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List of Symbols and Abbreviations

Symbols

y Dependent values (in R)

x Independent values/covariates (lying in X ⊂ Rk)

X Covariate space (subset of Rk)

n Number of observations

Pθx
Residual probability distribution at the covariate value x

θx Parameter describing the residual probability distribution at x

Θ Parameter space, i.e. θx ∈ Θ for all x ∈ X

δξ(.) Probability measure degenerated at ξ (unit point mass at ξ )

1B(x) Indicator function for the set B i.e. 1B(x) = 1 if x ∈ B and otherwise 0

R+,N+ Set of positive real numbers and set of positive integers.

SN The probability simplex, i.e. SN = {(π1, . . . ,πN) ∈ RN : ∑
N
h=1 πh = 1,πh ≥ 0}

ξ Latent variables (usually parameters of a kernel function with ξ ⊂ Ξ)

Π(dθ) Prior distribution for the (possibly infinite dimensional) parameter θ
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Abbreviations
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cdf Cumulative distribution function

TSP Abbreviation for two sided power (distribution)
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Chapter 1
Introduction

Nothing in nature is random.... A thing appears random

only through the incompleteness of our knowledge.

Baruch Benedictus de Spinoza (1632-1677)

This thesis is concerned with a fundamental problem in the analysis of empirical data:

Suppose you obtain data points (yi, xi), for i = 1, . . . , n, and the task is to explain the

response values y ∈ R in terms of input values x ∈ X ⊂ R
k, while incorporating

geometric or structural information in form of shape constraints. Examples for shape

constraints which will be investigated in this thesis are monotonicity, convexity and

concavity constraints, when modelling a functional relationship, and a stochastic or-

dering constraint when modelling probability distributions.

As a practical example, where imposing a shape constraint is adequate, consider the

data displayed in Figure 1.1, containing the height of a child over a period of 312

days (see Ramsay (1998) for further information). In this situation it is reasonable to

assume that the height of the child increases monotonically with time, and any statisti-

cal model should incorporate this type of geometric prior information (see Section 3.5

for an evaluation of this example). As a second example Figures 1.2 (i) and (ii) display

histograms of the birth weight of newborns (in grams) for smoking and non-smoking

mothers, participating in the US Collaborative Perinatal Project (see Longnecker, Kle-

banoff, Zhou and Brock (2001) for details). As nicotine is well known to be a toxic

substance, it is reasonable to assume that the distribution of birth weight for new-

borns of non-smoking mothers is (stochastically) not smaller than that of newborns

from smoking mothers. Again this information should be incorporated in the statis-
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Figure 1.1: Height measurements of a child over 312 days.

tical model, and our analysis in Section 2.1.1 will do so. Another example of shape

constrained inference we will encounter in this thesis are pharmaceutical dose-finding

studies. Figure 1.3 displays data from a pharmaceutical phase II dose-finding trial

for the treatment of the irritable bowel syndrome (see Biesheuvel and Hothorn (2002)

for additional information). In these type of trials it is biologically reasonable to as-

sume either a monotonic or a unimodal relationship (due to potential toxicity at larger

doses) between the dose administered and the dose effect, and again this should be

incorporated in the used statistical model (see Bretz, Hsu, Pinheiro and Liu (2008) for

a recent review of pharmaceutical Phase II trials). In Chapter 3 we will investigate this

application in more detail.

(i)
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Figure 1.2: Birth weights for newborns with non-smoking and smoking mothers.



3

0 1 2 3 4

−
1

0
1

2
3

Dose

B
as

el
in

e 
ad

j. 
A

bd
om

ia
l P

ai
n 

S
co

re

Group Means
Observations

Figure 1.3: Data from a dose-response trial on the irritable bowel syndrome.

In this thesis we will approach the problem of shape constrained modelling from the

Bayesian perspective. In this framework, probability is used to model two different

kinds of uncertainties. The first use of probability is for modelling the uncertainty in

the observations (i.e. the residual error), and the second use is for quantifying the un-

certainty in the statistical model before any data are observed. Throughout this thesis

probability (as in the quote of Spinoza) is hence meant as a quantification of uncer-

tainty (the things we do not know) rather than true randomness.

It is, for example, usually not reasonable to assume that observations are made with

absolute precision. For the data in Figure 1.1 it is quite likely that there are simple mea-

surement errors, resulting in an uncertainty in the observed values. Additionally in

most practical situations it is not reasonable to assume that we have all relevant inputs

x available, which influence y (then one could perfectly explain ywith the information

contained in x and an interpolation model without any error term would be suited).

In practice, some inputs might have been forgotten, while others might be too expen-

sive to measure or not measurable at all. In the case of birth weight of newborns, for

example, it is hardly imaginable to find a realistic set of predictors, such that one can

perfectly predict the birth weight of a newborn. So there is often heterogeneity in the

data, which cannot be explained by the inputs x. The traditional statistical approach

to account for this unobserved heterogeneity (and more generally for uncertainty in



4 Introduction

the observed values) is to model y, given the inputs x as the realisation of a probability

distribution Pθx
, depending on parameters θx, which vary with x. The distribution Pθx

for a given θx and x hence represents the uncertainty in y, which cannot be explained

by the inputs x.

An important question is now, how to set up the statistical model for the collection

of residual probability distributions FX = {Pθx
with x ∈ X}. There exist two main

type of approaches for this task: The parametric and the nonparametric approach. The

parametric approach imposes a strong structural assumption: A probability distribu-

tion from a known family is specified for Pθx
, which depends on a parameter θx, lying

in a finite dimensional space Θ for all x ∈ X . So the functional form of Pθx
and θx

are assumed to be known and only finitely many unknowns need to be inferred from

the data. While the parametric approach is adequate in many modelling situations,

there are situations, where it is difficult to make these underlying assumptions. The

nonparametric approach overcomes this by being less restrictive: Here Pθx
and θx ∈ Θ

(themselves as a probability measure or a function) are treated as unknown, rather

than just a set of finitely many parameters describing them and the space Θ is hence

infinite dimensional. Rather than having no parameters (as the name nonparametric

might suggest), nonparametric models typically have infinitely many parameters.

We keep the discussion rather general at this point: In some situations, even in the

nonparametric setting, a parametric family is assumed for Pθx
for a given θx and only

the θx is modelled nonparametrically (i.e. using an infinite-dimensional object). One

example is nonparametric regression with normally distributed errors, here Pθx
=

N(µ(x), σ2) (hence θx = (µ(x), σ2)′) and only the conditional mean function µ(x) is

modelled nonparametrically. On the other hand, the used notation also includes non-

parametric univariate density estimation: Here there is no dependence on any input

parameter x, and only the residual distribution Pθ is modelled nonparametrically. This

situation occurs, for example, when one uses an infinite mixture of normal distribu-

tions for the density of Pθ, i.e. ∑h πhφ(y, µh, σ
2
h), where φ(y, µ, σ2) denotes the density

of a normal distribution with mean µ and variance σ2 and ∑h πh = 1. In this situation

the parameter θ is given by (π1, µ1, σ
2
1 ,π2, µ2, σ

2
2 , . . .)

′, and does not depend on any x.

How do we infer reasonable values for Pθx
and θx for x ∈ X , based on the data
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(yi, xi), i = 1, . . . , n that have been observed? Here we encounter the second use

of probability within the Bayesian framework, namely that for quantifying the uncer-

tainty in the statistical model Pθx
, x ∈ X before any data are observed. The main idea

is (roughly) the following: We do not know Pθx
for x ∈ X and are hence uncertain

about their particular value. One can quantify this uncertainty in terms of a probabil-

ity distribution, the so-called prior distribution for Pθx
, x ∈ X (see Lindley (2000) for

philosophical arguments that probability is an adequate measure for quantifying un-

certainty). Once data have been observed, we have the distribution of yi conditional

on Pθxi
for i = 1, . . . , n (the residual or sampling distribution), and the prior distri-

bution for Pθx
, x ∈ X . Now one can use the apparatus of probability theory (Bayes

theorem) to form the conditional distribution of Pθx
given the data (the posterior dis-

tribution). This posterior distribution plays a central role in the Bayesian approach:

It merges information about Pθx
contained in data and prior distribution, and thus

forms the basis for subsequent decision making.

In the parametric situation, prior (and posterior) distributions are typically supported

on a finite dimensional subset of Rk. In the nonparametric situation the unknown

object is a function or a probability measure and hence infinite dimensional, so prior

distributions are typically stochastic processes, which in this sense can be seen as ex-

tensions of finite dimensional distributions to the infinite case. Setting up a nonpara-

metric prior distribution is hence more challenging than in the parametric situation:

There the finite number of parameters often have a meaning in the context of the ap-

plication and it is typically possible to incorporate prior information (or lack thereof)

into the problem. In the nonparametric situation, we need a prior distribution for

FX = {Pθx
with x ∈ X}, which is a quite complex object. Intuitively any prior

distribution, should ideally fulfill two properties: (i) Adequacy: It should reflect the in-

formation about the underlying statistical model before any data are observed (which

might be, depending on the situation, very scarce). (ii) Full Support: It should assign

positive probability to all statistical models, which are relevant in the application. This

requires that one can approximate any statistical model in a (usually problem specific)

mathematical distance measure and the prior needs to assign positive probability to

any of these approximations. The full support requirement (ii) is mainly of mathemat-
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ical nature, but a relieving property: It ensures that we assign positive probability to

all statistical models which are reasonable a-priori, and hence also allow the posterior

probability to put its mass there. Certainly the quantification of prior information in

(i) is a challenging issue in the nonparametric situation, as prior distributions are de-

fined on abstract spaces such as the space of probability measures on R or the space

of continuous functions on [0, 1]. However, in many situations it is possible to ob-

tain summaries for the prior distribution such as the first two moments and one can

center the priors on a prior guess, for example a parametric model, and associate this

prior guess with an appropriately large variability. It is also helpful to employ models,

which remain at least in some important aspects interpretable, so that one can match

the prior distribution for these interpretable aspects with the potential prior informa-

tion available.

A very useful tool to reduce the effective complexity of the model are, when adequate,

shape constraints (see Appendix A.1 for an overview of different type of shape con-

straints encountered in this thesis). They allow to incorporate geometric prior infor-

mation and by this allow to narrow down the class of statistical models achieving that

no prior probability mass (and hence also no posterior probability mass) is “wasted”

on models, which are implausible a-priori. Statistically this in turn considerably im-

proves the efficiency of inference. For instance in the growth curve example, it makes

sense to exclude non-monotonic curves from the prior distribution and inference can

focus on the relevant class of monotonic functions. In addition shape constraints are

usually very intuitive to interpret and communicate. This thesis is devoted to these

types of assumptions in particular in the highly flexible nonparametric situation.

The outline of this thesis is as follows: In the next chapter we will introduce the ba-

sics of Bayesian nonparametrics, to equip the reader with the necessary mathematical

and statistical background for the main Chapters 3, 4 and 5. In these chapters we

develop novel Bayesian nonparametric models for three concrete problems in shape

constrained inference: Chapter 3 deals with Bayesian nonparametric regression un-

der a monotonicity assumption, Chapter 4 treats shape constraints on the derivative

of the modelled function and Chapter 5 proposes a method for stochastically ordered

density regression. Chapter 6 concludes this work.



Chapter 2
Bayesian Nonparametrics

With four parameters I can fit an elephant, and with five I

can make him wiggle his trunk.

John von Neumann (1903-1957)

In this chapter we will give a review of Bayesian nonparametric (BNP) methodolo-

gies. The literature on nonparametric Bayesian methods has exploded in the last few

years and we will not try to review all relevant developments, the focus will lie on

ideas, which will be needed as background for Chapters 3, 4 and 5. Other reviews

of nonparametric Bayesian methods are given, for example, in Müller and Quintana

(2004), O’Hagan and Forster (2004, ch. 13), Dey and Rao (2005, ch. 10-13) or Walker,

Damien, Laud and Smith (1999), for an earlier reference. Books about nonparamet-

ric Bayesian statistics are, for example, Dey, Sinha and Müller (1998), which describes

the use of BNP methods in a variety of practical problems, Ghosh and Ramamoorthi

(2003), which concentrates on an asymptotic analysis of Bayesian nonparametrics and

the forthcoming book by Hjort, Holmes, Müller and Walker (2010).

Interest in Bayesian nonparametric methodologies started to grow with the publica-

tion of the paper by Ferguson (1973), where a nonparametric prior for a probability

measure, the Dirichlet process, was introduced in the form it is currently in use, and

its conjugacy property was proved. Although numerous generalizations have been

proposed in the meantime, the Dirichlet process still provides the building block of

many nonparametric models. A second breakthrough was the publication of the pa-

pers by Blight and Ott (1975) and by O’Hagan (1978), who use the Gaussian process

as a prior for the conditional mean function in nonparametric regression under nor-
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mally distributed errors (which is the conjugate prior in this setting), and the paper of

Dykstra and Laud (1981), who propose extensions of the gamma process as a prior for

intensities in survival analysis (see also Ferguson and Phadia (1979), Doksum (1974),

and Hjort (1990) for important contributions to survival analysis). A major practical

limitation of these early approaches was the fact that only a (relatively) small and sim-

ple class of models could be analyzed. This situation changed when Markov Chain

Monte Carlo methodologies such as the Gibbs sampler (Gelfand and Smith 1990) and

the Metropolis-Hastings algorithm (Tierney 1994) became popular, which can also be

applied in the nonparametric situation with some adaptions. The availability of these

algorithms together with the increase in computing power led to an upsurge of interest

in nonparametric Bayesian methods in all type of practical applications in the last 20

years, see, for example, the forthcoming review articles of Dunson (2010) and Müller

and Quintana (2010), which illustrate the use of nonparametric Bayesian methods in a

variety of important and difficult applied problems in biostatistics. On the theoretical

side, interest in BNP methodologies has focused in the last years either on probabilis-

tic properties of the underlying stochastic processes used as priors or on asymptotic

properties of BNP methodologies.

The outline of the rest of this chapter is as follows: The first section deals with priors

for probability measures. Section 2.2 deals with priors for functions and Section 2.3

briefly reviews the asymptotic viewpoint on Bayesian nonparametrics, which is help-

ful for a mathematical understanding of Bayesian nonparametrics. Although the main

examples of shape constrained inference can be found in Chapters 3, 4 and 5, there will

be a focus on shape constrained inference already in this chapter.

2.1 Priors for Probability Measures

Let (Ξ,B) be a measurable space. This chapter is concerned with prior distributions

for probability measures on (Ξ,B), i.e. stochastic processes (also called random proba-

bility measures), which generate probability measures P on Ξ. We keep the discussion

fairly general in this section, apart from (Ξ,B) being a measurable space no other as-
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sumption will be made in most of this section, particularly Ξ remains unspecified, as

we will encounter different choices of Ξ in this thesis. First we will concentrate on the

Dirichlet process as a prior for a probability measure, following the historic develop-

ments and because of its importance. Later we will present a generalization.

The Dirichlet process was popularized in its current form by Ferguson (1973). A

Dirichlet process P on (Ξ,B) has two parameters (M, P0)
′, where M ∈ R+ is a preci-

sion parameter and P0 a probability measure on (Ξ,B).

Definition 2.1.1 (Dirichlet Process).

P is distributed according to a Dirichlet process, if and only if the joint distribution of

(P(B1), . . . , P(Bk))
′ for any finite partition (B1, . . . , Bk)

′ of the sample space Ξ has a k − 1

dimensional Dirichlet distribution with parameter (MP0(B1), . . . ,MP0(Bk))
′.

The Dirichlet distribution is a multivariate continuous distribution, generating values

on the k − 1 dimensional probability simplex Sk = {(π1, . . . ,πk) ∈ Rk : ∑
k
h=1 πh =

1, πh ≥ 0}. From the properties of the beta distribution (the Dirichlet distribution

in one dimension) it follows that E(P(B)) = P0(B) and Var(P(B)) = P0(B)(1−P0(B))
M+1 .

Hence the base probability measure P0 is the prior mean of the Dirichlet process and

the parameter M determines the variability in the prior distribution: For larger M, we

obtain a smaller variance.

The important property of the Dirichlet process proved by Ferguson (1973) is the con-

jugacy to an independent and identically distributed sample y1, . . . , yn from a distri-

bution P on Ξ: Assuming a Dirichlet process prior with parameter M and P0 for P
the posterior distribution for P is again a Dirichlet process, with updated parameters

(M + n, P∗
0 ) with P∗

0 = (MP0 + nFn)/(M + n), where Fn = 1
n ∑

n
i=1 δyi is the empirical

probability measure of the observed data, and δyi the probability measure degenerated

at yi. The posterior mean is hence given by E(P(B)|y1 , . . . , yn) = P∗
0 (B) and the pos-

terior variance by Var(P(B)|y1 , . . . , yn) =
P∗
0 (B)(1−P∗

0 (B))
M+n+1 so that the posterior Dirichlet

process is a compromise between the prior mean P0 and the empirical probability mea-

sure. When the sample size n increases, one can see from the formula for P∗
0 that the

data will eventually dominate the posterior mean and the posterior variability of P(B)

converges to 0. Additionally a simple application of Chebyshev’s inequality and the
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triangle inequality in Theorem 2.1.1 shows that P(B) converges in probability towards

the true probability P(B) when n → ∞ (a refined treatment of asymptotics can be

found in Section 2.3).

Theorem 2.1.1.

Let P denote a realization from the posterior of a Dirichlet process based on n observations.

Then for B ∈ B
P(B)

P→ P(B) as n → ∞.

Proof.

|P(B) −P(B)| ≤ |P(B) − P∗
0 (B)| + |P∗

0 (B) −P(B)|

≤ |P(B) − P∗
0 (B)| +

∣∣∣∣∣P
∗
0 (B) − 1

n

n

∑
i=1

1B(yi)

∣∣∣∣∣+
∣∣∣∣∣
1

n

n

∑
i=1

1B(yi)−P(B)

∣∣∣∣∣

The first summand converges in probability to zero because of Chebyshev’s inequal-

ity. The second summand converges deterministically to zero and the last summand

converges almost surely towards zero, because of the law of large numbers. �

There are several equivalent ways of defining the Dirichlet process, but the defini-

tion given by Sethuraman (1994) turned out to be particularly interesting, because

it inspired computational approaches to analyse models based on the Dirichlet pro-

cess. Additionally it directly shows that the Dirichlet process only generates discrete

probability measures, which is not directly obvious from Definition 2.1.1. Sethura-

man showed that the law of a Dirichlet process is identical to the law of the random

probability measure

P(dξ) =
∞

∑
h=1

πhδξh
(dξ), with ξh

iid∼ P0 , (2.1)

where P0 is the base probability distribution on Ξ and πh = Vh ∏l<h(1 − Vl) with

Vh
iid∼ Beta(1,M), is the probability mass allocated to ξh. This representation is often

called the stick-breaking representation, because starting with a probability stick of

length one, V1 is the proportion of the stick broken off and allocated to ξ1, V2 is the

proportion of the remaining 1− V1 stick length allocated to ξ2, and so on. The distri-

bution induced for π1,π2, . . . is also called Griffiths-Engen-McCloskey (GEM) distri-

bution (see Ishwaran and Zarepour (2002)). From this stick-breaking representation it
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Figure 2.1: Cumulative distribution function of four simulations from a Dirichlet pro-
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precision parameters M.

becomes obvious that the precision parameter M also determines how the total proba-

bility mass is allocated to the support points of the generated probability measure: For

small M, most probability mass will be distributed on the first realizations of P0, for

M → ∞ there will be many realisations with a larger probability mass and a specific

realization P will be more similar to P0. This becomes visible also in Figures 2.1 and

2.2, where one can observe the cumulative distribution functions and the probability

mass function of realizations from a Dirichlet process for two different values of M.

However the main practical hindrance in using the Dirichlet process is its discreteness.

Most commonly continuous phenomena are modelled, and in this case a discrete ran-

dom probability measure simply does not reflect the prior information. A simple and

very versatile approach to overcome this discreteness issue are mixture models. A

mixture model can be represented as the following hierarchical model

Yi ∼ f (.|ξ i), i = 1, . . . , n, ξ1, . . . , ξn ∼ P(dξ),

where f (.|ξ) is the density of a parametric distribution, depending on parameters ξ ∈
Ξ and P(dξ) is a discrete mixing distribution, so that some of the ξi can be equal in the

above formula. Another, equivalent, way of representing this hierarchical model is by
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Figure 2.2: Probability mass function for two simulations from a Dirichlet process with

P0 = N(0, 1); one with precision parameter M = 1 and one with M = 20.

integrating out the latent variables ξh
∫

f (y, ξ)P(dξ) = ∑ πh f (y, ξh).

As a prior for the discrete mixing distribution P(dξ) one can now use the Dirichlet

process, with parameters M and P0. So the Dirichlet process is used in a higher level

of the hierarchy, as a prior for the latent variables ξh, instead of modeling the residual

distribution directly by a Dirichlet process. The choice of the parametric density f (., ξ)

depends on the application: When it is desired, for example, to model a distribution

on R one might choose the normal density for f (., ξ), so that ξ = (µ, σ2) and Ξ =

R × R+. Then the model is similar to the traditional kernel density estimator with a

Gaussian kernel. Similarly one might use the beta density when there are bounds on

the distribution, or the gamma distribution when the sample space of interest is (0,∞).

When one is not explicitly interested in modelling a probability distribution, one can

even allow an arbitrary integrable function g(z, ξ), g : Z × Ξ 7→ R as the function

which is mixed (and this will be done in Chapters 3, 4 and 5). The mixing idea is

hence quite general and can be used to model arbitrary functions, not only probability

densities.

When the focus is on modelling probability distributions, additional guidance for the

choice of f (.|ξ) is given by approximation theoretic considerations: It is for example

desirable to use a density f (.|ξ) generating mixtures, which are rich enough to ap-



2.1 Priors for Probability Measures 13

proximate (with respect to a specified distance measure) any probability measure on

the underlying space (for example, any continuous probability distribution on R). This

is a necessary requirement to achieve full support in the chosen distance measure for

the constructed prior distribution. Actually, this is also one of the major assumptions

for consistency in an asymptotic analysis of BNPmethods, where the Kullback-Leibler

divergence plays a prominent role (see Wu and Ghosal (2008) for a collection of ker-

nels for which the full support property holds with respect to this distance measure).

We will discuss the asymptotic aspects more extensively in Section 2.3.

In a mixture modelling framework shape constrained inference problems can often

be reduced to unconstrained inference, with a clever choice of the kernel, i.e. the

density function f (., ξ), as Lo (1984) notes (see also Brunner and Lo (1989), Brunner

(1992), or Hansen and Lauritzen (2002)). For example, any monotonically decreasing

density on [c,∞) with c ∈ R can be represented as a mixture of uniform densities

f (y, ξ) = 1
ξ−c1[c,ξ](y), ξ > c. Any unimodal distribution on R with mode 0 can be rep-

resented as a mixture of kernels of the following form f (y, ξ) = 1
ξ (1(0,ξ](y) − 1[ξ,0)(y))

with ξ ∈ R. Similarly any completely monotone density can be written as a mix-

ture of densities from the exponential distribution, according to a theorem of Bern-

stein (Lo 1984). Hence with a clever choice of the density function f (y, ξ) one can

turn a shape constrained inference problem into an unconstrained mixture estimation

problem. A variety of further examples exploiting this idea for general constrained

inference problems are given in the article of Hoff (2003b). As becomes obvious, this

general “discrete mixture” idea is an extremely powerful tool and we will extensively

use it in Chapters 3, 4 and 5, also in more abstract settings than the one presented here.

Although the mixture idea was already introduced by Antoniak (1974), shortly after

Ferguson’s paper, a practical applicationwas not possible because updating of the pos-

terior distribution is computationally very hard. When a base measure P0 conjugate

to the density function f (., ξ) is used, analytical updating is possible, but it involves

calculation of all possible partitions from the data points, see Lo (1984), and is thus in-

feasible for realistic sample sizes. The main computational advance was the paper by

Escobar and West (1995), where a Gibbs sampler is derived for sampling the posterior

distribution in this type of model. Without going into details the basic idea is to inte-
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grate out the Dirichlet process via the Blackwell and MacQueen (1973) alternative (so

called Pólya urn-) representation of the Dirichlet process. See MacEachern and Müller

(1998), Neal (2000) or Ishwaran and James (2001), for reviews of this computational

methodology. An alternative versatile method for simulating the posterior distribu-

tion is the blocked Gibbs sampler introduced by Ishwaran and James (2001). The main

idea of this type of approach is to truncate the Sethuraman representation (2.1) and

then use the finite mixture model to approximate the Dirichlet process model. The ap-

proach is not limited to the Dirichlet process and it overcomes some of the problems

with MCMC mixing encountered with the Pólya urn Gibbs sampler. Although one

can control the error made through this finite dimensional approximation (Ishwaran

and James (2001) derive error bounds), this approach is not exact. Recently however

Papaspiliopoulos and Roberts (2008) and Walker (2007) discuss procedures to turn

the blocked Gibbs sampler into an exact simulation approach. We will describe the

blocked Gibbs sampler in more detail later in Section 5.2.3.

There exist many discrete random probability measures that can be used as alterna-

tives to the Dirichlet process. Probably the most general alternative discrete random

probability measure is described by Ongaro and Cattaneo (2004), which is equivalent

to the class of species-sampling models (Pitman (1996), Ishwaran and James (2003)),

when one restricts this class to discrete random probability measures. Wewill describe

this random measure here and identify several discrete random probability measures

as a special case.

Definition 2.1.2.

A random probability measure P belongs to the Ongaro-Cattaneo class when its realizations

can be represented as

P(dξ) =
N

∑
h=1

πhδξh
(dξ), (2.2)

where ξh,πh and N are random variables specified as follows: The ξh are independent and iden-

tically distributed realizations of a nonatomic distribution P0 on Ξ (i.e. P0({ξ}) = 0, ∀ξ ∈ Ξ)

and are independent from πh, j = 1, . . . ,N and N. The weights π1, . . . ,πN conditional on N

have a distribution QN on the N− 1 dimensional probability simplex S
N = {(π1, . . . ,πN)′ ∈

RN
+ : ∑

N
j=1 πh = 1} and N is a random variable with support {N+ ∪ ∞}.
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Most of the work in the following chapters will assume that an Ongaro-Cattaneo

random probability measure is used, and results are derived under this assumption.

Hence to illustrate the richness of this class, the following remark lists some random

probability measures, which arise as a special case of this general model.

Remark 2.1.1.

The following random measures can be identified as special cases of the Ongaro-

Cattaneo random measure from Definition 2.1.2.

• Dirichlet Process. It directly follows from Equation (2.1) that the Dirichlet pro-

cess is a member of this class. The parameter N = ∞ and the distribution for the

weights is the GEM distribution.

• Prior Process for Finite Mixtures. In finite mixture models typically N is fixed

and a symmetric Dirichlet distribution is used for the weights. In some cases N

is treated as unknown and modelled, for example, using a Poisson or a negative

binomial distribution shifted to the positive integers. See Frühwirth-Schnatter

(2006) for a review of finite mixture models. Note that formally, although typi-

cally highly flexible, these type of models are not nonparametric when N is trun-

cated.

• Stick-Breaking Priors. Stick-breaking priors are represented exactly as (2.2),

with the restriction that N is fixed (either infinite or finite) and a specific prior

is assumed for the weights πh:

πh = Vh ∏
k<h

(1−Vk), h ∈ {1, . . . ,N} with Vh
iid∼ Beta(ah , bh) (2.3)

where ah, bh > 0. If N is finite, one sets VN = 1 (to ensure ∑
N
h=1 πh = 1). The

resulting distribution of the weights πh is a generalized Dirichlet distribution

(Ishwaran and James 2001), which is conjugate to multinomial sampling. This is

the basis underlying the blocked Gibbs sampler (and the scope of priors that can

be analysed with the blocked Gibbs sampler is the class of stick-breaking priors).

When N = ∞ one needs additionally ∑
∞
h=1 log(1 + ah/bh) = ∞ as this ensures

that ∑h πh = 1 (Ishwaran and James 2001). When choosing ah = 1 and bh =

M, ∀h, one recovers the Dirichlet process as is obvious from the Sethuraman
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representation in Equation (2.1). The two-parameter Poisson-Dirichlet process

(sometimes also called Pitman-Yor process) is another famous member of this

class. It depends on two parameters a and b and has N = ∞, ah = 1− a and

bh = b + hM with a ∈ [0, 1) and b > −a.

• Dirichlet Multinomial Process. Instead of truncating the stick-breaking repre-

sentation of the Dirichlet process one can also use an alternative finite mixture

to approximate the Dirichlet process (see Ishwaran and Zarepour (2002)). Here

one uses a conservative upper bound Nmax, and a symmetric Dirichlet distribu-

tion with parameter M/Nmax for the weights πh. Ishwaran and Zarepour (2002)

show that the so obtained finite mixture model converges in distribution to the

Dirichlet process infinite mixture model as Nmax → ∞.

• Normalized Random Measures with Independent Increments. The main idea

of this class is to normalize a random measure with independent increments.

This class is a special case of the Ongaro and Cattaneo random probability mea-

sure, under a certain restriction. James, Lijoi and Prünster (2009) describe this

general class of random probability measures and consider its prior to poste-

rior analysis. To introduce this prior we need to introduce the notion of a Pois-

son random measure Ñ on R+ × Ξ with intensity ν and corresponding random

measure µ̃(B) =
∫

R+×B sÑ(ds, dξ) (sometimes also called Lévy random mea-

sure, see the Appendix A.2 for details). Now define by T = µ̃(Ξ) (this is al-

most surely positive and finite if for ν(ds, dξ) holds
∫

R+×Ξ
ν(ds, dξ) = ∞ and

∫
R+×Ξ

[1− e−λs]ν(ds, dξ) < ∞ for all λ > 0, see James, Lijoi and Prünster (2009)

for details), the normalized random measure is then given by P̃(B) = µ̃(B)/T.

It is straightforward to see that the so constructed random measure is indeed a

random probability measure. Now the main condition to be a member of the

Ongaro-Cattaneo class is imposed on the intensity measure: If the intensity mea-

sure ν(ds, dξ) can be factorized as ν(ds, dξ) ∝ ρ(ds)P0(dξ), so that the µ̃ is homo-

geneous, this ensures that the πh and ξh are independent. The Dirichlet process

with parameter (M, P0) can be identified as a special case of this class, when the

underlying random measure is a gamma process, i.e. the Poisson random mea-

sure has the intensity measure: ν(ds, dξ) = M e−s

s dsP0(dξ). Simulation of this
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class of random probability measures can be performed by simulating the un-

derlying independent increment process, for example by using the inverse Lévy

measure algorithm (Wolpert and Ickstadt 1998b) and then normalizing.

Although the list above is quite long, there are also alternative random probability

measures, which do not directly fit into the Ongaro-Cattaneo framework, for exam-

ple Pólya trees, neutral to the right processes and the logistic Gaussian process (see

Walker et al. (1999) and Müller and Quintana (2004)). We will briefly discuss the lo-

gistic Gaussian process in the next section. A relatively recent addition to the list

of random probability measures is the quantile pyramid as introduced by Hjort and

Walker (2009), who directly specify a prior on all quantiles simultaneously to build a

prior distribution for a probability measure.

Asmentioned in the introduction for setting up prior distributions it is important to be

able to calculate prior moments, such as the prior mean and the prior covariance. Then

it is possible to adjust the prior mean to center the model at a particular probability

measure and associate a variability (i.e. uncertainty) statement with it. We will now

consider the first twomoments of the discrete random probability measure introduced

in Definition 2.1.2, hence the results are valid for the classes of probability measures

mentioned in Remark 2.1.1.

Theorem 2.1.2.

Let P be distributed according to the Ongaro-Cattaneo random probability measure P defined

in Definition 2.1.2, then for every B1, B2 ∈ B we have

E(P(B1)) = P0(B1)

Cov(P(B1), P(B2)) = k0(P0(B1 ∩ B2)− P0(B1)P0(B2)),

where k0 = E
(

∑
N
h=1 π2

h

)
.

Proof. See the proof of Theorem 2.1.3 and the comments at the end of the proof.

Hence the prior mean and the prior correlation of the discrete random probability mea-

sure is determined by the distribution P0 alone (this follows from the independence of
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the weights πh and the ξh), while for the covariance also the weights πh play a role,

mainly through the term k0, being the expected value of the squared weights.

The squared weights always lie in [0, 1]: The upper bound 1 follows from the fact that

∑
N
h=1 πh = 1 and πh ∈ [0, 1], and the lower bound follows from an application of

the Cauchy-Schwarz inequality (when N < ∞ the lower bound is 1/N). Hence it is

interesting to investigate for which values of πh one obtains the largest and smallest

variability: The upper bound (maximum variability) is achieved when there is only

one component in the mixture with non-zero weight, while the lower bound is ob-

tained when there are many components in the mixture and all have the same weight.

In this context it is interesting to note that for the Dirichlet process k0 = 1/(M + 1),

for a finite mixture model with N components and a symmetric Dirichlet distribution

with parameter γ > 0 for the weights, k0 = γ+1
Nγ+1 . The parameter k0 also has an in-

teresting interpretation, when one uses random probability measures for clustering,

where it is the prior probability, that two observations are combined in one cluster, see

Fritsch and Ickstadt (2009) for details.

Figures 2.1 and 2.2 also nicely illustrate the role of k0 for the Dirichlet process: When

M = 1, i.e. k0 = 0.5, there are only a few large weights and many almost zero weights

and consequently a larger variability (see the left hand sides of Figures 2.1 and 2.2),

while the larger M = 20 (hence k0 = 1/21) leads to realizations, where more compo-

nents have non-negligible probability mass and the prior has a smaller variability (see

the right hand sides of Figures 2.1 and 2.2). So the parameter k0 also determines the

number of elements in the mixture, which receive relevant probability mass.

When a mixture model is used, one needs a slight variation of Theorem 2.1.2, to cal-

culate prior mean and prior covariance. Suppose one mixes an integrable function

g(z, ξ), g : Z × Ξ 7→ R, with respect to a mixing distribution. The following Theorem

gives prior mean and prior covariance of G(z) =
∫
g(z, ξ)P(dξ), when the Ongaro-

Cattaneo random probability measure is assumed for the mixing distribution.

Theorem 2.1.3.

The expectation of G(z) and the covariance of G(z1) and G(z2) for z, z1, z2 ∈ Z , under the
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Ongaro-Cattaneo random probability measure (see Definition 2.1.2) are given by

E(G(z)) =
∫

Ξ

g(z, ξ)P0(dξ) (2.4)

Cov(G(z1),G(z2)) = k0

{∫

Ξ

g(z1, ξ)g(z2, ξ)P0(dξ) (2.5)

−
∫

Ξ

g(z1, ξ)P0(dξ)
∫

Ξ

g(z2, ξ)P0(dξ)

}

where k0 = E
(

∑
N
h=1 π2

h

)
∈ [0, 1].

Proof:

E(G(z)) = E

(
N

∑
h=1

πhg(z, ξh)

)
.

Conditional on N and πh the above expectation would be equal to

N

∑
h=1

πh

∫

Ξ

g(z, ξ)P0(dξ) ,

because of the independence of (N,π1,π2, . . .) and ξ1, ξ2, . . .. As ∑
N
h=1 πh = 1 regard-

less of a specific realization, it follows that the above expectation is equal to

∫

Ξ

g(z, ξ)P0(dξ).

To obtain the covariance between two points z1 and z2 one needs to calculate

E(G(z1)G(z2)) = E

(
N

∑
h=1

πhg(z1, ξh)
N

∑
h=1

πhg(z2, ξh)

)

= E




N

∑
h=1

π2
hg(z1, ξh)g(z2, ξh) +

N

∑
h=1

N

∑
j=1

h 6=j

πhπjg(z1, ξh)g(z2, ξ j)


 .

If again N and the πh were known, it follows from the independence of (N,π1,π2, . . .)

and ξ1, ξ2, . . . and the independence of ξi and ξh that the above expression would be

equal to

k
∫

Ξ

g(z1, ξ)g(z2, ξ)P0(dξ) + (1− k)
∫

Ξ

g(z1, ξ)P0(dξ)
∫

Ξ

g(z2, ξ)P0(dξ),

where k = ∑
N
h=1 π2

h. From this expression the covariance given in Theorem 2.1.3 can

easily be calculated. The expressions given in Theorem 2.1.2 can be obtained by using

indicator functions, for example g(z, ξ) = 1B(ξ). �
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Hence the main conclusions from Theorem 2.1.2 remain valid: The first moment of the

mixed distribution G(z) is only affected by the distribution P0, while the term k0 plays

an important role in the covariance.

As discussed in the introduction an important issue in nonparametric Bayesian anal-

ysis is the full support property. The following Theorem proved in Ongaro and Cat-

taneo (2004), answers the question, when the Ongaro-Cattaneo random probability

measure has full support on Ξ (in the chosen distance measure).

Theorem 2.1.4. (Ongaro and Cattaneo 2004)

Let Ŝm,= {(π1, . . . ,πm)′ ∈ Rm|∑
m
h=1 πh ≤ 1, πh ≥ 0, h = 1, . . . ,m} and suppose that N

is an unbounded random variable, i.e. P(N > m∗) > 0 for any m∗ ∈ N, and that one of the

two conditions hold

(i) for any l > 1, ∃m(l), l ≤ m(l) < ∞, such that Pr(N = m(l)) > 0 and the conditional

distribution of (π1, . . . ,πm(l)−1)|N = m(l) has positive Lebesgue density on Ŝm(l)−1.

(ii) P(N = ∞) > 0 and the conditional distribution of (π1, . . . ,πm∗)|N = ∞ admits

positive Lebesgue density on the set Ŝm∗
for any m∗ ≥ 1.

Let Q be a probability measure on Ξ which is absolutely continuous with respect to P0, i.e.

P0(B) = 0 implies Q(B) = 0, for all B ∈ B. Then for any partition B1, . . . , Bk of Ξ we have

for any ǫ > 0

Pr(P : |P(Bi)−Q(Bi)| < ǫ, i = 1, . . . , k) > 0,

where “Pr” denotes the probability under the random probability measure from Definition

2.1.2.

This result says that the random probability measure has positive prior probability on

all probability distributions Q on Ξ, which are absolutely continuous with respect to

P0. This is important, as it ensures a large support on the prior distribution. A similar

kind of result already appears in Ferguson (1973), for the special case of the Dirichlet

process. Of course Theorem 2.1.4 also covers this case, as the Dirichlet process is a

special case of the general Ongaro-Cattaneo random probability measure.
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2.1.1 Example: Modelling Stochastically Ordered Distributions

In this section we will illustrate the use of the Dirichlet process model in a practical

example. For this purpose data from the US Perinatal Project will be used, which

were already displayed in Figure 1.2. The project was conducted from 1959 to 1966,

where the exposure to environmental, social and chemical risk factors was measured

for pregnant females to evaluate the potential influence on the health status of the

newborn, see Longnecker et al. (2001) or Longnecker, Klebanoff, Brock andGuo (2005).

Suppose one would like to nonparametrically estimate the conditional distribution of

the birth weight of newborns corresponding to smoking and non-smoking mothers. It

is well known that the smoking status of the mother influences the birth weight of the

child (i.e., smoking mothers get babies which weight less). This type of information

should be incorporated when estimating both distributions. The desired shape con-

straint is hence a stochastic ordering (see Appendix A.1). In the notation of the intro-

ductionwe hencemodel the residual distribution for smoking and non-smokingmoth-

ers and x is simply a categorical variable with values “smoking” and “non-smoking”,

subsequently abbreviated as “s” and “ns”. Nonparametric modelling of stochastically

ordered distributions received some attention in recent years see Gelfand and Kottas

(2000), Hoff (2003a), Karabatsos and Walker (2007), or Dunson and Peddada (2008).

The model we present here, is relatively simple and has been implemented in the

OpenBUGS software (see http://mathstat.helsinki.fi/openbugs) using the R2WinBUGS

interface (Sturtz, Ligges and Gelman 2005) to the R statistical computing language (R

Development Core Team 2009).

The main idea is to assume a hierarchical extension of the Dirichlet process: We model

the residual density as

fx(y) =
∫

φ(y, µ(x), σ2)P(dµ(x)) =
∞

∑
h=1

πhφ(y, µh(x), σ
2)

for x ∈ {s, ns} and where φ(y, µ, σ2) denotes the normal density with mean µ and

variance σ2. The function µh is defined as µh(x) = β0h + β1h1{ns}(x), with β0h ∈ R

and β1h ∈ R+. As β1h, is positive this directly assures stochastic ordering of the two

residual distributions. For the mixing measure P(dµ(x)) we assume a Dirichlet pro-
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cess prior. Probabilistically this makes the residual densities dependent as both resid-

ual distributions contain the same normal density components and the same mixing

weights, only the means of the normal distributions are shifted. This dependence is

desired as it allows for a borrowing of strength effect, while remaining relatively flex-

ible for the two residual distributions (the shape of the two distributions can still be

different).

In this particular case the space Ξ on which we build the Dirichlet process consists of

the functions of form β0 + β11{ns}(x), which are characterized by (β0, β1)
′ ∈ R × R+.

As the base measure P0 of the Dirichlet process we choose a normal distribution for β0

and an independent exponential distribution for β1, i.e. P0 = N(m0, σ
2
0 )× Exp(λ). For

the parameters m0 and σ2
0 of the normal distribution we use weakly informative hy-

perprior distributions (although certainly prior information from the literature might

be available for this problem): A N(0, 106) hyperprior distribution was used for m0,

while for σ−2
0 a relatively flat gamma prior distribution was used with parameters

a = 0.01 and b = 0.01, i.e. σ−2
0 ∼ gamma(0.01, 0.01). The parameter λ of the ex-

ponential distribution and the inverse of the bandwidth parameter σ−2 also receive

a gamma(0.01, 0.01) prior distribution. For the parameter M of the Dirichlet process

a gamma prior distribution with parameter a = 1 and b = 1 was employed. The

prior mean and prior variance for M are hence equal to one. The parameter M of

the Dirichlet process measures the prior precision as well as how many components

receive relevant probability mass (see Theorem 2.1.3 and the discussions thereafter).

As we want to use only weakly informative prior distributions in this setting and do

not expect exceedingly many components in the mixture we use a prior which favors

relatively small values for M.

This model was implemented in OpenBUGS using the finite dimensional stick-breaking

approximation of the Dirichlet process (using N = 20 as a cutoff point). OpenBUGS

was then run for 20000 iterations after a burn-in of 2000 and using a thinning rate of

2. Summaries of the resulting 10000 iterations can be observed in Figure 2.3. There

one can observe the pointwise quantiles of the posterior distribution of the densities,

for smokers and non-smokers. The Bayesian nonparametric estimates are relatively

smooth with a slightly more pronounced left tail than that of a Gaussian distribu-
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Figure 2.3: Pointwise 0.05, 0.5 and 0.95 quantiles of the posterior distribution of the

residual densities for smoking (blue) and non-smoking (red) mothers.

tion. This can be explained by pre-term births, which obviously have a smaller birth

weight. The shape of the residual distribution is only slightly different between the

two groups as the density is a bit more peaked for non-smokers. Also embedded in

the plot are the traditional kernel density estimates based on the density function in

R (using the default bandwidth selection and a Gaussian kernel). It becomes obvious

that the kernel density estimate is muchmore wiggly than the Bayesian nonparametric

estimate, and fluctuates around the posterior median. The smoothness of the Bayesian

estimate is clearly due to the strong dependence imposed by the hierarchical model,

allowing to borrow strength between both estimates of the residual density estimates,

while the kernel density estimates are only using data from either the smoking or the

non-smoking class.

From the application viewpoint it is interesting to note that there is a remarkable

shift of around 100-200g in the birth weight between babies for smoking and non-

smoking mothers. A more sophisticated analysis would obviously adjust for possible

confounding covariates, such as social status for example, nevertheless this result is

quite a strong outcome of the study.



24 Bayesian Nonparametrics

2.2 Priors for Functions

There is a great variety of approaches to build nonparametric prior distributions for

functions, but in contrast to the case of probability measures in the last section there is

no dominant unifying framework. Hence we will present a selective review of meth-

ods, focusing on those, which will turn out to be useful in later chapters. In particular

we will not discuss models used in survival analysis (see Ibrahim, Chen and Sinha

(2001) for a review of BNP methods in this area), and Bayesian extensions of tradi-

tional machine-learning methods, such as trees, see Denison, Holmes, Mallick and

Smith (2002) for a review of BNPmethods in this area (an interesting machine-learning

reference is also Bishop (2006), which treats many machine-learning methods from a

Bayesian perspective). In the last section priors for probability measures on a general

measurable space were introduced. When building prior distributions for functions,

however, one is typically only interested in functions defined on a subset of Rk, rather

than functions on arbitrary spaces, which is why we will focus here on this case.

This section is split up into three subsections. First we will discuss the Gaussian pro-

cess as a prior for (possibly multivariate) functions. Then we give an overview over

the diverse area of basis function approaches andmore generally approaches based on

dictionaries. Here we will first consider the univariate case and later generalize this to

the multivariate case, where we will also introduce the class of ridge functions.

2.2.1 Gaussian Processes

The first and most important nonparametric prior distribution for functions is the

Gaussian Process, see, for example, O’Hagan and Forster (2004, p. 393–398) and

Rasmussen and Williams (2006) for reviews, or Bornkamp (2006), where it is em-

ployed for dose-response analysis. So how to build a prior distribution for a func-

tion µ(.) : X 7→ R? The main idea underlying the Gaussian process is to model

(µ(x1), . . . , µ(xt))′ for any t ∈ N and any xi ∈ X ∀i ∈ {1, . . . , t} jointly as a multivari-

ate normal distribution with mean (m(x1), . . . ,m(xt))
′ determined by a mean function

m(.) : X 7→ R and covariance matrix Γ with entries γ(xi, xj) for i = 1, ..., t; j = 1, ..., t
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determined by a covariance function γ(., .). If this holds for any x1, . . . , xt with t ∈ N+

the prior distribution for µ(.) is a Gaussian process. Hence the Gaussian process can

be seen as a generalization of the multivariate normal distribution to the infinite case.

The mean and the covariance function determine the mathematical properties of the

realizations of a Gaussian process, for example continuity or differentiability (see Adler

(1981) for details). Probably the most famous Gaussian process, univariate Brownian

motion, for example, has mean function 0 and the non-smooth covariance function

γ(x, x′) = min(x, x′), so that its sample path are also non-smooth. When building

a prior distribution for a smooth function the covariance function should be chosen

such that the modelled function is also smooth. However, one cannot use any smooth

function as a covariance function: The covariance matrix Γ with entries γ(xi, xj) for

i = 1, ..., t; j = 1, ..., t needs to be positive semi definite for any x1, . . . , xt with t ∈ N.

Functions possessing this property are called positive semi definite (see Cheney and

Light (1999)). As Γ needs to be symmetric, the covariance function also needs to sat-

isfy γ(x, x′) = γ(x′, x). Although this is not a requirement for covariance functions

per se, γ(., .) also often satisfies γ(x, x′) = γ(x− x′) in particular when γ(., .) is used

for building a prior distribution for functions. This assumption implies that the under-

lying Gaussian process is (covariance) stationary. Stationarity is a convenient assump-

tion, because the covariance between the inputs then only depends on the distance

between the inputs, allowing for a simple parametrization of the covariance function.

The main practical assumption (and restriction) underlying stationarity is that the co-

variance of µ(x) and µ(x′) does only depend on the difference x− x′ (and hence the

distance), but it does not differ in different regions of X . The most popular covari-

ance function in practical applications is probably the Gaussian covariance function.

For one dimensional inputs it is given by γ(x, x′) = τ2 exp(−b(x − x′)2) with b ≥ 0.

For multivariate inputs x typically products of functions of this form are used as a

covariance function: γ(x, x′) = τ2 exp(− ∑
k
i=1 bi(xi − x′i)

2), where xi denotes the i−th

component of x. The Gaussian covariance function ensures that the realizations of

the Gaussian process are infinitely often differentiable, provided the mean function

is also infinitely often differentiable. In most applications the prior mean function is

modelled as a linear regression model, i.e. m(x) = β0 + β1x1 + . . . + βkxk, sometimes
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Figure 2.4: Simulation from a Gaussian process prior with mean function 0 and covari-

ance function γ(x, x′) = exp(− ∑
2
i=1 b(xi − x′i)

2) for different values of b.

also with higher order terms and interactions, in some applications however only an

intercept term is used, i.e. m(x) = β0.

In Figure 2.4 one can observe simulated Gaussian processes with a constant mean

function m(x) = 0 and Gaussian covariance function γ(x, x′) = exp(− ∑
2
i=1 b(xi −

x′i)
2) for different values of b. One can see that for small values of b (high correla-

tion within the function) the function is relatively smooth, while for larger values of

b (small correlation within the function) the function gets more wiggly. Note that the

amount of smoothness stays the same in all of X , which is due to the covariance sta-

tionarity of the process.

Whenm(x) and γ(x′, x) do not depend on any unknown hyper-parameters, the Gaus-

sian process prior is conjugate if the residual distribution is a normal distribution, for

example, if the observations are independent and Pθx = N(µ(x), σ2), see O’Hagan

and Forster (2004). When a linear regression model is assumed for the mean function

(with Gaussian hyperpriors for the linear model coefficients) this conjugacy is still

preserved, but if more hyperparameters are treated as unknown, for example in the

covariance function (e.g. the parameter b in the Gaussian correlation function), MCMC

techniques need to be used to analyse the model. Even though the conjugacy proper-

ties only hold for normally distributed data, Gaussian processes are also used when

the residual distribution is not normal, in particular for Bernoulli distributed data (i.e.

classification), see Rasmussen and Williams (2006) for details. Another important ap-
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plication of Gaussian process priors is multivariate interpolation, for example, in geo-

statistics or the analysis of deterministic computer experiments (Currin, Mitchell, Mor-

ris and Ylvisaker 1991). In these communities this approach is also known under the

name kriging or Bayesian kriging. Although developed from entirely different concep-

tual perspectives the Gaussian process approach has also close connections to neural

nets and support vector machines, or when used for interpolation, radial basis func-

tion interpolation and interpolation splines, depending on the choice of the covariance

function (see Kracker, Bornkamp, Kuhnt, Gather and Ickstadt (2010) for details).

An important issue is to investigate the support properties of Gaussian process pri-

ors. Here it turns out, that again the covariance function plays the most important

role. Tokdar and Ghosh (2007) investigate the support properties of Gaussian pro-

cesses with respect to the class of continuous functions on X . They show that when

µ(.) has a Gaussian process prior with a covariance function satisfying a set of certain

(relatively weak) conditions that Pr(supx∈X |µ(x) − µ0(x)| < ǫ) > 0 for all ǫ > 0

and for any continuous function µ0(x). Here “Pr” denotes the probability under the

prior Gaussian process. The Gaussian covariance function described above satisfies

these conditions, but also many other covariance functions commonly used in prac-

tice are covered by the result of Tokdar and Ghosh (2007). The Gaussian process hence

has full support on the space of continuous functions on X in sup-norm, provided a

suited covariance function is used.

Theoretically the Gaussian process hence has many desirable properties, but there are

also practical limitations of the traditional (i.e. covariance stationary) Gaussian pro-

cess prior. The stationarity assumption is too restrictive in quite a few situations.

That means that often, for example in situations as simple as dose-response analy-

sis, the underlying function does not have the same smoothness properties through-

out all of the input space X . In some parts the function might be quite wiggly and

non-smooth, while in others it might be completely flat. This behaviour is relatively

difficult to model with a stationary Gaussian process prior. Gramacy and Lee (2008)

overcome this issue by using a model that partitions the input space X according to

its smoothness and fits separate Gaussian process priors in each partition. There have

also been more direct approaches to overcome the stationarity assumption by using
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non-stationary covariance functions; see Xiong, Chen, Apley and Ding (2007) for a

recent review.

From the viewpoint of shape constrained inference, Gaussian processes are some-

what less interesting, because Gaussian processes are—by the properties of the nor-

mal distribution—not guaranteed to be positive or monotonic. Nevertheless they have

also been used for modelling positive functions, for example in financial applications,

where one typically models positive quantities, such as stocks. Here one uses a Gaus-

sian process for the logarithm of the quantity (geometric Brownian motion). Another

example is the so-called logistic Gaussian process already mentioned in Section 2.1,

where a univariate continuous probability density function (i.e. a positive function

integrating to 1) is modelled as
µ(x)∫
µ(x)dx

, and a Gaussian process prior is assumed for

log(µ(.)) (see Müller and Quintana (2004) for further references regarding the logistic

Gaussian process).

2.2.2 Basis Function Approaches and Dictionaries

In this section we will introduce a quite general and very versatile alternative ap-

proach for building prior distribution for functions, based on basis functions andmore

generally dictionaries. For ease of exposition, we will focus first on one dimensional

functions µ(.) : X 7→ R, where X is given by an interval X = [a, b], a, b ∈ R. Later in

this section we will generalize this to the multivariate case.

Basis Function Approaches and Dictionaries in One Dimension

The main idea is simple: One models µ(.) as a linear combination of basis functions

b1(x), b2(x), . . ., for example basis functions for polynomials, splines, wavelets or any

other function basis of interest. The function µ(.) is then given by ∑
J
j=1 β jbj(x), where

prior distributions are assumed for β j and J (sometimes J is also fixed at a particular

value), see Denison et al. (2002) for an extensive treatment of these type of models.

From the theoretical side it is of interest, when such a model is truly nonparametric.

That means: When is there a sequence of β1, β2, . . . and b1(x), b2(x), . . . such that a met-

ric, for example the sup-metric sup
x∈X

∣∣∣∑J
j=1 β jbj(x) − µ0(x)

∣∣∣, converges to zero, when
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J → ∞, for any continuous function µ0(.). And more importantly: Does the prior

distribution have positive prior probability on this approximating sequence of func-

tions? Certainly this depends on the chosen basis and the assumed prior distribution.

For many types of commonly used bases, the approximation property holds, see for

example Cheney and Light (1999) or Goodman (1995), who explicitly covers polyno-

mials and splines.

When the parameter J is fixed at a particular value (usually a relatively large value)

instead of being treated as unknown, this is theoretically a parametric model: It is fi-

nite dimensional and typically does not have full support, for example, on the space

of continuous functions. Nevertheless if J is chosen large enough, often a rich class

of functions can be approximated fairly well, while maintaining the simple compu-

tations associated with a parametric model. This advantage can in some situations

outweight the gain obtained by using a fully nonparametric model. In fact these type

of models have been applied successfully in a wide variety of applications (see, for ex-

ample, Lang and Brezger (2004)). Before moving on to extensions of the basis function

approach, we want to note that also the Gaussian process approach discussed in the

last chapter can be seen as a special case of the basis function approach: Due to the

Karhunen-Loève expansion one can represent a Gaussian process as an (infinite) sum

of orthogonal basis functions (derived from the covariance function of the Gaussian

process) with independent normal priors for the coefficients (see Clyde and Wolpert

(2007)).

From the discussion above it becomes apparent, that the basis function approach is

related to the mixture idea presented in Section 2.1, because one uses a linear combi-

nation of functions to model another possibly more complex function. The difference

is that in the basis function approach, we only learn the coefficients β j of the basis func-

tions and possibly their number J. The general mixture approach from the last section,

however, learns the coefficients, the number of “basis functions”, as well as parame-

ters of the “basis functions” which appear within the linear combination. Hence in

a way, the mixture approach is more flexible than the traditional basis function ap-

proach and has been extended, for example, by Wolpert and Ickstadt (1998a), Wolpert

and Ickstadt (2004) and Clyde and Wolpert (2007) to model general functions (instead
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of probability densities). In this approach one hence prespecifies a generating function

b(x, ξ) : X × Ξ 7→ R and then models the function as

∫
b(x, ξ)dL(dξ) = ∑ β jb(x, ξ j), (2.6)

where L(dξ) is a discrete signed measure on Ξ (see Dudley (2002, p. 178) for details on

signed measures). The difference to the mixture model in Section 2.1, is the fact that

L(dξ) is not normalized and the β j may be positive or negative. The main advantage

over the traditional basis function approach is that also the “basis functions” them-

selves are learned from the data (as the parameters ξ j are treated as unknown). This

has the potential to lead to sparse representations, i.e. typically only very few generat-

ing functions are needed to represent even highly complex functions. This sparseness

obviously has advantages in high-dimensional situations but also in terms of interpre-

tation. The parameters ξ j might, for example, have a particular meaning in the ap-

plication context, which one would miss, when simply using “many” basis functions.

We will call the set of functions obtained from the generating function a dictionary

(the name is adopted from the wavelet literature, see Clyde and Wolpert (2007), but

there appears to be no clear cut mathematical definition for the word dictionary in this

context). Dictionaries typically do not form a basis for a particular function space, but

are overcomplete in the sense that one function might be represented in different ways

by the same dictionary. This redundancy is not a disadvantage but allows for a sparser

representation of the modelled function: When there are several ways to represent a

function, one can choose the one with fewest elements in the linear combination.

Note that there are also constructions, which are half-way between the (fixed) basis

and the dictionary approach: Some bases have additional parameters, which might be

treated as unknowns instead of being known. The knots in a spline basis, for example,

can be treated as unknown. This type of approach is more flexible than a fixed basis

approach, but does not directly fit in the dictionary framework outlined above.

To illustrate the richness of a dictionary versus a (fixed) basis approach we approxi-

mate the function µ(x) = 1.4x3/(x3 + 0.13) + 0.6x10/(x10 + 0.810) in Figure 2.5 by an

11-dimensional quadratic B-spline basis with equally spaced inner knots (see Dierckx

(1993) for details on B-splines) and a two-component dictionary of the form
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Figure 2.5: Spline and dictionary least squares approximations of the function µ(x).

The lower row shows the basis functions each multiplied with its coefficient β j.

∑
2
i=1 β jB(x, aj, bj), where the generating function B(x, aj, bj) is the cdf of the beta dis-

tribution with parameters aj, bj > 0. In both cases we minimized the least squares

distance, evaluated at 201 equally spaced points in [0, 1], between the true function

and the approximant. For the spline basis we hence needed to minimize with respect

to the 11-dimensional vector (β1, . . . , β11)
′ while for the dictionary weminimized with

respect to β j and aj,bj (hence 6 parameters in total). In Figure 2.5 one can observe that

both approaches approximate the true function fairly well. The B-spline basis however

requires 11 basis functions, while the dictionary needs only 2 generating functions to

obtain a similar fit. This situation is typical: Dictionaries can often fit complex func-

tions quite well with a smaller number of elements in the linear combination, because

the “basis functions” can be adapted to the problem at hand. This effect becomes even

more important, when modelling multivariate functions. On the other hand already

in this simple deterministic approximation example it becomes apparent that the dic-

tionary approach is often computationally more complex: The coefficients of the B-

spline basis can be determined by solving a linear least squares problem, while for the

dictionary approach the involved optimization problem is a nonlinear least squares

problem.
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Regarding shape constrained inference, the basis function and the dictionary approach

turn out to be quite useful: When the basis functions bj(x) or the generating function

b(x, ξ), for example, are positive functions (a weak assumption), then one can model

a positive function as ∑
J
i=1 β jbj(x) or ∑

J
i=1 β jb(x, ξ j), where β j ≥ 0 for all i. Having

a model for positive functions one can straightforwardly build models for monotonic

differentiable functions by integrating the basis functions and convex twice differen-

tiable functions by integrating once more. In Chapters 3 and 4 wewill use an approach

quite similar to these ideas to model monotonic and convex functions, based on a dic-

tionary approach. From the basis function approaches particularly the B-spline basis

seems to be interesting for shape constrained inference. Here shape constraints such as

monotonicity, convexity or unimodality can directly be reduced to constraints on co-

efficients of the basis (see Goodman (1995)). It seems that the potential of B-splines in

nonparametric Bayesian shape constrained inference has not fully been exploited yet,

although Bornkamp and Ickstadt (2009b) use the shape preserving properties of the

B-spline basis for elicitation of probability distributions, i.e. fitting flexible (possibly

shape constrained) distributions to probability statements stated by an expert.

Multivariate Approaches based on Basis Functions and Dictionaries

The easiest way of generalizing the univariate basis function approach to the multi-

variate case, are tensor products of univariate bases. If a univariate basis on [a, b] is

given by (b1(x), . . . , bJ(x))
′ this can be extended to the bivariate case by taking the

Cartesian product of the bases, i.e. using b∗ij(x) = bi(x1)bj(x2), i, j ∈ {1, . . . , J} as a

basis for functions on [a, b] × [a, b], resulting in a basis of J2 terms. In the general k

dimensional setting one hence ends up with Jk terms, so the number of basis functions

grows exponentially with the dimension. This is probably the main reason, why this

type of approach is seldom used in statistical practice when k > 2, despite the fact

that the mathematical approximation properties of the so formed basis are typically

preserved (for example for polynomials and splines).

One commonly used approach to fight this problem of high dimensionality is to im-

pose (reasonable) additional assumptions on the modelled function. The most com-

monly used assumption is to impose additivity, i.e. modelling a multivariate function

as µ(x) = µ1(x1) + . . . + µk(xk). This reduces the problem of estimating one k-variate
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function to the problem of estimating k univariate functions, and for each dimension a

univariate basis (or a dictionary) can be used. When all univariate functions are mod-

elled with J components the number of basis functions hence only grows as kJ, and

thus considerably slower than in the tensor product case. It is, however, obvious that

the additivity assumption is restrictive: When looking at an additive function µ(.) as

a function of one variable and varying the other k− 1 variables, the shape or scale of

the function does not change, only its location. The other k− 1 variables hence only

play the role of an intercept and possible interactions cannot be modelled by additive

functions. Sometimes interactions of order two (or higher) are included in the function

(modelled, for example, by a tensor product of a univariate basis), which makes this

type of model more flexible. The formal justification of these type of approaches is

based on the, so called, ANOVA decomposition of multivariate functions, see Owen

(1998, ch. 3) for details on this topic.

Single-index models are another way to reduce the problem of dimensionality for

modelling multivariate functions. Here one models a multivariate function as µ(x) =

µ∗(a′x), for a function µ∗(.),R → R and a ∈ S̃k−1, with S̃k−1 the unit sphere, or

a ∈ R
k. Here multivariate regression is reduced to estimation of a univariate function

and a linear combination. This functional form allows to model interactions to some

extent, but the function is constant on hyperplanes of the form a′x = c. For a bivari-

ate function this, for example, implies that its contour lines are straight lines, which is

again quite restrictive.

The additive model and the single-indexmodels can be seen as a special case of a more

general, unifying approach to model multivariate functions based on linear combina-

tions of ridge functions. A ridge function is a multivariate function defined as g(a′x),

where g : R → R is a univariate function and a ∈ Rk (or a ∈ S̃k−1) is the so called

direction vector. The final model for a function is then based on a linear combination

of ridge functions ∑ β jgj(a
′
jx). It can be shown that linear combinations of ridge func-

tions ∑ β jgj(a
′
jx) can approximate any multivariate continuous function in sup norm,

provided linear combinations of the involved univariate functions gj can approximate

any univariate continuous function on R, see Cheney and Light (1999, ch. 22) for a

detailed statement of the result. Hence the limitations of the additive and the single-
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index model are overcome by this more flexible class of functions. Other interesting

results from approximation theory were derived in Barron (1993), who considers the

rate of approximation by linear combinations of ridge functions (in terms of J) and

shows that, particularly in high dimensions, linear combinations of ridge functions

have advantages over fixed basis function approaches (see Theorem 1 and 6 of the

paper). Before giving a review of the applications of linear combinations of ridge

functions, we would like to note that the dictionary idea introduced earlier is easy

to generalize to the multivariate case: Simply use a multivariate generating function

b(x, ξ) in Equation (2.6). One possible choice for b(x, ξ) obviously are ridge functions,

so the ridge function approach discussed here, also falls under the umbrella of dictio-

nary approaches treated earlier.

Linear combinations of ridge functions form the mathematical basis of neural net-

works and projection pursuit regression. One of the simplest type of neural networks

(see Lee (2004) for a discussion of neural networks from a Bayesian perspective) is

the so-called feed-forward network with one hidden layer. Here a sigmoid function

s(.) (such as the logistic function s(x) = 1/(1 + exp(−x))) is used and the function is

modelled as ∑
J
j=1 β js(a

0
j + a1j

′
x), for parameters a0j ∈ R and a1j ∈ R

k. It is straightfor-

ward to see that this type of model fits in the ridge function approach above. Typically

J is treated as fixed or one performs model selection or model averaging for a small

number of different values for J. For the parameters a0j and a1j parametric prior dis-

tributions, usually associated via a hyperprior, are used, see Lee (2004) for a review of

different prior distributions for neural networks. Practically these type of models are

hence parametric, as J is treated as fixed and finite dimensional, but this truncation is

often practically irrelevant as long as J can get sufficiently large. Another statistical

application of linear combinations of ridge functions is projection pursuit regression,

here one estimates the univariate functions gj by nonparametric regression and simul-

taneously the linear combinations, but there appears to be no work on adopting this

idea in the Bayesian framework. In Chapter 5 we will build a nonparametric prior dis-

tribution for multivariate monotonic functions based on linear combinations of ridge

functions.

Although this ridge function approach appears rather unrelated to the Gaussian pro-
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cess approach discussed earlier, it can be shown that the Gaussian process prior arises

from a prior distribution based on a neural network in a limiting case, see Neal (1998)

for further references in this regard.

Prior Distributions based on Basis Functions and Dictionaries

When using a dictionary of form (2.6), either univariate or multivariate (for example

by using ridge functions), one needs to specify a prior distribution for the discrete

measure L(dξ). One idea is to use the class of Lévy random measures as advocated

in Tu, Clyde and Wolpert (2008) as a prior for L(dξ). This class of prior distributions

implies that the prior distribution of L(A) for a subset A ⊂ Ξ is infinitely divisible.

The notion of a Lévy random measure is also intimately related to Poisson random

measures, see Appendix A.2 for details. Analogously to Dirichlet process priors one

can exploit certain conjugacy properties, when using particular residual distributions

and a particular prior distribution of form (2.6). For example when the residual dis-

tribution is a Poisson distribution, a multivariate normal kernel is used and a gamma

process is employed as prior for L(dξ), see Wolpert and Ickstadt (1998a) for details.

However in its most general form, Lévy random measures do not necessarily form a

conjugate class of priors. One possible way to generalize different approaches would

be to propose a random (signed) measure in analogy to the Ongaro-Cattaneo construc-

tion from Section 2.1. A random discrete (signed) measure belongs to this class, when

its realizations are given by

L(dξ) =
J

∑
j=1

β jδξ j
(dξ), (2.7)

where (β j, ξ j) are independent identically distributed from a non-atomic probability

distribution P0 on R × Ξ, and J has an independent probability distribution on N ∪ ∞.

Note that this is quite similar to the Ongaro-Cattaneo construction, here however, the

distributions of the “jump-heights” (β j) and the “jump-locations” (ξ j) are not assumed

to be independent. Lévy random measures can easily be identified as a special case of

this general random measure. Theoretical investigations of this type of prior are lack-

ing, although the recent preprint of Pillai and Wolpert (2008), which focuses on Lévy

random measures, seems to be an exception. Due to their similarity one might expect

that the mathematical properties (e.g. support) are similar to the Ongaro-Cattaneo con-

struction but we will not pursue this in more detail as this type of random measure
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will not explicitly be considered further in this thesis.

2.3 Asymptotics

As mentioned in the introduction, the central object of interest in Bayesian Statistics is

the posterior distribution: From the posterior one can derive the distribution of quan-

tities of interest on which all subsequent decision making will be based. The main

idea of asymptotic considerations is to fix one particular true model for the residual

probability distributions, and evaluate the behaviour of the posterior distribution un-

der drawing (hypothetical) samples from the true model, with a sample size tending

to infinity.

In a practical situation, this is a purely mathematical exercise and seems to be an odd

idea, as there is only one particular fixed data set and it is not obvious why one should

bother with imaginary, artificial data sets of infinite size. Nevertheless asymptotic con-

siderations can provide an external (i.e. non-Bayesian) validation of the used method-

ologies. A central question in asymptotics is, for example, consistency: Does the poste-

rior distribution converge to a degenerate one point distribution at the true statistical

model, if we have perfect information through the data (i.e. an infinite sample)? Some-

thing seems to be wrong with a posterior distribution, which fails to reflect this perfect

information. Asymptotic considerations also provide an interesting viewpoint on BNP

methodologies: The full support property, for example, appears as a rigorous require-

ment for consistency of a posterior distribution, while previously we only required

this for intuitive reasons.

While consistency can be established under relatively weak assumptions for paramet-

ric Bayesian procedures (see for example Ghosh and Ramamoorthi (2003, ch. 1)), there

appeared a disturbing paper by Diaconis and Freedman (1986), which shows in a par-

ticular example the inconsistency of a nonparametric posterior distribution in a situ-

ation with a seemingly plausible prior distribution. Only at the end of the last cen-

tury (motivated by path-breaking work of Andrew Barron) the study of consistency

started to flourish again, resulting in many papers in the last fifteen years. Reviews of
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these developments are given by the book of Ghosh and Ramamoorthi (2003) and the

review articles of Ghosal, Ghosh and Ramamoorthi (1999), Walker (2004), Choi and

Ramamoorthi (2008) and the forthcoming article of Ghosal (2010). This chapter fol-

lows the development in Choi and Ramamoorthi (2008), who base their development

mainly on Walker (2003).

When treating asymptotic procedures in the nonparametric setup, it is important how

the distance between statistical models is measured and how to define convergence of

distributions. In Appendix A.3 we give a review of statistical distance measures. Now

we define two central notions needed in this section.

Definition 2.3.1 (Neighbourhood and Support).

(a) The (ǫ-)neighbourhood Nǫ( f ) of a probability distribution with density f is given by the

following set of densities g:

Nǫ( f ) = {g : d∗( f , g) ≤ ǫ},

where d∗(., .) is the chosen distance measure and ǫ > 0.

(b) The support of the prior, S , is the set of distributions with density f , for which the prior

probability of the set Nǫ( f ) is larger than zero for all ǫ > 0.

Obviously the support S of the prior distribution depends on the chosen distancemea-

sure d∗. When the weak distance dW is chosen, we will denote the support as SW , the

support of the prior in Hellinger or Kullback-Leibler neighbourhoods will be denoted

as SH and SKL. From the results on the interrelationships of the different distance

measures and the example on weak and strong neighborhoods in Appendix A.3 it fol-

lows that SW ⊃ SH ⊃ SKL. Assuming full support in Kullback-Leibler divergence

is hence the strongest assumption. We will see later that this condition is already a

sufficient condition for weak consistency of a posterior distribution (due to the famous

result of Schwartz (1965)). It is, however, not a necessary condition for weak consis-

tency (there exist counter-examples) but is frequently used in the literature despite this

fact. Walker (2004), for example, notes that full support in Kullback-Leibler distance

is currently accepted as the fundamental property for establishing consistency. Inter-

estingly full support in weak neighbourhoods is not enough for weak consistency:
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The prior in the example of Diaconis and Freedman (1986) has full support in weak

neighbourhoods, but the posterior distribution fails to be weakly consistent. When

interest is in strong consistency more than full support in Kullback-Leibler neighbor-

hoods is required. Usually one needs an additional second assumption, which some-

how restricts the model. This second assumption is typically very model specific, and

a variety of approaches exist in the literature. It turns out that this assumption—in

some situations—is not necessary or automatically fulfilled, when there are shape con-

straints involved in the model. At the end of this section we will illustrate this fact by

some examples.

We begin by making some assumptions, not made explicitly before in this thesis and

introduce some notation. We assume that we observe independent realizations yi ∈ R

from a true (residual) probability distribution Pθ0 , which does not depend on any co-

variates x, so that the observations are independent and identically distributed. The

restriction to independent and identically distributed realizations is mainly for expo-

sition and the main ideas presented here carry over also to the case of non-identically

distributed observations (we will consider an example of posterior consistency in the

regression case in Chapter 4). Additionally we assume that Pθ has a density and will

denote it by fθ. We denote the prior distribution for the (possibly infinite dimensional)

parameter θ by Π and its posterior after n observations by Π∗
n. Bayes theorem states

that the posterior probability for a set A ⊂ Θ is given by

Π∗
n(A) =

∫
A ∏

n
i=1 fθ(yi)Π(dθ)∫

∏
n
i=1 fθ(yi)Π(dθ)

. (2.8)

We will say that a posterior distribution is consistent if

Π∗
n(U|y1, . . . , yn) → 1

almost surely for n → ∞ and every neighborhood U of the true residual probabil-

ity distribution Pθ0 with density fθ0 . When U is a weak neighborhood, the poste-

rior is called weakly consistent, when U is a strong neighborhood (i.e. a Hellinger or

a total variation neighborhood), the posterior will be called strongly consistent (see

Appendix A.3 for a practical illustration of the difference between weak and strong

neighborhoods).
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A standard trick in Bayesian asymptotics is to rewrite the ratio (2.8) as

Π∗
n(A) =

∫
A ∏

n
i=1 R(yi)Π(dθ)∫

∏
n
i=1 R(yi)Π(dθ)

=
Jn(A)

In
,

where R(yi) =
fθ(yi)
fθ0(yi)

and θ0 is the true value of the (possibly infinite dimensional) pa-

rameter. When speaking about asymptotic considerations we evaluate the behaviour

of the posterior distribution under the distribution of the sample y1, y2, . . . distributed

according to P∞
θ0

= Pθ0 × Pθ0 × . . ., the product measure of the true residual distri-

butions. So the probability statements in this chapter will be made under repeated

sampling from the true statistical model Pθ0 .

The standard approach for establishing consistency now considers the numerator Jn(A)

and denominator In separately. The relatively easy part consists of showing that

the denominator In is almost surely larger than exp(−c1n). The part which is typi-

cally more difficult is to establish that numerator Jn(A) is almost surely smaller than

exp(−c2n). Both results together imply that the posterior is consistent (note that the

constants c1 > 0 and c2 > 0 can usually be chosen appropriately to ensure the conver-

gence). We will first consider the denominator, and make use of the Kullback-Leibler

support SKL.

Lemma 2.3.1.

If fθ0 ∈ SKL of the prior distribution Π then:

exp(nβ)In → ∞,

almost surely for any β > 0.

Proof:

The version given here is a condensed version of the proof given in Ghosh and Ra-

mamoorthi (2003, Lemma 4.4.1).

∫ n

∏
i=1

R(yi)Π(dθ) ≥
∫

Kǫ

exp

(
−

n

∑
i=1

log

(
fθ0(yi)

fθ(yi)

))
Π(dθ),

where Kǫ is a Kullback-Leibler neighborhood of fθ0 . For each fθ in Kǫ we thus have by

the law of large numbers that

1

n

n

∑
i=1

log

(
fθ0(yi)

fθ(yi)

)
→ K( fθ0

, fθ) < ǫ
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Hence equivalently we have for each fθ in Kǫ

exp(n2ǫ) exp

(
n

(
− 1

n

n

∑
i=1

log

(
fθ0(yi)

fθ(yi)

)))
→ ∞

This ensures that also exp(n2ǫ)In diverges. �

Definition 2.3.2 (Strong separation).

Let A ⊂ Θ. For any probability measure ν on A, let qν be the prior predictive distribution of y

under ν, i.e.

qν(y) =
∫

A
fθ(y)ν(dθ).

The set A and the parameter value θ0 are called strongly separated if for any probability mea-

sure ν on A and δ > 0 ∫ √
fθ0(y)qν(y)dy < δ.

The affinity
∫ √

fθ0
(y)qν(y)dy is directly related to the Hellinger metric (see Appendix

A.3). It gets large when the densities are similar and small, when the densities are dif-

ferent. So
∫ √

fθ0(y)qν(y)dy < δ implies d2H( fθ0 , qν) ≥ 2(1 − δ). The utility of the

notion of strong separation will become clear in the proof of Theorem 2.3.1. For an

iid sample y1, . . . , yn we have the affinity
∫ √

∏
n
i=1 fθ0(yi) ∏

n
i=1 qν(yi)dy1...dyn. Induc-

tion (i.e. integration with respect to yn+1 in the induction step) combined with the

definition of strong separation shows that

∫ √
∏

n
i=1 fθ0(yi) ∏

n
i=1 qν(yi)dy1...dyn < δn =: exp(−nβ0), with β0 := − log(δ),

provided A and θ0 are strongly separated. Now we have all ingredients to state the

main step towards consistency as proved by Schwartz (1965).

Theorem 2.3.1 (Schwartz).

If fθ0 ∈ SKL

Π∗
n(A|y1, . . . , yn)

a.s.→ 0,

for a set A ⊂ Θ strongly separated from θ0.

Proof:

This proof is a slightly more detailed version of the proof given by Choi and Ra-

mamoorthi (2008, Theorem 3.7). It follows from Markov’s inequality that

P

(√
Jn(A) > e−nγ

)
≤ enγE fθ0

(√
Jn(A)

)
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Now

E fθ0

(√
Jn(A)

)
=

∫ √∫

A

∏
n
i=1 fθ(yi)

∏
n
i=1 fθ0(yi)

Π(dθ)
n

∏
i=1

fθ0(yi)dy1...dyn

=
∫ √∫

A

n

∏
i=1

fθ(yi)Π(dθ)

√
n

∏
i=1

fθ0(yi)dy1...dyn

=
√

Π(A)
∫ √∫

A

n

∏
i=1

fθ(yi)Π̃(dθ)

√
n

∏
i=1

fθ0
(yi)dy1...dyn, (2.9)

where Π̃ is the prior distribution Π restricted to the set A i.e. Π̃(dθ) = Π(dθ)
Π(A)

. This

means that we can apply the strong separation property to Equation (2.9) with Π̃ play-

ing the role of ν in the definition of strong separation. Hence we have

E fθ0

(√
Jn(A)

)
≤
√

Π(A) exp(−nβ0),

and consequently

P (Jn(A) > exp(−n2γ)) ≤ exp(nγ)
√

Π(A) exp(−nβ0),

because Jn(A) is positive and the square root a monotone transformation. This con-

verges to zero for γ < β0. Hence by the Borel-Cantelli Lemma one has Jn < exp(−n2γ)

almost surely for large n, additionally from Lemma 2.3.1 we have that In > exp(−nβ)

for sufficiently large n and any β > 0, so that in total also the ratio converges to zero

(for β < 2γ). �

Note that the original version of Schwartz’s theorem was proved using the machinery

of uniformly consistent test functions, which still play a dominant role in the study

of Bayesian asymptotics. However, as mentioned in Choi and Ramamoorthi (2008)

the original formulation of the theorem and the version given here are equivalent.

But Theorem 2.3.1 is not enough to establish consistency of the posterior distribution

directly. Until now we only proved that the posterior probability of a strongly sep-

arated set A converges almost surely to zero. But for consistency we want to know

whether the posterior probability of a neighborhood of the true residual probability

distribution converges to 1. We will first consider weak convergence and will use

Theorem 2.3.1 for this purpose. If U is a weak neighborhood of the true model, i.e.

U = {θ : dW( fθ, fθ0) < ǫ}, the main idea is now to write Uc = Θ\U as a finite union of

strongly separated sets. To each of these finite sets one can then apply Theorem 2.3.1.
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Now it follows from the properties of weak distances that Uc = Θ\U can be written

as a finite union of sets of the form

A =

{
θ :

∣∣∣∣
∫

h(y) fθ(y)dy−
∫

h(y) fθ0
(y)dy

∣∣∣∣ > ǫ

}
, (2.10)

for bounded functions h (see, for example, Choi and Ramamoorthi (2008) and Ghosal

(2010)). Additionally the sets of form (2.10) are strongly separated from fθ0 , as the

Hellinger distance is stronger than weak distances, see also Appendix A.3. Hence for

weak convergence we are already there, because then Theorem 2.3.1 suffices for the

result. Hence we have the following

Corollary 2.3.1 (Schwartz).

If fθ0 ∈ SKL, then

Π∗
n(U|y1, . . . , yn) a.s.→ 1

almost surely for a weak neighborhood U of Pθ0 .

For strong neighborhoods however one typically cannot write the complement of the

neighborhood as finite union of sets strongly separated from θ0 (Choi and Ramamoor-

thi (2008) and Ghosh and Ramamoorthi (2003, p. 58)). Here we need additional as-

sumptions and as mentioned before, the type of assumptions are different for different

type of models. Before moving on to a closer study of strong consistency and topics in

shape constrained inference we illustrate the key steps for proving consistency using

Theorem 2.3.1 and Corollary 2.3.1 in a simple parametric model.

Example 2.3.1 (Illustration on a finite dimensional model)

Suppose one observes independent and identically distributed data yi, i = 1, . . . , n

generated according to a normal distribution distribution with parameter θ ∈ R and

known variance σ2
0 . In addition suppose the information prior to data collection can be

expressed by a normal distribution with parameters m0, s
2
0, and suppose θ0 ∈ R is the

true parameter value. According to Theorem 2.3.1 one needs to check the Kullback-

Leibler property as the main requirement for consistency. The Kullback-Leibler diver-

gence between two normal distributions with equal variance is given by K( fθ , fθ0) =

1
2σ2

0
(θ − θ0)

2. Hence we need to check, whether the prior distribution assigns posi-

tive prior probability to Nǫ(θ0) = {θ|K( fθ , fθ0) < ǫ} for any θ0 ∈ R and any ǫ > 0.
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This is the case as the normal distribution has strictly positive density on R. The

Kullback-Leibler neighborhood of the true residual density fθ0 hence receives posi-

tive probability mass. According to Corollary 2.3.1 this is sufficient for weak consis-

tency of the posterior, so dW( fθ , fθ0)
a.s.→ 0. Note that fθ is the normal density here and

from the properties of the normal density we know that this can only happen if also

|θ − θ0| a.s.→ 0. From this one can also infer that the posterior is strongly consistent, as it

follows that fθ(y)
a.s.→ fθ0(y) for all y. This implies convergence of the posterior in total

variation distance. So in this situation (and in most usual parametric settings) weak

and strong consistency coincide.

Hence the key step for proving weak convergence of the posterior distribution is to

check the Kullback-Leibler property of the prior, see Wu and Ghosal (2008) for a re-

view of priors for which the Kullback-Leibler property holds. If strong consistency

is desired, in most nonparametric (i.e. infinite dimensional) situations, more work is

needed than in the finite dimensional Example 2.3.1, because strong and weak consis-

tency usually do not coincide. We will now briefly outline the most general approach

to prove strong consistency. It is based on notion of a sieve, which is defined as a grow-

ing finite dimensional approximation to an infinite dimensional model, where the ap-

proximation grows with the sample size. For the finite dimensional sieve one then

needs to find a finite upper bound on the model complexity in terms of an abstract

complexity measure (such as the bracketing entropy or metric entropy, see van der

Vaart and Wellner (1996) for a detailed mathematical discussion of these notions) and

the non-finite part needs to receive exponentially small probability. If the Kullback-

Leibler property additionally holds one can establish strong consistency. Unfortu-

nately finding a sieve with the desired properties is often a difficult task and very

model specific.

When shape constraints are involved in the statistical model one can typically exploit

properties of the underlying model, which makes a proof of consistency (or strong

consistency) easier. In the following we will outline three approaches we found in

the literature, where the shape constraints were explicitly exploited in the proof of

consistency, one of those methods, will be used in Section 4 to prove consistency for

shape constrained regression.
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• Equivalence of Weak and Strong Consistency

As seen in Example 2.3.1 establishing strong consistency is simple, when strong

and weak neighborhoods are equivalent for the space of residual densities under

consideration, as strong consistency then directly follows from Theorem 2.3.1.

Walker, Lijoi and Prünster (2005) describe a nonparametric shape constrained

situation, where one can use such a result: Estimation of a monotone decreas-

ing density as discussed in Section 2.1. There it was shown that any monotone

decreasing density on [c,∞) can be written as a mixture of kernels of the form

1
ξ−c1[c,ξ](y) (mixed with respect to ξ). Using this representation Walker, Lijoi and

Prünster (2005) show that dW( f , g) → 0 is equivalent to dH( f , g) → 0. Hence

strong consistency directly follows from Theorem 2.3.1 provided the Kullback-

Leibler condition is met.

• Existence of a Maximum Likelihood Estimate

When the classical maximum likelihood estimator (MLE) exists (which is not

necessarily the case in nonparametric situations, but quite often in shape con-

strained nonparametric situations) one can exploit this fact. The MLE exists, for

example, for estimation of a monotone density, a convex (or concave) density,

a log-concave density, a monotonic regression function under a normal resid-

ual distribution and a convex (or concave) regression function under a normal

residual distribution. Walker and Hjort (2001) show that in situations when the

MLE exists (and satisfies an additional technical assumption), it is straightfor-

ward to show that also the posterior is consistent (provided the Kullback-Leibler

property holds). An approach for proving consistency in a shape constrained

situation, exploiting this fact, can be found in Shively, Sager and Walker (2009),

who investigate monotone nonparametric regression. We will apply this idea to

convex nonparametric regression in Section 4.

• Finite Complexity Measures

The most general approach to establish strong consistency is based on sieves,

which need to have a finite complexity (as measured in bracketing entropy or

metric entropy). This is often achieved by truncating the parameter space or

similar approaches. When there are shape constraints involved in the model,
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these complexity measures are often finite automatically. For example bounded,

monotone, or convex (and concave) functions have a finite complexity, see van

der Vaart and Wellner (1996). This is, for example, exploited in Example 3.2

of Ghosal, Ghosh and van der Vaart (2000), who study the convergence rate of

a nonparametric Bayesian posterior distribution for estimation of a monotonic

density.

Hence these three examples illustrate that shape constraints (when adequate) not only

improve the efficiency of inference in practice; they can also be exploited in a theoret-

ical asymptotic analysis of the underlying model and are hence of interest both from

the practical as well as from the theoretical perspective.

In the next three chapters we will now focus our attention to three concrete modelling

situations, where shape constraints are employed.





Chapter 3
Bayesian Monotonic Nonparametric

Regression

A Bayesian: one who asks you what you think before a clinical

trial in order to tell you what you think afterwards.

Stephen Senn

This chapter deals with monotone nonparametric regression under a normality as-

sumption on the residual density and the paper Bornkamp and Ickstadt (2009a) is

based on the material presented here. This chapter relies on the Ongaro-Cattaneo

random probability measure introduced in Section 2.1 and the model for monotonic

functions is essentially based on a dictionary introduced in Section 2.2. The applica-

tions in this chapter are growth curve analysis and pharmaceutical dose-finding trials

(we will analyse the examples presented in Figures 1.1 and 1.3), see Bornkamp (2006),

Bornkamp et al. (2007) or Bretz et al. (2008) for reviews of dose-finding trials. Re-

cently there has been an increased interest in Bayesian methodologies for pharmaceu-

tical dose-finding studies: Drug development is inherently a sequential and adaptive

process and information accrued from earlier phases of development can be used to

plan and analyse experiments for subsequent phases. The Bayesian approach hence

appears promising for this application.
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3.1 Introduction

In numerous applications scientific knowledge suggests that the relationship between

an independent and a dependent variable is monotone. Prominent examples include

growth curves or dose-response analysis. For the latter task typically non-linear mod-

els, such as the four parameter logistic model or the sigmoid Emax are used (see, for

example, Pinheiro, Bretz and Branson (2006) or Thomas (2006)). These models have

the advantage that their parameters have an application-specific interpretation, which

allows the elicitation of an informative prior distribution in a Bayesian framework.

Nevertheless they impose a particular functional relationship that may not be justi-

fied. One way to overcome this is to use a nonparametric model that can approximate

any continuous monotone increasing function. However, nonparametric models suf-

fer from the fact that they are usually difficult to interpret and hence the incorporation

of prior knowledge is difficult. In this chapter we propose a flexible nonparametric

method for Bayesian monotone regression that is build up analogously to the classical

non-linear models mentioned above and thus easily interpretable. The model is based

on writing the monotone function as the sum of an intercept parameter (interpretable

as the baseline effect) and the product of a scale parameter (interpretable as the max-

imum effect) with a continuous function that monotonically increases from 0 to 1 (i.e.

a cumulative distribution function). But instead of assuming a parametric model for

the cdf it is modelled nonparametrically as a discrete mixture of parametric distribu-

tion functions, where a general random measure is assumed as prior for the mixing

distribution.

In the classical statistics literature there have been numerous approaches to nonpara-

metric monotone regression. These are typically based on a two-stage approach of

monotonizing and smoothing or vice versa (see, for example, Mukerjee (1988) or more

recently Dette, Neumeyer and Pilz (2006)). Other approaches are based on constrained

optimization with a spline basis (for example Ramsay (1988) or Wood (1994)) or nu-

merical integration (for example Ramsay (1998)).

In the Bayesian framework themonotonicity assumption can be enforced by construct-

ing a prior distribution on monotone functions. Gelfand and Kuo (1991) and Ram-
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gopal, Laud and Smith (1993) proposed nonparametric shape constrained estimates

for binary dose-response data. Lavine and Mockus (1995) investigated estimation of

a monotone increasing function from data with an unimodal error distribution. They

based the prior for the monotone function on a (shifted and scaled) Dirichlet pro-

cess directly, which results in discontinuous realizations from the prior. Perron and

Mengersen (2001) proposed to use mixtures of triangular distribution functions (i.e.

quadratic splines) as a prior distribution on the space of monotone functions, while

Neelon and Dunson (2004) consider monotone regression with piecewise linear func-

tions and an autoregressive prior distribution for the parameters of the basis functions.

Our approach is new in the sense that a general discrete random measure, proposed

by Ongaro and Cattaneo (2004), is assumed as prior for the mixing distribution. The

parameters of the underlying base distribution functions are hence not treated as

known (as is often the case, when a fixed function basis is used, such as polynomi-

als or splines). Instead the base distribution functions in the mixture are themselves

learned from the data (as well as their number and weights). This results in a flexi-

ble model, and in turn allows for a sparse representation of the underlying curve (see

(Clyde and Wolpert 2007) for a discussion of flexibility and sparsity in the context of

general nonparametric regression).

We also investigate how to choose the parametric class of the underlying base cdf

and find that the recently introduced two-sided power distribution (van Dorp and

Kotz 2002) is sufficiently rich from the mathematical perspective and also allows a

computationally efficient implementation.

In some aspects our approach is similar to the nonparametric kernel regression tech-

nique of Clyde and Wolpert (2007) (see also Section 2.2). These authors model the

regression function as a linear combination of kernels and propose to use general pure

jump Lévy processes as prior distribution for the mixing measure. However, their ap-

proach differs as they do not consider monotone regression and the mixing measure

is not normalized (i.e. is not a probability distribution).

The outline of this chapter is as follows: In Section 3.2 we will present our model and

discuss its statistical aspects as well as issues in selecting the prior distributions. In
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Section 3.3 we will first investigate the properties of our method in a simulation study

and compare it with two recent proposals for monotone nonparametric regression.

Then we will illustrate the suitability of our approach on a real data set from a dose-

finding trial in Section 3.4 and on a growth curve example in Section 3.5. We will end

this chapter with a summary and notes on possible extensions of the model.

3.2 Monotone Regression

3.2.1 Constructing the Model

We consider a model for continuous, homoscedastic data

yi = µ(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) and µ(.) is a continuous monotone function. The covariate xi is

assumed to come from a bounded region, which we take to be [0, 1]. Without loss of

generality we can write µ(.) as

µ(x) = β0 + β1µ0(x), (3.1)

where µ0(.) is the cdf of a continuous bounded random variable on [0, 1]. In this form

the intercept β0 represents the response at 0, while β0 + β1 represents the response

at 1. The reason for this factorization is that in many applications these parameters

have a clear cut interpretation in the application context, for example, in dose-response

analysis β0 represents the placebo and β1 the maximum effect.

For the cdf µ0(.) we propose to model it a-priori as a discrete mixture of parametric

distribution functions F(x, ξ) of bounded continuous random variables on [0, 1], with

parameters ξ ∈ Ξ. We can hence formulate the model as

µ0(x) =
∫

Ξ

F(x, ξ)P(dξ),

where P is a discrete mixing distribution on Ξ. It is easy to check that µ0(.), being a

convex combination of distribution functions, is itself a cumulative distribution func-

tion. The task is hence to deduce the discrete probability measure P(dξ) from the data
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available. In recent years there have been numerous proposals for discrete random

probability measures as priors for discrete probability distributions. The most widely

used random probability measure is the Dirichlet process, which is mainly due to the

fact that it has attractive analytical properties for the purpose of density estimation.

We propose to use the general discrete random measure P, introduced by Ongaro and

Cattaneo (2004). A discrete random measure belongs to this class if its realisations can

be represented as

P(dξ) =
J

∑
j=1

wjδξ j
(dξ), (3.2)

with ξ j,wj, J as given in Definition 2.1.2. Note that this construction contains many

discrete random probability measures (for example the Dirichlet process or general

stick-breaking processes) as a special case (see Remark 2.1.1).

Assuming the prior P for P(dξ), µ0(x) with x ∈ [0, 1] is a-priori random and given by

µ0(x) =
∫

Ξ

F(x, ξ)P(dξ) =
J

∑
j=1

wjF(x, ξ j),

where ϑ := (J,w1,w2, . . . , ξ1, ξ2, . . .) has a distribution as specified in the last para-

graph.

It has to be noted that the so constructed model for monotone functions is very flexible.

We do not impose any structure for locating the wj, ξ j in the parameter space, and

let these be chosen by the information in data (and prior) according to their posterior

density. This allows for a sparse representation of the underlying curve, and in turn for

an efficient computer implementation. This is an improvement over existing Bayesian

methods for monotone regression as proposed in Perron and Mengersen (2001), who

either fix the knot locations or the weights associated with a quadratic spline basis,

which potentially results in a higher dimensional model. Also the piecewise linear

model of Neelon and Dunson (2004) seems to require a relatively large number of

basis functions (in their simulation study a more than hundred dimensional piecewise

linear basis is used).

For the purpose of prior elicitation it is important to calculate prior summaries of µ0(.)

such as the mean or the variance at a certain point on the curve or the correlation
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between two points on the curve. The following Lemma shows how such calculations

can be done, and is a slight extension of Proposition 1 in Ongaro and Cattaneo (2004).

Lemma 3.2.1. The expectation of µ0(x) and the covariance of µ0(x1) and µ0(x2) for x, x1, x2 ∈
[0, 1], with respect to P are given by

E(µ0(x)) =
∫

Ξ
F(x, ξ)dP0 (3.3)

Cov(µ0(x1), µ
0(x2)) = k0

{∫

Ξ
F(x1, ξ)F(x2, ξ)dP0 (3.4)

−
∫

Ξ
F(x1, ξ)dP0

∫

Ξ
F(x2, ξ)dP0

}

where k0 = E
(

∑
J
j=1w

2
j

)
∈ [0, 1].

Proof: See Theorem 2.1.3.

It is interesting to note that the prior expectation and correlation structure just depend

on the distribution P0, but not on J or QJ . This is due to the fact that the ξ j are a-priori

independent of J and the wj. The prior variability is determined by the prior for J and

QJ (via the factor k0 ∈ [0, 1]) as well as by P0.

In some cases, depending on the choice of F(., ξ), P0, QJ and the prior for J, it is pos-

sible to calculate the resulting integrals in (3.3) and (3.4) analytically, but in general

numerical integration or simple Monte Carlo can be used for this purpose.

3.2.2 Choice of F

A typical requirement for the base distribution function F(., ξ) would be that any con-

tinuous probability distribution function on [0, 1] can be approximated by a convex

combination of functions F(., ξ1), F(., ξ2), . . .. A distribution function possessing this

property is the beta distribution function (the regularized incomplete beta function).

This choice has—in slightly different and differing contexts—been investigated for ex-

ample by Diaconis and Ylvisaker (1985), Petrone (1999), and Perron and Mengersen

(2001). Due to the close connection with Bernstein polynomials, it is straightforward

to show that any continuous distribution function on [0, 1] can be approximated arbi-

trarily well by beta distribution functions (see Diaconis and Ylvisaker (1985)). A severe
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Figure 3.1: TSP distribution functions for different values of m and ν.

drawback of this approach is the fact that the regularized incomplete beta function is

not available in closed form and is relatively time consuming to evaluate numerically.

In particular when Monte Carlo schemes are employed to analyze the model, this be-

comes a hindrance as the likelihood has to be evaluated a large number of times in

these approaches. In our case F needs to be evaluated nJ times for one evaluation of

the likelihood.

Here we propose to use the distribution function of the two-sided power (TSP) distri-

bution for F, whichwas introduced by van Dorp and Kotz (2002) as a viable alternative

to the beta distribution. Its distribution function is available in closed form

F(x, ξ) =





m
(
x
m

)ν
0 ≤ x ≤ m

1− (1−m)
(

1−x
1−m

)ν
m ≤ x ≤ 1

, (3.5)

and depends on two parameters ξ = (m, ν) ∈ [0, 1] × R+. If ν > 1 the unique mode

is given by m, and ν determines the steepness of the distribution function at m. The

uniform and the triangular distribution are special cases of the TSP distribution cor-

responding to ν = 1 and ν = 2 respectively. Figure 3.1 shows different shapes of the

distribution function for different parameter values. In our experience one evaluation

of the TSP distribution function in C++ is around 10 to 15 times faster than one eval-

uation of the beta distribution function as implemented in the GSL library for C++

(version 1.8). In Theorem 3.2.1 below we show that one can also approximate any con-

tinuous distribution function on [0, 1] arbitrarily close by a convex combination of TSP

distribution functions.
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Theorem 3.2.1. Given a continuous cdf G(.) on [0, 1] there exist J, w1, ...,wJ, m1, ...,mJ and

ν1, ..., νJ with ∑
J
j=1wj = 1, mj ∈ [0, 1] and νj > 1 such that:

sup
x∈[0,1]

(|µ0(x)− G(x)|) ≤ κ(J)(1 + 2e−1),

where κ(J) := sup
k∈{0,...,J−1}

{G( k+1
J ) − G( kJ )}, µ0(x) = ∑

J
j=1wjF{x, (mj, νj)}, and F is the

distribution function of a TSP distribution.

Proof: See Appendix B.1.

As G(.) is continuous on the compact interval [0, 1] this implies that κ(J) → 0 for

J → ∞, so the family of mixtures of TSP distribution functions is sufficiently rich for

our model.

3.2.3 Prior Distributions

An important aspect in any Bayesian analysis is the choice of prior distributions. In

this section wewill discuss how to choose the priors for β, σ2, as well as for the random

probability measure P.

Given a fixed ϑ = (J,w1,w2, . . . , ξ1, ξ2, . . .)
′, µ0(x) is fully determined and we would

be back to the linear model context. The ith row of the (hypothetical) design matrix

X would just be equal to (1, µ0(xi)). So it is convenient and usually sufficient to use

the conjugate normal inverse gamma distribution to express the prior information on

β0, β1, σ
2 conditional on ϑ. This distribution depends on parameters a, d, a 2× 2matrix

V and a two-dimensional vector m. Its density is given by

p(β, σ2|ϑ)∝ (σ2)−(d+4)/2 ×

× exp[−{(β −m)′V−1(β −m) + a}/(2σ2)],

see, for example, O’Hagan and Forster (2004) for details. One possibility to represent

weak prior information is to let the prior variances tend to infinity, which is equiva-

lent to letting V−1 → 0. Setting a = 0 and d = −2 one obtains the improper non-

informative prior distribution

p(β, σ2|ϑ) ∝ σ−2. (3.6)
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Note that in both cases the prior distribution of β and σ2 does not depend on ϑ, which

is valid, because the interpretation of β and σ2 does not change for different values of

ϑ.

The likelihood for y = (y1, . . . , yn) is given by

f (y|β, σ2, ϑ) ∝ (σ2)−n/2 exp

(
− 1

2σ2

(
y− Xβ)′(y− Xβ

))
,

where the above expression depends on ϑ through the design matrix X . When using

the normal-inverse gamma distribution as a prior for β and σ2, these parameters can

analytically be integrated out to obtain the marginal posterior distribution for ϑ. In

the case of non-singularity of (X ′X)−1 it is proportional to

p(ϑ|y)∝det{(V−1 + X ′X)−1} 1
2 (a + (n− 2)σ̂2 +

+{(m− β̂)′(V + (X ′X)−1)−1(m− β̂)})− d+n
2 p(ϑ),

where β̂ = (X ′X)−1X ′y and (n − 2)σ̂2 = (y − X β̂)′(y − X β̂) and p(ϑ) is the prior

density of ϑ (O’Hagan and Forster 2004). When the improper prior (3.6) is used, this

reduces to

p(ϑ|y) ∝ det(X ′X−1)
1
2 ((n− 2)σ̂2)−

n−2
2 p(ϑ).

The random probability measure P is determined by the distribution of the parameter

ϑ = (J,w1,w2, . . . , ξ1, ξ2, . . .)
′ which can vary in dimension or might even be infinite

dimensional. In a computer implementation necessarily J needs to be finite, which

is why we restrict attention here to this case. As Monte Carlo methods are used to

obtain a sample of the posterior distribution p(ϑ|y) anyway, p(ϑ) is not restricted to

any particular choice. In the following we discuss the choice of the prior distribution

p(ϑ) in some detail.

The distribution P0 of the ξ j determines the prior mean function and the prior correla-

tion structure of µ0(.). Using the results in Lemma 3.2.1 it is possible to calculate prior

mean and correlation for a particular selection of P0, and see whether these match the

prior knowledge available. In many cases a good starting point in the case of sparse

prior knowledge is to use a uniform distribution on a reasonable finite subset of Ξ. In

the application section we will briefly illustrate in an example how to choose P0.
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The prior for J, and QJ , the distribution of w1, . . . ,wJ , determine the factor k0 =

E(∑
J
j=1w

2
j ) in Lemma 3.2.1 and hence influence the prior variability. From the the-

oretical perspective it is appealing to use an unbounded prior distribution for J, and

for QJ (for each J) a distribution with positive Lebesgue density on the J − 1 dimen-

sional simplex. In this case it can be shown that the random probability measure P

has full support on the set of probability measures absolutely continuous with respect

to P0, see Proposition 3 and Corollary 1 of Ongaro and Cattaneo (2004) (or Theorem

2.1.4) for details. One choice fulfilling these requirements is to use a zero-truncated

Poisson distribution (on 1, 2, . . .) with rate parameter λ > 0 as a prior distribution for

J, and for QJ the symmetric Dirichlet distribution with parameter γ > 0. In this case

k0, the expectation of ∑
J
j=1w

2
j for given J is E(∑

J
j=1w

2
j |J) = γ+1

Jγ+1 . So the variance of

µ0(.) is increasing when J or γ get smaller. In practice we believe the choice of λ and γ

should be based on (i) the desired variability in the prior for µ0(.) and (ii) the expected

number of jumps in the modelled response. Again we will illustrate one particular

selection in the next section.

3.2.4 Asymptotics

Before illustrating the methodology on concrete examples we would like to point out

that the full support property for P and the priors for β and σ2 together with the ap-

proximation property of TSP distribution functions (Theorem 3.2.1) is already enough

to ensure full support in Kullback-Leibler divergence and hence consistency (see Sec-

tion 2.3). We will discuss this topic in full detail in Chapter 4, where convex regression

is considered. The theory presented there also applies to the case of monotonic regres-

sion.

3.3 Simulation Study

In this section we will evaluate the performance of the proposed methodology in a

simulation study. Two recent classical approaches to monotone regression will be used
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to assess the quality of our methodology. One approach is based on local linear regres-

sion and the other on penalized regression splines. In total six scenarios will be used,

corresponding to three different test functions and two different noise levels. In each

case 50 normal random variables are generated with mean µj(i/49), i = 0, . . . , 49,

where µj(.), j = 1, 2, 3, is one of the three test functions, and variance σ2, where σ is

set to 0.05 or to 0.2, respectively.

The following monotone test functions will be used, see also Figure 3.2

µ1(x) = x7/(x7 + 0.47)

µ2(x) =
1

3
B(x, 1, 1) +

1

3
B(x, 200, 80) +

1

3
B(x, 80, 200)

µ3(x) =






10
6 x 0 ≤ x ≤ 0.6

1 x > 0.6.

Here B(., ., .) denotes the distribution function of the beta distribution. This choice is

a compromise, between common shapes in dose-response analysis (µ1), shapes that

could appear in growth curve analysis, where growth often appears in short bursts

rather than linearly (µ2), and a non-smooth shape, which has a sharp corner (i.e. a

discontinuity in the first derivative) at x = 0.6 (µ3). Hence one might expect that

the function µ3(.) might be difficult to approximate with a mixture of smooth base

distribution functions.

The quality of the methods will be evaluated with the mean absolute estimation error

(MAE) over the range [0, 1]

MAE =
1

11

10

∑
i=0

|µ(i/10) − µ̂(i/10)|,

where µ̂(i/10) is the point estimate of µ(i/10). The six simulation scenarios are run

with 2000 simulations per scenario.

We compare our approach with the method of Dette, Neumeyer and Pilz (2006), which

is implemented in the monreg package for R (Pilz, Titoff and Dette 2005). The method

applies local linear regression and then (if necessary) monotonizes the fit with a tech-

nique based on kernel density estimation. Two bandwidths need to be specified, one

for the local linear regression and one for the density estimation step. The bandwidth
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Figure 3.2: Test functions used in simulation study.

hr for the regression estimator is chosen as recommended in Dette, Neumeyer and Pilz

(2006), and the bandwidth for the kernel estimator as h3r . The results of this approach

in the simulation study can be found in the first column of Table 3.1. The other ap-

proach is based on constrained optimization with a spline basis. For this purpose we

use the mgcv package for R (Wood 2007). A penalized cubic regression spline, with

ten knots uniformly spread over the range [0, 1] is employed and linear constraints

necessary for monotonicity of the spline as described in Wood (1994) are used in a

quadratic optimization to find the parameter values for the spline basis functions. The

smoothing parameter is set to the value obtained by generalized cross-validation for

the unconstrained problem. See the examples for the pcls function (in the mgcv pack-

age) for details. The results of this approach can be found in the middle column of

Table 3.1.

For the method proposed in this chapter we use the non-informative prior for β and σ2

from Equation (3.6). The cdf µ0(.) is modelled as a nonparametric mixture of TSP dis-

tribution functions, where the random measure P is assumed as a prior on the mixing

distribution. For J a zero-truncated Poisson distribution with parameter 1 (resulting

in a prior expectation of ≈ 1.58) is used. For the weights a Dirichlet distribution with

γ = 1 (i.e. a uniform distribution) on the J − 1 dimensional simplex is used for each

J. This results in a choice of k0 ≈ 0.84, so a relatively large variability. In addition this

represents the prior information that the functions are smooth, with not exceedingly

many jumps. For the parameter m of the TSP distribution function a uniform distribu-

tion on [0, 1] is used, while the parameter ν was given a uniform distribution on [1, 70].
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Testfunction σ LocLin/Mon MonRS MonBayes
µ1(.) 0.05 0.0216 0.0149 0.0117

0.2 0.0628 0.0527 0.0475
µ2(.) 0.05 0.0274 0.0172 0.0188

0.2 0.0632 0.0582 0.0557
µ3(.) 0.05 0.0176 0.0161 0.0212

0.2 0.0520 0.0502 0.0561

Table 3.1: Mean absolute estimation error for compared methods (LocLin/Mon =̂
Local linear regression and monotonization, MonRS =̂ Monotone regression splines,
MonBayes =̂ Monotone nonparametric Bayes estimate), based on 2000 simulations.

The reason for bounding ν at 70 is that in this case the TSP distribution function almost

corresponds to a step function from 0 to 1, andmore extreme shapesmight be excluded

a-priori. Performing the integration (3.3) it can be seen that this specification approxi-

mately corresponds to a linearly increasing prior mean. In addition the variability for

µ0(.) is reasonably large. For reasons of comparability we refrained from adapting the

priors to the simulation scenarios and used the same prior for each scenario. To esti-

mate the function µ(.) we will use the pointwise medians of its posterior distribution

(pointwise posterior means lead to very similar results). Model fitting is done with

the reversible jump (RJ) MCMC algorithm described in Appendix C.1, based on 50000

iterations after a burn in of 5000. Every fifth value is used to reduce dependence.

Table 3.1 displays the results for the different scenarios. It can be seen that our method

performs best for the first test function and performs equally well to the monotone

regression splines for the second test function. For µ3(.) the performance is reason-

able but as expected slightly worse than the other approaches. Overall the monotone

regression splines and the approach proposed in this chapter perform best in the simu-

lation study, while the local linear regression approach followed by a monotonization

step shows a slightly worse performance.

3.4 Dose-Response Analysis

Clinical dose-response studies are typically conducted in Phase II of the pharmaceuti-

cal development program. Two of the major aims in this phase are (i) to learn about



60 Bayesian Monotonic Nonparametric Regression

the shape of the dose-response relationship and (ii) the estimation of a suitable dose

to be used in large scale Phase III trials. If prior knowledge on the compound allows

to assume monotonicity (an assumption that should critically be checked) our method

becomes appropriate.

To illustrate the described method, a real trial data set taken from Biesheuvel and

Hothorn (2002) will be used. The data are part of a dose ranging trial on a compound

for the treatment of the irritable bowel syndrome with four active doses 1, 2, 3, 4

equally distributed in the dose range [0, 4] and placebo. The primary continuous end-

point was a baseline adjusted abdominal pain score with larger values corresponding

to a better treatment effect. In total 369 patients completed the study, with nearly

balanced allocation across the doses. This data set was also analyzed by Bretz, Pin-

heiro and Branson (2004) with a recent classical approach to dose-finding studies that

is based on a multiple comparison framework for model selection (see Bretz, Pinheiro

and Branson (2005) for a detailed description of this methodology).

Here we illustrate the estimation of the so called minimum effective dose (MED)

MED = min
x∈(0,4]

{x : µ(x) > µ(0) + ∆}, (3.7)

where ∆ is the threshold from which on a response is regarded as clinically relevant.

Note that the MED does not exist, if the function µ(.) is entirely below µ(0) + ∆. The

MED is often of interest as it can be interpreted as a lower bound on all useful doses.

In practice it is desirable not only to obtain a point estimate of the MED, but also a

variability statement. As the MED is a functional of µ(.) this is straightforward to

obtain in the Bayesian framework, without relying on asymptotic arguments. For the

analysis of the data set we set ∆ = 0.25 in accordance with Bretz, Pinheiro and Branson

(2004).

No additional information from the clinical team is available for the data, but to il-

lustrate the impact of using informative prior distributions for β0, β1, σ
2 we will in-

vestigate two scenarios: a weakly informative choice and an informative choice of the

priors. For the prior P there is no non-informative choice, and in both settings infor-

mative priors with relatively large variance are used.
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In the weakly informative setting we use the non-informative prior from Equation

(3.6) for β and σ2. For the random probability measure P the following specification

is used: For J, the number of basis functions, a zero-truncated Poisson distribution

with parameter 0.5 is used (corresponding to a prior mean of ≈ 1.27). For the distri-

bution QJ the symmetric Dirichlet distribution with γ = 1 is employed. This results

in k0 ≈ 0.91, i.e. a relatively large variability. In addition this corresponds to the prior

expectation that there will not be manymore than 1 or 2 jumps in the response. For the

parameters ξ j = (mj, νj) of the TSP distribution function again a uniform distribution

on [0, 1]× [1, 70] is used, as this approximately corresponds to a linear increasing prior

mean. For the informative prior we will use a normal-inverse gamma prior for β, σ2

with parameter m = (0.21, 0.55)′, V = ((0.01, 0)′, (0, 0.1)′), a = 3.6 and d = 4. The

means m are chosen as the empirical means in the placebo group and the group with

the highest dose. For β0 the variance is 0.018 which approximately corresponds to the

knowledge that can be obtained from 33 patients (assuming that σ2 = 0.6, which is

approximately equal to the empirical variance observed in the study), while the vari-

ance for β1 approximately corresponds to the information gained by 3 patients. The

prior distribution for σ2 is chosen, such that its mode is equal to 0.6 and the prior

variance of σ2 is infinite. For the random probability measure P, the priors for J, QJ

and ν are chosen identical to the setting above, while for m a Beta(1, 2) distribution on

[0, 4] was used, corresponding to the believe that µ0(.) is concave (the prior mean is

approximately equal to the distribution function of a Beta(1, 2) distributed variable).

Note that in practice the process of eliciting prior distributions should be done with

considerable care and before the actual data are available, based on data from previous

trials or similar compounds. Our selection of informative priors here is just done for

illustrative purposes. A useful approach to calibrate the prior distributions (if proper

distributions are employed) is to simulate from the prior predictive distribution of the

MED and see whether summaries, such as the probability of identifying an MED, the

mean or quantiles, are plausible.

To fit themodel the RJ-MCMC algorithm described in Appendix C.1 was implemented

in C++ and was run in both the weakly informative and informative scenario for

200000 iterations after 5000 iterations burn in. To reduce dependence in the chain only
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Figure 3.3: Pointwise posterior quantiles of the estimated dose-response curve and

observed group means.

every tenth value has been saved and is used for further analysis. We assessed con-

vergence by running parallel chains from very different starting points and confirmed

that the results for summaries of the posterior distribution were consistent between the

chains. The pointwise posterior distributions for the curve are visualized in Figure 3.3

and it can be seen that both approaches lead to similar results. The most notable differ-

ence is that the informative prior leads to smoother posterior quantiles and a reduced

uncertainty especially around µ(0) and in the interval [0, 1]. As the prior distribution

for β0 was chosen quite informative this is not surprising. The posterior distribution

for the MED is obtained by applying Equation (3.7) to the posterior draws of µ(.). In

the non-informative setting in approximately 30 percent of the posterior draws from

the function µ(.) were entirely below µ(0) + ∆. This can be interpreted as the prob-

ability that the MED does not exist in [0, 4] is 30 percent. For the informative setting

the corresponding value is just 8 percent. Summaries of the posterior distribution of

the MED conditional on that an MED estimate exists are displayed in Table 3.2. It can

be seen that the variance in the posterior distribution drops by more than 50 percent,

which is due to the fact that the posterior of the MED becomes concentrated on the

interval [0, 2] in the informative setting, while in the weakly-informative setting more

probability mass lies in the interval [2, 4]. This result is not surprising as one can ex-
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Weakly Informative Informative
Mean 0.90 0.74

Variance 0.44 0.19
0.025-Quantile 0.16 0.16
0.25-Quantile 0.48 0.44

Median 0.76 0.72
0.75-Quantile 1.00 0.92
0.975-Quantile 3.04 1.96

Table 3.2: Summary statistics for posterior distribution of the MED for the weakly
informative and informative choice of priors.

pect that the variability of the MED estimate crucially depends on the variability of

the estimate for µ(0). This variability is reduced in the informative setting, through

the incorporation of prior information on the placebo response.

As a point estimate for the MED the posterior mean or median may be chosen. Bretz,

Pinheiro and Branson (2004), selecting a hyperbolic Emax model for dose estimation,

obtained an MED estimate of 0.74, which is quite similar to the posterior median both

in the informative and weakly informative scenario. However, in their approach in-

formation about the uncertainty of the MED estimate is not directly available.

It has to be noted that the posteriors of µ(.) and the MED are not really sensitive with

respect to the prior distribution for J. We confirmed this by reanalyzing the data using

the prior specifications λ = 5,γ = 0.025 and λ = 10,γ = 0.011 (in both cases the

parameters were chosen in a way such that k0 was approximately equal to 0.91, ensur-

ing equality of the prior variance between the different prior choices). The resulting

posteriors for µ(.) and MED were in both cases essentially equal to the result obtained

from the used prior parameters λ = 0.5,γ = 1.

3.5 Growth Curves

Thalange, Foster, Gill, Price and Clayton (1996) report a study of the growth of 5-8

year old children over a 312-days period. It is observed that growth in this period

typically occurs in short bursts rather than linearly, which makes our model more

appropriate than modelling with standard smooth non-linear parametric models such
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Figure 3.4: Pointwise posterior quantiles of the estimated growth curve and observa-

tions.

as the sigmoid Emax and the logistic model. We will analyze the growth data of one

child from this study, which were also analyzed by Ramsay (1998). For simplicity we

will use the non-informative prior (3.6) for β0, β1, σ
2. For the location of the modes

m of the TSP distribution functions a uniform distribution on [0, 312] is used, while ν

was given a uniform distribution on [1, 70]. This choice approximately corresponds

to a linear increase over the whole period, which is reasonable assuming no specific

knowledge on the location of the growth bursts. For the distribution QJ the uniform

distribution on the simplex was used, while for J the number of basis functions a zero-

truncated Poisson distribution with parameter 1 was chosen. Again the RJ-MCMC

method described in Appendix C.1 is used to obtain a posterior sample of (β, σ2, ϑ)′.

In Figure 3.4 the growth data of the child can be seen in addition to pointwise posterior

credibility bands for the growth curve.

The posterior distribution for the parameter J has mean 4.6 and variance 1.3, so there

is quite strong evidence of 4 to 5 growth periods within these 312 days. The param-

eters m and ν of the individual TSP distribution components determine the day and

the speed of growth for the corresponding growth-burst, which is quite different be-

tween the different growth periods. There is, for example, one quite steep growth step

around day 150, while the growth from day 20 to day 95 is somewhat less steep. Note
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that this type of direct interpretability of the parameters would be difficult to obtain

from a (typically high-dimensional) basis function approach.

An interesting aspect of imposing monotonicity becomes apparent when observing

the uncertainty intervals in the periods with no measurements (day 95 – day 123 and

also day 193 – day 233). In the first period uncertainty in the function estimate is

practically the same as everywhere else, despite the sparse data, but in the second

period with no data there is a larger uncertainty. This nicely illustrates the effect of

imposing monotonicity: The child does not seem to have grown a lot between day

95 and day 123, so for a continuous monotonic function there are not many ways of

connecting the heights at day 95 and 123, and consequently there is less uncertainty

in estimating the underlying function. The situation for the second period is quite

different; here the child seems to have grown in the period when no measurements

have been made and there are various possibilities of connecting both function levels

with a continuous monotone function. So the uncertainty for the second period with

sparse data is much larger.

3.6 Summary and Outlook

In this chapter a nonparametric method for monotone regression has been presented

that relies on representing the monotone function by an intercept parameter, a scale

parameter and a cdf. The cdf is modelled as a discrete mixture of known base dis-

tribution functions and a general discrete random probability measure is assumed as

prior for the mixing distribution. The formed model for the monotone function is very

flexible and hence allows for a sparse representation of the curve. The choice of the

base distribution function has been discussed and the two-sided power distribution

has been proposed as an alternative to the frequently used beta distribution func-

tion. The TSP distribution function allows for a more efficient implementation and

we showed that convex combinations of TSP distribution functions are rich enough to

approximate any continuous distribution function.

Special emphasis in the construction of the model has been laid on interpretability,
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such that it is possible to elicitate informative prior distributions for important as-

pects of the curve. In dose-response analysis, for example, there typically exists prior

knowledge about the placebo effect, the standard deviation and sometimes also the

maximum effect. Incorporation of prior knowledge for these quantities is straightfor-

ward with the presented model. Additionally we discussed and illustrated one choice

of priors for the random probability measure P, using a zero-truncated Poisson dis-

tribution for the number of base distribution functions in the model and a symmetric

Dirichlet distribution for the weights. We believe this is a useful choice of priors al-

though our approach also allows for many other choices, which may turn out to be

useful in specific situations.

A simulation study has been performed, which compared our method with two re-

cent classical approaches to nonparametric monotone regression. Our method per-

forms very competitive, but can incorporate possible prior information and provides

uncertainty statements for all aspects of the modelling process. The usefulness of the

method has also been shown on two real data sets. The first originates from a clinical

dose-finding study. We illustrated that inclusion of possible prior knowledge, espe-

cially for the placebo response, can greatly reduce the uncertainty inherent in MED

estimation. A second example investigates our model for estimating the growth curve

of a child. Growth occurs in bursts rather than smoothly, so our model, being able to

accommodate multiple growth steps, is quite adequate in this modelling situation.

There are various possibilities to extend the model to binary or categorical responses.

The easiest approach would be to specify a (monotone) link function to map the pa-

rameter values onto the correct range. Covariates (such as gender, age or center effects

typically available in dose-finding trials) can easily be incorporated in the proposed

model by replacing β0 with a additive linear model structure, the same computer im-

plementation could also be used in this scenario.

Convexity or concavity constraints may also be incorporated with the presentedmethod-

ology and we will pursue this idea further in the next Section 4. The generalization to

the case when there are multiple predictors and all are assumed to be in a monotonic

relationship with the response variable will be given in Section 5.



Chapter 4
Bayesian Nonparametric Regression

under Derivative Constraints

This chapter is an extension of the last chapter in the sense that we treat nonparametric

regression under convexity and monotonic convexity constraints (and more generally

derivative constraints). For this purpose we impose the model used in the last chapter

for the first derivative of the regression function. Hence similar to Chapter 3 this sec-

tion relies on the Ongaro-Cattaneo random probability measure introduced in Section

2.1 and the approach to shape constrained regression based on dictionaries discussed

in Section 2.2. In this chapter we also investigate asymptotic properties of the poste-

rior distribution withmethods quite related to those described in Section 2.3. The finite

sample performance of the model will then be investigated in a simulation study and

the model will be illustrated in a biological application.

4.1 Introduction

It is quite common that mathematical models impose constraints on the derivative in

the relationship between variables, such as monotonicity, concavity or convexity. For

some examples see Ramgopal, Laud and Smith (1993), Meyer (2008) or Lee, Lim, Kim

and Joo (2009). Particularly rich sources of examples are also economics (e.g. pro-
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duction functions) and finance (e.g. option pricing), where the constraints usually can

directly be deduced from the economic theory underlying the problem. In this chapter

we will introduce a flexible Bayesian model for nonparametric regression under these

type of constraints, specifically we will consider monotonicity and positivity con-

straints on the derivative. The main idea is to build a model for a shape-constrained

derivative and then to obtain the original function by integration. Along this way

we develop a representation of convex and monotone convex functions, where the

convexity and monotone convexity shape-constraint can be imposed by simple finite

dimensional inequality constraints.

Nonparametric estimation of functions with shape constraints on derivatives has a

long tradition in the area of classical statistics, see, for example, Hildreth (1954), Han-

son and Pledger (1976), Mammen (1991) and Groeneboom, Jongbloed and Wellner

(2001) for theory on the classical convex least squares estimate (which is a monotonic-

ity constraint on the first derivative). Birke and Dette (2007) recently approach the

problem by “convexification” of an unconstrained local polynomial estimate. Another

main stream of the literature on derivative constraints is directly motivated by option

pricing, see, for example, Aı̈t-Sahalia and Duarte (2003), Yatchew andHärdle (2006), or

Birke and Pilz (2009). In addition particularly spline functions have been used to deal

with shape constrained derivatives, see, for example, Dierckx (1980) or Schwetlick and

Kunert (1993) for references from the numerical analysis literature or Dole (1999) and

Turlach (2005).

From the Bayesian perspective, shape constrained nonparametric regression has been

considered extensively when it comes to monotonicity constraints, see, for example,

Lavine and Mockus (1995), Perron and Mengersen (2001), Neelon and Dunson (2004)

and recently Shively, Sager and Walker (2009) or the model described in the last chap-

ter. The case of more general shape constraints on derivatives such as convexity or

concavity, however, has not been covered in this extent. An early parametric account

is O’Hagan (1973), who considers estimation of a convex quadratic polynomial. More

recent references are Chang, Hsiung, Wu and Yang (2005) and Chang, Chien, Hsiung,

Wen and Wu (2007), who use the Bernstein polynomial basis for nonparametric shape

constrained survival analysis and regression.
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The outline of this chapter is as follows: Section 4.2 motivates and describes the model

and associated prior distributions in detail and investigates its asymptotic properties.

Section 4.3 displays the results of a simulation study and in Section 4.4 we apply our

ideas a real data example. Section 4.5 concludes.

4.2 Model

Setting up a prior distribution for nonparametric regression models is challenging.

When using a functional basis, the interpretation of the basis coefficients is typically

involved, and the elicitation of prior distributions is difficult. Another issue is how

to determine the dimension of the underlying basis. Although the model dimension

can be treated as unknown (as done for example in Chang et al. (2007)), it is possible

that a relatively large number of basis functions is needed to be able to reconstruct the

underlying function satisfactorily. A way out of these problems is to use an overcom-

plete dictionary as introduced in Section 2.2, where not only the basis coefficients are

treated as unknown but also the basis functions themselves. The prior distribution

developed in this chapter will be based on such a dictionary.

4.2.1 Modelling the Derivative

The main idea is to build the model for a function µ(.) on [0, 1] based on a shape

constrained derivative and then obtain the original function to be modelled by inte-

gration. We hence first construct a model for a monotonic derivative µ′(.). This will

be done using the approach developed in Chapter 3 for monotonic regression. There

a continuous monotonic function µ′(.) on [0, 1] was decomposed as

µ′(x) = β1 + β2F(x), (4.1)

where β1 and β2 are parameters and F(x) is the distribution function of a continuous

random variable on [0, 1]. The model for µ(.) can then be obtained simply by calculat-
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ing an integral of µ′(.)

µ(x) =
∫ x

0
µ′(t) dt = β0 + β1x + β2F

∗(x), (4.2)

where F∗(x) =
∫ x
0 F(t) dt. In this decomposition shape constraints for µ(.) and µ′(.)

reduce to simple finite dimensional constraints for β1 and β2. A convexity constraint,

for example, corresponds to imposing β2 ≥ 0, as this results in a monotonic increasing

derivative. A monotonic increasing and convexity constraint can be imposed by using

β1 ≥ 0 and β2 ≥ 0. When µ′(.) is assumed to be a cdf (as in option pricing) the desired

constraints are β1 = 0 and β2 = 1. Note that a variety of other constraints, such

as monotone decrease, and concavity are possible with this basic approach by simple

transformations of the data or range (see also Appendix A.1 for details).

Because (4.1) holds for any continuous monotonic function, it follows that any contin-

uously differentiable convex function can be represented in form (4.2) (with β2 ∈ R+).

The same is true for any other continuously differentiable shape constrained space

of functions, when the shape constraint can be expressed in terms of β0, β1 and β2.

An additional advantage of representations (4.1) and (4.2) is the fact that the param-

eters β = (β0, β1, β2)
′ are still relatively easy to interpret: β0 represents the function

value at 0, β1 represents the value of the derivative at 0 and β2 the amount that the

first derivative increases in [0, 1]. In a sense parameters β0, β1 and β2 hence consti-

tute the “parametric” part of the function (4.2), and the shape constraints only need to

be imposed on this finite dimensional part. The “nonparametric” part consists of the

function F, which determines the shape of the first derivative. We propose to model

the distribution function F(.) as a convex combination of parametric distribution func-

tions G(x, ξ) with parameter ξ ∈ Ξ, i.e.

F(x) =
J

∑
j=1

wjG(x, ξ j) =
∫

Ξ

G(x, ξ)P(dξ), (4.3)

where J ∈ {N+ ∪ ∞}, ∑
J
j=1wj = 1 and P(dξ) is a discrete probability (mixing) mea-

sure. At this point we leave G(., ξ) unspecified, but note that a convex combination of

distribution functions G(., ξ j) should be sufficiently flexible to achieve a large support.

The function F∗(.) appearing in (4.2) is hence modelled by F∗(x) = ∑
J
j=1wjG

∗(x, ξ j) =
∫

Ξ
G∗(x, ξ)P(dξ), where G∗(., ξ) =

∫ x
0 G(t, ξ) dt.
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In summary we will use the following model (restricting ourselves in this chapter to a

Gaussian error model):

Yi = µ(Xi) + εi, εi
iid∼ N(0, σ2), i = 1, . . . , n

µ ∼ Πµ(dµ(.)), σ2 ∼ p(dσ2),Xi ∼ Q(dx),

where µ(x) = β0 + β1x + β2F
∗(x), F∗(x) =

∫
Ξ
G∗(x, ξ)P(dξ), p(dσ2) is the prior dis-

tribution for σ2, Q(dx) is the probability distribution of the covariates on [0, 1] and

Πµ(dµ(.)) consists of a parametric prior distribution for β = (β0, β1, β2)
′, which en-

forces the desired shape constraint and a nonparametric prior distribution P for the

mixing distribution P(dξ) and the base distribution function G(., ξ). In the next sec-

tion we will concentrate on how to choose the components of the prior distribution

Πµ.

4.2.2 Prior Distributions

For the parameters β0, β1 and β2 the support of the prior is determined by the type of

constraint to be used. If a parameter is positive one might, for example, use a trun-

cated normal or an exponential distribution as prior, while a normal prior might be

used in the unrestricted case. When a particular value is assumed for the parameter,

degenerate one-point distributions can be used. The nonparametric part of the prior

Πµ is given by the prior for the discrete mixing probability measure P(dξ) and the

choice of the base distribution function G(., ξ). Several random probability measures

P might be used as a prior for the discrete mixing distribution P(dξ). We will subse-

quently use the general prior of Ongaro and Cattaneo (2004). A random probability

measure P belongs to this class when its realizations (discrete probability measures

with support points in a space Ξ) can be represented as

P(dξ) =
J

∑
j=1

wjδξ j
(dξ), (4.4)

where ξ j,wj and J are random variables as given in Definition 2.1.2. Ongaro and Cat-

taneo (2004) (see also Theorem 2.1.4) show that the so constructed random probability

measure has full support on the space of probability distributions absolutely continu-

ous with respect to P0, when the prior distribution for J is unbounded and one of the
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two support assumptions (i) or (ii) of Theorem 2.1.4 are fulfilled. Several choices ful-

fill these requirements, for example the shifted Poisson distribution on 1, 2, 3, . . . with

parameter λ > 0 and a symmetric Dirichlet distribution on the probability simplex

with parameter δ > 0 for each J. In an actual application, one needs to select one par-

ticular prior specification. Hence we need additional guidance on how to choose the

priors. One possibility is to calculate prior mean function and prior variability (and

covariance) of the a-priori random function µ(.) and choose the prior parameters, so

that they match possible prior information and prior uncertainty. The following result

shows how to calculate these quantities and is an extension of Lemma 3.2.1, as we now

also investigate the influence of the prior for β on the prior moments.

Lemma 4.2.1 (Prior Expectation and Prior Covariance). Under the assumption that the

priors for β and P are independent, the prior expectation with respect to Πµ conditional on

x ∈ [0, 1] is given by

E(µ(x)|x) = E(β0) + E(β1)x + E(β2)
∫

Ξ

G∗(x, ξ) dP0(dξ), (4.5)

where G∗(x, ξ) =
∫ x
0 G(t, ξ) dt. The covariance of µ(x1), µ(x2) ∈ [0, 1] is given by

Cov(µ(x1), µ(x2)|x1, x2) = E(a′1Ba2) + E(β2)
2Cov(F∗(x1), F

∗(x2)), (4.6)

where ai = (1, xi, F
∗(xi))′, B = Cov(β),

Cov(F∗(x1), F∗(x2)) = k0(
∫

Ξ
G∗(x1, ξ)G∗(x2, ξ)dP0(dξ)−

∫
Ξ
G∗(x1, ξ)dP0(dξ)

∫
Ξ
G∗(x2, ξ)dP0(dξ))

and k0 = E(∑
J
j=1w

2
j ) ∈ [0, 1].

Proof. See Appendix B.2.

It is interesting to note that the prior mean function only depends on the prior for β

and P0, but not on the distribution of J and (w1, . . . ,wJ)|J. For the covariance how-

ever, they play a crucial role. In Equation (4.6) both summands depend on k0 ∈ [0, 1],

in the sense that the variability in the prior distribution gets larger, when k0 gets

larger (for this note that Cov(F∗(x1), F∗(x2)) and E(F∗(x1)F∗(x2)) are maximal, when

k0 = 1). Hence the priors for J and w1, . . . ,wJ|J can be chosen based on the desired

variability in the prior for µ(.), as well as on how many base distribution functions
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are deemed to be necessary. Note that in general straightforward Monte Carlo (or

other numerical techniques) can be used to calculate prior mean and covariance func-

tion from Lemma 4.2.1 for the particular model and priors under consideration. In

the context of elicitation, it might also be worthwhile to investigate the prior dis-

tribution for the derivative: The prior mean function of the derivative is given by

E(µ′(x)|x) = E(β1) + E(β2)
∫

Ξ
G(x, ξ) dP0(dξ). A starting point for prior elicitation

here would be to select the distribution P0 such that the prior mean function for the

first derivative is (approximately) linearly increasing, so that the prior mean function

for µ(.) is approximately a quadratic polynomial.

In the following we will consider how to choose the base distribution function G(., ξ).

To assure that an arbitrary differentiable convex function can be represented as (4.2)

we need to find a function G(., ξ) such that any continuous monotonic function can

be approximated in sup-norm by a function of form (4.1) (modelling F(x) by (4.3)).

So G(., ξ) needs to be chosen such that for any continuous distribution function H on

[0, 1], there exists ξ1, ξ2, . . . , ξ J , . . . with ξ j ∈ Ξ and wj, subject to ∑
J
j=1wj = 1 so that

sup
x∈[0,1]

∣∣∣∣∣
J

∑
j=1

wjG(x, ξ j)− H(x)

∣∣∣∣∣ → 0, for J → ∞. (4.7)

Several choices of distribution functions have this property. A second important re-

quirement on G(., ξ) is that the integral over the G(., ξ) is available in a closed form, to

be able to calculate G∗(., ξ) and F∗(.) efficiently (otherwise one would need to perform

numerical integration to evaluate the likelihood function, which would be computa-

tionally prohibitive).

A cdf possessing both properties is the distribution function of the two-sided power

(TSP) distribution (van Dorp and Kotz 2002) already used in Chapter 3, see Equation

(3.5) for a definition of the TSP distribution function. In Chapter 3 it is shown in

Theorem 3.2.1 that (4.7) holds for the TSP distribution function. In addition, as desired,

the integral over a TSP distribution function is available analytically and given by

G∗(x, ξ) =





m2

ν+1

(
x
m

)ν+1
0 ≤ x ≤ m

x−m + (1−m)2

(ν+1)

(
1−x
1−m

)ν+1
+ 2m−1

ν+1 m ≤ x ≤ 1
.
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4.2.3 Asymptotic Considerations

In this section we investigate the asymptotic properties of the posterior distribution

for the special case of convex nonparametric regression. Particularly we will inves-

tigate, whether the posterior distribution concentrates its probability mass at a one

point distribution on the true value, when one has perfect information, i.e. an infinite

sample size. As discussed in Chapter 2.3 one can explicitly exploit the convexity shape

constraint in a consistency proof, as was done by Shively, Sager and Walker (2009) for

the case of monotone nonparametric regression.

Let ζ = (µ(.), σ2) and let the true value of ζ be ζ0 = (µ0(.), σ
2
0 ). Here µ0(.) is hence

a continuously differentiable convex function and σ0 > 0. In addition the Kullback-

Leibler divergence between two densities (dominated by the Lebesgue measure on R)

is denoted by K( f , g) and the Hellinger distance by dH( f , g) (see Appendix A.3), then

we define

KQ(ζ, ζ0) =
∫
K(φ(µ(x), σ), φ(µ0(x), σ0))Q(dx), and

HQ(ζ, ζ0) =
∫
dH(φ(µ(x), σ), φ(µ0(x), σ0))Q(dx),

where φ(µ, σ) denotes the density of a normal distribution with parameters µ and

σ. KQ and HQ are hence the average Kullback-Leibler divergence and the average

Hellinger distance between the normal residual distributions, where the average is

taken with respect to the distribution of the covariates. In addition denote the param-

eters ζ with HQ distance larger than ǫ from ζ0 as Hǫ, i.e. Hǫ = {ζ|HQ(ζ, ζ0) > ǫ}. In
the following we will list the conditions sufficient to achieve full support in Kullback-

Leibler distance KQ.

(A1) The prior for σ2 has a strictly positive density on [0,∞).

(A2) The priors for β have full support on R × R × R+.

(A3) The base distribution function G(., ξ) fulfills property (4.7).

(A4) The random probability measure P fulfills the support requirements stated in

Theorem 2.1.4 and the base probability measure P0 has strictly positive support

on Ξ.
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Now let Π∗
n be the posterior distribution of ζ. The following Theorem shows consis-

tency of the posterior distribution in Hellinger distance, using the same method of

proof as in Shively, Sager and Walker (2009), i.e. exploiting the fact that a consistent

maximum likelihood estimator for convex regression exists.

Theorem 4.2.1 (Posterior Consistency). Under the Assumptions (A1)-(A4), the joint pos-

terior distribution Π∗
n of µ(.) and σ fulfills for any ǫ > 0

Π∗
n(Hǫ)

a.s.→ 0 for n → ∞.

Proof. See Appendix B.3.

The posterior probability of the complementary event Hǫ = {ζ|HQ(ζ, ζ0) ≤ ǫ} hence

converges to one and the posterior concentrates on the true values (µ0(.), σ
2
0 )

′ in the

HQ distance. From this, one can directly conclude almost sure convergence of the

Bayes estimate, i.e. the posterior mean, using the convexity of Hellinger distance and

an application of Jensen’s inequality, see Shively, Sager and Walker (2009) for details.

4.3 Simulation Study

In this section we will evaluate the finite sample performance of the approach with

respect to estimation of the original function and its derivative in a simulation study

and compare it with two alternative approaches. To simulate our data we used three

different test functions and two different noise levels. The test functions are given by

µ1(x) = exp(3x− 3)

µ2(x) =





0.1− x + 2x2 x ≤ 0.7

1.8x− 0.88 x > 0.7

µ3(x) = 0.2− x + 5
∫ x

0
B(t, 100, 15) dt + 2

∫ x

0
B(t, 5, 10) dt,

where B(t, α, β) denotes the distribution function of a beta distribution with parame-

ters α and β. The functions as well as their first derivatives are displayed in Figure 4.1.

The first function µ1 is an exponentially increasing function and has a rather smooth
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Figure 4.1: Testfunctions used for simulations (upper row) and corresponding first

derivatives (lower row).

shape. The second function is included because it has a non-smooth first derivative

with a sharp edge at x = 0.7, and is constant after that. The last test function µ3 is in-

cluded because it has a slightly more complex shape than the other two test functions.

For each scenario we simulated 100 uniformly distributed covariates in [0, 1] and con-

ditional on those we simulated normally distributed observations with mean given by

one of the three test functions and the standard deviation σ given by either 0.3 or 0.1.

We will use two alternative methods to compare the performance of the proposed

methodology. The first one is the classical convex least squares estimate proposed by

Hildreth (1954), as implemented in the conreg function of the cobs R package (Ng and

Maechler 2008). Note that the fitted function for this approach is a piecewise linear

function, and hence not smooth. As all functions in the simulation study are smooth

we additionally used a second approach based on shape constrained penalized B-

splines. We used cubic B-splines with 10 inner knots located at the 0.05, 0.15, 0.25, . . . ,

0.85, 0.95 empirical quantile of the covariates. As noted for example by Dierckx (1980),

for the B-spline basis there are simple linear constraints, which ensure convexity of

a spline. These constraints can be imposed in a quadratic programming approach to

obtain a convex estimate. To achieve a smooth estimate we used a difference penalty
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as described in Eilers andMarx (1996). The smoothing parameter for the penalty is set

to the value obtained by generalized crossvalidation for the unconstrained problem.

For both penalized splines and the classical convex least squares estimate we used the

derivative of the estimate as an estimate for the first derivative.

The approach we propose in this chapter is applied with the following prior selection:

For the parameters β we use (possibly positive truncated) improper constant prior

distributions (resulting in a convexity shape-constraint). The nonparametric part of

the prior (4.3) is specified as follows: For J − 1 we use a Poisson distribution with pa-

rameter λ = 1.5 (i.e. the prior mean for J is 2.5), corresponding to the experience that

typically a fairly small number of basis functions is sufficient to model a monotonic

function. The distribution of the weightsw|J is chosen as a symmetric Dirichlet distri-

bution with parameter δ = 0.5. This specification of the priors for J and w|J leads to a

k0 ≈ 0.71, so a quite uninformative selection of priors. For G(., ξ)weuse the TSP distri-

bution function. The parameters m and ν of the TSP distribution receive a U(0, 1) and

a U(1, 50) distribution. This approximately corresponds to a linear increasing prior

mean function for the derivative (and hence approximately to a quadratic polynomial

for µ(.)). The approach is implemented using MCMC techniques based on Gibbs sam-

pling and a reversible jump step (Green 1995) for updating the function F∗(.) (see

Appendix C.2 ). For each simulation we used 5000 iterations burn-in, a total of 55000

iterations and a thinning rate of 5, giving a total of 10000 iterations. For estimating the

mean function µ(.) and its derivative in this approach we use the pointwise median as

an estimate.

We compare estimation of the function and its derivative through the mean absolute

estimation (MAE) error:

MAE =
1

101

101

∑
i=0

|µ(i/101) − µ̂(i/101)|.

The results of the simulation study can be found in Table 4.1. There it can be seen that

the Bayesian approach, with the chosen weakly informative selection of priors per-

forms quite well compared to the other approaches, particularly for Scenario 2. When

it comes to estimation of the first derivative it becomes obvious that the estimation er-

ror increases quite dramatically for all methods. Estimation of derivatives seems con-
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Function 1st Derivative
Testfct. σ ConvLS ConvRS ConvBayes ConvLS ConvRS ConvBayes

µ1(.) 0.3 0.0530 0.0441 0.0451 0.6722 0.3722 0.3273
0.1 0.0201 0.0179 0.0183 0.3441 0.2389 0.1801

µ2(.) 0.3 0.0538 0.0488 0.0477 0.7154 0.4927 0.3400
0.1 0.0208 0.0197 0.0186 0.3636 0.2904 0.1852

µ3(.) 0.3 0.0571 0.0531 0.0575 0.9831 0.7436 0.6442
0.1 0.0223 0.0233 0.0213 0.5313 0.5084 0.2970

Table 4.1: Mean absolute estimation error for true mean function and first derivative
of the mean function (ConvLS =̂ Convex least squares, ConvRS =̂ Convex regression
splines, ConvBayes =̂ Convex nonparametric Bayes estimate), based on 1000 simula-
tions.

siderably more difficult. However the penalized splines perform considerably better

than the convex maximum likelihood estimator, which is probably due to the smooth-

ness penalty. Additionally the Bayesian approach performs better than the other two

approaches, particularly in Scenarios 2 and 3. We believe the good performance is

mainly due to two reasons: (i) the Bayes estimate also uses a type of smoothness pe-

nalization through the prior distribution for J, and more importantly, the Bayesian

estimate for the derivative is based on an averaging over posterior simulations from

an MCMC sample (the pointwise median is used as the estimate). As the derivative

is quite variable, it is reasonable that this averaging has a positive effect (in the sense

of leading to a smoother and possibly also more reliable estimate) compared to taking

just one particular estimate.

4.4 Length of Dugongs

In this section we will apply our methodology to a data set taken from Ratkowksy

(1983). The data consist of length and age measurements of dugongs captured near

Townsville in Queensland, Australia. Dugongs are large marine mammals living at

the shores of the Indian Ocean and primarily in Australia. In this situation it is rea-

sonable to assume that the growth of dugongs primarily happens at an early age and

the growth rate gets less as the dugong gets older. Mathematically this is hence essen-

tially a concavity restriction. Additionally it is reasonable to assume that the length is
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Figure 4.2: (i) Plot of the fitted data set and credibility intervals and (ii) the uncertainty

distribution for a dugong of length 2.5.

a monotonic function of age.

Although prior information might be available for this particular application, we will

use a weakly informative selection of priors. Hence for the parameters β we use con-

stant improper priors and impose the constraints β1 ≥ 0 and β2 ≥ 0. The nonparamet-

ric part of the prior (4.3) is specified as follows: For J− 1 we use a Poisson distribution

with parameter λ = 1 (i.e. the prior mean for J is 2). The distribution of theweightsw|J
is chosen as a uniform distribution on the simplex. For this specification k0 ≈ 0.74, so a

fairly high variability. For G(., ξ) again the TSP distribution is used. The parametersm

and ν of the two-sided power distribution receive aU(0, 1) and aU(1, 50) distribution;

note that this approximately corresponds to a linear increasing prior mean function for

the derivative. As our code is designed to deal with convex increasing regression we

reversed the x axis, negated the observed values and retransformed back to display

the results.

We ran the MCMC algorithm described in Chapter C.2 for 200000 iterations after a

burnin of 10000 and used a thinning rate of 10 resulting in 20000 simulations from the

posterior. Convergence has been checked by running multiple chains from different

starting values and observing that the results are consistent between the chains. In



80 Bayesian Nonparametric Regression under Derivative Constraints

Figure 4.2 (i) one can observe the credibility intervals for the fitted conditional mean

function of length versus age. The uncertainty becomes largest in the sparse region of

the data, i.e. for dugongs of an age higher than around 17 years. Here themonotonicity

restriction is certainly beneficial for the estimation process, because the three observa-

tions with age larger than 17 point into a downwards direction. An unconstrained

nonparametric model would certainly predict a downturn of the length at larger ages

due to the lack of other information.

One interesting application of the data set would be to determine the age of the dugong

(something usually quite difficult to obtain) from its length (which is easier to obtain).

Particular in the Bayesian framework one can report not only a point estimate for the

age for a given length but also an uncertainty interval, taking into account the un-

certainty in model and data. Suppose for example one finds a dugong of length 2.4

metres and want to infer its age. Hence we need to account for two kinds of uncertain-

ties, first the uncertainty induced from not knowing µ(.) and second the individual

variation of the animal ǫ∗, which is also unknown. Essentially we thus want to find

the value x∗ for which 2.4 = µ(x∗) + ǫ∗. For µ(.) we have a posterior sample and ǫ∗

is normally distributed with mean 0 and standard deviation σ, where for σ also a pos-

terior distribution is available. So posterior simulations for x∗ can be produced from

the MCMC output for µ(.) and σ. In Figure 4.2 (ii) one can observe the corresponding

histogram of x∗ values. The posterior median is given by 10.3 years and the 0.05 and

0.95 quantile are given by 5.4 years and 17.4 years, respectively, which is a surprisingly

large uncertainty. It is interesting to observe that uncertainty is larger in the right tail:

This is probably due to the fact that the data are relatively sparse for older dugongs

and the fact that the curve flattens out for higher ages.

The traditional way of evaluating these data would be to use parametric non-linear re-

gression models such as µ(x) = α − βγx with α, β > 1 and γ ∈ (0, 1) as is done in the

examples of the WinBUGS language (version 1.4). A usual concern about these para-

metric models however is the fact that there is no application specific motivation for

using this (or any other) particular parametrization. Hence the uncertainty involved

in the modelling process can greatly be underestimated.
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4.5 Conclusions

In this chapter we have proposed a method for estimating a continuous differentiable

function under derivative constraints. For this purpose we derived a representation

of continuously differentiable functions with a monotonic derivative, in which shape

constraints such as convexity or monotonic convexity reduce to simple finite dimen-

sional constraints on the parametric part of the model. We think that this representa-

tion might also be of interest for other approaches to derivative-constrained inference.

Future work might apply this model, for example, in problems in economics or fi-

nance. We believe this model particularly has great potential for example for option

pricing, where the first derivative of the modelled function is a probability distribution

function, a constraint which our model can easily accommodate by choosing β1 = 0

and β2 = 1.

A limitation of the representation employed in this chapter is the fact that it allows

essentially for monotonicity and positivity constraints on the first derivative, although

obviously more general constraints might be desirable. One example of a constraint

not covered by our approach is a unimodality restriction on the derivative. This would

result in, so-called, ogive curves for the original function to be modelled (for example

the non-linear sigmoid Emax model is an example of a parametric ogive model). Also

a unimodal function can be modelled using a derivative constraint, here however the

derivative constraint is more involved: The derivative of a differentiable unimodal

function is first positive, then (possibly) negative, but after that not positive again.

This seems difficult to represent with simple constraints.

In the next section we will relax the assumption of a parametric residual distribution.

Additionally we will consider multivariate input variables and build a model for a

stochastically ordered densities based on multivariate monotone functions (which is

again a positivity constraint on the partial derivatives of the function).





Chapter 5
Stochastically Ordered Multiple

Regression

This chapter generalizes Chapters 3 and 4 in two directions: (i) A nonparametric

model is assumed for the residual density (based on a mixture of normal densities,

as described in Section 2.1.1) and (ii) a nonparametric model for multivariate mono-

tonic functions based on ridge functions (see Section 2.2.2) is constructed. In addition

again the Ongaro-Cattaneo randommeasure, introduced in Section 2.1, will be used to

build the model, but in this chapter it will be employed on a function space rather than

a subset of Euclidean space. The application studied in this section is in epidemiology

using data from the US Collaborative Perinatal Project. Specifically we investigate the

gestational age at delivery (GAD) of newborns as a function of the risk factors DDE

and PCB, while imposing a stochastic ordering constraint in the relationship between

GAD and the risk factors. The paper Bornkamp, Ickstadt and Dunson (2009) is based

on the material in this chapter.

5.1 Introduction

In many biomedical applications, subject-specific knowledge suggests that the con-

ditional distribution of a response y ∈ R given predictors x ∈ X ⊂ Rk increases
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(or decreases) stochastically with increasing x. One example arises in epidemiology,

where the exposure to toxic substances or environmental risk factors often can be as-

sumed to be related to health risk in a monotonic way. A different example appears

in clinical trials, where the effect of a pharmaceutical compound (or a combination

of compounds or therapies) is assumed to be increasing with increasing dose level

(or intensity of therapy). In these situations, it is natural to model the distribution of

the response conditionally on covariates, such as age, as stochastically ordered with

increasing value of the exposures. For ease of exposition we focus on the increasing

case, but a stochastic decrease can be considered analogously.

Nonparametric modelling of stochastically increasing densities with respect to an or-

dered categorical covariate has recently been discussed quite extensively in a Bayesian

framework by Gelfand and Kottas (2000), Hoff (2003a), Karabatsos and Walker (2007)

and Dunson and Peddada (2008), among others. The generalization to a multivariate

continuous predictor is considerablymore difficult. When normality and homoscedas-

ticity are imposed on the residual density, the problem reduces to estimation of an iso-

tonic regression in multiple predictors (e.g. Dykstra and Robertson (1982)). Mukarjee

and Stern (1994) and Dette and Scheder (2006) proposed to monotonize an uncon-

strained nonparametric regression fit. To reduce complexity in modeling of the mul-

tivariate surface subject to monotonicity constraints, additivity constraints can be im-

posed as in Bacchetti (1989), Morton-Jones, Diggle, Parker, Dickinson and Binks (2000)

and Tutz and Leitensdorfer (2007) or more recently in Shively, Sager andWalker (2009)

in a Bayesian framework.

Such methods focus on the mean of the response distribution, while in many applica-

tions the distribution tails may be of even greater interest. For example, in epidemi-

ology, subjects in the right or left tail have an adverse health response. In order to

assess how the entire conditional response distribution changes with predictors, it is

important to avoid restrictive assumptions such as normality and homoscedasticity.

Bayesian density regression methods, proposed by Müller, Erkanli and West (1996)

and Dunson, Pillai and Park (2007) among others, allow the conditional response den-

sity to change flexibly with predictors. To address the curse of dimensionality prob-

lem, such methods borrow strongly across different regions of the predictor space.
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Efficiency can substantially be improved through imposing stochastic ordering con-

straints. To our knowledge, Wang and Dunson (2009) proposed the only method to

incorporate stochastic ordering over a continuous predictor in nonparametric density

regression. Our focus is on generalizing their approach to allow multiple predictors,

while incorporating ideas of Chapter 3 for building multivariate monotonic functions.

Section 5.2 describes our model and discusses its properties. Section 5.3 contains a

simulation study, Section 5.4 applies the methods to an epidemiology data set, and

Section 5.5 concludes.

5.2 Methodology

5.2.1 Model

Although there is a rich literature on multivariate stochastic ordering, the focus has

been on multivariate responses. In this chapter we address the problem of nonpara-

metric conditional distribution modeling subject to stochastic ordering in multiple

predictors. We refer to the proposed order restriction as SO-X , with X the (possi-

bly multivariate) input space of the predictors. In particular, letting Fx(y) denote the

conditional distribution function of y given predictors x ∈ X ⊂ Rk, restriction SO-X
corresponds to

Fx(y) ≥ Fx′(y), for all y ∈ R and x ≤ x′,

where x ≤ x′ if and only if xm ≤ x′m for all m = 1, . . . , k. This is a generalization of

the stochastic ordering constraint for two probability distributions given in Appendix

A.1.

Let FX = {Fx , x ∈ X} denote an uncountable collection of continuous conditional

distribution functions, with each Fx in FX having support on R and with X ⊂ Rk.

We propose a prior for FX , which will be a distribution over the set of all possible

collections FX subject to restriction SO-X . To induce such a prior, we propose to

characterize each Fx as a location-scale mixture of Gaussians, with the variances con-
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stant with x while the conditional means vary according to unknown multivariate

monotone functions. Such a restriction on the component-specific mean functions is

sufficient to ensure SO-X , as is shown formally below.

Letting fx denote the density corresponding to distribution function Fx, we model the

residual densities as

fx(y) =
∫

φ(y, µ(x), σ2)P(dµ, dσ2) = ∑
h

πhφ(y, µh(x), σ
2
h ), (5.1)

where φ(y, µ, σ2) is the normal density with mean µ and variance σ2, the µh : X → R

are multivariate monotonic functions satisfying µh(x) ≤ µh(x
′) for all x ≤ x′, and

P is a discrete mixing probability measure with support on M× R+, where M is the

space of multivariate monotonic functions mapping from X → R. In the following we

take X = [0, 1]k without loss of generality for bounded predictors. By assuming the

mixing measure is almost surely discrete, we hence obtain a countable mixture with

πh a probability weight on the hth component, which has associated mean function µh

and variance σ2
h . For each x ∈ X , the conditional density is expressed as a univariate

Gaussian mixture, with the densities stochastically ordered due to the monotonicity

of each µh. We focus on Gaussian mixtures as they are well-established and computa-

tionally tractable, note however, that most of the theory in this paper also applies to

other kernels (for example the proof of Theorem 5.2.1, see Appendix B.4).

As a general prior for the discrete mixing measure on M× R+, we focus on the class

proposed by Ongaro and Cattaneo (2004) (see also Section 2.1), which includes a broad

variety of priors as special cases. A random probability measure belongs to this class

when its realizations can be represented as

P(·) =
N

∑
h=1

πhδξh
(·),

where ξh,πh,N are random variables as specified in Definition 2.1.2. The Dirichlet

process with parameter MP0 is obtained by setting N = ∞ and using the GEM distri-

bution with parameter M for the weights πh (Ishwaran and Zarepour 2002). A trun-

cated Dirichlet process has a fixed N and a generalized Dirichlet distribution for the

weights (see Remark 2.1.1 for details).
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The following Lemma establishes that mixture model (5.1) induces the SO-X restric-

tion on the conditional distributions and that any collection of continuous conditional

distributions in SO-X can be approximated using (5.1).

Theorem 5.2.1 (Support).

(i) Under model (5.1) the conditional distributions satisfy

Fx(y) ≥ Fx′(y), for all y ∈ R, (x, x′) ∈ X ×X , x ≤ x′;

(ii) Given a set F̃X of continuous distributions satisfying SO-X order, with conditional

distribution functions F̃x(y) on R, there exist, for an arbitrarily small ǫ > 0, πh, µh(x)

and σ2
h such that

sup
x∈[0,1]k

{
sup
y∈R

∣∣∣∣∣
N

∑
h=1

πhΦ(y, µh(x), σ
2
h )− F̃x(y)

∣∣∣∣∣

}
≤ ǫ +

1

N
,

where Φ(y, µ, σ2) is the distribution function of a normal distribution with mean µ and

variance σ2.

Proof: See Appendix B.4.

Because the probability of having any observation exactly at a given x is zero for pre-

dictors having a continuous density, the ability to estimate fx(y) necessarily relies on

borrowing of information across different locations. We cannot simply define separate

mixtures of normals for each location. Lemma 5.2.1 shows how the dependence arises

through the prior, while also providing an expression for the prior expectation.

Lemma 5.2.1 (Prior Moments). Marginalizing out the random mixing measure P, the ex-

pectation of Fx(y) and the covariance of Fx(y) and Fx′(y) for x, x
′ ∈ X are given by

E{Fx(y)} =
∫

Φ(y, µ(x), σ2))dP0,

Cov{Fx(y), Fx′(y)} = k0

{∫
Φ(y, µ(x), σ2)Φ(y, µ(x′), σ2)dP0

−
∫

Φ(y, µ(x), σ2)dP0

∫
Φ(y, µ(x′), σ2)dP0

}

where Φ(y, µ(x′), σ2) is the distribution function of a normal distribution with mean µ and

variance σ2, P0 is a nonatomic probability distribution onM× [0,∞) and k0 ∈ [0, 1] is given

by E(∑
N
h=1 π2

h).
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Proof: See Theorem 2.1.3.

Hence the prior mean and the prior correlation structure is determined by the base

measure P0 alone, while the parameter k0 of the random measure, jointly with P0,

determines the variability. In practice we need to specify the base measure P0 of the

nonparametric prior, consisting of a prior distribution H on the monotonic function

space M as well as a prior distribution on [0,∞) for the variance parameter. Because

standard choices can be used for the prior for the variance (e.g., inverse-gamma), we

focus in the next section on how to choose H.

5.2.2 Prior for Multivariate Monotone Functions

Placing a prior on the space of multivariate monotonic functions is challenging. The

use of multivariate basis expansions or tensor products of univariate bases quickly be-

comes infeasible as the dimension increases, because more and more basis functions

are needed to obtain an adequate approximation (Barron 1993). Another challenging

issue is how to impose monotonicity on the multivariate basis. A common strategy is

to impose additional constraints to simplify the problem, with two such possibilities

corresponding to additive models (where µ(x1, . . . , xk) = µ1(x1) + . . .+ µk(xk)) or sin-

gle index models (where µ(x) = µ∗(a′x), with µ∗ : R → R and a ∈ Rk), see Section

2.2.2 for details. For additive models, monotonicity is imposed through restricting

each univariate function to be monotonic, while for single index models, one can let

a ∈ Rk
+ and µ∗ be monotonic. Unfortunately, additive models do not allow interac-

tions, and the single index model is constant on hyperplanes of the form a′x = const.

We propose to base our prior on linear combinations of ridge functions, ∑ cjgj(a
′
jx),

where the gj : R → R are univariate continuous functions and the aj ∈ Rk are direc-

tion vectors. As discussed in Chapter 2.2, linear combinations of sufficiently-flexible

ridge functions can approximate any multivariate continuous function in sup norm,

and are ideally suited for multivariate cases in requiring only a few ridge functions to

characterize fairly complex relationships (Barron 1993). As a sufficient but not neces-

sary condition to ensure monotonicity, we assume cj ∈ R+, the gj(.) to be monotonic
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and aj ∈ Rk
+. We refer to the resulting class of functions as positive linear combina-

tions of monotonic ridge (plcmr) functions. As it is not straightforward to find simple,

and hence computationally-tractable, necessary restrictions for monotonicity and we

find the plcmr class to be highly-flexible, we restrict consideration to this class. It is

straightforward to show that all plcmr functions are multivariate monotone, with ad-

ditive and single-index models arising as special cases.

Wewill carefully specify our prior on the space of plcmr functions on [0, 1]k to facilitate

interpretation and computation expressing the function µ(x) as

µ(x) = β0 + β1µ0(x), (5.2)

with β0 ∈ R the value at x = (0, . . . , 0)′, β1 ∈ R+ the maximum change between

(0, . . . , 0)′ and (1, . . . , 1)′, µ0(x) =
∫
G(α′x, ξ)Q(dα, dξ) = ∑

J
j=1wjG(α′

jx, ξ j), Q a dis-

crete mixing measure, w ∈ S J , αj ∈ Sk and G a univariate cdf on [0, 1] depending on

parameters ξ ∈ Ξ. Restricting αj to fall on the probability simplex has the advantage

that automatically α′
jx ∈ [0, 1] for any α ∈ Sk and any x ∈ [0, 1]k. Hence α measures

the proportions of the total increase in the function µ0(.) attributable to the different

covariates. Lemma 5.2.2 provides a condition on the base distribution G under which

a plcmr function can be approximated using (5.2).

Lemma 5.2.2. Any plcmr function ∑ cjgj(a
′
jx) on [0, 1]k → R can be approximated arbitrar-

ily well in supremum norm by a function of form (5.2), provided

sup
x∈[0,1]

∣∣∣∣∣
J

∑
j=1

wjG(x, ξ j)− G̃(x)

∣∣∣∣∣

can be made arbitrarily small, for w ∈ S J , ξ j ∈ Ξ and any distribution function G̃ on [0, 1].

Proof: See Appendix B.5

In order to induce smoothness in the collection of conditional distributions over the

predictor space, it is appealing to focus on continuous multivariate monotonic func-

tions. In this case, the prior is dense in the space of continuous plcmr functions when

the base distribution function G can approximate any continuous cdf on [0, 1] arbitrar-

ily well. Several choices fulfill this property. One example is the distribution function
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of the standard two-sided power (TSP) distribution of van Dorp and Kotz (2002), as

used in Chapter 3, see Equation (3.5). The TSP cdf is sufficiently flexible (see Theorem

3.2.1), numerically straightforward to evaluate and available in a closed form (unlike

for example the beta cdf).

Assuming the functions follow (5.2), a specification of the prior H is completed with

parametric priors for β0 and β1 and a nonparametric prior for the mixing distribution

Q based on Ongaro and Cattaneo (2004). A typical choice is to use J − 1 ∼ Poi(ρ),

while the components (m, ν, α)′ of the base measure Q0 are chosen to match prior in-

formation and prior uncertainty. A useful tool is to simulate the prior distribution and

assess whether the resulting simulations lead to a-priori plausible results. A default

choice in this setting are uniform distributions on reasonable subsets of the parameter

space.

5.2.3 Implementation

In this section we describe the implementation and specific priors used. Assume we

observe independently distributed data (yi, xi, zi), i = 1, . . . , n, where yi is a univariate

response, xi ∈ [0, 1]k are the covariates which are in a multivariate monotonic relation-

ship with respect to yi and zi ∈ Rp are additional unconstrained covariates we would

like to adjust for in the analysis.

For the mixing measure P (from Equation (5.1)) we use the truncated Dirichlet pro-

cess with parameter MP0, which provides an accurate approximation to the Dirichlet

process, while facilitating an efficient implementation via a blocked Gibbs sampler

(Ishwaran and James 2001). We choose the truncation level N = 20, which provides

a conservative upper bound on the number of mixture components occupied by indi-

viduals in the sample. The resulting model for the data is

P∼DPN(MP0), P =
N

∑
h=1

πhδ(µh(x),σ
−2
h )

yi|xi, zi, P iid∼
N

∑
h=1

πhφ(µh(xi) + γ′zi, σ
2
h)

where DPN(MP0) denotes the truncated Dirichlet process with parameter MP0 and N
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components. The weights πh have the truncated stick-breaking representation πh =

Vh ∏l<h(1 − Vh) with Vh
iid∼ Beta(1,M) and πN = 1 − ∑

N−1
h=1 πh. The atoms in the

mixture (µh, σ
−2
h ) are iid realizations of the base measure P0 with P0 = H× Exp(ω), H

is the prior on the space of plcmr functions and the µh(x) are given by µh(x) = β0h +

β1h ∑
Jh
j=1whjG(α′

hjx,mhj, νhj). We adjust for possible additional predictors zi linearly.

For β0h a normal distribution with parameter m0 and variance ν−1
0 will be used. The

parameter m0 in turn has a normal prior with mean w0 and variance τ0, while ν0 has

a gamma prior with parameters aν0 , bν0 . As a common focus is in assessing whether

the predictors have any effect on the response distribution, it is important to allow

a completely flat relationship. This can be accomplished through using a mixture of

a point mass at 0 and an exponential distribution with parameter λ as the prior for

β1h. The mixing probability π0 is given a Beta(aπ0 , bπ0) hyperprior, while λ is given

a gamma(aλ, bλ) hyperprior. These hyperpriors induce a heavier-tailed and hence a

more robust specification.

In specifying the prior for the mixing distribution Q in Equation (5.2), we assign the

number of components Jh a Poisson(ρ) distribution shifted by one. The hierarchical

prior for ρ is given a gamma(aρ, bρ) hyperprior. The weights wj in the mixture follow

a uniform distribution on S J for each J. For the base measure Q0 we use the following

distribution U(0, 1) ×U(1, 20) × D(1) for the parameter (m, ν, α), where D(1) is the

(k − 1)-dimensional Dirichlet distribution with parameter (1, . . . , 1)′ i.e. a uniform

distribution on the simplex. This corresponds to the prior assumption that all variables

are equally important a-priori and ensures an approximately linearly increasing prior

mean function for the univariate function µ, with a reasonable variability.

For the precisions σ−2
h an exponential prior with parameter ω is used, where ω has a

gamma hyperprior with parameters aω, bω. The precision parameter M of the trun-

cated Dirichlet process is also treated as unknown and receives a conjugate gamma

hyperprior with parameters aM, bM. As a prior for the additional covariates γ a multi-

variate normal prior is used with mean µγ and covariance matrix Σγ.

To analyze the model, MCMC techniques based on the blocked Gibbs sampler will be

used. This algorithm introduces a latent class membership variable Ki with categories
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Figure 5.1: Test functions used in the simulation study.

1, . . . ,N for each observation and iterates between updating the class memberships

variables and the class specific parameters. Most of the class specific parameters can

be updated by Gibbs steps, while an RJ-MCMC step is used to update the functions

µ0
h(.). Additionally the hyperparameters are updated in Gibbs steps, which is possible

because conjugate hyperpriors were used. Appendix C.3 contains a detailed descrip-

tion of the MCMC algorithm.

5.3 Simulation Study

In this section we will evaluate the performance of the methodology with respect to

estimation of the conditional response density and the conditional mean function. For

this purpose we consider four simulation scenarios. For each scenario 250 uniform

random covariates x in [0, 1]2 are generated and the response values were then simu-

lated according to the following four densities

1. f (y|x) = φ(0, 0.152)
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2. f (y|x) = φ(µ1(x), 0.05
2)

3. f (y|x) = 0.6φ(µ2(x), 0.09
2) + 0.4φ(0, 0.052)

4. f (y|x) = 0.7φ(µ3(x), 0.06
2) + 0.3φ(µ4(x), 0.08

2).

In Scenario 1 a null model with no effect of the covariates x is used, while in Scenario 2

there is only one mixture component. In Scenario 3 only part of the population shows

an effect with increasing covariates, while in Scenario 4 there are two groups within

the population reacting differently to the predictors x. The multivariate functions used

for the scenarios are given by (see also Figure 5.1)

µ1(x) = 1/3B(0.5x1 + 0.5x2, 1, 1) + 1/3B(0.7x1 + 0.3x2, 20, 10) +

+1/3B(0.15x1 + 0.85x2, 15, 20)

µ2(x) = max(x1 − 0.2, 0)2/0.64 +max(x2 − 0.5, 0)/0.5

µ3(x) =
z5

z5 + 0.35
, where z = (x1 + 0.5x2 + x1x2)/2.5

µ4(x) = 0.8B(x1, 30, 15) + 0.2B(x1, 3, 4),

where B(x, α, β) is the distribution function of the beta distribution with parameters

α and β. The functions represent a selection of rather smooth functions with a subtle

interaction structure (µ1, µ3), a non-smooth additive function (µ2) and a function in

which only one of the two predictors has an increasing effect (µ4), with a rather sudden

change from baseline to maximum response.

We will apply our methodology with the following weakly informative setting of the

hyperpriors: w0 = 0, τ0 = 10, aν0 = 0.5, bν0 = 0.5, aλ = 1, bλ = 1, aρ = 1, bρ =

1.5, aπ0 = 1, bπ0 = 1, aM = 1, bM = N, aω = 0.5, bω = 0.5. The components of the

prior for the mixing distribution Q (used in the prior for µ0(.)) are chosen exactly as

specified in Section 5.2.3. To analyze the model we use the algorithm described in the

last section for 5000 iterations after a burn-in of 1000 iterations for each simulated data

set. Every simulation scenario has been repeated for 500 simulations.

In Figure 5.2 the mean of the pointwise 0.05, 0.5 and 0.95 quantiles of the conditional

density at the locations (1/3, 1/3)′, (1/3, 2/3)′ , (2/3, 1/3)′ and (2/3, 2/3)′ can be ob-

served (averaged over the 500 simulations). It can be seen that the methodology in
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Figure 5.2: Mean 0.05,0.5 and 0.95 posterior quantile of the conditional density over
500 simulations (solid grey lines) and true conditional density (red line) at four loca-
tions in the input space for each of the four scenarios.

almost all situations nicely recovers the shape of the distribution. As one might ex-

pect, the performance in the more complex Scenarios 3 and 4 is slightly worse than in

Scenarios 1 and 2.

In addition we evaluate the performance for estimating the conditional mean function.

For this purpose we used the posterior mean of the conditional mean function as an

estimate in each simulation scenario and evaluated the absolute estimation error with

respect to the true conditional mean function at 55 uniformly distributed locations in

the predictor space. In Figure 5.3 one can observe the mean absolute estimation error

at these 55 locations. There it can be seen that for Scenarios 1 and 2 the methodology

works well for all of the input space. In Scenario 3 and 4 the largest estimation er-

rors occur at the boundary of the input space, when there is a steep increase (which

is probably due to the fact that the data are sparse in these regions). Additionally
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Figure 5.3: Mean absolute error for estimating the conditional mean function in [0, 1]2.

we compared the results obtained by monotonic density regression with other stan-

dard approaches for multivariate regression, which are typically designed for estimat-

ing the mean. The results of our methodology can be found in Table 5.1 under the

name SOMR. We report results here only for quadratic local polynomial regression

(LP) and a bivariate spline fitting approach (BS), which are the two methodologies

that performed best of the classical approaches we investigated (we also investigated

Projection Pursuit and MARS). For local quadratic regression we used the locfit

package (Loader 2007) in R. A nearest-neighbour bandwidth selected by generalized

cross-validation was chosen, since it lead to the best performance. For the bivariate

spline, we used the mgcv package (Wood 2009) with the default setting for smooth-

ing parameter selection. We employed the monotonic rearrangement described by

Chernozhukov, Fernández-Val and Galichon (2007) to monotonize the LP and BS es-

timated functions. Univariate rearrangement was applied in both directions, and to

eliminate order dependence we take the average over both possibilities. The results of

the monotonized local polynomials and monotonized bivariate spline can be found in

Table 5.1 under the names LP-Mon and BS-Mon. All approaches were applied for 500

simulation runs.
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Method LP LP-Mon BS BS-Mon SOMR
Scenario 1 0.0194 0.0196 0.0147 0.0147 0.0081
Scenario 2 0.0152 0.0143 0.0137 0.0135 0.0121
Scenario 3 0.0272 0.0249 0.0271 0.0258 0.0188
Scenario 4 0.0386 0.0366 0.0373 0.0361 0.0271

Table 5.1: Mean absolute estimation error for the conditional mean function.

The results of the simulation study can be observed in Table 5.1. There it can be seen

that density regression performs best compared to the other approaches. The per-

formance of the standard approaches gets close to SOMR in Scenario 2, probably be-

cause this is the scenario for which these type of approaches are typically designed for.

Among the classical approaches both the rearranged bivariate spline and rearranged

local polynomial estimate work quite well, with some slight advantage for the rear-

ranged spline. The good performance of SOMR is not entirely surprising as the model

used for data generation is quite similar to the Bayesian model we used for evaluation

of the simulations. However, the main purpose of these simulations for us was (i) to

see whether our methodology recovers the truth in realistic simulations before apply-

ing it to real data and (ii) to ensure that the results are at least as good as alternative

approaches in cases in which the assumed ordering holds.

5.4 Application to Epidemiologic Data

In this section we apply our methodology to data from the US Collaborative Perina-

tal Project, which was conducted from 1959 to 1966. In the 1990s a random sample

of blood sera of the participants were reanalyzed for potential toxic substances, see

Longnecker et al. (2001) or Longnecker et al. (2005). We focus on the relationship be-

tween DDE (a metabolite of DDT) and PCB in the blood serum of the mother and the

gestational age of the newborn at delivery (GAD). Dichloro-Diphenyl-Trichloroethane

(DDT) is a pesticide which was primarily used as an agricultural insecticide and has

been mostly been banned in the 1970s, although it is still in use in some developing

countries. Polychlorinated biphenyls (PCB) are organic compounds that were primar-

ily used in electrical equipment, and have been associated with a wide range of ad-
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Figure 5.4: Posterior median of the conditional 10% and 50% quantile.

verse health effects. Note that both toxic substances were still in use in the United

States when the data were collected.

Herewe focus on GAD (in weeks) in relationship to DDE (in µg/L) and the total serum

PCB (in µg/L). For model fitting we reversed and scaled these two predictors into

the interval [0, 1] and for the results transformed back. As additional unconstrained

covariates we include the serum triglycerides (in µg/L) and the binary inputs smoking

habit (1 = smoking) and race (1 = black). Triglycerides were standardized before

model fitting. In the analysis we excluded all values with length of gestation longer

than 45 weeks (approx. 10 months) for plausibility reasons and 68 cases with missing

values, leaving a total sample size of 2312 for analysis.

For the priors we chose w0 = 30, τ0 = 10000, aλ = 0.01, bλ = 0.01, aω = 0.01,

bω = 0.01, aν0 = 0.1, bν0 = 0.1, to adapt the prior parameters to the right scale. All

other parameters received the same prior distributions as in the simulation example.

The prior for γ was chosen as a multivariate normal with mean vector 0 and diagonal

covariance matrix 6.7I3×3, where 6.7 is an estimate of the approximate variance in the

observations. The prior for γ hence approximately reflects the information obtained

in one observation.

We ran three independent chains of the MCMC sampling algorithm of Section 2 for

110000 iterations after using a burn-in of 10000 iterations and a thinning of 10, leaving
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Figure 5.5: Posterior of the conditional 5% quantile, (scaled and shifted) kernel density
estimates of the covariate distribution and a linear 5% quantile regression fit.

a total of 10000 iterations per chain. The results between the chains were consistent

hence the presented analysis is based on the last 3500 iterations per chain resulting in

a total of 10500 simulations.

Figure 5.4 plots the bivariate posterior median of the 50% and the 10% quantile of

the conditional distribution against DDE and PCB, when the additional covariates are

set to 0. There it can be seen that both substances seem to affect the gestational age

at delivery only slightly, with a steeper decrease in the direction of DDE for both the

10% and the 50% quantile. Comparing the 10% and the 50% conditional quantile it

becomes obvious that the 10% conditional quantile is affected slightly stronger by an

increasing DDE and PCB, as the posterior median is decreasing steeper and stronger

in overall effect for the conditional 10% quantile (in particular in the DDE direction).

Figure 5.5 shows the posterior distribution of the conditional 5% quantile for DDE

(holding PCB fixed at its median) and PCB (holding DDE at its median value), and

all other covariates are set to 0. It can be seen that uncertainty in the estimate is quite

large, in particular for DDE values larger than 50 and PCB values larger than 5. This

can be attributed to the fact that most of the participants in the study had rather small

PCB and DDE values, which is illustrated in the figure by including the (scaled and

shifted) kernel density estimates of the covariates DDE and PCB. Primarily for DDE

there seems to be an effect for persons with high exposure (i.e. larger than 40), but
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this effect cannot be estimated with high precision, as data are relatively sparse in this

region. Using the rq function in the quantreg R package (Koenker 2008), we also fitted

a parametric quantile regression model to the data (using linear effects for DDE and

PCB and the same additional covariates) and the results are superimposed in Figure

5.5. Even though quantile regression is based on quite a different statistical model,

results of quantile regression roughly agree with our results, but due to the linearity

the quantile regression fails to give a detailed information on the shape of the relation-

ship. We also fitted more complex effects (for example quadratic or cubic) for DDE

and PCB, but it turned out to be difficult to get stable results, as the results for quantile

regression are quite variable for the 5% quantile. This is probably due to the fact that

mostly information about the 5% quantile is used for quantile regression, as opposed

to explicitly modelling the whole conditional residual distribution, as in our method-

ology. Figure 5.6 shows the conditional densities at different locations in the predictor

space. For this purpose we are looking at the conditional distribution, when both DDE

and PCB are at their median value and at two extreme quantiles (the 1% and the 99%

quantile). There it can be seen that the shape of the residual distribution looks rela-

tively non-normal, with a more pronounced left tail. In the simulations typically two

to five components were occupied (with modal value three). It is interesting to see

that the shape of the residual density largely remains identical throughout the predic-

tor space, only the uncertainty intervals are larger in parts, where the data are sparser
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Covariate 0.05 Quantile Median 0.95 Quantile
Triglycerides -0.29 -0.22 -0.14
Smoking habit -0.27 -0.12 0.02

Race -0.78 -0.62 -0.47

Table 5.2: Posterior summaries of additional covariates.

(see also Figure 5.5). It also seems that there is a tendency that the left tail gets slightly

more pronounced, in particular at the extreme quantiles of the predictor space. This

is in accordance with the results in Figure 5.4, where we observed that the 10% con-

ditional quantile is more effected by DDE and PCB than the conditional 50% quantile.

Superimposed one can find the conditional density estimate using the npcdens func-

tion in the np R package (Hayfield and Racine 2008), which implements an uncon-

strained non-Bayesian method for kernel estimation of a set of conditional densities

(see also Hall, Racine and Li (2004)). The fixed bandwidth was selected by maximum

likelihood cross-validation. Both methods obtain rather similar results, with the main

difference being in the left tail. Here the Bayesian approach is less wiggly, which is

at least partially due to the implicit averaging over the posterior simulations in the

Bayesian approach (rather than using one particular point estimate), additionally the

conditional density is considerably smaller in the left tail for larger values of the input.

This is most likely due to the fact that stochastic ordering is imposed in our method-

ology, while the alternative approach is unconstrained.

It is also interesting to compare the results with those obtained by Wang and Dun-

son (2009), whomodelled the conditional density of GAD versus DDEwith univariate

monotonic density regression. The posterior medians for the conditional densities are

quite similar between the approaches, while the variability intervals for the condi-

tional densities are wider in Wang and Dunson (2009). This is probably due to the

fact that the bivariate shape constraint employed here restricts the conditional density

considerably more than in the one-dimensional case and hence reduces uncertainty

in estimation. Table 5.2 contains the credibility intervals for the parameter estimates

γ corresponding to the additional covariates. There it can be seen that both race and

triglycerides have an impact on GAD, while for smoking habit there seems to be a less

pronounced negative effect, as its credibility interval contains zero.
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5.5 Conclusions

In this chapter we presented a model for estimating conditional densities under the

SO-X stochastic order, i.e., the stochastic ordering is assumed with respect to multi-

variate continuous predictors. The model relies on representing the conditional distri-

butions as a location-scale mixture of normal distributions and the stochastic ordering

constraint is imposed by assuming that the means of the components in the mixture

are multivariate monotonically increasing functions. This type of model is extremely

flexible, in particular we show that any collection of conditional densities under SO-X
stochastic order can be approximated arbitrarily well by the proposed model. The

model relies on a prior distribution for multivariate monotonic functions and we used

positive linear combinations of monotonic ridge functions for this purpose. This class

is quite flexible (compared to additive or single-index models for example) and seems

well suited for sparse representation of multivariate functions.

Typical regression models focused on characterizing predictor effects on the center of

the response distribution are insufficient in some applications. This is particularly the

case when the tails of the response distribution are of primary interest. For example,

in many applications, the greatest interest is in the extremes corresponding to unusual

health responses, pollution levels, financial events or weather conditions. In such set-

tings, most of the literature has focused on either using quantile regression models

that focus on a single quantile (e.g., 95th) or models for extremes that effectively dis-

card all information below a certain quantile. By using density regression methods,

one simultaneously models all quantiles and hence allows inferences on differing pre-

dictor effects on the center and extreme quantiles, while using all the available data.

A concern in density regression is the curse of dimensionality, as it is challenging to

allow the response distribution to change flexibly over the predictor space. The incor-

poration of stochastic ordering constraints in multiple predictors is a highly effective

strategy for reducing the effective dimensionality of the problem.





Chapter 6
Summary and Outlook

A little uncertainty is good for everyone.

Henry Kissinger

In this thesis we have developed methods for nonparametric Bayesian analysis un-

der shape constraints. Chapter 2 reviews Bayesian nonparametric methodologies for

probability distributions and general functions, and briefly discusses the asymptotic

behaviour of BNP methods. Then in Chapters 3, 4 and 5 three novel nonparamet-

ric Bayesian models for shape constrained inference have been developed. The first

model in Chapter 3 is built for nonparametric monotone regression under a paramet-

ric normality assumption on the residual distribution. For this purpose we derive a

representation of monotonic functions, which is fairly interpretable and rich enough to

ensure full support for monotone continuous functions in sup-norm. While a mono-

tonicity constraint can be adequate in a variety of modelling situations, we focused

on pharmaceutical dose-finding trials and growth curves to illustrate the underlying

methodology. Chapter 4 develops an approach to model convex (and possibly mono-

tone) functions. For this purpose we extend the representation derived in Chapter 3 to

the case of convex functions, and consider the asymptotic behaviour of the underlying

nonparametric posterior distribution. The particular modelling example we consider

in this section are body length data in biology. Chapter 5 finally extends the other

two chapters in two directions: (i) We relax the assumption of a parametric residual

density, and model it as a mixture of normal distributions and (ii) we consider mul-

tivariate inputs, requiring the development of a nonparametric prior distribution for
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multivariate monotone functions. The method regresses the whole residual density

(rather than just the conditional mean) against the inputs x and employs a stochastic

ordering constraint on the residual distribution. In this chapter we analyse data from

the US perinatal project, where the distribution of the gestational age of newborns is

studied as a function of two toxic substances, DDE and PCB.

A notion, appearing repeatedly in this thesis has been the question of full support of

Bayesian nonparametric models. While for parametric models one is typically inter-

ested in full support on a finite dimensional space (for example Rk), in the nonpara-

metric situation one wants to achieve full support on spaces of functions (for example

the space of continuous monotone or differentiable convex functions in Chapters 3

and 4 or the space of stochastically ordered continuous densities on R in Chapter 5).

Practically full support means that the BNPmodel puts positive prior probability to all

relevant residual models under consideration, so that the posterior is able to concen-

trate its mass on the true residualmodel. This is a fairly intuitive practical requirement,

but it also appears as a rigorous requirement for consistency in an asymptotic study of

BNP methods (see Chapters 2.3 and 4).

The shape constraints considered in this thesis can, in essence, all be reduced to a pos-

itivity constraint on a function or a (partial) derivative. As discussed in Chapter 2.2,

having a model for a positive function one can achievemonotonicity and convexity (or

concavity) constraints simply by integration (also log-concavity can be covered along

this route). A shape constraint, which cannot be treated with this approach is uni-

modality. The derivative of a differentiable unimodal function is first positive, then

(possibly) negative, but after that not positive again. This type of derivative constraint

is relatively challenging to translate into simple constraints. This might be one of the

reasons, why the literature on unimodality assumptions is relatively sparse, although

it is adequate in a variety of situations. In phase II dose-finding trials, for example,

there might be a downturn of the dose effect at larger doses, due to potential toxicity

of the compound. Future work might concentrate on the unimodality restriction both

for densities and functions.

Bayesian nonparametrics in general is currently still a rapidly evolving field, which
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shows great promise for a realisticmodelling of complex dependences and data struc-

tures. In the following we would like to discuss two points related to BNP, which we

find important, but have not received much attention in this thesis (and usually do not

receive much attention in the literature).

This thesis deals with nonparametric models and those are typically less prone to vi-

olating modeling assumptions than parametric models. Nevertheless we think that

model checking is important, particularly for complex applications and models. A

simple way to check the adequacy of a Bayesian model, with respect to the data set

under consideration, is to simulate data sets from the posterior predictive distribu-

tion of the model and observe, whether the data are “similar” to the actually observed

data, as measured by features of the underlying data (these feature will usually be

problem specific). Another option is to apply cross-validation methods, i.e. splitting

the data set in training and testing part and see howwell the model predicts data from

the testing set.

While Bayesian nonparametrics is a field that often convinces through its innovative

solutions in difficult applied problems, a main hindrance for routine practical applica-

tion is the lack of easy-to-use software (usually one needs to code models by oneself).

The BUGS language can successfully handle many (and complex) parametric problems

fairly well, and is an irreplaceable tool to implement Bayesian inference in practice

(in academia and industry). It is however not designed for nonparametric problems

and can handle only a few of them. A nonparametric Bayesian analogue of a gen-

eral purpose software is currently missing. A software package that comes close to

this, is certainly the DPpackage (Jara 2009) for R, which offers a huge variety of specific

nonparametric Bayesian models and priors, but the user cannot specify an (almost)

arbitrary model as in BUGS.

This thesis illustrates through both a broad range of applications considered and their

appealing theoretical properties that shape constraints (when appropriate) are an ex-

tremely useful tool to narrow down the effective complexity of a nonparametric model.

The prior (and hence also the posterior) can then concentrate on the relevant part of

the parameter space, leading to more efficient inference. The main argument for shape

constraints from a practical perspective is the fact that they are usually directly moti-
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vated by the basic science underlying the considered application, while other type of

modeling assumptions (such as, for example, parametric assumptions) often lack such

a motivation. From a more theoretical perspective shape constraints are appealing as

they usually can directly be exploited in an asymptotic analysis of the nonparametric

model, as illustrated in Chapter 2.3.



Appendix A
Complementary Material

The more constraints one imposes, the more one frees one’s self of the chains that shackle the

spirit. The arbitrariness of the constraint only serves to obtain precision of execution.

Igor Stravinsky (1882-1971)

In this section we provide some additional material, which is too long to be presented

in the text directly, but is needed for a better understanding for parts of this thesis.

A.1 Shape Constraints

Here we give a review of different shape constraints used in this thesis.

Monotonic Functions

A function µ : Rk → R is monotone increasing, whenever

µ(x) ≤ µ(x′) for x ≤ x′, (A.1)

where x ≤ x′ if and only if xm ≤ x′m for all m = 1, . . . , k. A function is monotone

decreasing, when (A.1) holds with the first “≤” replaced by “≥”. When the function

µ is monotonic increasing and differentiable it follows that all partial derivatives are

positive, ∂
∂xm

µ(x) ≥ 0.

Convex Functions

A function µ : C → R defined on a convex set C ⊂ Rk is convex, when

µ(tx + (1− t)x′) ≤ tµ(x) + (1− t)µ(x′) for any t ∈ [0, 1] and any x, x′ ∈ C.
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In the one dimensional case (k = 1) this means that a convex function µ between points

x0 < x1 from C always lies below the function linearly interpolating x0 and x1. If the

convex function is differentiable on C and k = 1 the first derivative of µ is a monotone

increasing function on C and the second derivative a positive function.

A function µ : C → R is concave, when −µ is a convex function.

Unimodal Functions

A function µ : R → R is unimodal with mode m, when µ is monotone increasing on

(−∞,m) and monotone decreasing on (m,∞).

Similarly a probability measure is unimodal, when its probability density function (or

probability mass function) is unimodal.

Stochastic Ordering

A probability distributions P1 on R is stochastically larger than another probability

distribution P2 on R, whenever

P1((−∞, x]) ≤ P2((−∞, x]), ∀x ∈ R.

This means that for each x ∈ R, P2 has more probability mass on values smaller than

x than P1. This is the usual stochastic order in one dimension.

A.2 Poisson RandomMeasure

In this section we will introduce the notion of a Poisson random measure. A nor-

malized Poisson random measure is used in Section 2.1 to build a prior for a discrete

mixing probability measure, and later in Section 2.2 for building a prior distribution

for functions.

Poisson Random Measure Let (Ξ,B) be a measurable space. Ñ is a Poisson random

measure on R+ × Ξ with intensity measure ν, if

(i) For any B ∈ B the distribution of Ñ(B) is Poisson(ν(B)).
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(ii) For any collection of pairwise disjoint sets: B1, . . . , Bk ∈ B the random variables

Ñ(B1), . . . , Ñ(Bk) are mutually independent.

The measure ν needs to fulfill
∫

Ξ

∫
(0,1) sν(ds, dξ) < ∞ and

∫
Ξ

∫
[1,∞) ν(ds, dξ) < ∞.

Now by µ̃(B) =
∫
B

∫
R+

sÑ(ds, dξ) one can define a random measure, which is nor-

malized in Section 2.1 to define a random probability measure, and can be used as a

prior for a discrete measure (as suggested at the end of Section 2.2). Note that µ̃(.) as

defined above is sometimes also called a Lévy random measure, with ν the associated

Lévy measure.

A.3 StatisticalDistanceMeasures andConvergenceCon-

cepts

Here we will introduce some distance measures, which turn out to be useful in partic-

ular for the asymptotic study of BNP methods. In all cases we consider the “distance”

between two densities f and g dominated by the Lebesgue measure on R, other cases

can be defined analogously. A useful review of different statistical distance measures

is given by Gibbs and Su (2002).

Weak Distances

A sequence of probability measures with densities fn converges weakly against a dis-

tribution with density f if
∫
h(y) fn(y)dy →

∫
h(y) f (y)dy for all continuous bounded

functions h (weak convergence also implies, for example, that the cdfs Fn(y) converge

against F(y) for all y ∈ R, if F(y) is continuous). There are several equivalent met-

rics that metrize weak convergence, for example the Lévy or the Prohorov metric (see

Dudley (2002, ch. 11)). As we are not interested in the specific form of the metric,

we will denote by dW( f , g) any metric, which metrizes weak convergence. See Ghosh

and Ramamoorthi (2003, p. 12-13, p. 60) for further material and references regarding

weak distances and neighborhoods.
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Total Variation Distance

The total variation distance (sometimes also called L1 distance) is given by

dTV( f , g) =
1

2

∫

R

| f (y) − g(y)|dy.

Hellinger Distance

The Hellinger distance is given by

dH( f , g) =

{∫

R

(√
f (y) −

√
g(y)

)2

dy

} 1
2

.

This can be re-written as dH( f , g) =
{
2
(
1−

∫
R

√
f (y)g(y)dy

)} 1
2
. Note that the term

∫
R

√
f (y)g(y)dy, a monotonic transformation of the Hellinger distance, is also often

called affinity. Particularly dH( f , g) < ǫ implies
∫

R

√
f (y)g(y)dy > 1− ǫ2/2.

Kullback-Leibler Divergence

The Kullback-Leibler divergence is given by

K( f , g) =
∫

R

log{ f (y)/g(y)} f (y)dy.

Note that the Kullback-Leibler distance is not symmetric and hence not a metric, i.e.

K( f , g) 6= K(g, f ). It holds that K( f , g) ≥ 0 with equality only if f = g.

Interrelationships

There are several interrelationships between the different distancemeasures (see Gibbs

and Su (2002)), some important ones are

(i) 1
2d

2
H( f , g) ≤ dTV( f , g) ≤ dH( f , g) ≤

√
2

This shows that the total variation distance and the Hellinger distance are equiv-

alent, in the sense that they induce the same type of convergence and consistency

(strong consistency).

(ii) dH( f , g) ≤
√

K( f , g)

This shows that the Kullback-Leibler divergence is stronger than the other two

distance measures.
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Figure A.1: Fν(y) and density fν(y) for different ν. In grey: Probability distribution

function and density of the uniform distribution.

(iii) K( f , g) ≤ 2d2H( f , g)

(
1+ log

(
sup
y∈R

∣∣∣ f (y)g(y)

∣∣∣
))

.

This result is taken from Ghosal, Ghosh and van der Vaart (2000, p. 525).

(iv) Here we show that the weak convergence and distance is less strong than total

variation convergence and distance. For
∣∣∫

R
h(y) f (y)dy −

∫
R
h(y)g(y)dy

∣∣ (with

bounded and continuous h) holds

∣∣∣∣
∫

R

h(y)( f (y) − g(y))dy

∣∣∣∣ ≤
∣∣∣∣
∫

R

h(y) | f (y) − g(y)| dy
∣∣∣∣ ≤ 2KdTV( f , g), (A.2)

where K = sup
y∈R

|h(y)|. So whenever dTV (or equivalently dH) goes to zero also

dW needs to go to zero. On the other hand dTV does not necessarily go to zero,

when dW does, see the discussion below for an example.

Discussion Weak and Strong Consistency

It is not straightforward to understand the practical impact of the difference between

weak and strong (i.e. total variation and Hellinger) neighborhoods and convergence.

We will illustrate this difference by a practical example.

Consider the density fν(y) = 1+ sin(2πνy) on [0, 1] with ν ∈ N. The associated prob-

ability distribution function is given by Fν(y) = y +
1−cos(2πνy)

2νπ . Now the distribution

function Fν converges to the uniform distribution on [0, 1], when ν → ∞, see Figure A.1
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(it is easy to see from the formula for Fν(y) that Fν(y) → y, ∀y ∈ [0, 1], when ν → ∞),

but the density fν(y) does not converge against the density of the uniform distribution

for any y (its oscillating behaviour even gets stronger with ν getting larger, see Figure

A.1). This situation is hence an example, where the limiting probability distribution is

in a weak neighborhood of the uniform distribution, but not in a strong neighborhood

of the uniform distribution.

Hence when the main focus is to estimate concrete values of the residual density,

strong consistency is what one should aim for. But in many practical situations, weak

consistency seems already be enough, for example when one is only interested in pos-

terior probabilities or other terms defined as integrals.



Appendix B
Proofs

B.1 Proof of Theorem 3.2.1

To proof Theorem 3.2.1, we will construct a TSP approximation, similar to the Bern-

stein polynomial approximation. Note that this TSP approximation is used for proving

Theorem 3.2.1 only, although it might turn out to be useful also in other applications.

The first part of the proof is along the lines of the proof for the modified Bernstein

polynomials of (Perron and Mengersen 2001).

Denote by G(.) an arbitrary continuous probability distribution function on [0, 1] and

by µ0(.) its approximation. F(x,m, ν) will be denoted as the distribution function of

a two-sided power distribution function. We define the TSP approximation of G(.) to

be:

µ0(x) =
J−1

∑
k=0

{
G

(
k + 1

J

)
− G

(
k

J

)}
F

(
x,

k

J − 1
, J + 1

)
.

We now proceed by bounding separately µ0(x) − G(x) (part (a)) and G(x) − µ0(x)

(part (b)) from above, which gives an upper bound for |µ0(x) − G(x)|. As G(0) =

µ0(0) = 0,G(1) = µ0(1) = 1 we just need to consider x ∈ (0, 1).

a) Considering µ0(x) − G(x), we write

G(x) =
k∗−1

∑
k=0

{
G

(
k + 1

J

)
− G

(
k

J

)}
+

{
G(x) − G

(
k∗

J

)}
,
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where k∗ = ⌊Jx⌋.

Then

µ0(x) − G(x) =
k∗−1

∑
k=0

{
G

(
k + 1

J

)
− G

(
k

J

)}{
F(x,

k

J − 1
, J + 1)− 1

}

+

{
G

(
k∗ + 1

J

)
− G

(
k∗

J

)}
F(x,

k∗

J − 1
, J + 1)

+
J−1

∑
k=k∗+1

{
G

(
k + 1

J

)
− G

(
k

J

)}
F(x,

k

J − 1
, J + 1)

− G(x) + G

(
k∗

J

)

= −
k∗−1

∑
k=0

{
G

(
k + 1

J

)
− G

(
k

J

)}{
1− F(x,

k

J − 1
, J + 1)

}

−
{
G(x) − G

(
k∗

J

)}{
1− F(x,

k∗

J − 1
, J + 1)

}

+

{
G

(
k∗ + 1

J

)
− G(x)

}
F(x,

k∗

J − 1
, J + 1)

+
J−1

∑
k=k∗+1

{
G

(
k + 1

J

)
− G

(
k

J

)}
F(x,

k

J − 1
, J + 1)

≤ κ(J)

{
F(x,

k∗

J − 1
, J + 1) +

J−1

∑
k=k∗+1

F(x,
k

J − 1
, J + 1)

}
.

Here, κ(J) = sup
0,...,J−1

{G( k+1
J ) − G( kJ )}. Bounding the two terms on the right leads to

the desired result. First, trivially

F
(
x, k∗

J−1 , J + 1
)
≤ 1.

For the sum we first note that x <
k∗+1
J−1 , so that the upper branch in the definition of

the TSP distribution applies (see Equation (3.5)) for all summands.
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The sum can then be bounded as follows

J−1

∑
k=k∗+1

F(x,
k

J − 1
, J + 1) =

J−1

∑
k=k∗+1

k

J − 1

{
(J − 1)x

k

}J+1

= (J − 1)JxJ+1
J−1

∑
k=k∗+1

k−J

≤ (J − 1)JxJ+1

{
(k∗ + 1)−J +

∫ J−1

k∗+1
y−Jdy

}

=
{(J − 1)x}J
(k∗ + 1)J

x +
{(J − 1)x}J−1

(k∗ + 1)J−1
x2 − xJ+1

≤
(
J − 1

J

)J

x +

(
J − 1

J

)J−1

x2 − xJ+1

≤ 2e−1.

Hence we have µ0(x)− G(x) ≤ κ(J)(1 + 2e−1).

b) For G(x) − µ0(x) different calculations but the same ideas as in part a) lead to

G(x) − µ0(x) ≤ κ(J)

{
1− F(x,

k∗

J − 1
, J + 1) +

k∗−1

∑
k=0

{1− F(x,
k

J − 1
, J + 1)}

}
.

The first term can again be bounded from above by one. For the sum one obtains

k∗−1

∑
k=0

{1− F(x,
k

J − 1
, J + 1)} = (J − 1)J(1− x)J+1

k∗−1

∑
k=0

(
1

J − 1− k

)J

= (J − 1)J(1− x)J+1
J−1

∑
k=J−k∗

k−J

≤ (J − 1)J(1− x)J+1

{
(J − k∗)−J +

∫ J−1

J−k∗
y−Jdy

}

=

{
(J − 1)(1− x)

(J − k∗)

}J

(1− x) +

{
(J − 1)(1− x)

(J − k∗)

}J−1

(1− x)2

− (1− x)J+1

≤
(
J − 1

J

)J

(1− x) +

(
J − 1

J

)J−1

(1− x)2 − (1− x)J+1

≤ 2e−1.

Parts (a) and (b) together yield

|µ0(x) − G(x)| ≤ κ(J)(1 + 2e−1) ∀x ∈ [0, 1].

�
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B.2 Proof of Lemma 4.2.1

Cov(µ(x1), µ(x2)|x1, x2) = Cov(β0 + β1x1 + β2F
∗(x1), β0 + β1x2 + β2F

∗(x2))
(1)
= E(Cov(β0 + β1x1 + β2F

∗(x1), β0 + β1x2 + β2F
∗(x2)|F∗(.)))

+ Cov(E(β0) + E(β1)x1 + E(β2)F
∗(x1), E(β0) + E(β1)x2 + E(β2)F

∗(x2))

= E(a′1Ba2) + E(β2)
2Cov(F∗(x1), F

∗(x2)),

with ai = (1, xi, F
∗(xi))′, B = Cov(β). In (1) the law of total covariance is used, and the

fact that E(β0 + β1x + β2F
∗(x)|F∗(.)) = E(β0) + E(β1)x + E(β2)F

∗(x). The formula

for the covariance of F∗(x1) and F∗(x2) can be obtained from Theorem 2.1.3. �

B.3 Proof of Theorem 4.2.1

We will use the exactly the same method of proof as in Shively, Sager and Walker

(2009), and will proceed in three steps (i)-(iii) (as a short reminder note that ζ =

(µ(.), σ2)′). The first two steps are preliminary steps needed in third step: In (i) we

will show full support in Kullback-Leibler distance then in (ii) we will show that the

log-likelihood ratio 1
n log Ln → 0, where Ln =

(
∏

n
i=1 φ(yi,µ̂n(xi),σ̂

2
n)

∏
n
i=1 φ(yi,µ0(xi),σ

2
0 )

)
and (µ̂h(.), σ̂

2
n) is the

maximum likelihood estimator of ζ0. In (iii) finally we will show that Π∗
n(Hǫ) → 0,

where Hǫ = {ζ|HQ(ζ, ζ0) > ǫ} contains the ζ with HQ-distance at least ǫ from ζ0.

(i) Full support in Kullback-Leibler divergence

The average Kullback Leibler divergence KQ can explicitly be calculated:

KQ(ζ, ζ0) = log(σ0/σ) − 0.5

(
σ2
0

σ2
− 1

)
+

1

2σ2

∫

R

(µ0(x) − µ(x))2Q(dx).

For full support in Kullback Leibler divergence the prior Π needs to assign positive

prior probability to Bǫ = {ζ|KQ(ζ, ζ0) < ǫ} for any ζ0 = (µ0(.), σ
2
0 )

′. It is straight-

forward to see that this is fulfilled for our prior, because any convex function can be

represented in from (4.2), and the assumptions stated in (A1)-(A4) are assumed to

hold.
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(ii) Convergence of the log-likelihood ratio

FromGroeneboom, Jongbloed andWellner (2001) (see also Hanson and Pledger (1976))

we have that the convex least squares estimator µ̂n exists, but no explicit analytic form

is available for the estimator (it needs to be calculated iteratively via quadratic pro-

gramming); the maximum likelihood estimator for σ2
0 is σ̂2

n = 1
n ∑

n
i=1(yi − µ̂n(x1))

2.

Now µ̂n fulfills (Groeneboom, Jongbloed and Wellner (2001), Hanson and Pledger

(1976)):

sup
x∈(0,1)

|µ̂n(x) − µ0(x)| → 0 a.s. (B.1)

and the log-likelihood ratio is given by

1

n
log Ln =

1

n

(
log(σ0/σ̂n) −

1

2σ̂2
n

n

∑
i=1

(yi − µ̂n(xi))
2 +

1

2σ2
0

n

∑
i=1

(yi − µ0(xi))
2

)

=
1

n

(
log(σ0/σ̂n) −

n

2
+

n

2σ2
0

1

n

n

∑
i=1

(yi − µ0(xi))
2

)
.

As 1
n ∑

n
i=1(yi − µ0(xi))

2 almost surely converges to σ2
0 and in addition

n

∑
i=1

(yi − µ̂n(xi))
2 ≤

n

∑
i=1

(yi − µ0(xi))
2 +

n

∑
i=1

(µ̂n(xi)− µ0(xi))
2.

From (B.1), σ̂2
n converges to σ2

0 , and putting all results together the log likelihood ratio

converges to 0.

(iii) Convergence of posterior

Similar as in Section 2.3 we separately consider the numerator and denominator of

∫
Hǫ

∏
n
i=1 φ(yi, µ(xi), σ

2)Π(dζ)
∫

∏
n
i=1 φ(yi, µ(xi), σ2)Π(dζ)

=

∫
Hǫ

∏
n
i=1 R(yi , xi)Π(dζ)

∫
∏

n
i=1 R(yi , xi)Π(dζ)

=
Jn(Hǫ)

In
,

with R(yi, xi) =
φ(yi,µ(xi),σ

2)

φ(yi,µ0(xi),σ
2
0 )
. The almost sure lower bound for In can be established

exactly as in Lemma 2.3.1 using (i). For the numerator we have

Jn(Hǫ) =
∫

Hǫ

∏
n
i=1 φ(yi, µ(xi), σ

2)

∏
n
i=1 φ(yi, µ0(xi), σ

2
0 )

Π(dζ)

≤ L1/2n

∫

Hǫ

(
∏

n
i=1 φ(yi, µ(xi), σ

2)

∏
n
i=1 φ(yi, µ0(xi), σ

2
0 )

)1/2

Π(dζ).
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From (ii) we have that L1/2n ≤ exp(nd) almost surely for any d > 0 and sufficiently

large n. Hencewe consider the remaining partKn(Hǫ) =
∫
Hǫ

(
∏

n
i=1 φ(yi,µ(xi),σ

2)

∏
n
i=1 φ(yi,µ0(xi),σ

2
0 )

)1/2
Π(dζ).

Note that we proceed quite similar as in Theorem 2.3.1, but we do not need the notion

of strong separation. Again, however Markov’s inequality will be used.

E(Kn(Hǫ)) =
n

∏
i=1

∫

R

∫

[0,1]

∫

Hǫ

(
∏

n
i=1 φ(yi, µ(xi), σ

2)

∏
n
i=1 φ(yi, µ0(xi), σ

2
0 )

)1/2

Π(dζ)φ(yi , µ0(xi), σ
2
0 )Q(dxi)dyi

=
∫

Hǫ

n

∏
i=1

∫

R

∫

[0,1]

√
φ(yi, µ(xi), σ2)φ(yi , µ0(xi), σ

2
0 )Q(dxi)dyiΠ(dζ).

Here E denotes the expectation with respect to (x1, y1)
′, (x2, y2)′, . . .. Now from the

direct relationship of the affinity and Hellinger distance (see Appendix A.3) and the

properties of the set Hǫ we can conclude

E(Kn(Hǫ)) ≤
∫

Hǫ

(1− ǫ2/2)nΠ(dζ) ≤ (1− ǫ2/2)n.

From this one can apply Markov’s inequality to yield P(Kn(Hǫ) > exp(−nη)) <

exp(nη) exp(−n(− log(1 − ǫ̃))), with η > 0 and ǫ̃ = ǫ2/2. Hence by the Borel-

Cantelli Lemma Kn(Hǫ) < exp(−nη) almost surely for η < − log(1− ǫ̃) (here note

that log(1 − ǫ̃) is negative). Hence Jn(Hǫ) ≤ exp(−n(η − d)), and one can choose

d < η. Combined with (i) this yields the desired convergence result. �

B.4 Proof of Theorem 5.2.1

Part (i)

First define δh := µh(x
′)− µh(x).

The conditional distribution functions at x and x′ are given by Fx(y) = ∑ πhΦ
(
y−µh(x)

σh

)

and Fx′(y) = ∑ πhΦ
(
y−µh(x)−δh

σh

)
, Stochastic ordering now follows because of the

monotonicity of Φ(.) and from the fact that δh ≥ 0 ∀h.

Part (ii)

To show: For ǫ > 0 there exist πh, σ2
h and µh(x) such that

sup
x∈[0,1]k

{
sup
y∈R

∣∣∣∣∣
N

∑
h=1

πhΦ(y, µh(x), σ
2
h )− F̃x(y)

∣∣∣∣∣

}
≤ ǫ +

1

N
.
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We will explicitly construct an approximation, which has the desired error bound. For

this purpose we set πh = 1/N and µh(x) = q 2h−1
2N

(x), where qα(x) is the α quantile of

the conditional distribution at x. Note that qα(x), as a function of x, is a multivariate

monotonic function for any choice of α ∈ (0, 1); this directly follows from the defini-

tion of the SO-X stochastic order. Finally we set σ2
h = c, with c > 0.

Then we consider (with µh(x) as defined above):

∣∣∣∣∣
1

N

N

∑
h=1

Φ(y, µh(x), c) − F̃x(y)

∣∣∣∣∣ ≤
∣∣∣∣∣
1

N

N

∑
h=1

Φ(y, µh(x), c) −
1

N

N

∑
h=1

1(y≥µh(x))

∣∣∣∣∣+

+

∣∣∣∣∣
1

N

N

∑
h=1

1(y≥µh(x))
− F̃x(y)

∣∣∣∣∣ = (∗) + (∗∗)

Now we consider the two summands separately.

First consider (∗∗) (with µh(x) as defined above):

Because we use the conditional quantiles, it follows from (Fang andWang 1994, Theo-

rem 4.1) that

sup
y∈R

∣∣∣∣∣
1

N

N

∑
h=1

1(y≥µh(x))
− F̃x(y)

∣∣∣∣∣ =
1

2N

For (∗) first choose c = cǫ,δ in a way such that for each h ∈ {1, . . . ,N}:
∣∣∣Φ(y, µh(x), cǫ,δ)− 1(y≥µh(x))

∣∣∣ < ǫ, ∀y ∈ (−∞, µh(x)− δ] ∪ [µh(x) + δ,∞),

where δ is a small positive number. In addition it is straightforward to see that

∣∣∣Φ(y, µh(x), cǫ,δ)− 1(y≥µh(x))

∣∣∣ ≤ 0.5

for y ∈ (µh(x) − δ, µh(x) + δ). Note that this inequality is sharp with the maximum

achieved at y = µh(x). Hence for a particular y ∈ R and a sufficiently small δ we have

∣∣∣∣∣
1

N

N

∑
h=1

(
Φ(y, µh(x), cǫ,δ)− 1(y≥µh(x))

)∣∣∣∣∣ ≤ 1

N

N

∑
h=1

∣∣∣
(

Φ(y, µh(x), cǫ,δ)− 1(y≥µh(x))

)∣∣∣

≤ (N − 1)ǫ + 0.5

N
≤ ǫ +

1

2N
,

because for sufficiently small δ, y can at most be in one of the intervals (µh(x) −
δ, µh(x) + δ), h ∈ {1, . . . ,N}. Hence we obtain the desired result that (∗) + (∗∗) ≤
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ǫ + 1
N . The upper bound holds for all y and x. Hence it is also valid, even when taking

the supremum over y ∈ R and subsequently the supremum over x ∈ [0, 1]k. Note

that properties of the normal distribution have not explicitly been used in the proof.

In fact the same proof goes through for any other unimodal distribution that includes

parameters for the mode and steepness at the mode, so that it can converge towards

a step function with increasing steepness at the mode (e.g. t-distributions, logistic

distribution, Laplace distribution, etc).

B.5 Proof of Lemma 5.2.2

This is merely a matter of rewriting and redefining the function: First write ∑ cjgj(a
′
jx)

as ∑ cjg
′
j(α′

jx) with g′j(α′
jx) = gj(a

′
j1α′

jx), where αj = a′j/a
′
j1, then one can write

∑ cjg
′
j(α′

jx) as β0 + β1 ∑wjg
∗
j (α′

jx), where β0 = ∑ cjg
′
j(α′

j0), β1 = ∑ cj(g
′
j(α′

j1)− g′j(α′
j0)),

g∗j (α′
jx) =

g′j(α′
jx)−g′j(α′

j0)

g′j(α′
j1)−g′j(α′

j0)
and wj =

cj(g
′
j(α′

j1)−g′j(α′
j0))

∑ cj(g
′
j(α′

j1)−g′j(α′
j0))

. It is then straightforward to see

that we have a form β0 + β1 ∑wjg
∗
j (α′

jx) and the g∗j (x) are univariate distribution func-

tions. Hence the sup norm convergence occurs when all individual g∗j (x) can be ap-

proximated in sup norm.



Appendix C
Computer Algorithms

The practicing Bayesian is well advised to become

friends with as many numerical analysts as possible.

James O. Berger

C.1 Implementation for Section 3

As J is not fixed and the parameter ϑ has a varying dimensional distribution we use the

reversible jump methodology of (Green 1995) for the implementation of the approach.

Amove set is defined and amove selected at random at each iteration. Let the number

of iterations for the burn-in period be b, the number of total iterations be T and the

thinning rate be φ.

In the following the three moves UPDATE, ADD and REMOVE will be described in

more detail. For this purpose let l(.) denote the marginal density function for ϑ, p(.)

the joint prior distribution for ϑ and q(.) the proposal distribution. Suppose the chain

is currently in state ϑt = (Jt,wt
1, . . . ,w

t
J , ξ

t
1, . . . , ξ

t
Jt)

′. Let pU(J), pA(J) and pR(J) de-

note the probabilities for choosing the three different move types UPDATE,ADD and

REMOVE, given that there are currently J summands in the model. As J needs to be

a positive integer one needs to select pR(1) = 0. In the calculations done for the sim-

ulation study and the example we used equal probabilities for the different possible

move types. Figure C.1 gives an overview of the algorithm. We now define the moves

to explore the posterior distribution of ϑ in more detail. Our C++ implementation of

the algorithm is on the log-scale for computational reasons, the description here is not.
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RJ-MCMC ALGORITHM

while(t < T){
Draw u from uniform distribution
if(u < pU(Jt)) obtain ϑt+1 with UPDATE step
if(u < pU(Jt) + pA(Jt)) obtain ϑt+1 with ADD step
else obtain ϑt+1 with REMOVE step
if(t mod φ = 0 and t > b){
Save ϑt+1

Save a draw of p(β, σ|y, ϑt+1)
}

}

Figure C.1: Algorithm to obtain an MCMC sample from the posterior of β, σ2, ϑ.

UPDATE:

Fixed dimensional update of the parametersw1, . . . ,wJt and ξ1, . . . , ξ Jt withMetropolis-

Hastings moves.

ADD:

1. Sample (w∗, ξ∗) from a proposal distribution q(w, ξ).

Sample position r uniformly from 1, ..., Jt + 1.

2. Set the proposal

ϑ∗ = (Jt + 1,wt
1(1− w∗), . . . ,wt

r−1(1− w∗),w∗,wt
r(1− w∗), . . . ,wt

Jt
(1−w∗),

ξt1, . . . , ξ
t
r−1, ξ

∗, ξtr, . . . ξtJt)
′

3. Calculate l(ϑ∗) and p(ϑ∗) and q(w∗, ξ∗) and the Jacobian J = (1− w∗)J
t−1.

4. Calculate the Metropolis-Hastings-ratio

MH(ϑ∗, ϑt) =
l(ϑ∗)
l(ϑt)

p(ϑ∗)
p(ϑt)

pR(Jt + 1)

pA(Jt)q(w∗, ξ∗)
J

5. Sample random variate u from uniform distribution on [0, 1]

If u < MH(ϑ∗, ϑt) set ϑt+1 = ϑ∗ else set ϑt+1 = ϑt.
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REMOVE:

1. Sample position r uniformly from 1, ..., Jt.

2. Set the proposal

ϑ∗ = (Jt − 1,wt
1/(1− wt

r), . . . ,w
t
r−1/(1− wt

r),w
t
r+1/(1− wt

r), . . . ,w
t
J/(1− wt

r),

ξt1, . . . , ξ
t
r−1, ξ

t
r+1, . . . ξtJt)

′

3. Calculate l(ϑ∗) and p(ϑ∗) and q(wt
r, ξ

t
r) and the Jacobian J = (1− wt

r)
2−Jt .

4. Calculate the Metropolis-Hastings-ratio

MH(ϑ∗, ϑt) =
l(ϑ∗)
l(ϑt)

p(ϑ∗)
p(ϑt)

pA(Jt − 1)q(wt
r , ξ

t
r)

pR(Jt)
J

5. Sample random variate u from uniform distribution on [0, 1]

If u < MH(ϑ∗, ϑt) set ϑt+1 = ϑ∗ else set ϑt+1 = ϑt.

C.2 Implementation for Section 4

In this Section we describe how to obtain an approximate sample from the posterior

distribution of µ(.) and σ2. We assume that for βi, i = 1, 2, 3 (truncated) normal distri-

butions are used with meanmβi
and variance τ−1

βi
, which allows that these parameters

can be updated in a Gibbs step. Note that a normal distribution with infinite variance

can be obtained (i.e. an improper constant prior), when τβi
= 0. For σ−2 we use a

gamma distribution with parameters aσ−2 and bσ−2 .

The MCMC algorithm cycles through sampling the conditional distributions of F∗(.),

β and σ in the following way:

1. Sample F∗(.) using reversible jump MCMC (see below for details on this step)

2. Sample β0, β1 and β2 from the full conditional distributions

• β0 ∼ N

(
mβ0

τβ0
+∑

n
i=1 y

∗
i σ−2

τβ0
+nσ−2 , (τβ0

+ nσ−2)−1

)
,

where y∗i = yi − β1xi − F∗(xi)
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• β1 ∼ N

(
mβ1

τβ1
+∑

n
i=1 xiy

∗
i σ−2

τβ1
+∑

n
i=1 x

2
i σ−2 , (τβ1

+ ∑
n
i=1 x

2
i σ−2)−1

)
,

where y∗i = yi − β0 − F∗(xi)

• β2 ∼ N

(
mβ2

τβ2
+∑

n
i=1 F

∗(xi)y∗i σ−2

τβ2
+∑

n
i=1 F

∗(xi)2σ−2 , (τβ2
+ ∑

n
i=1 F

∗(xi)2σ−2)−1

)
,

where y∗i = yi − β0 − β1xi

When a parameter is truncated, sampling is done from the corresponding trun-

cated normal distribution.

3. Sample σ from the full conditional distribution for σ−2, i.e.

σ−2 ∼ gamma(aσ−2 + n/2, bσ−2 + 0.5
n

∑
i=1

(yi − µ(xi))
2).

Details of reversible jump MCMC step:

To update F∗ we use an extension of the algorithm described in Section C.1. As J is

not fixed and the parameter Ψ = {J,w1, . . . ,wJ , ξ1, . . . , ξ J} has a varying dimensional

distribution we again use the reversible jump methodology (Green 1995) for imple-

mentation. Suppose the chain is currently in state Ψ
t = (Jt,wt

1, . . . ,w
t
J, ξ

t
1, . . . , ξ

t
Jt)

′.

One MCMC step then consists of two substeps:

(1) First a fixed dimensional update of the parameters w1, . . . ,wJt and ξ1, . . . , ξ Jt us-

ing Metropolis-Hastings.

(2) Then as in the previous section either an ADD or a REMOVE step is performed

as defined in detail in Section C.1.

Note that here l(.) is here the likelihood function for Ψ with the current realizations

of β and σ2 held fixed (in Section C.1 these additional parameters had been integrated

out) and p(.) the joint prior distribution for Ψ and β, σ2 with β and σ2 held fixed.

C.3 Implementation for Section 5

The MCMC algorithm iterates through the following steps:
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1) Simulate γ from N(m∗
γ,Σ

∗
γ), where

Σ
∗
γ = (Z′

Σ
−1Z + Σ

−1
γ )−1 and m∗

γ = Σ
∗
γ(Z′

Σ
−1(y− µ) + Σ

−1
γ mγ),

where y = (y1, . . . , yn)
′, µ = (µK1

(x1), . . . , µKn(xn)) ∈ Rn, the rows of Z ∈ Rn×p are

given by zi and Σ = diag(σ2
K1
, . . . , σ2

Kn
) ∈ Rn×n.

2) The latent variables Ki, ∀i = 1, . . . , n are updated with a multinomial distribu-

tion, where the probabilities of the N categories are proportional to πhφ(yi, µh(xi) +

z′iγ, σh), h = 1, . . . ,N.

3) The class specific mean functions µh(x) and bandwidth parameters σ−2
h are updated

for h ∈ 1, . . . ,N. For this determinemh, the number of observations currently allocated

to cluster h.

• If mh = 0: Update from prior distributions

σ−2
h ∼ Exp(ω)

β0h ∼ N(m0, 1/ν0)

β1h ∼ π0δ0 + (1− π0)Exp(λ)

Jh − 1 ∼ Poi(ρ)

(mhj, νhj, αhj)
′ ∼ U(0, 1)×U(1, 20)× D(1)

• If mh > 0

σ−2
h ∼ gamma

(
1+ mh/2,ω + 0.5 ∑

i:Ki=h

(yi − µh(xi)− z′iγ)2
)

β0h ∼ N((rσ−2
h + ν0m0)/(mhσ−2

h + ν0), (mhσ−2
h + ν0)

−1),

where r = ∑i:Ki=h(yi − β1hµ0
h − γ′zi),

β1h ∼ π∗
hδ0 + (1− π∗

h)N+(m∗, s∗2),

where π∗
h =

(
1 + (1−π0)λ(1−Φ(0,m∗,s∗2))

π0φ(0,m∗,s∗2)

)−1
,

m∗ =
∑i:Ki=h µ0

h(xi)(yi−β0h−γ′zi)−λσ2
h

∑i:ki=h µ0
h(xi)

2 and s∗2 = (σ−2
h ∑i:Ki=h µ0

h(xi)
2)−1.
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Here N+(m∗, s∗2) denotes the distribution obtained by truncating a normal dis-

tribution with mean m∗ and variance s∗2 to [0,∞).

The functions µ0(.) are updated using a RJ-MCMC algorithm. The algorithm

performs the following two steps:

– UPDATE: Update mjh, νjh, αjh using Metropolis-Hasting updates

– Choose either an ADD or a REMOVE step with equal probability. If ADD

is chosen try to add a basis function to µ0
h(.), if REMOVE is chosen try to

remove a basis function from µ0
h(.).

The procedure follows the algorithm described in Section C.1.

4) The stick-breaking variables are updated as vN = 1 and vh ∼ Beta(1 + mh,M +

∑
N
i=h+1mi) for h = 1, . . . ,N − 1, where mh is the number of observations allocated to

cluster number h for h = 1, . . . ,N (see Ishwaran and James (2001) for details).

5) Update the parameters in the prior distributions M, ω, λ, m0, ν0, ρ, π0 from their

corresponding full conditionals.

M ∼ gamma(aM + N − 1, bM − ∑
N−1
h=1 log(1− vh))

ω ∼ gamma(aω + N, bω + ∑
N
h=1 σ−2

h )

λ ∼ gamma(aλ + ∑
N
h=1 1β1h>0, bλ + ∑

N
h=1 β1h)

m0 ∼ N

(
w0/τ0+ν0 ∑

N
h=1 β0h

τ−1
0 +Nν0

, 1
τ−1
0 +Nν0

)

ν0 ∼ gamma(aν0 + N/2, bν0 + 0.5∑
N
h=1(β0h −m0)

2)

ρ ∼ gamma(aρ + ∑ Jh − N, bρ + N)

π0 ∼ Beta(aπ + ∑
N
h=1 1β1h=0, bπ + ∑

N
h=1 1β1h>0).
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CHERNOZHUKOV, V., FERNÁNDEZ-VAL, I. AND GALICHON, A. (2007) Improv-

ing estimates of monotone functions by rearrangement, Technical report,

arXiv:0806.4730v2.

CHOI, T. AND RAMAMOORTHI, R. (2008) Remarks on consistency of posterior dis-

tributions, in B. Clarke and S. Ghosal (eds.), Pushing the Limits of Contemporary

Statistics: Contributions in Honor of Jayanta K. Ghosh, Institute of Mathematical

Statistics Collections, Vol. 3, pp. 170–186.

CLYDE, M. A. AND WOLPERT, R. L. (2007) Nonparametric function estimation using

overcomplete dictionaries, in J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P.



130 Bibliography

Dawid, D. Heckerman, A. F. M. Smith and M. West (eds.), Bayesian Statistics 8,

Oxford University Press, pp. 91–114.

CURRIN, C., MITCHELL, T. J., MORRIS, M. AND YLVISAKER, D. (1991) Bayesian pre-

diction of deterministic functions with applications to the design and analysis of

computer experiments, Journal of the American Statistical Association 86, 953–963.

DENISON, D. G. T., HOLMES, C. C., MALLICK, B. K. AND SMITH, A. F. M. (2002)

Bayesian Methods for Nonlinear Classification and Regression, Wiley, Chichester.

DETTE, H., NEUMEYER, N. AND PILZ, K. F. (2006) A simple nonparametric estimator

of a strictly monotone regression function, Bernoulli 12, 469–490.

DETTE, H. AND SCHEDER, R. (2006) Strictly monotone and smooth nonparametric

regression for two or more variables, The Canadian Journal of Statistics 34, 535–

561.

DEY, D. AND RAO, C. R. (2005) Handbook of Statistics, Volume 25: Bayesian Thinking,

Modeling and Computation, Elsevier B.V., Amsterdam.
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