael

Fr�olich and Matthias Werner. daVinci is written in the pure functional language AS-

pecT, which has developed at the University of Bremen as well. The OPEN LOOK

compliant user interface is implemented in C using the window toolkit Xview [FW94].

79

80 CHAPTER 7. SELECTING A GRAPHICAL EDITOR

Term Representation

of Graphs
daVinci allows the user to generate a graphical view of directional cyclic or acyclic

graphs, in which readability qualities, as minimal number of crossing or minimal number

of bends, are supported. The speci�cation of a graph is given as a term representation

which is composed of ASCII characters. Hence it is possible to create these graphs

very easily, even with an usual text editor. The syntax of the speci�cation is given in a

Backus Naur Form and is determined by the used programming language ASpecT for

simple parsing, i.e. it can be loaded directly with a given read function. The system is

able to visualize all classes of graphs that can be expressed in the term representation:

cyclic graphs, graphs with multiple edges, graphs with self-referring edges, graphs with

one level and empty graphs are being supported. The term representation can be either

loaded from a �le or sent by a connected application program to the daVinci application

interface.

Connection with Ap-

plication One fundamental concept of this system is that the graph visualization system is based

on the idea that possibly there is a connection and communication with an application

program. This is for generating and controlling the graph structure. So, it is not

necessary for an application to store a graph in a �le, which has to be loaded by the

user. For this reason, the connected program is exclusively responsible for controlling

the graph structure, and the only task of the visualization system is to display this

graph on the screen: daVinci's task is merely the presentation of the graph, instead of

the modi�cation like a graph editor. For this reason, daVinci provides an application

interface for the connection with a program that is generating and controlling a graph.

By using the commands of the communication protocol, a connected application is able

to send graphs to the visualization system. The communication between both systems

is event driven, i.e. the application sends a graph and is informed about events like

selection of node by the user. After receiving an event noti�cation, the application must

interpret this information in its own context. Depending on the event, the application

can modify its own data structures and sends an updated graph back to the visualization

system to display the changes. So the application interface is bidirectional.

Interactively

Modi�able Moreover, another goal of daVinci is the ability to in
uence the visualization of a graph

interactively. Experiences have shown us that the user often likes to in
uence or modify

an automatically generated layout in detail, since standard representations are rarely

perfect. For this reason, it is possible to in
uence the generated graph layout directly

at \runtime" and these interactions have an immediate feedback to the visualization:

the automatically calculated layout of nodes and edges can be re�ned manually (�ne

tuning), part of the graph can be hidden for a time (abstraction), the scale of the graph

can be modi�ed (scaling) and so on.

7.2 Tcl and the Tk Toolkit

Tcl and Tk are two software packages which together provide a programming system

for the development and usage of graphical user interface applications. Tcl was born

7.3. GRAPHPROJECT 81

at the University of California at Berkeley since 1988 as a general-purpose scripting

language which could be reused for many di�erent purposes in many di�erent applica-

tions [Ous94]. After some years a new idea was born: the component-based approach.

Furthermore to allow users to develop a new component which was subsequently com-

bined with existing components, Tk was born. Tk allows the components to be either

individual user-interface controls or entire applications; in either case components can

be developed independently and Tcl can be used to assemble the components and

communicate between them.

X WindowTk is a toolkit that allows the user to create graphical user interfaces for the X Window

System by writing Tcl scripts in which most of the Xlib functions are used. It provides

some commands for creating user interface elements called widgets, arranging them

into interesting layouts on the screen using geometry managers, and connecting them

with each other, with enclosing application, and with other applications. Both Tcl and

Tk are implemented as a C library that can be included in C applications, and they

comprise a collection of functions that can be invoked from an application to implement

in C new widgets and geometry managers.

Drawings GraphicsTk provides canvas widgets to allow the user to display and manipulate a variety of

graphical objects such as rectangles, lines, bitmaps, and text strings. Texts are used

to display and edit large multiline pieces of text. Both widgets are peculiar in that

they allow you to tag objects and manipulate all the objects with a given tag. The

tagging and the binding mechanisms make it reasonably easy to \activate" text and

graphics so that they respond to the mouse. At the same time, however, all the most

frequently used procedures, for example to allow nodes to be dragged interactively with

the mouse, need to be de�ned explicitly.

New ApplicationsTcl makes it easy for application to have powerful scripting languages. To create a new

application, all the user needs to do, is to implement a few new Tcl commands that

provide the basic features of the application. Then you can link your new commands

with the Tcl library to produce a full-function scripting language that includes both

the old and the new commands. Moreover, Tcl can also be used as a communication

mechanism to allow di�erent applications to work together. For example any windowing

application based on Tk can send a Tcl script to any other Tk applications in order to

be processed there.

7.3 GraphProject

GraphProject (GP) was developed by Engineering in Pomezia (Italy) since 1994 [CI94]

and it is a tool for generating syntax-driven graphical editors. It allows the user to

specify a graphical language, through the description of its composing terms and their

composition rules. GP generates from this speci�cation and from the implementation

of the methods associated with each term, a graphical editor for the correspondent

graphical language in a completely automatic way. GraphProject o�ers a speci�c lan-

guage, i.e. GP Language, to write the speci�cation of the graph layout in which are

82 CHAPTER 7. SELECTING A GRAPHICAL EDITOR

de�ned: the di�erent kinds of nodes and arcs, the names of the methods to manipulate

them and the constrains between them in order to enable the user to de�ne layout

restrictions.

Hierarchy of Graphs A GP diagram is structured as a set of graphs, possibly of di�erent types, hierarchically

organized. Each graph is constituted by nodes, arcs and hypernodes, where an hyper-

node is a particular kind of node that can be exploded in another graph as shown in �g

7.1. The de�nition of an hypernode describes the type of the graph associated with it

together with its composition rules. The graph type associated with an hypernode can

recursively contain the hypernode itself, among its composing node types. This means

that there is no limit in the number of graphs composing a diagram.

Attribute and Meth-

ods One of the most important features of GP Language is that it allows the associations

of attributes and methods to each object of the graphical language. Each term of the

graphical language is seen as an object which encapsulates its own state (by means of

the attributes) and is capable to react to messages sent to it. This feature makes it a

tool that can be really seen as a generator of interpreters for graphical languages. To

some extent, this permits a user to execute a GP diagram by invoking the methods

associated with each object that compose it.

Figure 7.1: A GP Diagram

Object Oriented Ed-

itor
Moreover, the structure of the generator editor resulting from the speci�cation is built

in a completely Object Oriented way. The code of the editor is written in the O.O.

language C++ in which each term is seen as a specialization of the prede�ned classes

HYPERNODE, NODE and ARC.

O2 Schema GP runs on the O2 database which is an Object Oriented database. This kinds of

databases have been built to include all the features of both common database man-

agement systems and Object Oriented systems [BDK92]. Basically, their �ve main

characteristics are: persistence, secondary storage management, concurrency, recovery

and ad hoc query facilities. In the GP system, for each speci�cation, a corresponding

O2 schema is automatically generated. This schema allows either a user or a tool, to

retrieve, for each speci�ed graphical language, all the diagrams drawn and stored with

the associated editor. Therefore, it is possible under the O2 system to browse these

diagrams and access properties (but not methods) associated with their objects.

7.4. COMPARISONS AND CONCLUSIONS 83

7.4 Comparisons and Conclusions

In the previous sections we have presented not only three di�erent tools to build graph-

ical interfaces, but more precisely we have presented three di�erent approaches.

daVinci's approach is particularly useful when the user wants to write programs in

order to draw or print graphs. In fact, a user is able to save a graph visualization

in a Postscript �le which can be printed on a Postscript printer or it can be included

into a document with the appropriate publishing software. However, as we said before,

daVinci's task is merely the presentation of a graph. To build up a real graphical editor,

the developer has to write most of the code itself to control and modify the structure

of the graph, and has to de�ne the methods associated with each component of the

graph. By taking advantage of the application interface, then an arbitrary program, in

this case the editor, is able to use daVinci only as an abstract user interface for graphs.

The Tcl/Tk's approach provides probably the best framework of behaviour speci�c-

ations to guide application developers, widgets developers, user interface system de-

velopers, window manager developers in the design and implementation of new products.

Even if compared with toolkits, where you program in C - such as the Motif toolkit -

Tcl/Tk, it is much easier to use and there is much less code to write. However, also this

one presents some drawbacks: �rst the good graphical layout is payed in the e�ort to

de�ne the widgets and the commands to interconnect and manipulate them. Second,

we have the same problem found in daVinci, where we need to write also the code to

realize the whole editor.

Di�erently from these two, GraphProject is not only suitable to specify user interfaces,

but it is really a graphical editor generator. This means that the developer only has

to take into account the speci�cation of the component terms of the graphs and their

methods. All the code to manipulate the editor is automatically generated by the GP

compiler. However GP layout is not as good as daVinci's layout. Even if the e�ciency

of the layout algorithm is not su�cient for very large graphs, nevertheless daVinci's

graph layout is of high quality in most cases and it's better than GraphProject. For

example, in daVinci there are two pixmaps, one for drawing the nodes and one for

drawing the edges, while in GP there is only one for nodes.

Another important consideration for GP is the possibility to be integrated with other

tools. Since our goal is to build a tool able to transform a graphical representation into

a textual representation, what we are looking for, is a graphical editor which will be

integrated with a textual editor. However, from this point of view all the approaches

have the same behaviour: the integration has to be realized in the implementation of

the methods associated with each object. The only di�erence between the approaches

is that when the GP editor is generated, the compiler transforms each term in a C++

object providing also the capabilities to handle the state of the object and its methods.

On the other hand, the use of the graphical editor generated by GP needs to dispose

of an O2 database system, and this may be seen as a disadvantage. In fact, this choice

restricts the portability of the whole tool, but, if you (as in our case) dispose of this

84 CHAPTER 7. SELECTING A GRAPHICAL EDITOR

database, the renounce of the portability is su�ciently compensated by a great increase

of e�ciency.

For these reasons, we think GP is the most appropriate to build our integrated Environ-

ment. Using GP, the graphical editor can be easily generated in a completely automatic

way from the speci�cation, and can also be easily modi�ed. This is due to the fact that

the structure of the generated editor completely results build in an Object Oriented

way. This also allows an implementation that can really realize the architecture of the

editor developed during the design phase (see section 6.2).

Chapter 8

Selecting a Textual Editor

The goal of this chapter is to show the process followed in �nding a syntax-driven textual

editor generator able to be integrated with the graphical editor as well as to satisfy

the basic requirements of tool speci�cations. So, we see which are the most powerful

existing tool generators, such as Cornell Synthesizer Generator, the Centaur System,

the IPSEN Project and the GENESIS generator, and we compare them, with respect to

the tool speci�cation languages they use. Then we explain the most important reasons

why we have chosen the GENESIS tool.

Looking for these tool generators, we have also seen theMjoner Beta metaprogramming

system which is a programming environment that supports design, implementation

and maintenance of large production programs, and in particular support the Object

Oriented programming style. Unfortunately we have seen that some of its features are

not suitable to build our editor and they made us deciding to reject it. For example,

we have seen that this system maintains persistent data storing in a set of operating

system �les instead of a database system like most of the common tool generators do.

In this way, information is often stored redundantly, and this leads to problems with

consistency and di�culties with extracting and inserting new data. Instead database

systems provide a single uniform view of the data, expressed in a structure-independent

terms. Moreover, we want to underline that di�erently from other tools such as the

Cornell Synthesizer Generator which take a speci�cation in the form of an attribute

grammar, the Mjoner Beta editor generator is based on the context free grammar

formalism. Then in the Mjoner Beta the static semantic checkers are programmed by

means of the metaprogramming system, while editors based on attribute grammars

provide a declarative way of expressing semantics.

We are not going to treat the Mjoner Beta metaprogramming system in more details

since the existing documentation is not enough for this purpose. On the contrary, we

present the approach of each of the other generators on the basis of a given set of

requirements on tool speci�cation languages.

85

86 CHAPTER 8. SELECTING A TEXTUAL EDITOR

8.1 Requirements of Our Textual Editor

In this section we identify the parameters of tool generation process that usually vary

between di�erent tools in order to select the most important requirements of the textual

editor we were going to de�ne.

Abstract Syntax We share the view of many researchers that tools need to be directed towards the

languages they are intended for, in order to provide users with the best support, in

particular if the end user does not master the language. Then, since we have required

our tool to be syntax-directed, the �rst parameter we consider is the syntax of the

supported language. The syntax of a formal language is usually de�ned by a grammar

given in terms of an EBNF (Extended Backus Naur Form). Therefore, each increment

of the language is de�ned by rules. At the same way, also tool speci�cations for syntax-

directed tools must de�ne the rules for each increment, i.e. they must de�ne the

syntactical structure of the document that usually is denoted as abstract syntax. In

order to de�ne it, a tool speci�cation language must be capable to de�ne both the

increments and the mechanisms that must be applied to construct an increment. In

this way, the syntactic correctness is always preserved because the tool only inserts

syntactically correct templates, and only those commands are o�ered whose execution

cannot violate the syntax de�nition.

Concrete Syntax In order to translate the internal representation into an output representation the user

is familiar with (in our case a Beta program), the textual representation of documents

of a particular type may have to be adapted to particular processes. Usually this

process is de�ned by the concrete syntax of a language, which de�nes the external

representation of increments. The concrete syntax may be de�ned at once or split into

the speci�cation of the input syntax and the de�nition of the output syntax. The input

syntax must be de�ned in order to construct a parser that checks freely input materials,

while the output syntax, i.e. the unparsing scheme must be de�ned to transform the

same input materials into an external textual representation.

Static Semantic and

Inter-Document Con-

sistency

In addition to grammar rules that de�ne the language's abstract syntax, an editor

speci�cation contains declarations that de�ne how to make static inferences about the

objects being edited and how to de�ne inter-document consistency constraints which

increments of documents must obey. Tools must obey the static semantics of doc-

uments and also consistency constraints to related documents and provide the user

with feedback about the errors when these constraints are violated. Therefore the spe-

ci�cation must de�ne the static semantics conditions such as scoping and typing for

increments and also inter-document consistency constraints an increment has to related

increments of other documents. Moreover the speci�cation must also de�ne whether or

not violations are tolerated.

Operations Besides generic operations of tools, such as opening a document or copying an increment

to a paste-bu�er, our editor speci�cation should o�er an increment-based manner to

de�ne increment speci�c operations for restructuring objects. Moreover, this kind of

8.2. CORNELL SYNTHESIZER GENERATOR 87

operations should depend on the current increment and on the language the tool is

intended for. For example, the tool can use a selection to deduce possible and reasonable

operations and present them in an appropriate way to the user.

Free Textual InputSometimes the structure-oriented mode of editing a document is not appropriate. For

instance experienced users who master the language are capable of typing increments

very fast. Such users may be faster in typing an increment than repeatedly selecting

an increment. To address this kind of problems, users expect from the tool not only

support for structure-oriented editing, but also facilities to freely edit increments with

conventional text editors.

ConcurrencyUsually more that one developer is involved in a software process, hence a tool must

provide multi-user support which mean that document change in general and in partic-

ular the sketched change propagation must be subject to concurrency control. So the

speci�cation must explicitly de�ne which operations must be performed in isolation to

other concurrent operation execution in order to avoid anomalies of document updates.

8.2 Cornell Synthesizer Generator

The Cornell Synthesizer Generator is a system which is capable of generating hybrid

syntax-directed tools. It has been developed at Cornell University, Ithaca, NY since

1978. The system is based on the concept of ordered attribute grammars [Kas80],

which are a subclass of attribute grammars for which is e�ciently decidable whether

a given grammar is well-de�ned [Knu68]. The Synthesizer Generator de�nes both

the grammars for syntax and static semantics and the functionality of tools using the

Synthesizer Speci�cation Language (SSL).

Abstract SyntaxThe abstract syntax consists of a collection of productions where the left-hand side of

a production is a phylum and the right-hand side is a set of operators. Each phylum

corresponds to a non-terminal symbol of a grammar such as an expression, statement

or declaration, and represents the set of derivation trees that can be derived from the

symbol. Instead each production corresponds to an operator and its purpose is to

identify the production instances in a derivation tree. The abstract syntax may also

be speci�ed in a textual representation. In fact, the developers have some language

constructs for de�ning unparsing schemes and can decide which nodes of the abstract-

syntax tree are selectable or editable as a text. Besides for each phylum declared in

the SSL speci�cation, the transformation rules are o�ered to the user interface either

in pop-up menus, or can be invoked from a command-line interface.

Attribute GrammarsLike all systems based on the concept of attribute grammars, also SSL o�ers the means

to de�ne static semantics of languages in terms of attributes and equations. In SSL the

equations are associated with operators, while the attributes are associated with phyla

and may be computed on the base of the attributes of the child phyla (synthesized)

or of ancestors phylum (inherited). One of the main advantage deriving from the use

of attribute grammars is that the designer does not need to bother about sequence

88 CHAPTER 8. SELECTING A TEXTUAL EDITOR

execution of equations. In fact, this sequence is automatically derived by the Synthes-

izer Generator from the dependencies between equations. At the same time, the use

of attribute grammar is also a weakness, by the fact that these grammars are strongly

based on the syntax structure of a particular language. Therefore, e.g. the consistency

constraints between phyla of di�erent documents which are not syntactically related,

cannot be expressed.

Concurrency

Constraints Another drawback of the Cornell Synthesizer Generator is the fact that the system

is not able to de�ne concurrency constraints on tool execution. In fact, the authors

of the generators have not considered the possibility of cooperative development of

software systems. The generated tool loads the document from the �le-system during

start-up and stores it before leaving the editor. There is no inter-document consistency

constraints checking and the possibility of concurrent editing and viewing the same

document by di�erent developers is not allowed.

Reuse Moreover, also reuse of SSL speci�cations is not supported by the language, since SSL

has no language constructs for declaring component speci�cations.

8.3 Centaur

The Centaur System is a generic interactive environment which has been developed in

the MENTOR-Project [DGK+84] that was carried out at INRIA between 1974 and

1986. This project is meant to support prototyping of languages, so it provides a

framework which can be used to de�ne a language in terms of syntax, static and dynamic

semantics. It o�ers di�erent languages for de�ning these aspects:

� METAL [KLM83] to de�ne the abstract and concrete syntax;

� PPML (Pretty-Printing Meta Language) to de�ne the unparsing scheme;

� TYPOL which is a rule-based language, used to de�ne the static and dynamic

semantics.

As we have seen for SSL, METAL de�nes the abstract syntax in terms of phyla and

operators. Phyla de�ne types of non-terminal nodes of an abstract syntax-tree, while

operators de�ne child nodes of the types of their arguments.

Concrete Syntax The Centaur System splits the de�nition of the concrete syntax into the speci�cation

of the input syntax, de�ned in METAL, and the de�nition of the output syntax of an

abstract syntax tree, speci�ed in a dedicate language (PPML). A METAL speci�cation

is a collection of grammar rules, with annotations that specify what abstract syntax

tree should synthesized. It is very similar to the production of a context-free grammar

with the only di�erence that it adds the invocation of a tree building function which

provides the mapping to the abstract syntax. Pretty-printing of abstract trees is then

de�ned in the PPML speci�cation, which is a collection of unparsing rules associated

with abstract syntax patterns.

8.4. IPSEN 89

Free Textual EditingBesides, it is also possible to specify which part of the language can be edited in free

textual input mode by the speci�cation of entry points, which are also given in a rule

based format.

ConsiderationsGenerally, this kind of de�nition of a language syntax is not very concise. In fact,

because of the distinction between abstract syntax, concrete syntax and entry points,

the designer has to bother about the repeatedly de�nition of syntactic issues. In this

way, the abstract syntax is also de�ned in the concrete syntax and in the entry points

de�nition, changes to the syntax have their corresponding in updates of the METAL

de�nition.

Static and Dynamic

SemanticsStatic and dynamic semantics are de�ned in TYPOL. The language enables de�nition

of Natural Semantics which is based on Structural Operational Semantics [Plo81]. A

TYPOL speci�cation consists of a set of axioms and inference rules which de�ne a

formal system, where it is possible, to prove that a proposition holds. TYPOL spe-

ci�cations can be organized in separate modules. Moreover TYPOL provides powerful

means for de�ning scoping rules and the type system of a language. Since the TYPOL

compiler is realized by mapping a TYPOL program in a Prolog program, the designer

can abstract from the execution order of the rules and state them in a declarative way.

Inter-

Document consistency

and Concurrency

As we have seen for SSL, TYPOL does not support inter-document consistency con-

straints because the abstract syntax is strongly based on the particular language.

Moreover, concurrency constraints cannot be expressed and both METAL, TYPOL

and PPML speci�cations do not support reuse.

8.4 IPSEN

While the last two approaches are meant mainly to specify tools for a single language,

IPSEN (Integrated Project Support Environment) project was intended for developing

environments with highly integrated tools that support incremental and intertwined

development of di�erent documents. The used approach is based on attribute graphs

to model and implement object structures such as di�erent kinds of documents and

their relationships. Therefore a graph grammars based language called PROGRESS

(PROgrammedGraph REwriting SyStem) and a suitable method to apply this language

have been developed since 1981 �rst at the University of Osnabr�uck and later at Aachen

Technical University.

Abstract SyntaxA PROGRESS speci�cation de�nes abstract syntax graphs of documents. It consists

of the de�nition of node types, edge types, attributes, a start node type and graph

rewriting rules. Compared to attribute grammars, node types represent terminal and

non-terminal symbols. The attributes serve the same purpose as attributes in the

grammars. Graph rewriting rules represent productions and the corresponding semantic

rules. Node types are de�ned in terms of node classes and node types, i.e. node type is

90 CHAPTER 8. SELECTING A TEXTUAL EDITOR

de�ned by giving the name and de�ning the class which it belongs to. An edge type is

de�ned by giving the name and the classes of the nodes that type starts from or leads

to. Moreover, PROGRESS provides means to de�ne inheritance between node classes.

If a node class inherits from a super-node class, then all edges that start from the

super node class may start from the subclass too. Di�erently from the other systems,

PROGRESS does not provide any means for specifying concrete syntax or unparsing

schemes.

Static Semantics Usually, the aim of the static semantics is to restrict the set of the possible derivable

sentences to those that are meaningful in the context of a particular project. For this

purpose PROGRESS provides:

� Derived attributes as values attached to nodes; they are derived from values of

possibly di�erent nodes;

� Path expressions which de�ne a set of paths through the graph;

� Restrictions as subsets of the identity relation which ful�lls a particular condition.

Since restrictions and path expressions are not con�ned within the abstract syntax

graph of a document, inter-document consistency constraints may be expressed as static

semantics constraints.

Concurrent Accesses PROGRESS does not support concurrent accesses of multiple users to the abstract

syntax graph, but it only allows to bind applications of multiple graphs rewriting rules

by transactions. The meaning of a transaction in PROGRESS is that either all rules

are applied or none is.

Reuse Moreover, PROGRESS does not support reuse of speci�cations since it is not possible

to explicitly de�ne relationships between di�erent components of a speci�cation.

8.5 GENESIS

The last project we consider is GENESIS. It is a project which suggests a number of

domain-speci�c graphical and textual languages that a tool builder can use to develop

the tool-speci�c component. The languages have been developed and evaluated within

the ESPRIT-III Project (GOODSTEP) [GOO94] at Dortmund University, and are

called GOODSTEP Tool Speci�cation Languages (GTSL). These languages provide a

library of pre-de�ned speci�cations for common properties of tools and provide the

primitives for reusing and customizing these speci�cations. The speci�cation languages

follow the Object Oriented paradigm in the sense that the speci�cations are structured

into component speci�cations, which are classes de�ning particular properties. These

properties can then be inherited by other classes.

Abstract Syntax For each class identi�ed, GTSL de�nes its external and internal behavior separately, by

the class interface view and class speci�cation view. The internal structure of nonter-

8.6. COMPARISONS AND CONCLUSIONS 91

minal increments is de�ned in the abstract syntax section in the interface of nonterminal

increment classes. The abstract syntax is de�ned by enumerating names and types of

son increments, in order to be able to refer the son in other sections.

Concrete SyntaxThe mapping for input and output between abstract syntax graphs and the external

representation is given by unparsing schemes, which are de�ned for non-terminal in-

crement classes only. Di�erently from other systems which use di�erent speci�cations,

e.g. Centaur, in GTSL the unparsing section de�nes both the concrete syntax for which

text edited with a text editor is checked, and the textual layout of the increment at the

user interface.

Static SemanticsStatic semantics as well as inter-document consistency are de�ned in a rule-based man-

ner. The speci�cation of each increment class may contain a semantic rule section,

which consists of a list of semantic rules. Each rule de�nes a particular aspect of

the static semantics and inter-document consistency constraints of an increment which

has to be created or modi�ed, and collapse rule sections where a collapse rule de�nes

actions to be taken, if an increment is deleted. Moreover, di�erently from the other

tools, GTSL includes a number of
exible mechanisms that can be used to de�ne error

messages. The strategy for accepting or rejecting erroneous input can be de�ned in

interactions.

Concurrent Tool Exe-

cutionThe last and the most important thing we want to underline is the fact that GTSL

is the only language that deals with the speci�cation of concurrent tool execution.

The unit of concurrency control are the user-interactions, which may be delayed or

even aborted in case of concurrency control con
icts to other concurrent interactions.

Hence, interactions are performed in isolation. If one is completed, the e�ect of an

interaction is durable, i.e. all changes that were made during the interaction persist

even if the tool is stopped accidentally by a hard- or software failure.

8.6 Comparisons and Conclusions

Until now we have introduced several languages for tool speci�cation on di�erent levels

of abstraction. Now we compare these systems in order to explain the rational for

choosing GTSL.

We underline that none of the languages we have investigated except GTSL consider

the speci�cation of concurrent tools execution. This fact restricts their usability to

projects with only a single developer, or that are small enough, that inter-document

consistency constraints can be managed without tool support. This reason might be

su�cient to motivate the choice of GENESIS. However, we think that this generator

enables quite well the speci�cation of the editor also on the other points of view, so we

want to analyze also these points and show the reasons of our choice.

We have seen that the Cornell Synthesizer Generator is reasonably well suited for

creating specialized syntax-directed textual editors which are tailored for editing a

particular language, which do not support any inter-document consistency constraints

92 CHAPTER 8. SELECTING A TEXTUAL EDITOR

and which may be only used by a single user at time.

Centaurs's Language TYPOL provides the same means perhaps even in a better way

than SSL, specially for de�ning language semantics, even if its rules are not as concise as

they could be. However, Centaur presents some drawbacks: �rst only static semantics

correctness can be de�ned but not the actions to be taken in case of violation; second

the speci�cation of the used language has no inter-document consistency constraints

and the designer has to bother about the consistency between the various speci�cations.

Di�erently from these two, PROGRESS reasonably well enables the de�nition of ab-

stract syntax graphs and their integration. The language constructs that can be used

for de�ning static semantics and inter-document consistency constraints are as power-

ful as those o�ered by SSL. The graphical components of PROGRESS speci�cations

make the speci�cation more comprehensive compared to TYPOL or SSL counterparts.

However, there are also some weaknesses for PROGRESS since it does not support

speci�cations of all tool concerns. In particular, it is not possible to de�ne concrete

syntax and unparsing schemes, nor it does not enable the de�nition of user-interactions.

These last reasons make the tool unsuitable for our project.

On the contrary, another desirable feature of GENESIS, is that in GTSL classes are

arranged into hierarchies, and this can be a bene�t from the inheritance of several

properties. For example in GTSL, static semantics rules are more concise than in the

other languages, since they are inherited to subclasses. At the same way, the property

of an increment of being freely editable is de�ned in an interaction which can be in

turn de�ned in a common superclass and then inherited to all subclasses. In all the

other languages dynamic semantics is formally de�ned, for instance in TYPOL it is

based on Horn clauses, while here GTSL is weaker since its dynamic semantics has

not been de�ned yet. However, this disadvantage is not so important for us, since our

textual editor has not to support this task that is left to the Beta compiler. Instead, we

think that the other features of the GTSL tool generator are able to provide powerful

synthesis, analysis and manipulation resources while preventing counterproductive and

meaningless transactions as well. GTSL provides also an external interface that makes

it particularly suitable to be integrated with Graph Project and this makes the imple-

mentation of the Integration Mechanism easier. Moreover, as we have said for GP, the

fact that the speci�cation languages follow the Object Oriented paradigm, allows us to

implement our textual editor complying the design shown in the section 6.2.

Chapter 9

Tool Implementation

In the previous chapters we have seen the editor generators which we have at our

disposal to build our tool and how we think the mapping between OMT and Beta must

be realized. This chapter shows the development process used during the realization of

our tool. This process follows the design described in chapter 6. This has resulted in a

realization which can be divided in the following three phases:

� Graphical editor realization (by means of GraphProject);

� Textual editor realization (by means of GTSL);

� Implementation of an integration mechanism between the two editors.

In this chapter we describe these phases in details.

9.1 Graphical Editor

Our graphical editor has been realized using GraphProject. As explained in section

7.3, the only things we had to implement were the terms of our graphical language

and the methods associated with each term. So we did not have to bother about

the con�guration of the main windows with its MenuBar and about the other Dialog

windows or MessageDialog windows yet, since these kinds of technical matters are �xed

and automatically generated by the GP compiler.

The generation of the graphical editor was divided in two steps:

� The graphical language speci�cation, in which we de�ned the editor interface;

� The implementation of the methods associated with each term of the graphical

language, in which is de�ned the behaviour of the editor.

93

94 CHAPTER 9. TOOL IMPLEMENTATION

The rest of this section, �rst shows the higher level of our editor interface, in order

to explain the environment in which the graphical language and the implementation

of the associated methods are located, and then it explains the two steps mentioned

before.

9.1.1 First Level of the User Interface

Before describing the �rst level of the user interface we want to underline that even if

it useful to have an editor which is automatically generated by a compiler, at the same

time this may also be seen as a restriction. In fact, for us the �xed con�guration of

the main window has been a restriction because we have not been able to add some

features such as a help system support that we have considered a requirement of our

tool in section 6.1.

Future Extensions When the user calls the editor the �rst thing he - or she - sees is a main window like

in �g. 9.1:

Nodes ArcsFile Edit

PROJECT

Dyna_Model

Func_Model

Object
Model

Name[]

Obj_Model

Figure 9.1: The Main Window

This �gure shows that the user may choose to implement one of the three OMT models

[RBP+91], even if at the moment he can only choose to create one or more Object

models clicking the relative options. If one of the options for the Functional and

Dynamic models is selected, an appropriate message is displayed to inform the user

that these options have been not implemented yet. In fact, we decided to structure

this editor in such a way that someone can extent our work to support the graphical

representation also of the other two models. In providing our tool with all the models,

9.1. GRAPHICAL EDITOR 95

the respective graphical representations can take place within the framework of our

editor without changes to the structure of the whole tool. Moreover, the realization of

all the OMT representations might generate a more correct and complete Beta code.

The MenusEach main window has a MenuBar with the following CascadeButtons: File, Edit,

Nodes and Arcs. The Pulldown menu associated to the File CascadeButton has the

following seven entries:

Info: provides informations for each entry of the menu;

New: allows the user to create a new diagram;

Load: to load any diagram previously saved;

Verify: to inform the user if the current graph is correct;

VerifyAll: to inform the user if the current diagram is correct;

Save: to save the current diagram;

Exit: to exit the editor.

The Edit Pulldown menu has two entries:

Move: which allows the movement of the selected object (node or arc) on

the screen;

Delete: to delete the selected object.

The other two menus, for Nodes and Arcs, have an entry for each kind of node

and arc de�ned, but we will see the terms of our language in the next section.

SelectionTo select one of the entries of the menus above, the user has to click with the left mouse

button on the appropriate cascade button and then, without releasing the button, on

the desired entry position. If the user wants to launch one of the methods of the menu

Edit, he has to select before the method and afterwards the object the method has to

be applied to. Instead, if he wants to insert a new node or arc, he has to select the

appropriate kind of node or arc �rst, and then to click on the screen to put it in the

desired position.

GP RestrictionsFor a more intuitive use of our graphical editor, we would have liked to use icons to

represent each term of the language and also the functions to handle these terms. As

shown in [CI94] this is not possible since all these interactions are realized by means of

PullDown menus in which you can insert only labels. Moreover also the MessageDialog

windows and the windows to take inputs from the users are prede�ned and generated

by the compiler. This has been another limitation because we have not been able to

96 CHAPTER 9. TOOL IMPLEMENTATION

de�ne their size and the position where they should appear on the screen.

9.1.2 Speci�cation of the Graphical Language

The interface of the graphical editor is de�ned by means of the terms' speci�cation

composing our graphical language (OMT). The OMT component terms are arcs and

nodes [RBP+91]. In GP the speci�cation of arcs and nodes is achieved by de�ning a

class for each kind of arc and node. In each class we have then de�ned the graphical

layout and declared the associated attributes and methods which de�ne the state and

the behaviour of the term de�ned by the class respectively. In this way each graphical

object is also an object in the Object Oriented perspective.

Graphical Layout To fully describe a graphical language we specify the graphical layout of the terms

composing the language. The graphical layout of any node type is generated by means

of bitmaps and by the de�nition of a label. Instead, for the de�nition of arcs layout,

GP o�ers just a small set of possibilities which have been properly managed in order

to realize the di�erent OMT relationships, even with some occurring problems.

De�ned Nodes and

Arcs Usually, in the OMT notation we have several di�erent kinds of arcs (relationships),

and two kinds of nodes (class and object). In our graphical editor the de�ned kinds of

arcs are as many as the di�erent relationships supported by the OMT notation:

Assoc 1 1: for One to One association;

Assoc 1 many: for One to Many association;

Assoc many many: for Many to Many association;

Ternary ass: for ternary association;

Generalization: for the namesake relationship;

Aggregation: for variable aggregation;

Agg mult: for aggregation with �xed multiplicity;

Instantiation: for the namesake relationship.

As we said before, in OMT there are only two kinds of nodes: class nodes and in-

stance nodes. Since GP layout provides only few kinds of arcs and any kind of nodes,

we have decided to implement some of the treated relationships by means of the com-

position of nodes and arcs (in this case we call these arcs component arcs). So we have

de�ned six kinds of nodes:

9.1. GRAPHICAL EDITOR 97

Class: for drawing a class;

Instance: for drawing an instance;

Generalization: used as component node to draw the namesake relationship;

Aggregation: as Generalization is used as a component node to draw the namesa-

ke OMT relationship;

Ternary: used as component node to draw a ternary association;

LinkAttribute: used as node that contains the Link Attributes in associations with

this facility.

The �rst two correspond to the OMT nodes. Generalization, Aggregation and Ternary

are used to realize the namesake relationships and the node LinkAttribute has been

used to realized associations with Link Attributes. In �gure 9.2 some examples of the

use of this kind of composed arcs are shown.

Class

ClassClass

Class Ass_Name ClassAss_Name

Generalization

Class_Name1

Class_Name2 Class_Name3

Class_Name1

Class_Name1

Class_Name2

Class_Name2

Class_Name3

Class_Name1

Class_Name2 Class_Name3

Class_Name1 Class_Name2

Class

Class_Name1

Class

Class_Name2
Aggregation

Ternary

Ass_Name

Class

Class_Name3

OMT OUR NOTATIONRELATIONSHIPS

Generalizzation:

Aggregation:

Link Attributes:
Class_Name1

link attributes

Ass_Name
Class_Name2

Class_Name1

Class Ass_Name
Attribute

Ass_Name

Class_Name2

Class

Ternary Association: Ass_Name

Ass_Name_Attr

Figure 9.2: Example of Composed Relationships

98 CHAPTER 9. TOOL IMPLEMENTATION

As we can see, the label de�ned on a node is used to implement the class name, while

for the other nodes they are used to identify the kinds of relationships. Moreover, the

name of a class can be modi�ed by the user while the other labels are �xed. Since GP

does not allow to show more than one label for each node, it has not been possible

to visualize attributes and operations inside a class. They have been associated to the

class as attributes of the node and visualized in another window when the user requests

it. The notation of the other relationships is realized by dividing the available symbols

with the following result:

Ass_Name

Ass_Name

Ass_Name

OMT

Instantiation:

One_to_One Association:

Many_to_Many Association:

One_to_Many Association:

RELATIONSHIPS OUR NOTATION

Ass_Name

Ass_Name

Ass_Name

Ass_Name

Ass_Name

(Bidirectional)

(Unidirectional)

Figure 9.3: Other Relationships

As we can see, for some kinds of associations, in our notation we have used an arrow

instead of a line. This implementation choice has been taken not only because of the

GP graphical layout, but also because we needed a way to indicate the direction of the

associations. In fact, OMT uses a natural language and the direction is implicitly given

by the name of the association or by means of the role names. Since a tool can not

understand the meaning of a label, an explicit direction is needed. Usually in an OMT

diagram some other concepts are associated with arcs, such as the multiplicity and the

concept of ordered in One to Many associations or the concept of role names. Since by

means of GraphProject it is not possible to visualize these informations in the graph,

as for the attributes in a class, we have realized these concepts as attributes associated

with the arcs, and we have allowed the insertion and the display by means of windows.

We will see this realization in the next section. The code for the interface speci�cation

is shown in the Appendix A.

9.1.3 Method Implementation

As we have seen before, each term of the graphical language is seen as an object which

encapsulates its own state and which is able to react to messages sent to it. In this step

we analyze the implementation of the methods declared in the interface speci�cation.

These methods de�ne how the editor reacts to messages sent by the user. In designing

a system, the user must be able to add, in his Object diagram, classes with their own

attributes and operations, associations with their multiplicity, and so on.

9.1. GRAPHICAL EDITOR 99

Now we will see how we have de�ned the behaviour of the editor for each of the OMT

concepts.

Classes

To create a Class node the user has to select the entry Class from the Nodes menu.

Then he has to insert the name of the class. In our editor it is not possible to have

a class without a name, because when the class will be translated into Beta code, it

is necessary to have an identi�er for the pattern implementing the class. In case the

user omits to insert a name, the editor does not allow to create the class. On classes

we have de�ned the methods to set and change the class name, as well as to handle

attributes and operations. When the user, in re�ning his design, wants to perform one

of these actions, he has to click on the class and the editor o�ers a pop-up menu, as

shown in �g. 9.4.

Action to Add an Op-

erationIn the pop-up menu all the operations that the user may select are listed. For example,

if the user wants to add an operation, he has to select the entry AddOperation and the

editor visualizes three windows for the insertion of the name and the result type, the

parameters of the operation and a short comment related to the operation (as shown

in the �g. 9.4). The insertion of the attributes is realized in a similar way. We allow

the insertion of the attributes names, the types, and a related comments.

Class
Comp

inserted!

Operation

holiday_days(Worker:Text):integer;

MESSAGE

Cancel

Show Attributes
DeleteOperation
Delete Attribute

ChangeName

Show Operations

Class
representation

on Classes
Methods defined

PROJECT

File NodesEdit Arcs

Operation

OK

Name

Nr param

Result type

holiday_days

1

integer

OK

Type

Name Worker

Text

Parameter Name and Type

Comment

Comment

OK

mber of holiday days ...

AddAttribute
AddOperation

Figure 9.4: Realization of the Method AddOperation

The CommentThe comments inserted during the operations AddAttribute and AddOperation are dir-

ectly mapped in the Beta skeleton after the declaration of the corresponding inserted

100 CHAPTER 9. TOOL IMPLEMENTATION

attribute or operation. As mentioned before, when the user wants to visualize the

inserted attributes and operations he has to explicitly request it from the editor by

selecting one of the methods ShowOperations or ShowAttributes. For instance, �g. 9.5

shows the window that appears on the screen when a depiction of the attributes of a

certain class is required.

Nodes ArcsFile

Class

Edit

PROJECT

Company

Class

Add Attribute
ChangeName

Add Operation

DeleteOperation
Delete Attribute

Show Attributes
Show OperationsAttributes

Name:Text;

Address:Text;

OK

Attribute

Attribute

Attribute Weight:Real

Person

Figure 9.5: Realization of the Method ShowAttributes

If there are no de�ned attributes then a message is shown to inform the user about it.

The deletion of attributes and operations can be executed by selecting the appropriate

entry in the menu Edit and then inserting the name of the attribute or operation the

user wants to delete. The deletion must be con�rmed in an input window.

Generalization

The user may also decide to organize classes using generalizations. To draw this kind of

relationship the user has to insert the node Generalization �rst, and subsequently the

necessary arcs of type Generalization. On these kinds of arcs and nodes we have not

de�ned any speci�c methods, except the ones to handle the insertion and the deletion

of the relationship.

In order to preserve a semantically correct graph, we have enabled the deletion only

of those arcs that exit from the node Generalization. In addition, the deletion of the

node Generalization itself causes the deletion of the whole relationship.

9.1. GRAPHICAL EDITOR 101

Nodes ArcsFile

Class

PROJECT

Company

Class

Class Class

Generalization

Worker Student

MESSAGE

The NODE Generalization

cancel

must be deleted before!

Move
Edit

Person

Delete

☞

Guide for the correct

handle

Selected
Arc

of the deletion

Figure 9.6: Deletion of a Generalization

So if the user tries to delete an arc entering the node Generalization, the editor ignores

the command and displays a message to inform the user about the error. Fig. 9.6

shows this kind of situation.

Associations

Associations are all implemented in a similar way. The insertion is realized by selecting

the entry corresponding to the particular kind of association the user prefers. Then,

by clicking on the classes which must be involved in the association a new call to the

corresponding method is made. As we mentioned before for classes, also for associations

it is not possible to perform the insertion without setting a name. However, in this

case, the corresponding method asks the user to insert the name of the association

for more than once. If the name is not inserted after a certain number of requests,

then the association is not inserted. Moreover, in OMT the direction of an association

is implicitly given by the meaning of the name. Since our graphical editor can not

understand this meaning, the user has to specify the direction. Therefore, during the

insertion the editor asks the user also either the association must be bidirectional or

not.

A Particular Case: the

One to Many Associ-

ation

The only kind of association on which we have de�ned more particular methods is the

One to Many association, because this is one of the most complicated to handle. In

fact when the user wants to insert this kind of association, it is not possible to set

the multiplicity or make the association ordered directly by drawing these concepts.

Therefore, the editor has to ask the user to de�ne them by means of other windows.

The editor asks the user for these informations by means of one of the de�ned methods

102 CHAPTER 9. TOOL IMPLEMENTATION

that will be explained later.

Nodes Arcs

Class

Edit

PROJECT

Company

Class

Worker Student

work_for

Pers

Attribute

File

Genera

work_for

Assoc_1_1

Assoc_1_many

Assoc_many_maClas
Ternary_Assoc

Aggregation

Class

Aggr_mult

Generalization

Instantiation

Assoc Name and Direction

OK

two ways?

work_forName

n

Input

y

OK

100

OK

Ordered

ordered n

OK

Defined
Arcs

set multiplicity?

multiplicity

Multiplicity

work_for_Attr

Link attribute
representation

Figure 9.7: Insertion of a One to Many Association

Fig. 9.7 shows what happens when the user inserts a new One to Many association in

a diagram and the corresponding method is invoked.

Link Attributes It is also possible to de�ne Link Attributes on associations. As we have seen, in order

to allow the use of this kind of OMT concepts, we have de�ned a particular kind of

node: LinkAttribute. This node contains the attributes of the association which are

handled by means of the same methods shown for attributes on classes. To insert this

association the user has to insert the node LinkAttribute before and afterwards, he has

to connect this node with the classes involved in the association by means of two arcs

of the appropriate kind of association.

De�ned Methods On associations we have de�ned the following selectable methods:

� ChangeName: to change the name of the association;

� InsertRoles: to allow the user to insert the role names;

� ShowRoles: to visualize the inserted (if any) role names;

� ShowInfo: (de�ned only for One to Many associations) to visualize the informa-

tion associated with the association: multiplicity and if the association is ordered

or not.

9.1. GRAPHICAL EDITOR 103

In case of associations with Link Attributes, all these methods assure that for each

change made on one component arc the same change is also made on the other. In this

way we can assure that the attributes of the arcs are always consistent and that it is

possible to see the two component arcs as de�ning the same association.

Role NamesAnother important characteristic of the OMT notation is the notion of role names. In

OMT each role is associated with one end of the association and it identi�es this end

in an unique way. To allow the insertion and to display the role names we have de�ned

the two methods InsertRoles and ShowRoles. Fig. 9.8 shows how the user can obtain

these information from the editor.

❖

❖

❖

Class

PROJECT

Company

ClassAttribute Class

StudentWorker

Pers

Genera

Cla

work_for

work_for
Methods defined

in Association

work_for_Attr

Role Names

ArcsNodesEditFile

Employee

EmployerCompany

Worker

OK

Show_Info

ShowRoles

Insert Roles

Change Name

Figure 9.8: Realization of the Method ShowRoles

When the user selects the method ShowRoles a window appears on the screen to display

the role names.

Aggregation

The last consideration is about aggregation. Similarly to generalization, to insert an

aggregation the user has to insert the node Aggregation before and then several arcs

of the same kind. Moreover, a user may also decide to insert an aggregation with

multiplicity and therefore to set the multiplicity. The method corresponding to this

insertion has been implemented in the same way as for the multiplicity in One to Many

association.

104 CHAPTER 9. TOOL IMPLEMENTATION

Nodes Arcs

PROJECT

File

MESSAGE

Company

Attribute work_for

Generalization

Class Class

Worker Student

read

ClassClass
Chapter Bookhas been propagated from class Book

to class Chapter!

Operation Copy

Cancel

Operation Name

Name Copy

OK

Edit

Person

OperationPropagated

Propagation

 ork_for

on Aggregation
Methods defined

Show_multipl.

rk_for_Attr

Show_propag_op

Figure 9.9: Propagation of An Operation

Propagation of Opera-

tions
Often aggregation o�ers the possibility to propagate an operation from an aggregate

to the component classes. In the �gure above is shown how the user may propagate

the operation Copy from the class Book (the aggregate) to the class Chapter (the

component).

9.1.4 Summary

In this section we want to analyze the main characteristics of our graphical editor. In

chapter 6 we gave some requirements we wanted for our tool and that we have tried

to follow during the implementation. Now we show the results of this �rst phase, by

comparing our editor with the given guidelines.

First of all, since GP is a syntax-driven editor generator, our graphical editor is syntax-

driven. Moreover, the tool supports communication of application action to the user.

For example, when a not applicable menu option is selected, the tool shows an error

box with an appropriate message and a request to acknowledge the error is performed.

Any operation that produces an irreversible result must be explicitly con�rmed and the

selection of operations used to insert data in the Object Model (as the insertion of an

attribute) is followed by a message to inform the user about the executed operation.

Unfortunately, since the con�guration of the main window is �xed , we have not been

able to add a CascadeButton for the Help functionality and therefore, to allow our

tool to support this feature. Moreover, for the same reason, we have not been able to

9.1. GRAPHICAL EDITOR 105

use panel with icons, because all the entries are implemented by menus in which only

labels can be inserted.

During the construction of our editor we had some problems in exactly representing

the OMT notation because of the lack of the GP layout which does not o�er so many

possibilities. We analyze this problems to underline some implementation choices and

their consequences.

A �rst problem was in drawing some kinds of arcs, such as associations with link

attributes, aggregation, generalization and ternary association. Since the GP layout

does not allow the user to draw these kinds of arcs as they appear in the OMT notation

in real, and does not o�er many di�erent kinds of arcs, we have implemented these

relationships by means of the composition of nodes and arcs. The consequences of this

decision are �rst, that in this way the user interface has become slower to use, and

secondly that we have had to de�ne additional methods to handle these arcs as if they

were �scally one link. Also the notation of the various kinds of associations has been

changed in order to indicate the direction of the drawn association. This was necessary

because obviously a tool can not understand the direction from the meaning of labels.

We have also changed the OMT notation by the introduction of two di�erent levels of

abstraction in order to visualize:

� the attributes and the operations in classes and link attributes;

� some additional notations that OMT de�nes on arcs, such as multiplicity or the

concept of ordered associations.

Despite of these problems, in our opinion the graphical editor resulted rather e�cient

since we have been able to represent all the OMT concepts we wanted to map and to

give a �nal graphical representation of an Object Model that is really near to the OMT

notation.

Adding an abstraction level to the OMT notation has contributed to make clear the

representation given by the tool for the Object diagrams. We think that for extended

systems, it is not useful to show all the attributes and operations for each class, espe-

cially if the number of these features is high. Putting attributes and operations in a

second abstraction level, we allow a better view of the drawing design and the user can

see his design in a more abstract level. This kind of representation, that in our case has

been enforced by the GP layout, is instead a choice for other OOAD methodologies,

such as BON and Booch.

Anyhow, in this editor we allow the user to insert some documentation (comments)

that other OMT tools, we have seen, do not allow. In this way, the developer can write

down the decisions taken during the designing phase and then later �nd again these

decisions written in the textual representation in order to complete the implementation

phase in a more consistent way.

The last but most important feature of our editor is the possibility to be extended

106 CHAPTER 9. TOOL IMPLEMENTATION

to cover also the implementation of the other OMT models. This has been possible

because, as said in section 7.3, the resulting editor is completely implemented in an

Object Oriented way. So it will be possible to add modules that will implement the

handle of the other two models.

9.2 Textual Editor

In this section we are going to describe the main features of our textual editor. As we

said in chapter 8, we have realized our textual editor by means of GTSL [GOO94].

According to theObject Oriented paradigm the speci�cation of the editor is structured in

component speci�cations, where each component is a class de�ning particular properties

of an increment of a given grammar, i.e. a syntactical unit of the language to be

implemented. The declaration of a class is in turn split into two parts: the interface

and the speci�cation. The interface de�nes the resources exported from the class that

may be used in other classes while the class speci�cation de�nes those aspects of the

class that need not to be known from outside, such as the implementation of the

methods.

Development Process Our textual editor development process has followed di�erent phases which are auto-

matically guided and supported by the GENESIS environment. The �rst step in build-

ing a tool is to individualize its structure. In GTSL a partial structure is given by

the syntax of the target language, which is de�ned by means of its grammar written

in terms of some normalized EBNF (Extended Backus Naur Form). Then the classes

which compose the editor speci�cation need to be identi�ed to de�ne the increments of

the language. Their inheritance relationships are then derived from the grammar and

displayed in a class hierarchy overview. At the same time also the Entity/Relationships

view is automatically generated from the grammar speci�cation to determine the syn-

tactic relationships among the classes. Moreover, the increment modi�cations and the

user interactions must be de�ned to allow the user to invoke particular operations on

increments.

Hence the di�erent steps followed during the construction of our textual editor have

been:

� Developing a new version of the Beta grammar;

� Derivation of the inheritance view;

� Derivation of an Entity/Relationship view;

� Implementation.

From the �rst three steps the classes interfaces and a part of the classes speci�cations

have been automatically generated by means of the GTSL tools support. Therefore the

last step in the realization of the textual editor was the declaration and implementation

9.2. TEXTUAL EDITOR 107

of the methods and user interactions. Because of the big number of generated classes,

it is not possible to describe the speci�cation of our editor by the description of each

class, as we have done for the graphical editor. Then we will presents our textual editor

by the description of the four steps de�ned above.

9.2.1 A New Version of the Beta Grammar

To obtain a comprehensive structure of the textual editor speci�cation, this should

be structured according to the structure of the grammar of the language the editor is

intended for (in our case the target language is Beta). For this reason we have studied

the grammar formalism used in the Mjolner Beta System [LMN93]. This formalism is

often more complicated than it should be necessary. Moreover, using this grammar,

incorrect Beta programs can be generated. Therefore the given grammar has been

transformed into a more correct grammar written in terms of a normalized EBNF.

The normalization of the EBNF has been enforced by the fact that in this way it is

possible to map the grammar into a GTSL speci�cation. Moreover we think that the

new formalism also simpli�es the comprehension of the grammar.

Grammar Transforma-

tion ProcessThe grammar transformation process consists of three steps. The �rst step has been the

correction of the grammar taken from [LMN93]. Then the correct grammar has been

transformed in a normalized EBNF which has been used to generate the textual editor

speci�cation. In the last two steps, we have been supported by the GENESIS envir-

onment which includes a syntax-directed editor to edit the grammar and then another

tool to automatically generate a signi�cant amount of the textual editor speci�cation.

Grammar
Given

Transformation
Tool

Specifications

Editor

Textual
EBNF

Grammar Support

Figure 9.10: Grammar Transformation Process

Fig. 9.10 shows how, from a given correct grammar, a skeleton of the whole speci�cation

is produced. Besides, during this two steps from the grammar speci�cation, a �rst

classes interface de�nitions, the inheritance view and also the entity/relationship view

were generated. Therefore both the views were then re�ned during the next two phases

in order to produce a complete speci�cation of the classes interfaces.

The rest of this section will explain the �rst step of the grammar transformation process,

i.e. the corrections we have applied to the given Beta grammar. The rules of the used

formalism and the new complete grammar (with some useful productions added to

integrate the textual and the graphical editor) are given in the Appendix B.

108 CHAPTER 9. TOOL IMPLEMENTATION

Main Program

In the Mjolner Beta System the building of each fragment begins from the following

productions:

< BetaForm >::= j < DescriptorForm >

j < AttributesForm >

< DescriptorForm >::= < ObjectDecsriptor >

< AttributesForm >::= < Attributes >

< ObjectDescriptor >::= < SuperPatternOpt >< MainPart >

One might suppose to use < BetaForm > as the root of the grammar, but in this

way programs like the one below can be also generated:

< SuperPattern > (# < Attributes >

enter < Evaluation >

do < Imperatives >

exit < Evaluation >

#);

which is not correct if it is considered as a main program. In fact using the given

productions we can also produce the nonterminals SuperPattern, EnterPart and Ex-

itPart (which are declared to be optional). However, usually a main program cannot

have an EnterPart or ExitPart, and it is never a subpattern of any other pattern.

For these reasons we have changed these productions in the following way:

< BetaProgram >::= (# < Attributes > do < Imperatives > #)

Labelled Imperatives

For the LabelledImperatives the following productions are originally de�ned:

< Imp >::= j < LabelledImp >

j < LabelledCompoundImp >

j < LeaveImp >

j < RestartImp >

. . .

These productions allow the use of the Leave-Imperative or the Restart-Imperative as

if they would be common imperatives without any connection with the other labelled

imperatives. Hence it is possible to produce programs which are semantically incorrect.

For example it is allowed to produce:

9.2. TEXTUAL EDITOR 109

(# < Attributes >

do (L : : : : flist of imperativesg. . . : L);

leave L

#);

where the LeaveImperative leave L has no meaning outside the LabelledCompoundIm-

perative (L :. . . flist of imperativesg. . . : L);

The productions were changed in the following way:

< Imperative >::= j < LabelledImperative >

j < LabelledCompoundImperative >

. . .
< LabelledImperative > ::=< NameDcl >:< LabelImperatives >

< LabelledCompoundImperative >::= (< NameDcl >:< LabelImperatives >:

< NameDcl >)
< LabelImperatives >::+ < LabelImperative >

< LabelImperative >:: j < LabelledImperative >

j < LabelledCompoundImperative >

j < LabelledFor >

j < LabelledIf >

j < LeaveImperative >

j < RestartImperative >

We have restricted the use of the Leave-Imperative or the RestartImperative only in

a LabelledCompoundImperative or in a LabelledImperative. This has been done under-

lining the di�erence between labelled imperatives and what is not of this type.

Alternatives in the If-Imperative

In the original grammar the If-Imperative structure has the following form:

(if < Evaluation >

== < Evaluation1 > then < Imperative1 >

== < Evaluation2 > then < Imperative2 >

. . .

== < EvaluationN > then < ImperativeN >

else < Imperative >

if)

The grammar described in [LMN93] generates this kind of structure by means of the

rules:

< IfImperative >::= (if < Evaluation >< Alternatives >

< ElsePartOpt > if)
< Alternatives >::+< Alternative >

110 CHAPTER 9. TOOL IMPLEMENTATION

< Alternative >::= < Selections > then < Imperative >

< Selections >::+ < Selection >

< Selection >::=|< CaseSelection >

< CaseSelection >::=== < Evaluation >

< ElsePartOpt >::?< ElsePart >

< ElsePart >::=else < Imperatives >

These rules are more complicated than necessary, because if it is possible, it is bet-

ter to generate the same structure by means of simplest productions. The reason for

this choice is that the number of classes in our editor grows with the number of pro-

ductions. For this reason we have changed the productions above in the following way:

< IfImperative >::= (if < Evaluation >< Alternatives >

< ElsePartOpt > if)
< Alternatives >::+< Alternative >

< Alternative >::= < Selection > then < Imperative >

< Selection >::=== < Evaluation >

This reduces the number of the productions to a half.

Index

In Beta we need to use an index in two di�erent situations: when we are declaring

a repetition or when we are using a for-imperative. A repetition is declared in the

following way:

A : [eval] Ref;

where A is the name of a repetition of a static or dynamic reference, Ref is a de-

claration of a static or dynamic pattern and eval is an evaluation resulting in an integer

number. In the original grammar for this construct we have found the rule:

< RepetitionDecl >::= Name : [< index >] < ReferenceSpecification >

Instead, the for-imperative has the following form:

(for index:Range repeat Imperative-list for)

where index is the name of an integer-object and Range is an integer evaluation.

In the given grammar the corresponding rule is:

< ForImperative >::= (for < index > repeat < Imperatives > for)

9.2. TEXTUAL EDITOR 111

Now, looking at the productions describing index, we �nd the followings:

< index >::= j < SimpleIndex >

j < NamedIndex >

< SimpleIndex >::=< Evaluation >

< NamedIndex >::= < NameDcl >:< Evaluation >

In this way, we can also use a SimpleIndex in a for-imperative or use a NamedIndex in

a repetition, but this is not correct at all, while it is only allowed to use SimpleIndex

in a repetition and a NamedIndex in a for-imperative. For this reason we have decided

to omit the rule for index and to use directly SimpleIndex and NamedIndex in the rules

for repetition an for-imperative, as shown below:

< RepetitionDecl >::= Name : [< SimpleIndex >] < ReferenceSpecification >

< ForImperative >::= (for < NamedIndex > repeat < Imperatives > for)

Assignment

In the given grammar an evaluation specifying an assignment is described by the fol-

lowing productions:

< Evaluation >::= j < Expression >

j < Assignment >

< Assignment >::=< Evaluation > � > < Transaction >

< Transaction >::= : : :

These rules can easily produce a correct evaluation like the one below:

1� > P1:move

but often a dynamically generated object is needed to describe systems where new ob-

jects are generated during program execution. In this case you need to realize something

like

&T []� > A1[]

where A1 is the name of the dynamic reference of T, i.e. A1 is declared as A1 : ^T.

By means of the productions above, this cannot be achieved because on the left side of

an assignment we can only use an expression or another assignment, while we need to

use something like a transaction.

So we have changed these productions in the following way:

112 CHAPTER 9. TOOL IMPLEMENTATION

< Evaluation >::= j < Expression >

j < Assignment >

< Assignment >::= < Transaction > � > < Transaction >

< Transaction >::= j < ObjectEvaluation >

j < ComputedEvaluation >

j < ObjectReference >

j < EvalList >

j < Evaluation >

j < StructureReference >

We have substituted an Evaluation with a Transaction in the production for an As-

signment, and we have added the Evaluation to the alternative rule for the Transaction.

The given grammar modi�ed is the version used to proceed in the grammar trans-

formation process. In this section we have only shown the corrections made to make

the grammar able to generate more syntactically correct programs. Moreover, we have

also applied some useful modi�cation to this grammar (see Appendix B) in order to

implement our mapping from OMT. For example we have divided the de�nition of a

pattern in the de�nition of a simple pattern, a procedure pattern and a functional pat-

tern. This allows us to leave the do part from the syntax of the basic pattern that is

used to represent classes and the exit part from the syntax of the procedure pattern that

is used to represent operation without result value. In this way the resulting grammar

is not able anymore to generate all the possible Beta programs but it generates only

programs written in the Object Oriented programming style.

9.2.2 Inheritance View

The speci�cation of the tool resulting from the grammar transformation process was

still incomplete, but this skeleton has been however a good starting point for our tool

speci�cation process since an initial GTSL class hierarchy can be derived.

In fact, the Inheritance View displays all our tool speci�c classes and their inheritance

hierarchy. In addition, also all those pre-de�ned classes that participate in inheritance

relationships with tool speci�c classes are included. In this way it has been easy to

identify which class inherits properties from other classes and to re�ne the generated

view by modifying the inheritance relationships or adding some useful abstract classes.

9.2. TEXTUAL EDITOR 113

DoPartDoInner

Do

Procedure

BindingProc

Function

VirtualFun

BindingFun

BiTreeThreeTreeImperativesExitPartEnterPartSuperPatternInstanceDecl

Program Decl DeclList OptionalIncrement Assoc_atr Identifier Instance IntConst Imperative

Increment

VirtualProc

One Many_to_Many One_to_Many Ternary

AttributeDecl

Attributes

PartObjectAssociations

Pattern

Repetition

Figure 9.11: Inheritance View of Our Interface Editor Speci�cation

Fig. 9.11 shows the generated Inheritance View for our textual editor. This view has

been afterwards modi�ed by adding some other classes with a graphical syntax editor

provided by the GENESIS environment. For example, one of the later added classes is

the DoInner class that has been created to allow the transformation of a pattern into a

virtual pattern. This transformation is necessary when an operation, specializing one

implemented by the pattern, is graphically added in a generalization and, as result, has

to become abstract. In fact, this causes also the insertion of an INNER in the do part

of the transformed virtual pattern. The variations in the inheritance view by means of

the editor have also caused a modi�cation of the tool con�guration as well.

9.2.3 Entity/Relationship View

An Entity/Relationship (E/R) view document is generated together with the tool con-

�guration document. This view displays the names of abstract syntax children and the

links of semantic relationships between them. The E/R view is automatically gener-

ated and re�nes the speci�cation by modifying the inheritance relationships and the

semantic links. As for the inheritance view this can be modi�ed by an editor but in

this case is not allowed to add or delete classes. The notation used to visualize this

kind of representation is an OMT-like notation used in the GENESIS environment.

Classes are depicted as rectangles, semantic relationships are drawn as arrows, while

the relationships between classes and their abstract syntax children are represented by

means of the generalization relationship de�ned in the OMT notation.

In �g. 9.12 a part of the graph generated from our speci�cation is shown. This �g-

ure describes the part relative to the declarations. Here AttributeDecl is an abstract

class which is semantically related with the class Identi�er. Each of its abstract syntax

children is also related with the class Identi�er (the relationship is inherited from the

abstract class to its children) but each of them may also adds its own semantic rela-

tionships.

114 CHAPTER 9. TOOL IMPLEMENTATION

Associations RepetitionAttr Function Procedure VirtualProc.

name Identifier

param
param
param

Parameters

EnterPartenter
enter

enter

DoPart
do
do
do

ExitPartexit

AttributeDecl

PartObject

Figure 9.12: E/R View of The Interface Editor Speci�cation

For instance, the class Function is also related with the classes Parameters, EnterPart,

DoPart and ExitPart.

9.2.4 Implementation

The last step during the speci�cation of a textual editor is the �nal implementation of

all the classes generated during the previous steps. The resulting textual speci�cation of

the editor is composed by the interface of each generated class and by the speci�cation

of all the declared methods and user interactions. On the contrary from some other

textual editors, in our editor the de�nition of the user interactions is independent from

the implementation of the methods. Straightaway, the user interactions are less than

the methods to distinguish the action performed by the user on the textual editor from

those that came from the graphical editor. This allows to avoid the user to erase the

parts of the code that is automatically generated. This code can only be erased by

deleting the correspondent OMT concept drawn with the graphical editor. In this way

the consistence between the graphical and textual notation is ensured, and moreover,

the problem about the consistence of the associations individualized during the mapping

(see section 5.1) is also solved.

When we were looking for a textual editor generator, we have identi�ed some require-

ments that our tool should have. there were:

� Ability to assist the user in producing syntactically correct documents;

� Let the user decide to use the free textual editing mode or not;

� Checking static semantic constraints;

9.2. TEXTUAL EDITOR 115

� Easy integration with the graphical editor.

We will now explain, by means of some examples, how we have realized the �rst three

requirements. The integration of the textual and graphical editor will be discussed in

the next section.

Syntax-Directed Editor

In section 6.1 we have required our tool to be directed towards the language it is inten-

ded for. This means that the tool should always be able to preserve the syntactically

correctness of the program the user is developing.

ExampleAs an example consider the window of the textual editor corresponding to the operation

holiday day we have inserted by the graphical editor at pag. 103. After the insertion

of the operation in the graphical model, the window of the textual editor displays the

following situation.

PROJECT

Copy

Paste

Copy
Company :

Cut

Export

Close

Vers. 0.0, Modus:Edit, Actual Incremen

 #);

#);

 Worker:@Text;(#

PROJECT

Company:

 Result

 enter(Wo

 do Imper

 exit Res

Delete_Attribute

Vers. 0.0, Modus:Edit, Actual Incremental Pro.
Copy

Cut

Paste

Export

Close

(# holiday_day:

(# holiday_day:

 (# Worker:@text;

 Name:@RefSpecification;

 Result:@integer;

 enter(Worker)

 do Imperative

 Exit Result

 #)

 #)

Add_PartObject

Add_Repetition

Add_Functional

Add_Procedure

Add_BindingFunc

Add_BindingProc

Add_FinalBindDecl

Figure 9.13: Replacement of a Template in a Syntax-Driven Mode

Fig. 9.13 shows what happens when the user selects for instance the parameterWorker

in the inserted operation. Pushing one of the mouse buttons causes the tool to deduce a

set of possible commands applicable to the selections that are o�ered in a pop-up menu.

The user may select a command, for instance in this example Add PartObject. The

implementation of the corresponding method causes the tool to insert a new PartObject

template after the current increment. The user will be able to replace this template by

means of the editor.

Syntactic Correctness

116 CHAPTER 9. TOOL IMPLEMENTATION

As this example suggests, syntactical correctness is always preserved because the tool

only inserts syntactically correct templates. In this way, only those commands are

o�ered whose execution cannot violate the syntax de�nition.

Free Text Input

Sometimes the structure oriented mode of editing a document is not so appropriate.

For instance, experienced users who master the language are capable of typing very

fast. Such users may be faster in typing an increment then repeatedly selecting this

increment. To address this kind of problem, users expect from the tool not only sup-

port for structured-oriented editing, but also facilities to freely edit increments with

conventional textual editors.

PROJECT

Cut

Paste
(# Worker : @ text;

do

#);

Workerenter

exit

in line 1 column 3

OK

Message_Window

Company :

holiday_days :

#);

(#

Syntax error at keyword or symbol

Vers. 0.0, Modus:Edit, Actual Incremental Pro.

i : @ integer;
result : @ integ

Enter Imperatives

 then5 -> i
else1-> i;

"term 188949004" 3 lines, 45 characters
Imp

Add_Inner

Add_If

Add_For

Add_LabelledComp

Add_Labelled

Add_Evaluation

Copy

Export

Close

iff (Worker \\ ’Smith’)

1 -> i;
Edit_Imperati

Figure 9.14: Free Textual Input Mode

Example As an example we consider a statement which must be transformed into an if-statement

without a�ecting the body. When the user chooses the interaction Edit-Imperative,

the editor shows a textual representation of the selected statement and presents this

representation in a Unix text editor. Then, to ensure the static correctness the tool

parses the new text as soon as the user has �nished editing. If the text contains syntax

errors, then the tool displays a message to inform the user about them. Fig. 9.14 shows

what happens if the user makes a mistake and writes \i�" instead of \if".

9.2. TEXTUAL EDITOR 117

Static Semantic Correctness

Beside syntactic correctness of documents, our textual editor can also support the user

in achieving correctness of the static semantics. Static semantics of languages, for in-

stance, requires that each type used as a parameter type or as a result type is declared.

Since it is possible in Beta to use features which are de�ned below, handling these kind

of errors can not be de�ned. However, we have thought that it would be appropriate

to temporarily allow such errors, but to draw the user attention on them. We achieve

this in our editor by underlining errors with messages.

PROJECT

Cut

Paste
(#

do

Imperatives

#);

Workerenter

exit result

Company :

holiday_days :

#);

(#

Export

Copy

Close

Message_Window

OK

Type String not defined
 yet

1 -> i;

Worker : @ String;

Vers. 0.0, Modus:Edit, Actual Incremental Pro.

i : @ integer;
result : @ integer;

Figure 9.15: Handling of Semantic Errors

For instance, in the �gure above, we have de�ned the type of the parameter Worker as

a String, which is not de�ned in Beta as a basic pattern. In this situation we are not

able to say if this is a semantic error since the pattern string might be de�ned later

during the development of the system. In this case the corresponding method causes

the editor to display a message window to inform the user that the type string has not

been de�ned yet.

9.2.5 Summary

This chapter has shown our experience in building the textual editor by means of GEN-

ESIS environment. In our opinion the generated editor is quite good, even if the whole

development process has been long and the production of the speci�cation has required

much work. In fact, since the speci�cation of the editor is realized by declaring the

118 CHAPTER 9. TOOL IMPLEMENTATION

interface and the speci�cation of all classes, we had to edit a great number of �les.

The presence of many �les allows the development of such an editor concurrently by

many developers, but it becomes disadvantageous when the number of the developers

is not great at all (as in our case). The same feature, however, makes the speci�cation

reusable and allows to separately compile the di�erent classes.

Also another problem has been caused by the GTSL compiler. The con�guration

compiler translates the GTSL speci�cation into C++ code and then all the compiled

C++ classes are linked together with the GTSL library. The result is that it is not

possible to declare in the speci�cation identi�ers that are also C++ keywords. This

has caused some problems because, since we did not know this features of the GTSL

compiler, we used as identi�ers some Beta keywords that unfortunately were also C++

keywords. This has led to a long and tedious revision of most of the speci�cation.

Now we analyze the results of the editor speci�cation. As we have done for the graph-

ical editor, also here we compare the main features of the generated editor with the

requirements given in chapter 6. We have already analyzed those requirements which

are only proper of the textual editor, therefore now we will consider those features that

belong to the complete tool.

First of all a requirement of the tool was to handle both the graphical and the textual

editors in order to always have the two documents consistent. Since any change to the

structure of the system has to be realized from the graphical representation, the user

is allowed to perform by text only those actions that are concerned with the imple-

mentation of the system and not with its speci�cation. Moreover, since the deletion

of most of the code has to be realized by means of the graphical editor, the recover

from unintended operations is ensured as well. In fact it is possible to delete the code

inserted by the user and not the part automatically generated by the editor.

Moreover, we have required our tool to be syntax directed. For this purpose we have

given a new grammar and structured our editor according to this grammar. In order to

prove the correctness of the generated grammar we have also built a parser in \yacc"

and we have tested the grammar parsing some correct and incorrect programs. In this

way we cannot be sure of the correctness of our grammar, but however there is no other

way to prove it.

9.3 Tool Integration

The integration between the graphical and the textual editor is realized by means of

a Communication Protocol Subsystem which provides our tool with a communication

protocol for sending messages from the graphical editor and receiving service requests

by the textual editor. We use this kind of integration mechanism, instead of operating

system primitives, because in this way the basic communication mechanism has been

9.3. TOOL INTEGRATION 119

hidden from the rest of the tool architecture. This allows to arrange for portability

and provides a dedicate, safe and application-speci�c protocol for the communication

between the two editors. Our integration mechanism has been implemented using the

Communication Protocol Subsystem o�ered by the GENESIS environment. In this

section, the architecture of this subsystem will be described in order to identify the

structure of our integration mechanism. Then we will give a description of the main

features of the de�ned messages and some examples showing how the implementation

of the mapping is realized by means of the communication mechanism.

9.3.1 The Communication Protocol Subsystem

Architecture

of the Communication

Protocol Subsystem

We now want to describe the architecture of the Communication Protocol Subsystem

and to explain how it works. In the architecture of our textual editor there are some ex-

ternal components, such as the Communication Protocol Subsystem, which need to be

integrated with the other (internal) components. The integration has been realized by

means of a single class, called Control class. This class is the supervisor of all the com-

munications in the Communication Protocol Subsystem. The Channel class provides

instead the channel for all communications between the two editors. The textual ed-

itor has an object Channel stored in an instance variable of the textual editor Control

class. After the creation of this Control class, also an instance of the communication

channel is generated to allow the textual editor to receive service requests from the

graphical editor. Service requests as well as events are represented as messages. When

the graphical editor invokes a service request, this request arrives at the Control class.

The Control class in turn calls an operation to the Communication Protocol Subsystem

in order to obtain a message object representing the particular service. The service then

executes the request invoking some methods on classes de�ned in the textual editor.

Message

Message
Synchronous

. . .Add_FunctionAdd_Class

Asynchronous
Message

Open Close Redisplay QuitAdd_Assoc_1_1

Figure 9.16: Message Subdivision

Synchronous and

Asynchronous

Messages

As shown in �g. 9.16, messages are divided into synchronous and asynchronous mes-

sages. Those messages were already de�ned as well as the Control and the Channel

class. Asynchronous messages are used to implement operations like Open or Close,

where the graphical editor does not need to receive any acknowledgement about the

completion of the service. Synchronous messages instead, are those messages we have

specialized in order to realize our mapping. This later kind of messages must be syn-

chronous since the graphical editor needs to be informed about the success of the

requested service before continuing operating.

120 CHAPTER 9. TOOL IMPLEMENTATION

9.3.2 Messages De�nition

The Communication Protocol implementation o�ered by the GENESIS environment

is reusable among arbitrary tools. This is why we have been able to use this system

also for the implementation of our integration mechanism. Therefore, since a general

message is de�ned in order to have the message types parametrized, the de�nition of our

messages is a specialization of the prede�ned message. All the integration mechanism

is implemented using the C++ language and the messages are de�ned as subclasses of

the class de�ning the general message.

Mapping Implementa-

tion By means of the message mechanism we have implemented the real mapping from OMT

to Beta. For each kind of Message de�ned, representing a service request, we have also

de�ned the corresponding Service which executes the request by invoking some methods

on the textual editor. These methods handle the variations of the textual representation

on the basis of the received request. Obviously, even if the real mapping is realized by

the Services, this starts in the graphical editor, which sends the appropriate messages

and prepares their proper parameters.

Message Structure Each Message class contains the declaration of its attributes (representing the para-

meters of the correspondent message) and o�ers the methods to access them. One of

the attributes is always the name of the textual Document corresponding to an Ob-

ject Model drawn in the graphical editor. This allows to contemporaneously build two

di�erent Object Models and to have at the same time the respective textual repres-

entations as well as the contents of di�erent Beta fragments. The other attributes

instead are dependent on the the particular kind of service request and they are used

to implement one of the graphical concepts. The implemented Service then contains

only the declaration (and the implementation) of one method, Execute, which takes as

parameters the corresponding message and performs the actions needed to implement

the request.

De�ned the Architec-

ture of Messages In order to implement our mapping, we have de�ned the messages dividing them on the

basis of the OMT concept such as class, generalization, association and aggregation.

Following we explain the service requests these messages represent in correspondence

of each OMT concept.

� Classes. We have de�ned the messages to create and delete a class, to add at-

tributes and operations and to delete both;

� Generalization. We have de�ned messages to set the name of the superpattern

and to transform an operation into a virtual function or procedure;

� Associations. We have de�ned all the messages to create all kinds of associations.

To handle the link attributes or to delete the associations the graphical editor

may use the same messages already de�ned on classes;

� Aggregation. We have de�ned the messages to propagate an operation, while to

9.3. TOOL INTEGRATION 121

create the instances of the component parts we have used the messages de�ned

for the classes.

9.3.3 Examples of Message Use

In this section we propose two examples to show how we have implemented two of

the OMT concepts which were not directly mapped into Beta. We show how we have

translated the specialization and the propagation of operations.

Specialization of Operations

When a user adds an operation in a subclass of a generalization, the tool has to under-

stand if this operation is a specialization of another operation. So it checks, by means

of the graphical editor, if the inserted operation has already been declared in one of

the superclasses. In this case, the graphical editor performs two di�erent actions: �rst

it inserts the operation as a binding function or procedure; afterwards it transforms

the namesake operation in the superclass in a virtual function or procedure. Both the

actions are realized by means of two messages. The �rst action is performed by sending

one of the following messages:

AddBindingFunctionMessage(DocName, ClassName, FunctionName)

or

AddBindingProcedureMessage(DocName, ClassName, ProcedureName)

where DocName is the name of the document where the textual editor has to real-

ize the changes; ClassName is the name of the class in which this function or procedure

has to be added (the subclass) and FunctionName and ProcedureName are the names

of the function or procedure that the user is going to specialize.

This message is received by the corresponding Service: in this case AddBindingFunc-

tionService or AddBindingProcedureService. These Services in turn invoke some meth-

ods de�ned in the textual editor to add the binding function or procedure and to set

its name.

When the textual editor has �nished to add the new operation in the subclass, the

graphical editor sends another message to transform the superclass operation in a vir-

tual operation. The invoked message is:

MakeVirtualMessage(DocName, ClassName, OperationName)

Also in this case this message is executed by the correspondent Service, MakeVirtu-

alService, which again realizes the transformation invoking the correspondent method

in the textual editor.

122 CHAPTER 9. TOOL IMPLEMENTATION

Propagation of Operations

Another interesting situation our tool has to manage is when a user wants to propagate

an operation from an aggregate class to one of its component classes. As we have shown

in the �rst paragraph, in this case the user selects one of the aggregation arcs entering

the component class and invokes the corresponding method. Then the graphical editor

asks the user to insert the name of the propagated operation. Therefore the textual

editor checks that the operation has been de�ned on the aggregate classes and then

sends two messages to the textual editor to realize the propagation.

The �rst message is:

AddFunctionMessage (DocName, ClassName, OperationName, Parameters,

EnterPart)

or

AddProcedureMessage (DocName, ClassName, OperationName,Parameters,

EnterPart)

depending from the kind of pattern it has to add in the textual representation (see

chapter 5). In these messages, ClassName is the name of the component class, Op-

erationName is the name of the propagate operation, Parameters and EnterPart are

two parameters which contain other informations needed to add the operation. This

message is received from the Service, AddOperationService, which calls the correspond-

ing methods to add the operation in the textual version. The second message instead

informs the aggregate to propagate that operation:

PropagateOperationMessage (DocName, ClassName,OperationName,

Imperative)

where Imperative is an identi�er which represents the imperative calling the propagated

operation on the component class. This message is received by PropagateOperationSer-

vice which inserts the imperative in the textual representation of the operation in the

aggregate class (see also section 5.1).

9.3.4 Summary

This chapter has shown the last phase of our tool development process - the imple-

mentation. We have seen how to integrate the graphical and the textual editor and

how to realize the mapping described in chapter 5.

The main important decision was to realize the integration by means of a Commu-

nication Protocol Subsystem written in C++ instead of operating system primitives

for inter process communications, such as sockets or pipes. We have made this choice

because in this way we were able to realize the integration at a much higher level of

abstraction and the whole communication mechanism is hidden from the rest of the

tool architecture.

9.3. TOOL INTEGRATION 123

Moreover, this kind of integration is particularly enabled since there is a homomorphism

between the GTSL speci�cation of our tool and its interface to the external components,

such as the Communication Protocol Subsystem. This morphism has been de�ned

in the GENESIS environment, and it has been used by the methods implementation

capabilities of the GP Language. In this way we think we have used the means we had

at our disposal as good as possible.

124 CHAPTER 9. TOOL IMPLEMENTATION

Chapter 10

Conclusions and Further Work

10.1 Conclusions

This thesis o�ers an example of integration between the analysis, design and imple-

mentation phases of the software development process. We have seen how OMT is the

most suitable OOAD methodology for constructing a formal description of complex sys-

tems that has to be re�ned into Beta executable programs. A proposal of a mapping

from the most fundamental OMT concepts into correspondent Beta concepts has been

given. Moreover, the integration between these design and implementation languages

has been concretized by means of a tool composed of a graphical and textual editor.

With this tool the user is able to draw an OMT Object Model with a graphical editor,

and to complete with the textual editor an automatically generated Beta skeleton that

complies the mapping. Both the graphical and the textual editor are syntax driven and

in addition the textual editor allows the user to program in a free textual input mode.

By giving the solution proposed in the mapping from OMT to Beta, this thesis gives an

example of how the semantic gap between the design and the implementation phases

can be closed. The realization of the mapping has been one of the most interesting

phases of our work. It led us to individualize those characteristics that make Beta a

multi-perspective language and to take these characteristics o� from our mapping in

order to allow only implementations in a pure Object Oriented programming style. For

example, it led us to take o� the action part from those patterns that implement classes

leaving this part only in those patterns that implement operations. In this way, as it

should be, it is not possible to execute classes and we allow the access to attributes

only by means of operations de�ned on them.

In developing this mapping we have also found some problems due to the implementa-

tion of the Beta compiler. They disabled the mapping of some OMT concepts of which

multiple inheritance is the most important. For this features we gave a simulation of

all the aspects that make it useful. However, we have not been able to give a unique

translation covering all of them. Moreover, the consistency of associations and link

125

126 CHAPTER 10. CONCLUSIONS AND FURTHER WORK

attributes in One to One associations is not ensured by the mapping. The �rst prob-

lem is solved by means of the tool. In fact, using the textual editor, we do not allow

the deletion of the part of the code that is automatically generated from the design.

This ensures at all times the consistency between the Object Model drawn with the

graphical editor and its textual representation. Moreover, during the implementation

of the data structures used to realize the mapping for Many to Many and Ternary asso-

ciations, we have discovered that it is not possible to specialize recursive functional or

procedure pattern. This has avoided the use of one of the characteristics of inheritance,

and therefore a more e�cient implementation of the data structures.

In order to obtain an integration between analysis, design and implementation that

was as complete as possible some decisions have been made. We have chosen OMT as

the OOAD methodology to realize the integration between analysis and design from

a theoretical point of view, and GraphProject and GENESIS, as generators for our

editors that were e�cient and able to build a well integrated tool. Our experiences

have proved that, despite some problems, these decisions have been appropriate for our

goal. OMT has proved to be the most suitable methodology to be translated in Beta

giving no problems during the mapping. This method is one of the most complete and

unambiguous, and for this reason, OMT has been used also as methodology during the

design phase of our tool. In this phase, however, we have ascertained the need of a

graphical notation for subsystems that Rumbaugh proposes only. A notation for these

subsystems and a way to design a re�nement of them has been introduced.

Instead, the choice of GP as a generator for our graphical editor, has caused more

problems. The biggest problems were caused by some limitations in its graphical layout.

This has enforced, for instance, the introduction of a second level of abstraction to

handle and visualize some OMT concepts such as attributes and operations on classes or

multiplicity on some relationships. Moreover it has also enforced the implementation of

some OMT relationships by means of a composition of nodes and arcs. This has resulted

in a graphical editor slower to use and in an implementation di�cult to realize. Other

problems we have found during the implementation are in visualizing comments and

handling OMT attributes and operations as graphic objects. In fact GP does not allow

to visualize long strings and to store a complex structure as an attribute of a graphical

object. We have replaced complex structures with strings that, however, have been

di�cult to treat. In addition, it was not possible to provide the graphical editor with

icons that we required to increase the clearness of the interface of the tool.

Our experiences in using GENESIS have been positive. It provided us with powerful

and expressive means to implement the designed textual editor and the integration

mechanism. The only negative aspect is that the speci�cation of the editor has been

long and tedious. This is due to the fact that GENESIS has been built to be used by a

group of several developers and this has not been our case. Moreover, we have found a

bug in the implementation of the compiler which is not able to distinguish the declared

identi�ers from C++ keywords. This has caused a complete and tedious revision of our

code.

Considering the complete tool, choosing GP and GENESIS has been however a good

10.2. FURTHER WORK 127

solution. Together they o�er a good example of how it is possible to realize a good in-

tegration between a textual and a graphical editor. This is possible since the GENESIS

environment provides an external interface by means of the Communication Protocol

Subsystem with which GP is able to connect, by means of the methods implementation

capabilities.

The goal of our thesis to close a semantic gap between the abstraction mechanisms

used in design and implementation has been realized. Adding the implementation of

the mapping to the choice of OMT as an OOAD methodology that covers also the

analysis phase, we gave an example of a good integration between the three most

important software development process phases. Moreover, by means of the integrated

Software Engineering Environment developed, we were able to concretize and verify

that the integration between OMT and Beta is not only a theoretical study.

10.2 Further Work

We now present some proposals to complete and improve our work.

During our work we have treated only one of the three OMT models - the Object

Model, and actually our tool allows to translate in Beta only a design of this model.

However, providing the graphical editor with a proper interface, we have predisposed

our tool to be extended in the future to support also the development of the Functional

and Dynamic models. Hence this extension is realizable by implementing the other

two models in the graphical editor and adding messages in the integration mechanism.

Then the whole tool might be reused and extended to cover the whole methodology.

Since the Beta language is still under development, the integration between OMT and

Beta might be getting easier if some extensions in Beta will be made. In fact adding

some libraries to support sets and repetitions of instances (and not only of references)

it might be possible to implement variable aggregation and give a better solution for

the implementation of �xed aggregation. Moreover, Beta does not support multiple

inheritance at the moment. We think that to simulate this feature it should be useful

to declare renomination of operations with specialization. However, we are not sure

that, also in this way, it is possible to give a unique impementation able to simulate all

di�erent aspects of this mechanism.

The problems found, due to the poor graphical layout of GP, should be remedied with

an extension of it. This could allow to faithfully represent the OMT notation and to

make the graphical editor more easily to use.

One feature GP supports is the possibility to draw hypernodes. An hypernode allows

the generalization of a graph hierarchy starting from a \dummy" hypernode, called

root, and which extends graph by graph by means of di�erent windows corresponding

to hypernodes in the previous graph. Since we have not been able to faithfully represent

the OMT notation, this feature suggested us to add a graphical notation for subsystems

128 CHAPTER 10. CONCLUSIONS AND FURTHER WORK

that are de�ned in OMT, but not graphically supported, and which were useful in the

design of the tool. However, the introduction of subsystems has not been possible since

GP does not support inheritance between nested hypernodes.

Moreover, actually our tool allows to draw di�erent object models corresponding to dif-

ferents Beta fragments which are seen as independent documents. From the graphical

editor point of view, the various Object Models are all parts of the same graphical doc-

ument and, hence, they may be handled only by a single user at time. To provide our

tool with multiuser support the possibility to associate di�erent graphical documents

to di�erent hypernodes should be added. Di�erent users should be able to contempor-

aneusly develop, save and load, di�erent graphs belonging to the same diagram. Only

in this way the consistency of the diagram, and hence of the correspondent textual

documents, can be ensured.

The integration mechanism between the two tools has been realized by means of a

communication protocol provided by the textual editor. This protocol, however, only

allows boolean values to go back from the textual editor to the graphical one. This

feature makes reverse engineering impossible to be realized, since it does not allow to

propagate the changes made by the textual editor to the graphical editor. To implement

this kind of facility, the integration mechanism should be realized by means of a common

repository. In this way, in fact, we were not forced to send values from one to the other

editor. We did not follow this kind of solution because, however, GP is not able to

dynamically change the structure of the drawn graphs but only allows changes made

by user interaction. Therefore an expansion of GP would allow the realization of

reverse engineering simply by reimplementing the integration mechanism in a common

respository. If also GENESIS would be extended to be able to send back more signi�cant

messages, only a few changes should be necessary.

All these extensions to our work are possible since the whole tool is realized in an Object

Oriented style, i.e. in a modulare way, and, hence, supporting reusability of all its code.

The modularity could also allow another interesting and possible modi�cation with the

substitution of the graphical or the textual language. Changing Beta with another O.O.

language would simply mean to modify the textual editor, while most of the tool might

be reused. The substitution of the graphical language leads to an analogous solution.

Bibliography

[Bai89] S.C. Bailin. An Object-Oriented Requirements Speci�cation Method. HP

Laboratories Bristol, HPL-91-52, June 1991.

[BDK92] Francois Bancilhon, Claude Delobel, Paris Kanellakis. Building an Object-

Oriented Database System, the story of O2. Morgan Kaufmann Publish-

ers,1992.

[Boo91] Grady Booch. Object Oriented Design With Applications. The Ben-

jamin/Cummings Publishing Co., Inc., Redwood City, CA 94065, 1991.

[Boo] G. Booch. Object-Oriented development. IEEE Trans. on Software Eng.,

se-12(2), 211-21.

[Car91] Carrol, M. . Using Multiple Inheritance to Implement Abstract Data Types.

The C++ report, 3(4), Apr. 1991.

[CF92] Dennis de Champeaux & Penelope Faure. A comparative study of Object-

Oriented analysis methods. March/April 1992.

[CG90] Carre, B., Geib, J-M. The Point Of View Notion For Multiple Inheritance.

In OOPSLA`90` Object-Oriented Programming Systems, Languages and

Applications, Vol. 25, No. 10, Oct. 1990.

[CI94] P. Corte and A. Inferrera. Graph Project, Preliminaries Notes. Engineering

- Ingegneria Informatica S.p.a. GP - Version 1.0 Feb. 1994.

[Coa91a] P.Coad. OOA & OOD: Continuum of Representation. Journal of Object-

Oriented Programming, pp. 55. Feb. 1991.

129

130 BIBLIOGRAPHY

[Coa91b] P.Coad. OOA/OOD and OOP. Journal of Object-Oriented Programming,

pp. 74, Mar./Apr. 1991.

[Coa91c] P.Coad. Adding to OOA Results. Journal of Object-Oriented Program-

ming, pp. 64, May. 1991.

[Coa91d] P.Coad. OOD Criteria, Part I.. Journal of Object-Oriented Programming,

pp. 67, Jun. 1991.

[Col84] Colter, M.A. A Comparative Examination of System Analysis Techniques.

MIS Q. (Mar. 1984) 51-66.

[Coo88] S. Cook Impressions of ECOOP'88. Journal of Object Oriented Program-

ming, 1(4), 1988.

[Cox86] Brand J. Cox. Object-Oriented Programming. Reading Mass. : Addison-

Wesley, 1986.

[CY91] Coad, P., and Yourdon, E. Object Oriented Design. Prentice Hall, Engle-

wood Cli�s, N.J., 1991.

[DGK+84] V.Donzeau-Gouge, G.Kahn, B.Lang, M.Melese. Document structure and

modularity in Mentor. ACM SIGSOFT Software Engineering Notes, 1984.

[Edw89] Edwards, J. Basic Ptech skills, course notes, Associative Cesign technology.

Westborough, MA, 1989.

[Emm95] W.Emmerich Tool Construction for Process-Centered Software Develop-

ment Environments based on Object Database Systems University of Pader-

born, Germany, 1995. Forthcoming.

[FLP] Robert B. France, Maria M. Larrondo-Petrie. Notation for Software

Design.

[FW94] Michael Fr�ohlich, Mattias Werner. daVinci V1.4.1 User Manual. Uni-

versity of Bremen, Dec., 1994.

[Gib90] Gibson, E. Objects-born abd bred. Byte, October, 245-254, 1990.

BIBLIOGRAPHY 131

[GOO94] GOODSTEP Team. The GOODSTEP Project: General Object Oriented

Database for Software Engineering Processes. In K. Ohmaki, editor, Proc.

of the Paci�c Software Engineering Conference, Tokyo, Japan, pages 410-

420. IEEE Computer Society 12 Press, 1994.

[GR83] Adele Goldberg, David Robson. Smalltalk-80: The Language and its Im-

plementation. Reading, Mass. : Addison-Wesley, 1983.

[Gui91] Guimaraes, N. . Building generic User Interface Tools: an Experience With

Multiple Inheritance. In OOPSLA`91` Object Oriented Programming Sys-

tems, Languages and Applications, Vol. 26, No. 11, Nov. 1991.

[Hsi92] Donovan Hsieh. Survey of Object-Oriented Analysis/Design Methodologies

and Future CASE Frameworks. CSL Technical Report. Computer Science

Laboratory SRI-CSL-92-04, March 1992.

[IDE93] STP/OMT. Software through picture. IDE company, (Interactive develop-

ment Environment), Sep. 1993.

[IJK90] Tadao Ichikawa, Erland Jungert, Robert R. Korfhage. Visual Languages

and Application.. Plenum Press, NY., 10013, 1990

[Kas80] U.Kastens. Ordered Attribute Grammars. Acta Informatica,1980.

[Kee89] Sonya Keene. Object Oriented Programming in Common Lisp: A Program-

mer's Guide to CLOS.. Reading, Mass. : Addison-Wesley, 1989.

[KL88] Won Kim, Frederick H. Lochovsky. Object-Oriented Concepts, Databases,

and Application. New York: ACM Press, 1988

[KLM83] G.Kahn, B.Lang, M.Melese. Metal: a Formalism to Specify Formalisms.

Science of Computer Programming, 1983.

[KLM+93] J. Lindskov Knudsen, M. Lofgren, O. Lehrmann Madsen, B. Magnus-

son. Object-Oriented environments: The Mjolner Approach. Prentice

All Object-Oriented Series, 1993.

[Knu68] D.E.Knuth. Semantics of Context-Free Languages. Mathematical System

Theory, 1968.

132 BIBLIOGRAPHY

[KWE91] Kurtz, B., S.N. Wood�eld, and D.V. Embley. Object Oriented system Ana-

lysis and Speci�cation. Hewlet-Packard & CS Dept., Brigham Young Uni-

versity, 1991(?).

[Lew88] C. Lewerentz. Extended Programming in the Large in a Software Develop-

ment Environment. ACM SIGSOFT Software Engineering Notes, 1988.

[LMN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, Kristen Nygaard. Object-

Oriented Programming in Beta Programming Language, 1993.

[Mey88] B. Meyer. Object-Oriented Software Construction. Prentice Hall 1988.

[MP92] David E. Monarchi and Gretchen I. Puhr. A Research Typology for Object-

Oriented Analysis and Design. Communications of the ACM, Vol.35, No.

9, pp. 35-47, Sep. 1992.

[OM] Odell, J. and J. Martin. Object Oriented Analysis and Design. Prentice

Hall Englewood Cli�s, NJ (forthcoming)

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley publishing

company, 1994.

[OSF92] OSF/Motif Style Guide. Revision 1.2, 1992. (For OSF/Motif Release 1.2).

Open Software Foundation 11 Cambridge Center Cambridge, MA 02142.

[PJC+90] Page Jones, M., Constantine, L.L. and Weiss, S. Modeling the Object Ori-

ented System: The Uniform Object Notation. Comp. language, Oct. 1990,

pp. 70-89.

[Plo81] G.Plotkin. A structural approach to operational semantics. Aarhus Report

DAIMI, Aarhus University, Denmark, 1981.

[Pre87] Pressman, R.S. Software Engineering: A Practitioner's Approach. Second

ed., McGraw-Hill, 1987.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen. Object-Oriented Modeling and Design, 1991.

BIBLIOGRAPHY 133

[RL89] R, K.Raj, H.M. Levy. A Compositional Model For Software Reuse. In

Proceeding of the 1989 ECOOP'89`, British Computer Society Workshop

Serie Cambridge University Press, 1989.

[RS95] Alex Repenning, Tamara Sumner. Agentsheets: A Medium for Creating

Domain-Oriented Visual Languages. PhD dissertation, Dept of Computer

Science, 1995.

[Rum87] James E. Rumbaugh. Relations as semantic constructs in an object-

oriented language. OOPSLA'87' as ACM SIGPLAN 22, 12 (Dec. 1987),

466-481.

[SM89] S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Ana-

lysis. ACM SIGSOFT Software Engineering Notes, Vol. 14 No. 5, pp. 66-77,

July 1989.

[SR90] AT&T C++ Language System: Selected Readings. CenterLine Software,

Inc. Cambridge, Massachusetts, 1990.

[Sto86] B. Stroustrup. The C++ Proramming Language. Addison-Wesley, 1986.

[Swi93] Robert Switzer Ei�el: an Introduction. Prectice Hall, Object Oriented

Series, 1993

[WBW+90] Wirfs-Brock, R.J., Wilkerson, B. and Wiener, L. Designing Object Ori-

ented Software. Prentice Hall, Englewood Cli�s, N.J., 1990

[Weg92] Wegner P. Dimensions of Object Oriented Modeling. Computer , Oct.

1992, pp. 12-20.

[WN95] Kim Walden & Jean-Marc Nerson. Seamless Object-Oriented Software Ar-

chitecture, Analysis and design of reliable system. Prentice Hall , 1995.

[WPM90] A.I. Wasserman, P.A. Pircher, and R.J. Muller. The Object-Oriented Struc-

tured Design for Software Design Representation. IEEE Computer, pp. 50-

62, Mar. 1990.

[ZSG79] Marvin V. Zalkowitz, Alan c. Shaw, John D. Gannon. Principles of Soft-

ware Engineering and Design. Prentice Hall, Englewood Cli�s NJ, 1979.

134 BIBLIOGRAPHY

Appendix A

Graphical Editor Speci�cation

This appendix presents the speci�cation of the graphical editor interface, written in

the GP speci�cation language - GP Language. The speci�cation describes each term

composing the graphical language by means of class declarations. We give a short

presentation of each of these classes and the associated code. The order in which we

present all the classes is given by the GP compiler which only allows to specify before

the arcs, then the nodes and, at the end, the hypernodes.

Each class contains the de�nition of the shape of the graphical terms as described in

section 9.1. Moreover, in all the de�ned classes, some common attributes, such as

Document and DocVersion, and methods, such as HandleInsertion and HandleDele-

tion are declared.

Document: is the name of the Object Model currently drawn. This attribute has

been inserted in order to implement the messages the graphical editor sends to

the textual editor. In each moment, Document corresponds to the name of the

textual document;

DocVersion: is a string representing the version of the Document.

Since these attributes are always the same in all the classes, they will be omitted from

the following presentation.

The methods HandleInsertion and HandleDeletion are launched when the graphical

term correspondent to the class in which they are de�ned is drawn or deleted. They

handle the deletion and the insertion of the terms on the basis of their semantics. For

this reason, they have di�erent implementation in di�erent classes and they will be

explained in detail in each class.

135

136 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

A.1 De�ned Arcs

The de�ned arcs are those we have already presented in section 9.1.

A.1.1 One to One Association

This class describes the namesake OMT relationship. On One to One associations the

following attributes are de�ned:

Origin and Destination: names of the classes involved in the association.

Bidirectional: boolean value which indicates if the association is one way or two

ways. It is used when the graphical editor sends the messages. By means of this

attribute the editor can decide if it must send a message only to one class or both

the classes involved in the association.

Role1 and Role2: these attributes store the role names of the classes involved in the

association.

We have also de�ned the followings methods:

HandleInsertion: this method asks the user to set the name of the association and

to specify if he wants the association bidirectional. If the user does not insert the

name, the request is repeated for other six times and, if the name has not been

inserted yet, then the association is not created. If the association is related with

a node LinkAttribute, the method checks if the other arc of the association has

been already inserted and, in this case, sets the same name. Also the name of

the class containing the Link Attributes is properly set.

ChangeName: when the user selects this method a window appears on the screen,

displaying the old association name, and allowing the insertion of the new name.

If the association is related with a LinkAttribute, then the new name is also

set on the other arc of the association. Also the name of the class containing the

Link Attribute is properly updated.

InsertRoles: the user calls this method to set the role names. The method displays

a window, in which the names of the involved classes are shown, and asks for

the role names. Only when the user has inserted both the names, these names

are assigned to the corresponding attributes. If the association is related with a

LinkAttribute, the role names are assigned also to the attributes of the other

arc.

ShowRoles: this method is invoked by the user to visualize the role names associated

with each class involved in the association. It displays a window in which the role

names and the associated classes are shown.

A.1. DEFINED ARCS 137

ChangeLabel: this method can be invoked by other classes but not by the user. It is

used by the method ChangeName to change the name of the other component arc

of the association in case of Link Attributes.

HandleDeletion: this method �rstly asks the user to con�rm the deletion. If the

arc is not connected to a LinkAttribute it deletes the arc. Otherwise, it does

not allow the deletion and informs the user that before he has to delete the node

LinkAttribute.

This is the declaration of the class implementing this kind of association:

define Assoc_1_1 : ARC

with_shape line = MEDIUM arrow = SINGLE label = "Assoc_1_1"

with_attributes public char* Document

public char* DocVersion

public char* Origin

public char* Destination

public boolean Bidirectional

public char* Role1

public char* Role2

with_methods trig_on_insert boolean HandleInsertion()

visible boolean ChangeName()

visible boolean InsertRoles()

visible boolean ShowRoles()

public boolean ChangeLabel()

trig_on_delete boolean HandleDeletion()

A.1.2 One to Many Association

On One to Many associations there are the following attributes:

Origin and Destination: correspond to the namesake attributes described for One to -

One association;

Fixed and Ord: are two strings used to store the multiplicity of the association and if

the association is ordered or not.

Bidirectional, Role1 and Role2: correspond to the namesake attributes described

for One to One association;

The followings methods also de�ned:

HandleInsertion: this method asks the user to set the name of the association and

to specify if he wants the association bidirectional. If the user does not insert the

name, the request is repeated for other six times and, if the name has not been

inserted yet, then the association is not created. Otherwise, if the user inserts

138 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

the name, then the method asks if he wants to set the multiplicity (�xed) and

if he wants the association ordered. In this case the correspondent attributes

are set with the appropriate values. If the association is related with a node

LinkAttribute, the method checks if the other arc of the association has been

already inserted and, in this case, set the same name. Also the name of the class

containing the Link Attributes is set.

ChangeName: when the user selects this method a window appears on the screen,

displaying the old association name, and allowing the insertion of the new name.

If the association is related with a node LinkAttribute, then the new name is

also changed on the other arc of the association and on the class containing the

Link Attributes.

InsertRoles: the user calls this method to set the role names. The method displays

a window in which the names of the involved classes are shown and the insertion

of the role names is required. Only when the user has inserted both the names,

these names are assigned to the corresponding attributes. If the association is

related with a LinkAttribute, the role names are assigned also to the attributes

of the other arc.

ShowRoles: this methods is invoked by the user to visualize the role names associated

with each class involved in the association.

ShowInfo: this method shows the informations about the multiplicity (if it is not �xed

an empty string) and if the association is ordered (yes/no).

ChangeLabel: as for One to One association, this method can be invoked by other

classes but not directly by the user. It is used by the method ChangeName to

change the name of the other component arc of the association in case of Link

Attributes.

HandleDeletion: this method �rstly asks the user to con�rm the deletion. If the arc

is not connected to a node LinkAttribute it executes the deletion, otherwise, it

does not allow the deletion and informs the user that before he has to delete the

node LinkAttribute.

This is the code associated to the class describing One to Many associations.

define Assoc_1_many : ARC

with_shape line = MEDIUM arrow = SINGLE symbol = BALL

with_attributes public char* Document

public char* DocVersion

public char* Origin

public char* Destination

public char* Fixed

public char* Ord

public boolean Bidirectional

public char* Role1

public char* Role2

A.1. DEFINED ARCS 139

with_methods trig_on_insert boolean HandleInsertion()

visible boolean ChangeName()

visible boolean InsertRoles()

visible boolean ShowRoles()

visible boolean Show_Info()

public boolean ChangeLabel()

trig_on_delete boolean HandleDeletion()

A.1.3 Many to Many Association

The class implementing Many to Many associations contains the declaration of the

following attributes:

Origin and Destination: correspond to the namesake attributes described for the

previous associations.

Role1 and Role2: which, as for the other associations, store the role names of the

classes involved in the association.

We have also de�ned the followings methods:

HandleInsertion: this method asks the user to set the name of the association. If

the user does not insert the name, the request is repeated for other six times and

if the name has not been inserted yet, then the association is not created. If the

association is related with a node LinkAttribute, the method checks if the other

arc of the association has been already inserted and, in this case, sets the same

name. Also the name of the class containing the Link Attributes is set.

ChangeName: when the user selects this method a window appears on the screen

displaying the old association name and allowing the insertion of the new name.

If the association is related with a node LinkAttribute, then the other arc of

the association and the class containing the Link Attributes are also updated.

InsertRoles: the user calls this method to set the role names. The method displays

a window in which the names of the involved classes are shown and asks for the

role names. Only when the user has inserted both the names, these names are

assigned to the corresponding attributes. If the association is related with a node

LinkAttribute, the role names are assigned also to the attributes of the other

arc.

ShowRoles: this method is invoked by the user to visualize the role names associated

with each class involved in the association. It displays a window in which the role

names are shown.

ChangeLabel: this method can be invoked by other classes but not by the user. It is

used by the method ChangeName to change the name of the other component arc

of the association in case of Link Attribute.

140 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

HandleDeletion: this method �rst asks the user to con�rm the deletion. If the arc is

not connected to a node LinkAttribute, it executes the deletion. Otherwise, it

does not allow the deletion and informs the user that before he has to delete the

node LinkAttribute.

define Assoc_many_many: ARC

with_shape line = LARGE

with_attributes public char* Document

public char* DocVersion

public char* Origin

public char* Destination

public char* Role1

public char* Role2

with_methods trig_on_insert boolean HandleInsertion()

visible boolean ChangeName()

visible boolean InsertRoles()

visible boolean ShowRoles()

public boolean ChangeLabel()

trig_on_delete boolean HandleDeletion()

A.1.4 Ternary Association

This class de�nes the arcs used to draw the ternary association relationships. On tern-

ary association we have de�ned the attributes: Role1, Role2 and Role3 which store

the role names of the classes involved in the association.

We have also de�ned the methods:

HandleInsertion: that allows the insertion of the association name. Since a ternary

association is composed of one node and three arcs, this method �rst checks if

the arc the user wants to insert is the �rst arc composing the association, and in

this case asks the user to insert the name. As for the other associations, if after

six times the name has not been inserted yet, then the arc is not generated. If

the arc is not the �rst arc of the association, the method sets the name with the

same name of the other arcs.

ChangeName: when the user selects this method a window appears on the screen to

allow the insertion of the new name. Then this change is also propagated to the

other two arcs involved in the association.

InsertRoles: the user calls this method to set the role names. The method displays

a window in which the names of the involved classes are shown and asks for the

insertion of the role names. Only when the user has inserted all the three names,

these names are assigned to the corresponding attributes.

ShowRoles: this methods is invoked by the user to visualize the role names associated

with each class involved in the association. It displays a window in which the role

names are shown.

A.1. DEFINED ARCS 141

HandleDeletion: this method asks the user to con�rm the deletion and, in case,

deletes the node.

Following the associated code is shown.

define ternar_Assoc : ARC

with_shape line = MEDIUM arrow = SINGLE

with_attributes public char* Document

public char* DocVersion

public char* Role1

public char* Role2

public char* Role3

with_methods trig_on_insert boolean HandleInsertion()

visible boolean ChangeName()

visible boolean InsertRoles()

visible boolean ShowRoles()

trig_on_delete boolean HandleDeletion()

A.1.5 Aggregation

This class de�nes the arcs of type aggregation used to draw the aggregation relationship.

On this class, of type arc, the following attributes are de�ned:

NrPropagated: this attribute stores the number of propagated operations on this ag-

gregation. Since propagating an operation on an arc entering in a node Aggregati-

on has not meaning, this attribute will be meaningful only on those arcs exiting

that node.

PropagatedList: this attribute stores in only one string the names of all the opera-

tions propagated on this arc.

We have also de�ned the methods:

HandleInsertion: this method simply allows the insertion of the arc and sets the

associated label at the empty string.

Propagation: this method allows the user to propagate an operation only on those

arcs exiting the node Aggregation. When the user invokes this method a window

appears on the screen to insert the name of the operation to propagate. Then the

method checks if this operation has been declared in an aggregate class and in

this case appends the name of the operation in the attribute PropagatedList and

sends a message to the textual editor to textually realize the propagation. If the

operation has been not declared in the aggregate, an error message is displayed

on the screen to inform the user about it.

142 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

ShowPropagatedOp: this method �rstly checks if there are propagated operation. If

there are not, then a message window informs the user about it. Otherwise, a

new window is displayed to show the names of all the propagated operations.

HandleDeletion: we have decided to allow the deletion only of those arcs exiting the

node Aggregation node. Therefore, this method �rst checks if it is possible to

delete the arc and, only in this case, allows the deletion. If the arc enters the

node Aggregation node then a message window displays the user that he has to

delete before the node.

This is the correspondent code.

define Aggregation : ARC

with_shape line = MEDIUM arrow = SINGLE

with_attributes public int NrPropagated

public char* PropagatedList

with_methods trig_on_insert boolean HandleInsertion()

visible boolean Propagation()

visible boolean ShowPropagatedOp()

trig_on_delete boolean HandleDeletion()

A.1.6 Aggregation With Multiplicity

This kind of aggregation may only appear in an aggregation relationship as one of

the arcs exiting the node Aggregation. The attributes de�ned on aggregation with

multiplicity are:

Fixed: this attribute is a string used to store the multiplicity of the aggregation.

NrPropagated: this attribute stores the number of propagated operations on this

aggregation. Since this arc is always exiting a node Aggregation, we can be sure

that this attribute is always meaningful.

PropagatedList: this attribute stores in only one string the names of all the opera-

tions propagated on this arc.

The de�ned methods are:

HandleInsertion: this method only allows the insertion of the arc and sets the label

associated with the arc to an empty string. Moreover, it asks the user to insert

the multiplicity. It is not allowed to create this kind of aggregation without

setting the multiplicity. Therefore, if after six times the user has not �xed the

multiplicity, then the aggregation is not created.

Propagation: this method allows the user to propagate an operation only on those

arcs exiting the node Aggregation. When the user invokes this method a window

A.1. DEFINED ARCS 143

appears on the screen to insert the name of the operation to propagate. Then the

method checks if this operation has been declared in an aggregate class and in

this case appends the name of the operation in the attribute PropagatedList and

sends a message to the textual editor to textually realize the propagation. If the

operation has been not declared in the aggregate, an error message is displayed

on the screen to inform the user about it.

ShowMultiplicity: this method displays the multiplicity the user has set by means

of a window displayed on the screen.

ShowPropagatedOp: this method �rstly checks if there are propagated operations. If

there are not, then a message window informs the user about it. Otherwise, a

window is displayed to show the names of all the propagated operations.

HandleDeletion: this arc can be always deleted, so this method simply allows the

deletion of the arc.

define Aggr_mult: ARC

with_shape line = MEDIUM arrow = SINGLE symbol = BALL

with_attributes public char* Fixed

public int NrPropagated

public char* PropagatedList

with_methods trig_on_insert boolean HandleInsertion()

visible boolean Propagation()

visible boolean ShowMultiplicity()

visible boolean ShowPropagatedOp()

trig_on_delete boolean HandleDeletion()

A.1.7 Generalization

This kind of arc is used to implement the namesake OMT relationship. On this arc we

have not de�ne any attribute while we have de�ned the following methods:

HanldeInsertion: this method simply allows the insertion of the arc setting the name

with the empty string.

HandleDeletion: similarly to the Aggregation arc, also for this kind of arcs we have

decided to allow the deletion only of those arcs exiting the node Generalization -

node. This method asks the user to con�rm the deletion and checks if it is possible

to delete the arc. In this case it allows the deletion, otherwise it displays an error

message.

define Generalization : ARC

with_shape line = MEDIUM arrow = SINGLE

with_methods trig_on_insert boolean HandleInsertion()

trig_on_delete boolean HandleDeletion()

144 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

A.1.8 Instantiation

This arc represents the namesake OMT relationship. On this class we have only de�ned

the following two methods:

HandleInsertion: this method sets the name of the arc with the empty string and

the name of the Instance node with the name of the class it belongs to, between

brackets.

HandleDeletion: this method asks the user to con�rm the deletion and, in case,

deletes the arc.

define Instantiation : ARC

with_shape line = SMALL arrow = SINGLE

with_methods trig_on_insert boolean HandleInsertion()

trig_on_delete boolean HandleDeletion()

A.2 De�ned Nodes

The de�ned nodes are those we have presented in section 9.1. We describe before the

nodes Class, LinkAttribute and Instance that correspond to nodes in the OMT

Object Model. Then, we describe those nodes we have introduced only to realize the

aggregation, generalization and ternary association relationships as composition of a

node and arcs.

A.2.1 Class

In order to handle attributes and operations on drawn classes, we have de�ned the

following attributes:

AttributeNr and OperationNr: are two integer attributes used to store the number

of the inserted attributes and operations respectively.

AttributeList and OperationList: are two strings used to store the inserted attrib-

utes and operations.

On this class, we have also de�ned the followings methods:

HandleInsertion: this method allows the insertion of a class. It asks the user to

insert the name of the class. If he does not insert the name, the class is not

generated. Instead, if the user inserts the name, this method checks if there is

already another class with the same name. In this case it does not allow the

insertion and an error message is shown. Otherwise the class with the inserted

name is generated.

A.2. DEFINED NODES 145

ChangeName: this method displays a window with the old name of the class and asks

the user to insert a new name.

AddAttribute: when the user launches this method a window appears on the screen

to allow the insertion of an attribute. Since an attribute may be a basic attribute

or a repetition, if the user wants to insert a repetition, he has to specify this kind

of attribute and to insert the name, the type and the range. Otherwise only the

name and the type. If the user does not insert the name or the type, the method

repeats the request for six times and, at the end, does not allow the insertion.

If the insertion is correct, the method checks to see if another attribute with the

same name has been already de�ned. In this case, it does not insert the attribute.

Otherwise it appends the attribute to the string AttributeList and increments

the attribute AttributeNr. After the insertion of the attribute, the method also

allows the user to insert an optional comment.

AddOperation: this method allows the insertion of a new operation. It asks the user to

insert the name the result type and the number of parameters. Then if the class

is a generalization of another class, the method checks if the same operation has

been already de�ned in the superclass and launch the method VirtualOperation.

If this operation is not a specialization of another operation then a new window to

insert the parameters and a possible exit value is displayed. After editing the para-

meters the method asks the user to insert an optional comment. OperationList

and OperationNr are updated.

DeleteAttribute: this method checks if there are inserted attributes. If there are not,

then it displays a message to inform the user about it. Otherwise, it asks to insert

the name of the attribute the user wants to delete. Then it checks if this attribute

has been inserted and in this case realize the deletion erasing the attribute from

the string AttributeList and decrementing the attribute AttributeNr. If the

attribute is not inserted, it displays an error message.

DeleteOperation: this methods checks if there are inserted operations and, if there

are not, displays a message to inform the user. Otherwise, it asks the user to

insert the name of the operation and checks in the string OperationList to see

if the operation has been inserted. In this case it deletes the operation from the

string OperationList and decrements the attribute OperationNr. Otherwise it

displays and error message.

ShowAttributes: this method displays the inserted attributes. If there are not, then

a message window appears on the screen to inform the user. Otherwise, this

method scans all the string AttributeList to select the inserted attributes and

displays them in a window.

ShowOperations: this method works similarly to the method ShowAttributes but

on the string OperationList instead of AttributeList.

VirtualOperation: this method is launched by the method AddOperation when a

class is a generalization of another class. It checks if the operation, the user wants

146 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

to add, has been declared in a superclass. In this case, it returns the boolean

true. False otherwise.

HandleDeletion: this method asks the user to con�rm the deletion and then allows

the deletion of the class. As consequence of this deletion, all the deletable arcs

exiting or entering the class are also deleted.

define Class : NODE

with_shape bitmap = classP

with_attributes public char* Document

public char* DocVersion

public int AttributeNr

public char* AttributeList

public int OperationNr

public char* OperationList

public int Deletable

with_methods visible boolean ChangeName()

trig_on_insert boolean HandleInsertion()

visible boolean AddAttribute()

visible boolean AddOperation()

visible boolean DeleteAttribute()

visible boolean DeleteOperation()

visible boolean ShowAttributes()

visible boolean ShowOperations()

public boolean VirtualOperation()

trig_on_delete boolean HandleDeletion()

A.2.2 LinkAttribute

It de�nes the class containing the Link Attributes of an association. On the class

LinkAttribute the following attributes are declared:

AttributeNr and AttributeList: are analogous to the namesake attributes de�ned

in the class Class.

Deletable: is a integer value used to mark the node when this is included in an

association. It is used to handle the deletion of all the associations.

Moreover, there are the following methods:

HandleInsertion: this method allows the insertion of a LinkAttribute and moment-

arily sets the label associated to the class with an empty string.

AddAttribute, DeleteAttribute and ShowAttributes: are de�ned as the namesake

methods in the class Class.

A.2. DEFINED NODES 147

HandleDeletion: this method asks the user to con�rm the deletion and then deletes

the associated graphic term. As a consequence of this deletion, also the arcs

composing the association this node is linked to are deleted.

define LinkAttribute : NODE

with_shape label = "Link_Attributes" bitmap = attribute

with_attributes public int NumArc

public int AttributeNr

public int Deletable

with_methods trig_on_insert boolean HandleInsertion()

visible boolean AddAttribute()

visible boolean DeleteAttribute()

visible boolean ShowAttributes()

trig_on_delete boolean HandleDeletion()

A.2.3 Instance

For the class representing OMT instances, we have de�ned two methods:

SetName: this method is launched when a new arc Instantiation is created and sets

the name of the instance. The name is the same of the class the Instatiation

arc exits from, between brackets.

HandleDeletion: this method asks the user to con�rm the deletion and, in case,

deletes the instance. Deleting this node, the correspondent arc Instantiation

is also deleted.

define Instance : NODE

with_shape bitmap = instP

with_methods public boolean SetName()

trig_on_delete boolean HandleDeletion()

A.2.4 Aggregation node

On this class we have de�ned only one attribute - Deletable. This is an integer value

used to mark the node when it is inserted in an aggregation relationship. It is used to

handle the deletion of the arcs Aggregation and Aggr mult.

We have also de�ned the method HandleDeletion which asks the user to con�rm the
deletion and, in case, deletes the node and all the arcs entering and exiting the node.

define Aggregation_node : NODE

with_shape label = "Aggregation" bitmap = romboP

with_attributes public int Deletable

with_methods trig_on_delete boolean HandleDeletion()

148 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

A.2.5 Ternary node

On the class Ternary node three attributes and two methods are de�ned. The attrib-

utes Class1, Class2 and Class3 are three strings used to store the names of the classes

involved in the ternary association.

Moreover, these are the de�ned methods:

HandleInsertion: this method is launched when the node is inserted and it simply

sets the name of the node with an empty string.

HandleDeletion: this method asks the user to con�rm the deletion and, in case,

deletes the node and all the arcs entering the node.

define Ternary_node : NODE

with_shape label = "Ternary" bitmap = terP

with_attributes public char* Class1

public char* Class2

public char* Class3

with_methods trig_on_insert boolean HandleInsertion()

trig_on_delete boolean HandleDeletion()

A.2.6 Generalization node

On Generalization node we have de�ned only one attribute, Deletable. It is an
integer value used to mark the node when it is inserted in a generalization relationship.
It is used to handle the deletion of the arcs Generalization. We have also de�ned the
method HandleDeletion which asks the user to con�rm the deletion before deleting
the node and all the arcs entering and exiting the node.

define Generalization_node : NODE

with_shape label = "Generalization" bitmap = triangleP

with_attributes public int Deletable

with_methods trig_on_delete boolean HandleDeletion()

A.3 De�ned Hypernodes

We describe now the de�ned hypernodes. We have declared four di�erent hypernodes:

� OMT Graphical Editor: which represents the graphical document produced by

the editor;

� Object Model: that corresponds to an OMT Object Model and it is the only one

we have implemented;

A.3. DEFINED HYPERNODES 149

� Functional Model and Dynamic Model: corresponding to the Functional and

Dynamic OMT models.

A.3.1 OMT Graphical Editor

This \dummy" hypernode has been introduced to contain the three hypernodes corres-

pondent to the three OMT models. It contains the declarations of the three hypernodes

and of the arc None that has been inserted only to make the declaration consistent, but

it does not represent any signi�cant arc. Following the associated code is shown.

define OMT_Graphical_Editor: HYPER

with_nodes

Object_Model Functional_Model Dynamic_Model

with_arcs

None

with_shape

title = "PROJECT"

A.3.2 Object Model

Object Model is an hypernode that represents the OMT Object Model the user can

draw. It contains the declarations of all the nodes and arcs described before.

On this hypernode we have de�ned only the method Connect, which asks the user

to insert a name and realizes the connection with the textual editor creating a new

document with the same name of the hypernode. Moreover the hypernode also includes

the speci�cation of the composition rules of such a graph. These rules allow to specify

the \domain" and \co-domain" of the arcs, the number of the arcs entering and exiting

a node and also if a cycle can be drawn. Following, the code of the class Object Model

is shown.

define Object_Model : HYPER

with_nodes

Class Instance Aggregation_node Generalization_node Ternary_node

LinkAttribute

with_arcs

Assoc_1_1 Assoc_1_many Assoc_many_many ternar_Assoc Aggregation

Aggr_mult Generalization Instantiation

with_methods trig_on_insert boolean Connect()

with_shape

bitmap = partenza

title = "Architecture Editor"

window = (500,700)

paper = (3000,3000)

with_rules

BIND(Instantiation,Class,Instance)

150 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

BIND(Assoc_1_1,Class,Class)

BIND(Assoc_1_1,LinkAttribute,Class)

BIND(Assoc_1_1,Class,LinkAttribute)

BIND(Assoc_1_many,Class,Class)

BIND(Assoc_1_many,Class,LinkAttribute)

BIND(Assoc_1_many,LinkAttribute,Class)

BIND(Assoc_many_many,Class,Class)

BIND(Assoc_many_many,Class,LinkAttribute)

BIND(Assoc_many_many,LinkAttribute,Class)

BIND(ternar_Assoc,Class,Ternary_node)

BIND(ternar_Assoc,Ternary_node,Class)

BIND(Aggregation,Class,Aggregation_node)

BIND(Aggregation,Aggregation_node,Class)

BIND(Aggr_mult,Aggregation_node,Class)

BIND(Generalization,Class,Generalization_node)

BIND(Generalization,Generalization_node,Class)

NUM_ARC_OUT(Instance,Instantiation,1,1)

NUM_ARC_IN(Class,Generalization,0,1)

NUM_ARC_IN(LinkAttribute,Assoc_1_1,1,1)

NUM_ARC_OUT(LinkAttribute,Assoc_1_1,1,1)

NUM_ARC_IN(LinkAttribute,Assoc_1_many,1,1)

NUM_ARC_OUT(LinkAttribute,Assoc_1_many,1,1)

NUM_ARC_IN(LinkAttribute,Assoc_many_many,1,1)

NUM_ARC_OUT(LinkAttribute,Assoc_many_many,1,1)

NUM_ARC_IN_OUT(Ternary_node,ternar_Assoc,3,3)

NUM_ARC_IN(Aggregation_node,Aggregation,1,1)

NUM_ARC_OUT(Aggregation_node,1,INFINITY)

NUM_ARC_IN(Generalization_node,Generalization,1,1)

NUM_ARC_OUT(Generalization_node,Generalization,1,INFINITY)

NO_DCYCLE(Aggregation)

NO_DCYCLE(Generalization)

A.3.3 Functional Model and Dynamic Model

These hypernodes only contain the declarations of the nodes Process and State and of

the arcs Dataflow and Transition. These elements have been declared only to allow

the de�nition of the hypernodes but they do not have any implementation. We have

de�ned only the method HandleInsertion which displays a message to inform the user

that this model has not been implemented and does not allow the generation of the

hypernode. The code corresponding to the two hypernode is shown below.

define Functional_Model : HYPER

with_nodes

Process

with_arcs

DataFlow

with_methods trig_on_insert boolean HandleInsertion()

A.3. DEFINED HYPERNODES 151

define Dynamic_Model : HYPER

with_nodes

State

with_arcs

Transition

with_methods trig_on_insert boolean HandleInsertion()

Following there is the code associated with nodes and arcs de�ned on the hypernodes.

Since we have not implemented the two models, on them we have not de�ned any

method or attribute.

define Process : NODE

with_shape label = "process"

define DataFlow : ARC

with_shape label = "data_flow"

define None : ARC

with_shape label = "None"

with_methods trig_on_insert boolean Insert()

define State : NODE

with_shape label = "state"

define Transition : ARC

with_shape label = "transition"

152 APPENDIX A. GRAPHICAL EDITOR SPECIFICATION

Appendix B

Beta Grammar

In the following we present the new complete grammar resulting from our revisions

of the Beta grammar given in [LMN93]. This grammar has been corrected (see sec-

tion 9.2.1) and some productions have been changed or added in order to allow the

generation only of those programs written in an Object Oriented programming style.

Moreover some productions have been introduced only to realize the mapping from

an OMT Object Model. The grammar has been written in terms of an extended,

normalized BNF, whose notation will be explained at the end of this appendix.

Our grammar begins with the rules to generate the main program, which may be seen

as constituted by a list of declarations and a list of imperatives. Each declaration may

be:

� a ClassPattern: corresponding to an OMT class;

� a PartObject: corresponding to an instance of a declared class;

� an InstanceTree: corresponding to an instance of a Many to Many or ternary

association.

BetaProgram : "origin" "`~beta/basiclib/v1.3/betaenv"'

"(#"

DeclList

"do"

Imperatives

"#)"

DeclList : {Decl}.

Decl : ClassPattern | PartObject | InstanceTree.

Class patternWe start now in describing a ClassPattern that is used to represent OMT classes.

Each class is uniquely identi�ed by the name of the class that corresponds to the

name of the class pattern. Moreover, since a class can be a subclass of another, an

153

154 APPENDIX B. BETA GRAMMAR

optional SuperPattern may be declared. The body of the class is constituted by a list

of attribute declarations. We have omitted the action-part from the class body, since,

from an Object Oriented point of view, each class only de�nes the state (attributes)

and the behaviour (operations) of all the objects belonging to it. In this way, we have

walk around the ambiguity of Beta due to the use of patterns as single abstraction

mechanism.

ClassPattern : ClassName ":" SuperPattern

"(#" Attributes

"#);".

SuperPattern : | ClassName.

Attributes : | {AttributeDecl}

Attributes Each attribute may be one of the followings:

� A part-object;

� The declaration of a repetition;

� A functional or procedure pattern;

� A virtual functional or procedure pattern;

� A binding of a virtual pattern;

� The declaration of an association.

Here the correspondent productions are shown.

AttributeDecl : | PartObject

| Repetition

| Associations

| FunctionalPattern

| ProcedurePattern

| VirtualFunc

| VirtualProc

| BindingFunc

| BindingProc.

PartObject : Identifier ":" ClassName ";".

Repetition : Identifier ":[" Index "]" ClassName ";".

Associations : One | One_to_Many | Ordered | Many_to_Many | Ternary .

Functional and Pro-

cedure pattern
Usually in Beta a Functional pattern is a pattern that computes a value on the basis

of a set of input parameters and gives this value in output by means of the exit-part.

Instead, a Procedure pattern is a pattern used to temporary state informations when

an object belonging to it is generated. Since this logical distinction is not clear from the

155

syntactical de�nitions of the two patterns, we have decided to distinguish them only on

the basis of the exit-part. So we call Functional Pattern that pattern attribute provided

of an exit-part and Procedure Pattern the other. This also comply the distinction we

have made for OMT operations. We have translated operations with output parameters

with Functional patterns, otherwise with Procedure patterns.

FunctionalPattern : Identifier ":"

"(#" Identifier

Attributes

EnterPart

Do

ExitPart

"#);".

ProcedurePattern : Identifier ":"

"(#" Identifier

Attributes

EnterPart

Do

"#);".

Virtual patternIn Beta a virtual patterns is a particular kind of pattern that, in the mapping, has been

used to map those OMT operations of a superclass that are specialized in a subclass.

In Beta the operation declared in the subclass is in Beta declared as binding. Since

we have seen operations only as Functional and Procedure Patterns, we have restricted

the features of virtual and binding only to these patterns.

VirtualFunc : Identifier ":<"

"(#" Identifier

Attributes

EnterPart

Do

ExitPart

"#);".

VirtualProc : Identifier ":<"

"(#" Identifier

Attributes

EnterPart

Do

"#);".

BindingFunc : Identifier "::<"

"(#" Identifier

Attributes

EnterPart

Do

ExitPart

156 APPENDIX B. BETA GRAMMAR

"#);".

BindingProc : Identifier "::<"

"(#" Identifier

Attributes

EnterPart

Do

"#);".

Action-Part In Beta, the action-part of a pattern is composed of an enter, a do and an exit part.

The enter-part is a list of parameters which may be entered prior to execution of the

object. The do-part is a list of imperatives that describes the actions to be performed

when the object is executed, and the exit-part is a list of output parameters which

may be produced as a result. For these statements we have changed the syntax of

Beta in order to make easier the realization of our mapping. Therefore the EnterPart

is seen as an Identifier, and in the ExitPart only a prede�ned variable result is

returned. Moreover we have also distinguished between DoPart and DoInner. As we

said in section 9.2.1 we have used the DoInner only in the body of a virtual functional

or virtual procedure pattern.

EnterPart : | "enter" Identifier.

Do : | DoPart | DoInner .

DoPart : "do" Imperatives Imperatives.

DoInner : "do" Imperatives "INNER" Imperatives .

ExitPart : "exit result" .

Associations For each association de�ned in OMT we have introduced the corresponding production

in the Beta grammar. One to One associations are realized by means of references

to the related class. One to Many associations are instead declared as a Set or List

of pointers to the class of the many end of the relationship. More complicated are

the productions to declare Many to Many and ternary associations, that have been

implemented by means of two di�erent kinds of trees (see section 5.1).

One : Identifier ":^" ClassName ";".

One_to_Many : Identifier ":@Set"

"(# element:<" ClassName

"#);".

Ordered : Identifier ":@List"

"(# element:<" ClassName

"#);".

Many_to_Many : Identifier ":^Tree;".

ternary : Identifier ":^TernaryTree;".

When a Many to Many or ternary association is declared also an instance of the as-

sociation needs to be generated. This instance is de�ned with the same name of the

association. Then the particular kind of tree is specialized by means of the related class

157

names. Also the productions to add Link Attributes on these kinds of associations are

given.

InstanceTree : Identifier ":@" Instance .

Instance : BiTree | ThreeTree .

BiTree : "Tree(# type1:<" ClassName ";"

"type2:<" ClassName ";"

Atr

"#);".

ThreeTree : "TernaryTree(# type1:<" ClassName ";"

"type2:<" ClassName ";"

"type3:<" ClassName ";"

"#);".

Atr : | Assoc_atr.

Assoc_atr : "Attribute:<" ClassName.

ImperativesWe want now to give the productions to generate sequences of imperatives. As we

have seen, the do-part of an object is a sequence of imperatives that describe actions

to be executed. In Beta we have two kinds of imperatives: the �rst kind are evaluation

imperative (which will be described later) and the second kind, the control structure

imperative, are few imperatives for controlling the
ow of execution. We start in de-

scribing this later kind of imperatives. We omit the description of these productions

because su�ciently explained in section 9.2.1. We want only to note that these pro-

ductions do not correspond to any OMT concept, while these are useful only when the

user wants to textually complete the do-parts of procedure or functional patterns.

Imperatives : {Imperative}.

Imperative : | LabelledImperative

| LabelledCompoundImperative

| ForImperative

| IfImperative

| InnerImperative

| Evaluation.

LabelledImperative : Identifier ":" LabelImperatives.

LabelledCompoundImperative : "(" Identifier ":" LabelImperative ":" Identifier ")"

LabelImperatives : {LabelImperative}.

LabelImperative : | LabelledImperative

| LabelledCompoundImperative

| LabelledFor

| LabelledIf

| LeaveImperative

| RestartImperative.

158 APPENDIX B. BETA GRAMMAR

ForImperative : "(for" index "repeat" Imperatives "for)".

LabelledFor : "(for" index "repeat" LabelImperatives "for).

IfImperative : "(if" Evaluation Alternatives

ElsePart "if)"

LabelledIf : "(if" Evaluation LabelAlternatives

ElsePart "if)".

Alternatives : {Alternative}.

LabelAlternatives : {LabelAlternative}.

Alternative : Selection "then" Imperative.

LabelAlternative : Selection "then" LabelImperative.

ElsePart : | "else" Imperatives.

LeaveImperative : "leave" Identifier.

RestartImperative : "restart" Identifier.

InnerImperative : "inner" Identifier.

The basic mechanism for specifying sequences of object execution steps is called an eval-

uation. An evaluation is an imperative that may cause changes in state and/or produce

a value when it is executed. An evaluation may be an expression or an assignment.

Objects declared as basic pattern and the assignment of these objects behaves like or-

dinary variables and assignment in traditional procedural programming languages. In

the same way it is also possible to de�ne value assignment for patterns. Assignments

are used to give parameters in input to patterns implementing operations.

Evaluations : | {Evaluation}.

Evaluation : | Expression

| Assignment.

Assignment : Transaction "->" Transaction.

Transaction : | ObjectEvaluation

| ComputedObjectEvaluation

| ObjectReference

| EvalList

| Evaluation

| StructureReference.

EvalList : "(" Evaluations ")".

The following productions describe all possible ways to dynamically generate instances

of patterns. These allow the dynamic creation of objects and the call of operations

from an object to another.

ObjectDescriptor : SuperPattern "(#" Attributes

159

EnterPart

DoPart

ExitPart

"#);".

ObjectEvaluation : | ObjectDescriptor

| Reference.

Reference : | AttributeDenotation

| DynamicItemGeneration.

ObjectReference : Reference "[]".

StructureReference : AttributeDenotation "##".

DynamicItemGeneration : "&" ObjectSpecification.

AttributeDenotation : | Identifier

| Remote

| ComputedRemote

| Indexed

| ThisObject.

Remote : AttributeDenotation "." Identifier.

ComputedRemote : "(" Evaluations ")" "." Identifier.

Indexed : AttributeDenotation "[" Evaluation "]".

ThisObject : "this" "(" Identifier ")".

Basic Pattern and

Their Operations
A number of prede�ned basic patterns for commonly used data types are available. For

the integer and real are available some functional patterns corresponding to the usual

arithmetic functions. For the boolean pattern, the functional patterns and, or and

not are de�ned.

Expression : | BoolExp

| NumExp.

BoolExp : | BoolConst | EqExp

| LtExp | LeExp

| GtExp | GeExp

| NeExp | notExp

| andExp | orExp

| identifier.

LtExp : NumExp "<" NumExp.

LeExp : NumExp "<=" NumExp.

GtExp : NumExp ">" NumExp.

GeExp : NumExp ">=" NumExp.

EqExp : Expression "=" Expression.

NeExp : Expression "<>" Expression.

notExp : "not" BoolExp.

andExp : "and" BoolExp.

160 APPENDIX B. BETA GRAMMAR

orExp : "or" BoolExpr.

NumExpr : | identifier

| IntegerConst

| AddExp

| MulExp

| DivExp

| MinusExp.

AddExP : NumExp "+" NumExp.

MulExp : NumExp "*" NumExp.

DivExp : NumExp "div" NumExp.

MinusExp : NumExp "-" NumExp.

Prede�ned Classes The only prede�ned classes are IntegerConst, BoolConst and Identifier. Moreover

we have also the class ClassName which has been introduced only to realize the checking

of static semantics in the generated textual editor.

index : | SimpleIndex

| NamedIndex.

NamedIndex : NameDcl ":" Evaluation.

ClassName : '[A-Za-z][A-Za-z0-9]*'.

IntegerConst : '([0-9][0-9]*[0x[0-9]+)'.

BoolConst : 'true | false'.

Identifier : '[A-Za-z][A-Za-z0-9]*'.

The used formalism

In this section the rules of the formalism used to generate our grammar are shown. We

�rst give this formalism in a BNF notation.

<grammar> ::= <production-list>

<production-list> ::= <production> | <production> <production-list>

<production> ::= <symbol> ``:'' <expr> ``.''

<expr> ::= <alternative> | <optional> | <structure> | <reg-exp>

<alternative> ::= <symbol> ''|'' <alternative> | <symbol> ''|'' <symbol>

<optional> ::= ``|'' <structure> | ``|'' <reg-exp>

<structure> ::= <component-list>

<component-list> ::= <component> | <component> <component-list>

<component> ::= <keyword> | <symbol> | <list>

<list> ::= ``{`` <symbol> ``}'' <opt-delimiter>

<opt-delimiter> ::= ``(`` <keyword-list> ``)''

<keyword-list> ::= <keyword> | <keyword> <keyword-list>

161

<keyword> : [``].*[``]

<reg-exp> : ['].*[']

<symbol> : [a-zA-Z_-][a-zA-Z_-0-9]*

As this formalism describes, each nonterminal must be de�ned by exactly one of the

following rules:

1. An alternation rule has the following form:

A0 : A1 j A2 j . . . j AN

where A0, A1,. . . ,AN are nonterminal symbols.

2. A constructor rule has the following form:

A0 : w0 A1 w1 . . .AN wN

where A0, A1, . . . , AN are nonterminal symbols and w0, w1, . . . , wN are possibly

empty strings of terminal symbols.

3. A list rule has one of the following forms:

A : f B g (w)

where B is a nonterminal and w is a possibly empty string of terminal sym-

bols. The nonterminal A generates a list of B separated by w.

4. An optional rule has the following form:

A : j B

where B is a nonterminal. The nonterminal A may generate the empty string

or B.

Terminal symbols are de�ned by productions with regular expressions on the right hand

side.

162 APPENDIX B. BETA GRAMMAR

Appendix C

Textual Editor Speci�cation

This appendix presents the most signi�cant part of the speci�cation of the textual

editor interface. Only the speci�cation of the components of the language that are

automatically generated from the graphical editor is described, while we omit those

components that can be only textually edited such as the imperatives.

The structure of the interface speci�cation is given by declaring the interface of each

increment class de�ning all the concepts of a syntactic component of the language.

The classes have been derived from the grammar given in Appendix B and then re�ned

during the development of the various steps of the editor speci�cation - the derivation

of the inheritance and entity/relationship view (see sections 9.2.2 and 9.2.3). For each

class an explanation of the relevant features and the associated code is given.

C.1 BetaProgram

The class BetaProgram is our root increment class. This class represents the syn-

tactic unit of each document that is created corresponding to a generic fragment of

a Beta program. Like all root increments of documents it has a common superclass,

DocumentVersion, which allows to equip all de�ned editors with all required commands

for version management. In the import interface section of the class, all resources on

which the de�nition of the interface relies are de�ned. In particular, it enumerates all

classes which are used within the interface for type declaration purposes. In this case,

since in the grammar speci�cation we have de�ned a BetaProgram as constituted of

DeclList and Imperatives, these two classes must appear in the import interface. As

we can see from the code below, in the method section of the interface there are a num-

ber of methods which are declared as implicit. Their speci�cation do not need to be

de�ned further, but however, it must be included for type-checking reasons. Some spe-

ci�c methods are also added. In particular, we have de�ned the method get declList

which returns the list of declarations inserted in a given fragment. This method is used

by the integration mechanism to select the declarations of a particular de�ned class.

163

164 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

Following, the code of the class Beta Program is shown.

NONTERMINAL INCREMENT INTERFACE BetaProgram;

INHERIT DocumentVersion;

IMPORT INTERFACE

IMPORT Increment;

IMPORT DeclList;

IMPORT Imperatives;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheDeclList : DeclList;

TheImperatives : Imperatives;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"origin",

"'~beta/basiclib/v1.3/betaenv'", (NL),

"(#",WS,

TheDeclList,

"do",(NL),WS,

TheImperatives,(NL),

"#)"

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Program;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

METHOD get_DeclList():DeclList; // This method returns the list of

// declarations inserted in a Program.

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE BetaProgram.

C.2 DeclList

In GTSL each increment class has a reference to its abstract syntax father. In this

case the class DeclList inherits from the class Increment, which is the most general

C.2. DECLLIST 165

abstract increment class, which allows its children to inherit all the properties that

every increment should have. For example, methods to expand placeholder, check

the static semantics correctness, etc. In the abstract syntax section, each variable

de�ned represents a child with respect to the abstract syntax. List type, or set type

constructors may be used for de�ning the type of the child. In this case the class

DeclList has been declared as a type representing a list of instances of the class Decl

in which the declarations are de�ned. Some methods to allow the generation and the

deletion of instances of the classes ClassPattern, PartObject and InstanceDecl have

also been added.

NONTERMINAL INCREMENT INTERFACE DeclList;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ClassPattern;

IMPORT InstanceDecl;

IMPORT Identifier;

IMPORT Decl;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheDecls: LIST OF Decl;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheDecls

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):DeclList;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// These methods create a new ClassPattern,

// PartObject or InstanceDecl template.

// All these templates are added at the end

// of the list DeclList.

METHOD expand_with_class();

METHOD expand_with_partObject();

METHOD expand_with_instance();

166 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

// They add a new ClassPattern, PartObject

// or InstanceDecl template after the

// current increment.

METHOD add_class(cursor:Decl);

METHOD add_partObject(cursor:Decl);

METHOD add_instance(cursor:Decl);

// This method deletes the current increment.

METHOD delete_decl(cursor:Decl;enforced_deletion:BOOLEAN):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE DeclList.

C.3 Decl

Decl is de�ned as abstract increment class. Abstract increment classes are used to

collect and encapsulate all common instance variables and methods of increments de-

riving from the grammar of the document language. The class Decl is used to group

together all possible kinds of declarations in a Beta program. Classes, part objects and

instances are therefore considered as being a specialization of the class Decl. Each of

these classes is constituted by a name, and this name and the methods to handle it are

declared as speci�c attributes and methods of the class Decl.

ABSTRACT INCREMENT INTERFACE Decl;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

name:Identifier;

END ABSTRACT SYNTAX;

METHODS

DEFERRED METHOD isolate();

DEFERRED METHOD collapse();

DEFERRED METHOD parse(Str:STRING):Decl;

DEFERRED METHOD check();

DEFERRED METHOD unparse():STRING;

// The followings are the methods to set,

// change and return the name of a

C.4. CLASS PATTERN 167

// declaration.

METHOD expand_name(str:STRING):BOOLEAN;

METHOD change_name(str:STRING):BOOLEAN;

METHOD get_name():Identifier;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Decl.

C.4 Class Pattern

This increment class represents the corresponding Beta class pattern. A class pattern

is constituted of a name (inherited from the class Decl), an optional SuperPattern and

a list of attributes declarations. On this increment class we have de�ned the methods

to return the list of the declared Attributes, get Declarations, and to set the name

of the superpattern, set superPattern. These methods are invoked by some of the

messages de�ned in the integration mechanism. The �rst is used to select the declared

attributes, while the other to realize the generalization relationship.

NONTERMINAL INCREMENT INTERFACE ClassPattern;

INHERIT Decl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT SuperPattern;

IMPORT Attributes;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheSuperPattern : SuperPattern;

TheAttributes : Attributes;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":",

TheSuperPattern,(NL),

"(#",WS,

TheAttributes,(NL),

"#)",

";",(NL)

END UNPARSING SCHEME;

METHODS

168 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ClassPattern;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// It returns the list of attributes inserted

// in the current ClassPattern.

METHOD get_Declarations():Attributes;

// This method sets the variable TheSuperPattern

// with the string received as parameter;

METHOD set_superPattern(str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ClassPattern.

C.5 Attributes

The class Attributes represents the list of all possible declarations that a class Class-

Pattern may contain. Therefore, in its import section all these kinds of declarations

have been inserted and we have also de�ned all the methods to handle them. In fact,

we have provided this class with the methods to add these declarations at the end of

the list or after the current increment, and also the method to delete them.

NONTERMINAL INCREMENT INTERFACE Attributes;

INHERIT OptionalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT PartObject;

IMPORT Repetition;

IMPORT Associations;

IMPORT FunctionalPattern;

IMPORT ProcedurePattern;

IMPORT BindingFun;

IMPORT BindingProc;

IMPORT Identifier;

IMPORT AttributeDecl;

IMPORT One;

IMPORT One_to_Many;

IMPORT Ordered;

IMPORT Many_to_Many;

C.5. ATTRIBUTES 169

IMPORT Ternary;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheAttributes : LIST OF AttributeDecl;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheAttributes

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Attributes;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// These methods create a new PartObject, Repetition,

// FunctionalPattern, ProcedurePattern, BindingFunc,

// BindingProc, One, One_to_Many,Ordered, Many_to_Many

// or Ternary template and add these templates at the

// end of the list Attributes.

METHOD expand_with_part_object();

METHOD expand_with_repetition();

METHOD expand_with_functional();

METHOD expand_with_procedure();

METHOD expand_with_bindingFunc();

METHOD expand_with_bindingProc();

METHOD expand_with_one();

METHOD expand_with_one_many();

METHOD expand_with_ordered();

METHOD expand_with_many();

METHOD expand_with_ternary();

// All these methods add one of templates above

// after the current increment.

METHOD add_part_object(cursor:AttributeDecl);

METHOD add_repetition(cursor:AttributeDecl);

METHOD add_functional(cursor:AttributeDecl);

METHOD add_procedure(cursor:AttributeDecl);

METHOD add_bindingFunc(cursor:AttributeDecl);

METHOD add_bindingProc(cursor:AttributeDecl);

METHOD add_one(cursor:AttributeDecl);

METHOD add_one_many(cursor:AttributeDecl);

METHOD add_ordered(cursor:AttributeDecl);

METHOD add_many(cursor:AttributeDecl);

170 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

METHOD add_ternary(cursor:AttributeDecl);

// The following method deletes the current increment.

METHOD delete_declaration(cursor:AttributeDecl;

enforced_deletion:BOOLEAN):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Attributes.

C.6 AttributeDecl

The class AttributeDecl is the father of all the following increment classes:

� PartObject corresponding to a Beta part object;

� Repetition corresponding to the declaration of a repetition in Beta;

� Associations to declare any kind of association;

� FunctionalPattern and ProcedurePattern for functional and procedure pat-

terns;

� VirtualFunc and VirtualProc to realize the virtual of a functional or procedure

patterns;

� BindingFunc and BindingProc to realize the binding of a virtual patterns.

Since each of these classes is constituted by a name, this name and the methods to handle

it are then declared as speci�c attributes and methods of the class AttributeDecl.

Moreover, we have also declared the attribute imp, which represents the imperatives

in functional and procedure patterns, or virtual functional and procedure patterns, or

binding functional or procedure patterns.

ABSTRACT INCREMENT INTERFACE AttributeDecl;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

IMPORT Imperatives;

IMPORT Imperative;

END IMPORT INTERFACE;

EXPORT INTERFACE

C.7. PARTOBJECT 171

ABSTRACT SYNTAX

name:Identifier;

imp:Imperatives;

END ABSTRACT SYNTAX;

METHODS

DEFERRED METHOD isolate();

DEFERRED METHOD collapse();

DEFERRED METHOD parse(Str:STRING):AttributeDecl;

DEFERRED METHOD check();

DEFERRED METHOD unparse():STRING;

// The followings are the methods to set,

// change and return the name of an

// attribute.

METHOD expand_name(str:STRING):BOOLEAN;

METHOD change_name(str:STRING):BOOLEAN;

METHOD getName():Identifier;

// The following method transforms the string received

// as parameter in an Imperative template and adds this

// template at the end of the imperatives list.

METHOD edit_imperative(str:STRING):Imperative;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE AttributeDecl.

C.7 PartObject

The increment class PartObject has been inserted to allow the declaration of any

instance of a Beta class. Each instance is composed by a name (inherited from the

increment class AttributeDecl) and by a type, representing the name of a declared

class. On this class we have de�ned the method set type to set the value of the

attribute type.

NONTERMINAL INCREMENT INTERFACE PartObject;

INHERIT AttributeDecl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

IMPORT Repetition;

END IMPORT INTERFACE;

172 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

EXPORT INTERFACE

ABSTRACT SYNTAX

type:Identifier;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":@",

type,

";"

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):PartObject;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This method sets the type of the PartObject

// with the string received as parameter.

METHOD set_type(str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE PartObject.

C.8 Repetition

The increment class Repetition allows the declaration of an instance of a Beta re-

petition. This instance is composed by a name (inherited from the increment class

AttributeDecl), by a value IntConst and a type, representing the range and the type

of the declared repetition. On this class we have de�ned the methods, set range and

set type, to set respectively the values of the range and the attribute type.

NONTERMINAL INCREMENT INTERFACE Repetition;

INHERIT AttributeDecl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT IntConst;

END IMPORT INTERFACE;

EXPORT INTERFACE

C.9. FUNCTIONALPATTERN AND PROCEDUREPATTERN 173

ABSTRACT SYNTAX

TheIntConst : IntConst;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":[",

TheIntConst,"]@",

type,

";"

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Repetition;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// These methods set the range and the type of

// the Repetition with the value and the string

// received as parameter.

METHOD set_range(int: INTEGER):BOOLEAN;

METHOD set_type(str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Repetition.

C.9 FunctionalPattern and ProcedurePattern

The increment classes FunctionalPattern and ProcedurePattern are two classes rep-

resenting almost the same language construct. The distinction has been introduced to

distinguish those OMT operations that return values from those that do not. The

fundamental distinction is therefore in the declaration of the import section and of the

unparsing section, since in FunctionalPattern we have declared the ExitPart and in

ProcedurePattern we have not. On both the increment classes we have de�ned the

methods to set and return the input parameters. Moreover, we have de�ned the method

make virtual to transform these two classes into the corresponding virtual classes -

VirtualFun and VirtualProc. This method is invoked by one of the messages imple-

menting the integration mechanism when an operation is added in the graphical editor

to specialize one that is already de�ned in a superclass. Following the code of the two

classes is shown.

174 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

NONTERMINAL INCREMENT INTERFACE FunctionalPattern;

INHERIT AttributeDecl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT EnterPart;

IMPORT DoPart;

IMPORT DoInner;

IMPORT ExitPart;

IMPORT ProcedurePattern;

IMPORT Identifier;

IMPORT VirtualFunc;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheParameters: Identifier;

TheEnterPart : EnterPart;

TheDoPart : DoPart;

TheExitPart : ExitPart;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":",(NL),

"(#",

TheParameters,(NL),

TheEnterPart,

TheDoPart,

TheExitPart,

"#);",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):FunctionalPattern;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This method sets the parameters of the

// FunctionalPattern (represented as a string)

// with the string received as parameter.

METHOD expand_parameters(str:STRING):BOOLEAN;

// This method transforms the current FunctionalPattern

C.9. FUNCTIONALPATTERN AND PROCEDUREPATTERN 175

// into a VirtualFunc pattern.

METHOD make_virtual():VirtualFunc;

// The following method returns the list

// of the enter parameters of the

// FunctionalPattern (represented as a

// string)

METHOD get_enter():EnterPart;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE FunctionalPattern.

NONTERMINAL INCREMENT INTERFACE ProcedurePattern;

INHERIT AttributeDecl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT EnterPart;

IMPORT DoPart;

IMPORT Identifier;

IMPORT VirtualProc;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheParameters: Identifier;

TheEnterPart : EnterPart;

TheDoPart : DoPart;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":",(NL),

"(#",

TheParameters,(NL),

TheEnterPart,

TheDoPart,

"#);",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ProcedurePattern;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

176 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This method sets the parameters of the

// ProcedurePattern (represented as a string)

// with the string received as parameter.

METHOD expand_parameters(str:STRING):BOOLEAN;

// The following method transforms the current

// ProcedurePattern into a VirtualProc pattern.

METHOD make_virtual():VirtualProc;

// This method returns the list of enter

// parameters of the ProcedurePattern

// (represented as a string)

METHOD get_enter():EnterPart;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ProcedurePattern.

C.10 EnterPart

The increment class EnterPart has been de�ned as a child of the class OptionalIncre-

ment, which is declared as a superclass for all increment classes that trace back to

optional productions of the grammar de�nition. Hence, it equips any subclass with a

command to remove the increments. The class EnterPart realizes the enter-part in an

action part of a pattern. Usually this construct is constituted by a list of parameters.

We have instead decided to represent all the input parameters by means of a unique

string which comes from the graphical editor. On this increment class we have de�ned

the method to set this string with the input parameters. This method is usually invoked

by one of the messages of the integration mechanism.

NONTERMINAL INCREMENT INTERFACE EnterPart;

INHERIT OptionalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

param: Identifier;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

C.11. DOPART 177

"enter",

"(",

param,

")",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):EnterPart;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This method sets the list of enter parameters

// of a pattern (represented as a string) with

// the string received as parameter.

METHOD set_param(str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE EnterPart.

C.11 DoPart

The class DoPart is a subclass of the abstract increment class Do which has been in-

troduced to include both the class DoPart and DoInner. These two classes represent

respectively the do-part of a functional (or procedure) pattern or of a virtual pattern.

The do-part is a list of imperatives that describes the actions to be performed when the

enclosing object is executed. On this class we have de�ned the method make do inner

which transforms a DoPart template in a DoInner template. This method is in-

voked by the method make virtual in the increment classes FunctionalPattern and

ProcedurePattern in order to transform a functional or procedure pattern into a vir-

tual pattern.

NONTERMINAL INCREMENT INTERFACE DoPart;

INHERIT Do;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Imperatives;

IMPORT DoInner;

END IMPORT INTERFACE;

EXPORT INTERFACE

178 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

ABSTRACT SYNTAX

TheImperatives : Imperatives;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"do",(NL),

TheImperatives,(NL),

TheImperatives

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):DoPart;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This methods transforms a DoPart template in

// a DoInner template. It is launched by the

// method make_virtual in the classes

// FunctionalPattern or ProcedurePattern.

METHOD make_do_inner():DoInner;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE DoPart.

C.12 ExitPart

The increment class ExitPart is declared as a nonterminal increment class. Usually a

nonterminal class serves to create further terminal and nonterminal increment classes.

In this case this class does not allow the generation of any other class since its goal is

only to visualize its unparsing scheme. However, we have used this kind of increment

to make possible the declaration of the unparsing scheme, instead of a simple regular

expression to represent it. On this class we have not de�ned any method.

NONTERMINAL INCREMENT INTERFACE ExitPart;

INHERIT OptionalIncrement;

IMPORT INTERFACE

IMPORT Increment;

END IMPORT INTERFACE;

C.13. ASSOCIATIONS 179

EXPORT INTERFACE

UNPARSING SCHEME

"exit result;",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ExitPart;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ExitPart.

C.13 Associations

This abstract increment class is the superclass of every kind of association. This rep-

resents the implementation of an OMT association in one of the patterns representing a

class involved in the association. Since each association has a name, this attribute has

been declared in the abstract syntax of this class. Moreover, in order to specialize the

reference implementing the association with the name of the other class involved in the

association (in case of One to One and One to Many associations) also the attribute

pattern and the method expand pattern have been declared. On this class we have

also de�ned the methods expand name e change name to set and change the name of

the association.

ABSTRACT INCREMENT INTERFACE Associations;

INHERIT Declaration;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

name : Identifier;

pattern: Identifier;

END ABSTRACT SYNTAX;

180 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

METHODS

DEFERRED METHOD isolate();

DEFERRED METHOD collapse();

DEFERRED METHOD parse(Str:STRING):Associations;

DEFERRED METHOD check();

DEFERRED METHOD unparse():STRING;

// This method sets the name of the association

// with the string received as parameter.

METHOD expand_name(str:STRING):BOOLEAN;

// The following method allows to change the

// name of the association.

METHOD change_name(str:STRING):BOOLEAN;

// This method specializes the reference

// implementing the association with

// the name of the other class

// involved in the association.

METHOD expand_pattern(str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Associations.

C.14 One and One to Many

These classes represent the OMT concepts of One to One and One to Many associ-

ations. We have also declared the class Ordered to distinguish between ordered and

not-ordered One to Many associations. All these classes are declared in a very similar

way: they have the same import and export section. The only di�erence is in the

declaration of the unparsing scheme. Since all the needed methods are inherited from

the superclass Associations, on these classes we have not de�ned any other methods.

Following the code for the three classes is shown.

NONTERMINAL INCREMENT INTERFACE One;

INHERIT Associations;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

UNPARSING SCHEME

C.14. ONE AND ONE TO MANY 181

name,

":^",

pattern,

";",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):One;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE One.

NONTERMINAL INCREMENT INTERFACE One_to_Many;

INHERIT Associations;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

UNPARSING SCHEME

name,

":@Set",(NL),

" (# element:<",pattern,

" #);",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):One_to_Many;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE One_to_Many.

182 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

NONTERMINAL INCREMENT INTERFACE Ordered;

INHERIT Associations;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

UNPARSING SCHEME

name,

":@List",(NL),

" (# element:<",pattern,

" #);",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Ordered;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Ordered.

C.15 Many to Many and Ternary

Both Many to Many and ternary associations have been implemented by means of two

de�ned data structures representing two di�erent binary trees as described in section

5.1. Therefore these two increment classes are only used to declare the association in

the involved classes. This declaration consists only in setting the name, by means of

the corresponding inherited method, and in declaring the association as a pointer to

the proper data structure. Hence, the implementation of this declaration is mostly

generated by the unparsing scheme section and no methods have been declared. The

code correspondent to these classes is shown below.

NONTERMINAL INCREMENT INTERFACE Many_to_Many;

INHERIT Associations;

C.15. MANY TO MANY AND TERNARY 183

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

UNPARSING SCHEME

name,

":^Tree;",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Many_to_Many;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Many_to_Many.

NONTERMINAL INCREMENT INTERFACE Ternary;

INHERIT Associations;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

UNPARSING SCHEME

name,

":^",

"TernaryTree",

";",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Ternary;

184 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Ternary.

C.16 InstanceDecl

The increment class InstanceDecl is generated by the methods expand with instance

or add instance de�ned on the class DeclList. It is used to generate an instance of

the two kinds of binary trees implementing Many to Many or ternary associations.

This nonterminal class allows the derivation of both the instances. A declaration of an

instance is constituted by a name (corresponding to the name of the association) and

by an Instance class, that corresponds to the abstract increment class for the two tree

instances. The methods to handle the name are inherited from the superclass Decl

and it adds only the methods to expand the Instance class with the desired kind of

instance.

NONTERMINAL INCREMENT INTERFACE InstanceDecl;

INHERIT Decl;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

IMPORT Instance;

IMPORT BiTree;

IMPORT ThreeTree;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheInstance : Instance;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

name,

":@",

TheInstance,(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

C.17. INSTANCE 185

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):InstanceDecl;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// this method expands the declaration

// of the instance with a BiTree template.

METHOD expand_bi();

// this method expands the declaration of the

// instance with a ThreeTree template.

METHOD expand_three();

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE InstanceDecl.

C.17 Instance

The abstract increment class Instance is the father of the classes generating the in-

stance of the two kinds of binary trees. This class contains the declarations of the

attributes type1 and type2 that are de�ned in order to specialize the names of the

classes involved in the associations. Moreover, also the methods to set these attributes

are de�ned. The third type representing the third class involved in a ternary association

is specialized in the class ThreeTree.

ABSTRACT INCREMENT INTERFACE Instance;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT BiTree;

IMPORT ThreeTree;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

type1 : Identifier;

type2 : Identifier;

END ABSTRACT SYNTAX;

METHODS

DEFERRED METHOD isolate();

186 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

DEFERRED METHOD collapse();

DEFERRED METHOD parse(Str:STRING):Instance;

DEFERRED METHOD check();

DEFERRED METHOD unparse():STRING;

// This two methods specialize the types

// "type1" and "type2" with the names

// of the classes involved in a many_to_many

// or ternary association.

METHOD expand_type1(st:STRING):BOOLEAN;

METHOD expand_type2(st:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Instance.

C.18 BiTree and ThreeTree

These nonterminal classes allow the declaration of instances of the two kinds of binary

trees. Both the classes contain the declaration of an attribute Atr that represents the

class containing the Link Attributes associated with the correspondent association. The

class BiTree does not contain any other declaration of attributes or methods since they

are all inherited from the superclass Instance. Instead the class ThreeTree instead

contains the declaration of the attribute type3 representing the name of the third class

involved in ternary associations and the methods to set this attribute. Following the

code correspondent to the classes is shown.

NONTERMINAL INCREMENT INTERFACE BiTree;

INHERIT Instance;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Atr;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheAtr : Atr;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"many",

"(#",

"type1:<",

type1,

C.18. BITREE AND THREETREE 187

";",(NL),

"type2:<",

type2,

";",(NL),

TheAtr,(NL),

"#)",

";",(NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):BiTree;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE BiTree.

NONTERMINAL INCREMENT INTERFACE ThreeTree;

INHERIT Instance;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Identifier;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

type3 : Identifier;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"ternary",

"(#",

"type1:<",

type1,

";",

"type2:<",

type2,

";",

"type3:<",

type3,

";",

"#)",

";"

188 APPENDIX C. TEXTUAL EDITOR SPECIFICATION

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ThreeTree;

IMPLICIT METHOD check();

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// This method specializes type3 with the name

// of the third class involved in the ternary

// association.

METHOD expand_type3(st:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ThreeTree.

Appendix D

De�ned Messages

This Appendix gives a brief presentation of the messages we have de�ned in the spe-

ci�cation of the communication protocol that implements our mapping from OMT to

Beta. For each of these messages we have speci�ed a Message, representing a service

request, and a Service, representing the object that executes the request by interacting

with the textual editor. Each Message has been declared as a specialization of the pre-

de�ned class GenesisMessage, and it simply adds its own parameters and the methods

to handle them. Instead, each Service is a specialization of the prede�ned class Gen-

esisService. A Service declares the methods to create a Service object and specializes a

virtual method - Execute - which physically implements the execution of the requests.

In order to present these messages we have decided to divide them on the basis of the

OMT concepts they implement. However, we will see that sometimes it is not possible

to follow this division since some messages are used to implement more the one OMT

concept.

D.1 Class

On classes we have de�ned the messages to:

� Create and delete a class;

� Add attributes and operations;

� Add virtual operations;

� Change the name of an attribute or operation;

� Delete a declaration;

When the user graphically adds a new class and inserts its name, the graphical editor

sends the message CreateClassMessage to the textual editor in order to perform the

189

190 APPENDIX D. DEFINED MESSAGES

same operation also in the textual representation. The message and its parameters are

shown below:

CreateClassMessage(Document, ClassName)

where: Document is the name of the document (see section 9.3);

ClassName is the name of the class to insert.

The corresponding Service, CreateClassService, receives the message and executes

the request. It uses the parameter Document in order to �nd the correct textual doc-

ument where it has to add the new class. Then, it selects the list of all the declared

classes and requests the textual editor to add a new one at the end of this list. Fi-

nally, it asks the textual editor also to set the name of this new class with the string

ClassName received as parameter.

To change the name of a de�ned class the user selects the corresponding method in

the graphical editor and inserts the new name. The same method in turn sends the

message ChangeDeclNameMessage to the textual editor to update also the textual rep-

resentation. The message is shown below.

ChangeDeclNameMessage(Document, OldName, NewName)

where: Document is the name of the document;

OldName is the old name of the class;

NewName is the new name of the class.

The class ChangeDeclNameService receives this message and executes the request. It

selects the right document and the right declaration, respectively identi�ed by the

parameters Document and OldName. Obviously, in this case the selected declaration is

the declaration of a class. Then it asks the textual editor to change the name of the

declaration with the string NewName.

In order to allow the insertion of attributes and operations we have de�ned other four

messages. When the user adds a new attribute it has to specify if he wants to insert

a \simple" or a repetition attribute. In the �rst case the graphical editor sends the

message AddAttributeMessage, otherwise the message AddRepetitionMessage.

AddAttributeMessage(Document, ClassName, AttributeName, AttributeType)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

attribute;

AttributeName is the name of the new attribute;

AttributeType is the type of the new attribute.

D.1. CLASS 191

To execute this request the class AddAttributeService �rst selects the proper textual

document and class, by means of the parameters Document and ClassName, and after-

wards it asks the textual editor to create a new part object template and sets its name

and type with the strings AttributeName and AttributeType received as parameters.

Instead to add a repetition attribute we have de�ned the message:

AddRepetitionMessage(Document, ClassName, AttributeName, Range,attribute-

Type)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

attribute;

AttributeName is the name of the new attribute;

Range is the range of the repetition attribute;

AttributeType is the type of the repetition attribute.

In this case the Service AddRepetitionService performs almost the same actions of

the AddAttributeService class but it also sets the range of the repetition.

When the user adds a new operation on a class, the graphical editor checks if the opera-

tion returns a value or not. In the �rst case it sends the message AddFunctionMessage,

otherwise the message AddProcedureMessage.

AddFunctionMessage(Document, ClassName, FunctionName, Parameters, Enter)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

function;

FunctionName is the name of the new function;

Parameters represents the declaration of all the parameters in one string;

Enter contains the string to be inserted in the enter part of a functional

pattern.

AddProcedureMessage(Document, ClassName, ProcedureName, Parameters,

Enter)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

procedure;

ProcedureName is the name of the new procedure;

Parameters represents the declaration of all the parameters in one string;

Enter contains the string to be inserted in the enter part of a procedure

pattern.

192 APPENDIX D. DEFINED MESSAGES

The Messages and the corresponding Services have almost the same structure. The only

di�erence is in the methods the two Services invoke on the textual editor. They �rst

select the proper textual document and class, by means of the parameters Document

and ClassName. Then they ask the textual editor to add a new functional or procedure

pattern template and set the name, the declarations of the parameters and the enter

part with the strings they received as parameters. Moreover, AddFunctionMessage

has not to bother about the exit-part of the functional pattern, since the textual editor

always produce a pattern which returns a �xed variable result. The declaration of this

variable is then part of the Parameters argument.

If the operation the user wants to insert has been already de�ned in a superclass, then

the graphical editor does not allow the insertion of the operation (with the two messages

above) but decides to create a binding operation. Therefore it sends one of the mes-

sages AddBindingFunctionMessage or AddBindingProcedureMessage as shown below.

AddBindingFunctionMessage(Document, ClassName, FunctionName)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

function;

FunctionName is the name of the new binding function.

AddBindingProcedureMessage(Document, ClassName, ProcedureName)

where: Document is the name of the document;

ClassName is the name of the class in which we want to insert the new

procedure;

ProcedureName is the name of the new binding procedure.

The two corresponding Services perform exactly the same actions of the Services

AddFunctionService and AddProcedureService respectively, but they ask the tex-

tual editor to create a new binding functional or procedure pattern template.

To allow the deletion of attributes, operations and, as shown later, associations, we

have de�ned only one message, DeleteDeclMessage.

DeleteDeclMessage(Document, ClassName, DeclName)

where: Document is the name of the document;

ClassName is the name of the class containing the declaration the user

wants to delete;

DeclName is the name of the declaration to delete.

This message is received by the Service DeleteDeclService which executes the dele-

tion. It �rst selects the textual document and the class corresponding to the parameters

D.2. ASSOCIATION 193

Document and ClassName and, afterwards, interacts with the textual editor to select

the declaration whose name is DeclName and deletes it.

The last message we have de�ned on classes is the one the textual editor sends when the

user wants to delete a class. We have therefore de�ned the message DeleteClassMes-

sage shown below.

DeleteClassMessage(Document, ClassName)

where: Document is the name of the document;

ClassName is the name of the class to delete.

This message is received by the Service DeleteClassService which selects the textual

document Document and then looks for the class ClassName. When the textual editor

returns the pointer to this class, the Service invokes the method delete decl to delete

the class.

D.2 Association

On associations we have de�ned the messages to:

� Create a One to One association;

� Create an ordered or not-ordered One to Many association;

� Create a Many to Many association;

� Create a ternary association;

� Change the name of an association.

To delete an association or to add and delete a Link Attribute we have used the same

messages already seen for classes.

When the user graphically adds a new association, the graphical editor sends one of

the following messages to allow the creation of the corresponding association.

CreateAss 1 1Message(Document, Class1 Name, AssName, Class2 Name)

where: Document is the name of the document;

Class1 Name is the name of the class in which the new association has to

be inserted;

AssName is the name of the new One to One association;

Class2 Name is the name of the other class involved in the association.

194 APPENDIX D. DEFINED MESSAGES

This message is received by the Service CreateAss 1 1Service that implements the

creation of the association. The Service selects the textual document correspondent

to the parameter Document. Then it looks for the class Class1 Name in which it has

to insert the declaration of the association and asks the textual editor to add a new

One to One template at the end of the declarations of that class. Afterwards it sets

the name of the association with the string AssName and the pointer of the association

with the name of the other class involved in the association, that is the last parameter,

Class2 Name.

CreateAss 1 ManyMessage(Document, Class1 Name, AssName, Class2 Name)

where: Document is the name of the document;

Class1 Name is the name of the class in which the new association has to

be inserted;

AssName is the name of the new association;

Class2 Name is the name of the other class involved in the association.

CreateOrderedAss 1 ManyMessage(Document, Class1 Name, AssName, Class2 Name)

where: Document is the name of the document;

Class1 Name is the name of the class in which the new association has to

be inserted;

AssName is the name of the new association;

Class2 Name is the name of the other class involved in the association.

These messages are received respectively by the Services CreateAss 1 ManyService

and CreateOrderedAss 1 ManyService whose implementation is almost the same of

the Service above. The only di�erence is that in this case a new One to Many or Ordered

template is created.

When the user adds a new Many to Many or ternary association the graphical editor

sends one of the messages CreateAss Many ManyMessage or CreateTernaryMessage

in order to create the same association also in the textual document.

CreateAss Many ManyMessage(Document, Class1 Name, AssName, Class2 Name)

where: Document is the name of the document;

Class1 Name is the name of the �rst class involved in the association;

AssName is the name of the new association;

Class2 Name is the name of the other class involved in the association.

CreateTernaryMessage (Document,Class1 Name, AssName, Class2 Name,

Class3 Name)

D.3. GENERALIZATION 195

where: Document is the name of the document;

Class1 Name is the name of the class in which the new association has to

be inserted;

AssName is the name of the new association;

Class2 Name and Class3 Name are the names of the other classes involved in

the association.

These messages are received by the Services CreateAss Many ManyService and Create-

TernaryService whose implementation is completely di�erent from those of the other

messages used to create associations we have seen before. These Services select the tex-

tual document corresponding to the parameter Document. Then they look for the class

Class1 Name in which they have to insert the declaration of the association. Therefore

they ask the textual editor to add a new Many to Many or Ternary template at the end

of the declarations of that class, and they set the name of the association with the para-

meter AssName. Then they perform the same actions but with the classes Class2 Name

and/or Class3 Name. Finally, they have to add a new BiTree or ThreeTree template

in order to instantiate the binary tree implementing the association. Therefore they

ask the textual editor to add a new BiTree or ThreeTree template and set the types

of the elements of this tree with the names of the involved classes.

To change the name of an association the user invokes the correspondent method in

the graphical editor. This method in turn sends the message ChangeAssNameMessage

to update the textual document. The message is shown below.

ChangeAssNameMessage(Document, ClassName, OldName, NewName)

where: Document is the name of the document;

ClassName is the name of the class in which the declaration has been

de�ned;

OldName is the old name of the declaration;

NewName is the new name of the declaration.

The Service ChangeAssNameService receives this message and implements the requests.

It selects the textual document correspondent to the parameter Document and the

class in which the association has been inserted. Then it selects the declaration of the

association corresponding to the name OldName and asks the textual editor to change

this name with the string NewName.

D.3 Generalization

On Generalization we have de�ned the message to:

� Specialize a subpattern with the name of the superpattern;

196 APPENDIX D. DEFINED MESSAGES

� Transform an operation into a virtual operation.

When a new class is added in a generalization relationship, this class needs to be de-

clared as a subclass of another class. Therefore the textual editor sends the message

SetSuperPatternMessage to implement this service.

SetSuperPatternMessage(Document, ClassName, SuperPattern)

where: Document is the name of the document;

ClassName is the name of the subclass in which the name of the

superpattern has to be inserted;

SuperPattern is the name of the superpattern.

The Service SetSuperPatternService selects the textual document Document and the

class ClassName. Then it asks the textual editor to specialize the subpattern setting

the superpattern with the parameter SuperPattern.

When a new operation is inserted in a subclass or when a new generalization is cre-

ated, the graphical editor checks if the operations of the subclass have the same name

of others operations in the superclass. In this case these last operations need to be

transformed into virtual operations. Therefore the graphical editor sends the following

message MakeVirtualMessage to perform this transformation.

MakeVirtualMessage(Document, ClassName, OperationName)

where: Document is the name of the document;

ClassName is the name of the superclass in which the operation has to be

transformed in a virtual operation;

OperationName is the name of the operation to transform.

The Service MekeVirtualService executes the service request. It selects the textual

document correspondent to the parameter Document and the class correspondent to the

parameter ClassName. Then it looks for the operation OperationName and invokes on

this operation the de�ned method make virtual.

D.4 Aggregation

On Aggregation we have de�ned the message to allow the propagation of operations

from an aggregate to its component classes. This message contains also as parameter a

string, Imperative, representing the imperatives to be performed in the aggregate to

propagate the operation to the component classes (see section 5.1).

PropagateOperationMessage(Document, ClassName, OperationName, Imperative)

D.4. AGGREGATION 197

where: Document is the name of the document;

ClassName is the name of the class in which the operation has to be

propagated;

OperationName is the name of the operation to propagate;

Imperative is the list of the imperative that must be inserted in the do

part of the class propagating the operation.

The corresponding Service, PropagateOperationMessage, receives the message and

executes the requests. It uses the parameter Document in order to �nd the correct

textual document where it has to propagate the operation. Then it selects the class and

the operation correspondent to the other parameters, ClassName and OperationName,

and inserts the imperatives, received in Imperative, in the textual representation of

the operation.

