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On Robust Gaussian Graphical Modelling

Daniel Vogel and Roland Fried

Abstract The objective of this exposition is to give an overview of the existing
approaches to robust Gaussian graphical modelling. We start by thoroughly intro-
ducing Gaussian graphical models (also known as covariance selection models or
concentration graph models) and then review the established, likelihood-based sta-
tistical theory (estimation, testing and model selection). Afterwards we describe
robust methods and compare them to the classical approaches.

1 Introduction

Graphical modelling is the analysis of conditional associations between random
variables by means of graph theoretic methods. The graphical display of the in-
terrelation of several variables is an attractive data analytical tool. Besides allowing
parsimonious modelling of the data it facilitates the understanding and the inter-
pretation of the data generating process. The importance of considering conditional
rather than marginal associations for assessing the dependence structure of several
variables is vividly exemplified by Simpson’s paradox, see e.g. Edwards (2000),
Chap. 1.4. The statistical literature knows several different types of graphical mod-
els, differing in the type of relation coded by an edge, in the type of data and hence
in the statistical methodology. In this chapter we deal with undirected graphs only,
that is, the type of association we consider is mutual. Precisely, we are going to
define partial correlation graphs in Sect. 2.2.

Undirected models are in a sense closer to the data. A directed association sug-
gests a causal relationship. Even though it can often be justified, e.g. by chronol-
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2 Daniel Vogel and Roland Fried

ogy or knowledge about the physiological process, the direction of the effect is an
additional assumption. Undirected models constitute the simplest case, the under-
standing of which is crucial for the study of directed models and models with both,
directed and undirected edges.

Furthermore we restrict our attention to continuous data, which are assumed
to stem from a multivariate Gaussian distribution. Conditional independence in
the normal model is nicely expressed through its second order characteristics, cf.
Sect. 2.3. This fact, along with its general predominant role in multivariate statistics
(largely due to the Central limit theorem justification), is the reason for the almost
exclusive use of the multivariate normal distribution in graphical models for contin-
uous data.

With rapidly increasing data sizes, and on the other hand computer hardware
available to process them, the need for robust methods becomes more and more
important. The sample covariance matrix possesses good statistical properties in the
normal model and is very fast to compute, but highly non-robust, cf. Sect. 4.1. We
are going to survey robust alternatives to the classical Gaussian graphical modelling,
which is based on the sample covariance matrix.

The paper is organized as follows. Section 2 introduces Gaussian graphical mod-
els (GGMs). We start by studying partial correlations, a purely moment based re-
lation, without any distributional assumption and then examine the special case of
the normal distribution where partial uncorrelatedness coincides with conditional
independence. The better transferability of the former concept to more general data
situations is the reason for taking this route. Section 3 reviews the classical, non-
robust, likelihood-based statistical theory for Gaussian graphical models. Each step
is motivated, and important points are emphasized. Sections 2 and 3 serve as a self-
contained introduction to GGMs. The basis for this first part are the books Whittaker
(1990) and Lauritzen (1996). Other standard volumes on graphical models in statis-
tics are Cox and Wermuth (1996) and Edwards (2000), both with a stronger em-
phasis on applications. Section 4 deals with robust Gaussian graphical modelling.
We focus on the use of robust affine equivariant scatter estimators, since the robust
estimators proposed for GGMs in the past belong to this class. As an important ro-
bustness measure we consider the influence function and give the general form of
the influence functions of affine equivariant scatter estimators and derived partial
correlation estimators.

We close this section by introducing some of the mathematical notation we are
going to use. Bold letters b, µ, etc., denote vectors, capital letters X, Y , etc., indicate
(univariate) random variables and bold capital letters X, Y, etc., random vectors.
We view vectors, by default, neither as a column nor as a row, but just as an ordered
collection of elements of the same type. This makes (X,Y) again a vector and not a
two-column matrix. However, if matrix notation, such as (·)T , is applied to vectors,
they are always interpreted as n×1 matrices.

Matrices are also denoted by non-bold capital letters, and the corresponding
small letter is used for an element of the matrix, e.g., the p× p matrix Σ is the
collection of all σi, j, i, j = 1, ..., p. Alternatively, if matrices are denoted by more
complicated compound symbols (e.g. if they carry subscripts already) square brack-
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ets will be used to refer to individual elements, e.g. [Σ̂−1
G ]i, j. Throughout the paper

upright small Greek letters will denote index sets. Subvectors and submatrices are
referenced by subscripts e.g. for α,β ⊆ {1, ..., p} the |α| × |β| matrix Σα,β is obtained
from Σ by deleting all rows that are not in α and all columns that are not in β. Simi-
larly, the p× p matrix [Σα,β]p is obtained from Σ by putting all rows not in α and all
columns not in β to zero. We want to view this matrix operation as two operations
performed sequentially: first (·)α,β extracting the submatrix and then [·]p writing it
back on a “blank” matrix at the coordinates specified by α and β. Of course, the latter
is not well defined without the former, but this allows us e.g. to write [(Σα,β)−1]p.

We adopt the general convention that subscripts have stronger ties than super-
scripts, for instance, we write Σ−1

α,β
for (Σα,β)−1. Let Sp and S +

p be the sets of all
symmetric, respectively positive definite p× p matrices, and define for any A ∈S +

p

Corr(A) = A
− 1

2
D AA

− 1
2

D , (1)

where AD denotes the diagonal matrix having the same diagonal as A. Recall the im-
portant inversion formula for partitioned matrices. Let r ∈ {1, ..., p−1}, α = {1, ...,r}
and β = {r + 1, ..., p}. Then(

Σα,α Σα,β
Σβ,α Σβ,β

)−1

=

 Ω−1 −Ω−1Σ
α,β
Σ−1
β,β

−Σ−1
β,β
Σ
β,α
Ω−1 Σ−1

β,β
+Σ−1
β,β
Σ
β,α
Ω−1Σ

α,β
Σ−1
β,β

 , (2)

where the r × r matrix Ω = Σα,α −Σβ,αΣ
−1
β,β
Σ
β,α

is called the Schur complement of
Σβ,β. The inverse exists if and only if Ω and Σβ,β are both invertible. Note that, by
simultaneously re-ordering rows and columns, the formula is valid for any partition
{α,β} of {1, ..., p}.

Finally, the Kronecker product A⊗ B of two matrices A,B ∈ Rp×p is defined as
the p2× p2 matrix with entry ai, jbk,l at position (i(p−1)+k, j(p−1)+ l). Let e1, ...,ep
be the unit vectors in Rp and 1p the p vector consisting only of ones. Define further
the following matrices:

Jp =

p∑
i=1

eie
T
i ⊗ eie

T
i , Kp =

p∑
i=1

p∑
j=1

eie
T
j ⊗ e je

T
i and Mp =

1
2

(
Ip2 + Kp

)
where Ip2 denotes the p2 × p2 identity matrix. Kp is also called the commutation
matrix. Let vec(A) be the p2 vector obtained by stacking the columns of A ∈ Rp×p

from left to right underneath each other. More on these concepts and their properties
can be found in Magnus and Neudecker (1999).



4 Daniel Vogel and Roland Fried

2 Partial Correlation Graphs and Properties of the
Gaussian Distribution

This section explains the basic concepts of Gaussian graphical models: We define
the terms partial variance and partial correlation (Sect. 2.1), review basic graph
theory terms and explain the merit of a partial correlation graph (Sect. 2.2). Gaus-
sianity enters in Sect. 2.3, where we deduce the conditional independence inter-
pretation of a partial correlation graph which is valid under normality. Statistics is
deferred to Sect. 3.

2.1 Partial variance

Let X = (X1, ...,Xp) be a random vector in Rp with distribution F and positive defi-
nite variance matrix Σ = ΣX ∈R

p×p. The inverse of Σ is called concentration matrix
(or precision matrix) of X and shall be denoted by K or KX.

Now let X be partitioned into X = (Y,Z), where Y and Z are subvectors of lengths
q and r, respectively. The corresponding index sets shall be called α and β, i.e.
α = {1, ...,q} and β = {q + 1, ...,q + r}.

The variance matrix of Y is ΣY = Σα,α ∈R
q×q and its concentration matrix KY =

Σ−1
α,α = (K−1

X )−1
α,α. The covariance matrix of Y and Z is Σα,β ∈ Rq×r. The orthogonal

projection of Y onto the space of all affine linear functions of Z shall be denoted by
Ŷ(Z) and is given by

Ŷ(Z) = EY +Σα,βΣ
−1
β,β(Z−EZ). (3)

This is the best linear prediction of Y from Z, in the sense that the squared pre-
diction error E||Y− h(Z)||2 is uniquely minimized by h = Ŷ(·) among all (affine)
linear functions h. The partial variance of Y given Z is the variance of the residual
Y− Ŷ(Z). It shall be denoted by ΣY•Z, i.e.

ΣY•Z = Var
(
Y− Ŷ(Z)

)
= Σα,α−Σα,βΣ

−1
β,βΣβ,α. (4)

The notation Y•Z is intended to resemble Y |Z, that is, we look at Y in dependence
on Z, but instead of conditioning Y on Z the type of connection we consider here
is a linear regression. In particular, ΣY•Z is—contrary to a conditional variance—a
fixed parameter and not random.

If Y is at least two-dimensional, we partition it further into Y = (Y1,Y2) with
corresponding index sets α1∪α2 = α and lengths q1 + q2 = q, and define

ΣY1,Y2•Z = (ΣY•Z)α1,α2 = Σα1,α2
−Σ
α1,β

Σ−1
β,βΣβ,α2

as the partial covariance between Y1 and Y2 given Z. If ΣY1,Y2•Z = 0, we say Y1
and Y2 are partially uncorrelated given Z and write



On Robust Gaussian Graphical Modelling 5

Y1⊥Y2 •Z.

Furthermore, if Y1 = Y1 and Y2 = Y2 are both one-dimensional, ΣY•Z is a positive
definite 2×2 matrix. The correlation coefficient computed from this matrix, i.e. the
(1,2) element of Corr(ΣY•Z), cf. (1), is called the partial correlation (coefficient)
of Y1 and Y2 given Z and denoted by %Y1,Y2•Z. This is nothing but the correlation
between the residuals Y1− Ŷ1(Z) and Y2− Ŷ2(Z) and may be interpreted as a measure
of the linear association between Y1 and Y2 after the linear effects of Z have been
removed. For α1 = {i} and α2 = { j}, i , j, we use the simplified notation %i, j• for
%Xi,Xj•X\{i, j} .

The simple identity (4) is fundamental and the actual starting point for all fol-
lowing considerations. We recognize ΣY•Z as the Schur complement of ΣZ in ΣX,
cf. (2), implying that

Σ−1
Y•Z = Kα,α. (5)

In words: the concentration matrix of Y−Ŷ(Z) is the submatrix of KX corresponding
to Y, or—very roughly put—while marginalizing means partitioning the covariance
matrix, partializing means partitioning its inverse. This has some immediate impli-
cations about the interpretation of K, which explain why K, rather than Σ, is of
interest in graphical modelling.

Proposition 1. The partial correlation %i, j• between Xi and X j, 1 ≤ i < j ≤ p, given
all remaining variables X\{i, j} is

%i, j• = −
ki, j√
ki,ik j, j

.

Another way of phrasing this assertion is to say, the matrix P = −Corr(K) contains
the partial correlations (of each pair of variables given the respective remainder) as
its off-diagonal elements. We call P the partial correlation matrix of X. Proposition
1 is a direct consequence of (5) involving the inversion of a 2× 2 matrix. For a
detailed derivation see Whittaker (1990), Chap. 5.

2.2 Partial correlation graph

The partial correlation structure of the random variable X can be coded in a graph,
which originates the term graphical model. An undirected graph G = (V,E), where
V is the vertex set and E the edge set, is constructed the following way: the variables
X1, ...,Xp are the vertices, and an (undirected) edge is drawn between Xi and X j, i, j,
if and only if %i, j• , 0. The thus obtained graph G is called the partial correlation
graph (PCG) of X. Formally we set V = {1, ..., p} and write the elements of E as
unordered pairs {i, j}, 1 ≤ i < j ≤ p. Before we dwell on the benefits of this graphical
representation, let us briefly recall some terms from graph theory. We only consider
undirected graphs with a single type of nodes.
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If {a,b} ∈ E, the vertices a and b are called adjacent or neighbours. The set of
neighbours of the vertex a ∈ V is denoted by ne(a). An alternative notation is bd(a),
which stands for boundary, but keep in mind that in graphs containing directed
edges the set of neighbours and the boundary of a node are generally different.

A path of length k, k ≥ 1, is a sequence (a1, ...,ak+1) of distinct vertices such that
{ai,ai+1} ∈ E, i = 1, ...,k. If k ≥ 2 and additionally {a1,ak+1} ∈ E, then the sequence
(a1, ...,ak+1,a1) is called a cycle of length k+1 or a (k+1)-cycle. Note that the length,
in both cases, refers to the number of edges.

The n-cycle (a1, ...,an,a1) is chordless, if no other than successive vertices in the
cycle are adjacent, i.e. {ai,a j} ∈ E⇒ |i− j| ∈ {1,n−1}. Otherwise the cycle possesses
a chord. All cycles of length 3 are chordless.

The graph is called complete, if it contains all possible edges. Every subset α ⊂ V
induces a subgraph Gα = (α,Eα), where Eα contains those edges in E with both
endpoints in α, i.e. Eα = E ∩ (α×α). A subset α ⊂ V , for which Gα is complete,
but adding another vertex would render it incomplete, is called a clique. Thus the
cliques identify the maximal complete subgraphs.

The set γ ⊂ V is said to separate the sets α,β ⊂ V in G, if α,β,γ are mutually
disjoint and every path from a vertex in α to a vertex in β contains a node from γ.
The set γ may be empty.

Definition 1. A partition (α,β,γ) of V is a decomposition of the graph G, if

(1) α, β are both non-empty,
(2) γ separates α and β,
(3) Gγ is complete.

If such a decomposition exists, G is called reducible (otherwise irreducible). It can
then be decomposed into or reduced to the components Gα∪γ and Gβ∪γ.

Our terminology is in concordance with Whittaker (1990), Chap. 12, however, there
are different definitions around. For instance, Lauritzen (1996) calls a decompo-
sition in the above sense a “proper weak decomposition”. Also be aware that the
expression “G is decomposable”, which is defined below, denotes something dif-
ferent than “there exists a decomposition of G”, for which the term “reducible” is
used.

Definition 1 suggests a recursive application of decompositions until ultimately
the graph is fully decomposed into irreducible components, which then are viewed
as atomic building blocks of the graph. It is not at all obvious, if such atomic com-
ponents exist or are well defined, since, at least in principle, any sequence of de-
compositions may lead to different irreducible components, cf. Example 12.3.1 in
Whittaker (1990). With an additional constraint, the irreducible components of a
given graph are indeed well defined.

Definition 2. The system of subsets {α1, ...,αk} ⊂ 2V is called the (set of) maximal
irreducible components of G, if

(1) Gαi is irreducible, i = 1, ...,k,
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Fig. 1 a a non-decomposable graph and b its maximal irreducible components, c a decomposable
graph and d its maximal irreducible components

(2) αi and α j are mutually incomparable, i.e. αi is not a proper subset of α j and vice
versa, 1 ≤ i < j ≤ k, and

(3)
⋃k

i=1αi = V .

The maximal irreducible components of any graph G are unique and can be obtained
by first fully decomposing the graph into irreducible components (by any sequence
of decompositions) and then deleting those that are a proper subset of another one—
the maximal irreducible components remain.

Definition 3. The graph G is decomposable, if all of its maximal irreducible com-
ponents are complete.

Decomposability also admits the following recursive definition: G is decomposable,
if it is complete or there exists a decomposition (α,β,γ) into decomposable sub-
graphs Gα∪γ and Gβ∪γ. Another characterization is to say, a decomposable graph
can be decomposed into its cliques. Figure 1 shows two reducible graphs and their
respective maximal irreducible components. The decomposability of a graph is a
very important property, with various implications for graphical models, and de-
composable graphs deserve and receive special attention, cf. e.g. Whittaker (1990),
Chap. 12. The most notable consequence for Gaussian graphical models is the ex-
istence of closed form maximum likelihood estimates, cf. Sect. 3.1. The recursive
nature of Definition 3 makes it hard to determine whether a given graph is decom-
posable or not. Several equivalent characterizations of decomposability are given
e.g. in Lauritzen (1996). We want to name one, which is helpful for spotting decom-
posable graphs.

Definition 4. The graph G is triangulated, if every cycle of length greater than 3 has
a chord.

Proposition 2. A graph G is decomposable if and only if it is triangulated.

For a proof see Lauritzen (1996), p. 9, or Whittaker (1990), p. 390.
We close this subsection by giving a motivation for partial correlation graphs.

Clearly, the information in the graph is fully contained in Σ and can directly be read
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off its inverse K: a zero off-diagonal element at position (i, j) signifies the absence of
an edge between the corresponding nodes. Of course, graphs in general are helpful
visual tools. This argument is valid for representing any type of association between
variables by means of a graph and is not the sole justification for partial correlation
graphs. The purpose of a PCG is explained by the following theorem, which lies at
the core of graphical models.

Theorem 1. (Separation theorem for PCGs) For a random vector X with positive
definite covariance matrix Σ and partial correlation graph G the following is true: γ
separates α and β in G if and only if Xα⊥Xβ •Xγ.

This result is not trivial, but its proof can be accomplished by matrix manipula-
tion. It is also a corollary of Theorem 3.7 in Lauritzen (1996) by exploiting the
equivalence of partial uncorrelatedness and conditional independence in the normal
model, cf. Sect. 2.3. The theorem roughly tells that the association “partial uncor-
relatedness” (of two random vectors given a third one) exhibits the same properties
as the association “separation” (of two sets of vertices by a third one). Thus it links
probability theory to graph theory and allows to employ graph theoretic tools in
studying properties of multivariate probability measures. First and foremost it al-
lows the succinct formulation of Theorem 1. The theorem lets us, starting from the
pairwise partial correlations, conclude the partial uncorrelatedness Xα⊥Xβ •Xγ for
a variety of triples (Xα,Xβ,Xγ) (which do not have to form a partition of X). It is the
graph theoretic term separation that allows not only to concisely characterize these
triples, but also to readily identify them by drawing the graph.

Finally, Theorem 1 can be re-phrased, saying that in a PCG the pairwise and the
global Markov property are equivalent: We say, a random vector X = (X1, ...,Xp)
satisfies the pairwise Markov property w.r.t. the partial correlation graph G =

({1, ..., p},E), if {i, j} < E ⇒ Xi⊥X j •X\{i, j}, that is, the edge set of the PCG of X
is a subset of E. X is said to satisfy the global Markov property w.r.t. the partial
correlation graph G, if, for α,β,γ ⊂ V , “γ separates α and β” implies Xα⊥Xβ •Xγ.
The graph is constructed from the pairwise Markov property, but can be interpreted
in terms of the global Markov property.

2.3 The Multivariate Normal Distribution and
Conditional Independence

We want to make further assumptions on the distribution F of X. A random vector
X = (X1, ...,Xp) is said to have a regular p-variate normal (or Gaussian) distribution,
denoted by X ∼ Np(µ,Σ), if it possesses a Lebesgue density of the form

fX(x) = (2π)−
p
2 (detΣ)−

1
2 exp

{
−

1
2

(x−µ)Σ−1(x−µ)
}
, x ∈Rp, (6)
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for some µ ∈ Rp and Σ ∈ S +
p . Then EX = µ and Var(X) = Σ. The term regular

refers to the positive definiteness of the variance matrix. We will only deal with reg-
ular normal distributions—which allow the density characterization given above—
without necessarily stressing the regularity.

The multivariate normal (MVN) distribution is a well studied object, it is treated
e.g. in Bilodeau and Brenner (1999) or any other book on multivariate statistics. Of
the properties of the MVN distribution the following three are of particular interest
to us. Let, as before, X be partitioned into X = (Y,Z). Then we have:

(I) The (marginal) distribution of Y is Nq(µα,Σβ,β).
(II) Y and Z are independent (in notation Y⊥⊥Z) if and only if Σα,β = 0 (which is

equivalent to Kα,β = 0).
(III) The conditional distribution of Y given Z = z is

Nq
(
EY +Σ

α,βΣ
−1
α,α(z−EZ), ΣY•Z

)
.

These fundamental properties of the MVN distribution can be proved by directly
manipulating the density (6). We want to spare a few words about assertion (III). It
can be phrased as to say, the multivariate normal model is closed under conditioning—
just as (I) tells that it is closed under marginalizing. Moreover, (III) gives expressions
for the conditional expectation and the conditional variance:

E(Y|Z) = Ŷ(Z) and Var(Y|Z) = ΣY•Z.

In general, E(Y|Z) and Var(Y|Z) are random variables that can be expressed as
functions of the conditioning variable Z. Thus (III) tells us that in the MVN model
E(Y| ·) is a linear function, whereas Var(Y| ·) is constant. Further,E(Y|Z) is the best
prediction of Y from Z, in the sense that E||Y− h(Z)||2 is uniquely minimized by
h = Ŷ(·) among all measurable functions h. Here this best prediction coincides with
the best linear prediction Ŷ(Z) given in (3). Finally, Var(Y|Z) being constant means
that the accuracy gain for predicting Y that we get from knowing Z is the same no
matter what value Z takes on. It is not least this linearity of the MVN distribution
that makes it very appealing for statistical modelling.

The occupation with the conditional distribution is guided by our interest in con-
ditional independence, which is—although it has not been mentioned yet—the ac-
tual primary object of study in graphical models. Let, as in Sect. 2.1, Y = (Y1,Y2) be
further partitioned. Y1 and Y2 are conditionally independent given Z—in writing:
Y1⊥⊥Y2|Z—if the conditional distribution of (Y1,Y2) given Z = z is for (almost)
all z ∈ Rr a product measure with independent margins corresponding to Y1 and
Y2. If X possesses a density fX = f(Y1,Y2,Z) w.r.t. some σ-finite measure, conditional
independence admits the following characterization: Y1⊥⊥Y2|Z if and only if there
exist functions g :Rq1+r →R and h :Rq2+r →R such that

f(Y1,Y2,Z)(y1,y2,z) = g(y1,z)h(y2,z) for almost all (y1,y2,z) ∈Rp.
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This factorization criterion ought to be compared to its analogue for (marginal) in-
dependence. It shall serve as definition here, saving us a proper introduction of the
terms conditional distribution or conditional density.

We can construct for any random variable X in Rp a conditional independence
graph (CIG) in analogous way as before the partial correlation graph: We put an
edge between nodes i and j unless Xi⊥⊥X j|X\{i, j}. Then, for “nice” distributions
F—for instance, if F has a continuous, strictly positive density f (w.r.t. some σ-
finite measure)—we have in analogy to Theorem 1 a separation property for CIGs:
Xα⊥⊥Xβ|Xγ if and only if γ separates α and β in the CIG of X.

Assertions (I) to (III) are the link from conditional independence to the analysis
of the second moment characteristics in Sect. 2.1. A direct consequence is:

Proposition 3. If X = (Y1,Y2,Z) ∼ Np(µ,Σ), Σ ∈S +
p , then

Y1⊥Y2 •Z ⇐⇒ Y1⊥⊥Y2|Z.

In other words, the PCG and the CIG of a regular normal vector coincide. It must
be emphasized that this is a particular property of the Gaussian distribution. Con-
ditional independence and partial uncorrelatedness are generally different, cf. Baba
et al. (2004), and so are the respective association graphs.

3 Gaussian Graphical Models

We have defined the partial correlation graph of a random vector and have recalled
some properties of the multivariate normal distribution. We have thus gathered the
ingredients we need to deal with Gaussian graphical models.

We understand a graphical model as a family of probability distributions on Rp

satisfying the pairwise zero partial correlations specified by a given (undirected)
graph G = (V,E), i.e. for all i, j ∈ V

{i, j} < E ⇒ %i, j• = 0. (7)

If the model consists of all (regular) p-variate normal distributions satisfying (7) we
call it a Gaussian graphical model (GGM). Another equivalent term is covariance
selection model, originated by Dempster (1972).

We write M (G) to denote the GGM induced by the graph G. The model M (G)
is called saturated if G is complete. It is called decomposable if the graph is de-
composable. A Gaussian graphical model is a parametric family, which may be
succinctly described as follows. Let S +

p (G) be the subset of S +
p consisting of all

positive definite matrices with zero entries at the positions specified by G, i.e.

K ∈S +
p (G) ⇐⇒ K ∈S +

p and ki, j = 0 for i , j and {i, j} < E.

Then
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M (G) =
{
Np(µ,Σ)

∣∣∣ µ ∈Rp, K = Σ−1 ∈S +
p (G)

}
. (8)

In the context of GGMs it is more convenient to parametrize the normal model by
(µ,K), which may be less common, but is quite intuitive considering that K directly
appears in the density formula. The GGM M (G) is also specified by its parameter
space Rp×S +

p (G).
The term graphical modelling refers to the statistical task of deciding on a graph-

ical model for given data and the collection of the statistical methods employed to-
ward this end. Within the parametric family of Gaussian graphical models we have
the powerful maximum likelihood theory available. We continue by stating the max-
imum likelihood estimates and some of their properties (Sect. 3.1), then review the
properties of the likelihood ratio test for comparing two nested models (Sect. 3.2)
and finally describe some model selection procedures (Sect. 3.3).

3.1 Estimation

Suppose we have i.i.d. observations X1, ...,Xn sampled from the normal distribution
Np(µ,Σ) with Σ ∈S +

p . Let furthermore Xn = (XT
1 , ...,X

T
n )T be the n× p data matrix

containing the data points as rows. We will make use of the following matrix nota-
tion. For an undirected graph G = (V,E) and an arbitrary square matrix A define the
matrix A(G) by

[A(G)]i, j =

ai, j if i = j or {i, j} ∈ E,
0 if i , j and {i, j} < E.

The saturated model

We start with the saturated model, i.e. there is no further restriction on K. The main
quantities of interest in Gaussian graphical models are the concentration matrix K
and the partial correlation matrix P. Their computation ought to be part of any initial
explorative data analysis. Both are functions of the covariance matrix Σ, thus we
start with the latter.

Proposition 4. If n > p, the maximum likelihood estimator (MLE) of Σ in the multi-
variate normal model (with unknown location µ) is

Σ̂ =
1
n

n∑
i=1

(Xi− X̄)(Xi− X̄)T =
1
n
XT

n HnXn,

where Hn = In−
1
n 1n1T

n is an idempotent matrix of rank n−1. The MLEs of K and P
are K̂ = Σ̂−1 and P̂ = −Corr(K̂), respectively.

Apparently XT
n HnXn has to be non-singular in order to be able to compute K̂ and P̂.

It should be noted that this is also necessary for the MLE to exist in the sense that
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the ML equations have a unique solution. If n is strictly larger than p, this is almost
surely true, but never if n ≤ p.

We want to review some properties of these estimators. The strong law of large
numbers, the continuous mapping theorem, the central limit theorem and the delta
method yield the following asymptotic results, cf. Vogel (2009).

Proposition 5. In the MVN model Σ̂, K̂ and P̂ are strongly consistent estimators of
Σ, K and P, respectively. Furthermore,

(1)
√

nvec
(
Σ̂ −Σ

) L
−→ Np2

(
0,2Mp(Σ ⊗Σ)

)
,

(2)
√

nvec
(
K̂ −K

) L
−→ Np2

(
0,2Mp(K ⊗K)

)
,

(3)
√

nvec
(
P̂−P

) L
−→ Np2

(
0,2ΓMp(K ⊗K)ΓT

)
,

where Γ = (K
− 1

2
D ⊗K

− 1
2

D )−Mp(P⊗K−1
D )Jp.

Since the normal distribution and the empirical covariance matrix are of such utter
importance, the exact distribution of the MLEs has also been the subject of study.

Proposition 6. In the MVN model, if n > p, Σ̂ has a Wishart distribution with
parameter 1

nΣ and n− 1 degrees of freedom, for which we use the notation Σ̂ ∼

Wp(n−1, 1
nΣ).

For a definition and properties of the Wishart distribution see e.g. Bilodeau and
Brenner (1999), Chap. 7, or Srivastava and Khatri (1979), Chap. 3. It is also treated
in most textbook on multivariate statistics. The distribution of K̂ is then called an
inverse Wishart distribution. Of the various results on Wishart and related distribu-
tions we want to name the following three, but remark that more general results are
available.

Proposition 7. In the MVN model with n > p we have

(1) EΣ̂ = n−1
n Σ and

(2) Var(vec Σ̂) = 2
n Mp(Σ ⊗Σ).

(3) If furthermore %i, j• = 0, then

√
n− p

%̂i, j•√
1− %̂2

i, j•

∼ tn−p, which implies %̂2
i, j• ∼ Beta

(
1
2
,
n− p

2

)
,

where tn−p denotes Student’s t-distribution with n− p degrees of freedom and
Beta(c,d) the beta distribution with parameters c,d > 0 and density

b(x) =
Γ(c + d)
Γ(c)Γ(d)

xc−1(1− x)d−11[0,1](x).

The last assertion (3) ought to be compared to the analogous results for the empirical
correlation coefficient %̂i, j = σ̂i, j/

√
σ̂i, jσ̂ j, j: if the true correlation is zero, then
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√
n−2

%̂i, j√
1− %̂2

i, j

∼ tn−2 and %̂2
i, j ∼ Beta

(
1
2
,
n−2

2

)
.

Estimation under a given graphical model

We have dealt so far with unrestricted estimators of Σ, K and the partial correlation
matrix P. Small absolute values of the estimated partial correlations suggest that
the corresponding true partial correlations may be zero. However assuming a non-
saturated model, using unrestricted estimates for the remaining parameters is no
longer optimal. The estimation efficiency generally decreases with the number of
parameters to estimate. Also, for stepwise model selection procedures, as described
in Sect. 3.3, which successively compare the appropriateness of different GGMs,
estimates under model constraints are necessary.

Consider the graph G = (V,E) with |V | = p and |E| = m, and let X1, ...,Xn an
i.i.d. sample from the model M (G) given in (8). Keep in mind that K is then an
element of the (m+ p)-dimensional vector space Sp(G), where m may range from 0
to p(p−1)/2. Σ is fully determined by the m+ p values k1,1, ...,kp,p and ki, j, {i, j} ∈ E
(which have to meet the further restriction that K is positive definite) and in this
sense has to be regarded as an (m + p)-dimensional object.

Theorem 2.

(1) The ML estimate Σ̂G of Σ in the model M (G) exists if Σ̂ = 1
nX

T
n HnXn is positive

definite, which happens with probability one if n > p.
(2) If the ML estimate Σ̂G exists, it is the unique solution of the following system of

equations
[Σ̂G]i, j = σ̂i, j, {i, j} ∈ E or i = j,

[Σ̂−1
G ]i, j = 0, {i, j} < E and i , j,

which may be succinctly formulated as

Σ̂G(G) = Σ̂(G) and K̂G = K̂G(G), (9)

where K̂G = Σ̂−1
G .

This result follows from general maximum likelihood theory for exponential mod-
els. The key is to observe that a GGM is a regular exponential model, cf. Lauritzen
(1996), p. 133. It is important to note that, contrary to the saturated case, the positive
definiteness of XT

n HnXn is sufficient but not necessary. In a decomposable model,
for instance, it suffices that n is larger than the number of nodes of the largest clique,
cf. Proposition 8. Generally this condition is necessary but not sufficient. Details on
stricter conditions on the existence of the ML estimate in the general case can be
found in Buhl (1993) or Lauritzen (1996), p. 148.

Theorem 2 gives instructive information about the structure of Σ̂G, in particular,
that it is a function of the sample covariance matrix Σ̂. The relation between Σ̂G
and Σ̂G is specified by (9), and Theorem 2 states furthermore that these equations
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always have a unique solution Σ̂G, if Σ̂ is positive definite. What remains unclear
is how to compute Σ̂G from Σ̂. This is accomplished by the iterative proportional
scaling (IPS) algorithm, sometimes also referred to as iterative proportional fitting,
which is explained in the following.

Iterative proportional scaling

The IPS algorithm generally solves the problem of fitting a multivariate density that
obeys a given interaction structure to specified marginal densities. Another appli-
cation is the computation of the ML estimate in log-linear models, i.e. graphical
models for discrete data. In the statistical literature the IPS algorithm can be traced
back to at least Deming and Stephan (1940). In the case of multivariate normal den-
sities the IPS procedure comes down to an iterative matrix manipulation. The IPS
algorithm for GGMs, as it is described in the following, is mainly due to Speed and
Kiiveri (1986).

Suppose we are given a graph G with cliques γ1, ...,γc and an unrestricted ML
estimate Σ̂ ∈Sp. Then define for every clique γ the following matrix operator Tγ :
Sp→Sp:

Tγ(K) = K +
[
(Σ̂γ,γ)−1

]p
−

[
(K−1)−1

γ,γ

]p
.

The operator Tγ has the following properties:

(I) If K ∈S +
p (G), then so is TγK.

(II) (TγK)−1
γ,γ = Σ̂γ,γ, i.e. if the updated matrix TγK is the concentration matrix of

a random vector, X say, then Xγ has covariance matrix Σ̂γ,γ.

Apparently Tγ preserves the zero pattern of G. That it also preserves positive def-
initeness and assertion (II) are not as straightforward, but both can be deduced by
applying (2) to K−1, cf. Lauritzen (1996), p. 135. The IPS algorithm then goes as
follows: choose any K0 ∈S +

p , for instance K0 = Ip, and repeat

Kn+1 = Tγ1Tγ2 ...Tγc Kn

until convergence is reached. If the ML estimate Σ̂G exists (for which Σ̂ ∈ S +
p is

sufficient but not necessary), then (Kn) converges to K̂G = Σ̂−1
G , where Σ̂G is the

solution of (9), see again Lauritzen (1996), p. 135. Thus the IPS algorithm cycles
through the cliques of G, in each step updating the concentration matrix K such that
the clique has marginal covariance Σ̂γ,γ while preserving the zero pattern specified
by G.

Decomposable models

As mentioned before, in the case of decomposable models the ML estimate can be
given in explicit form, and we do not have to resort to iterative approximations.
As a decomposable graph can be decomposed into its cliques, the ML estimate of
a decomposable model can be composed from the (unconstrained) MLEs of the
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Fig. 2 example graph
1

3

2

4 5

cliques. Let G = (V,E) be a decomposable graph with cliques γ1, ...,γc and c > 1.
Define the sequence (δ1, ..., δc−1) of subsets of V by

δk = (γ1∪ ...∪γk)∩γk+1, k = 1, ...,c−1.

The δk do not have to be distinct. For instance, the graph in Fig. 2 has four cliques
and, for any numbering of the cliques, δi = {3}, i = 1,2,3.

Proposition 8.

(1) The ML estimate Σ̂G of Σ in the decomposable model M (G) exists with proba-
bility one if and only if n > maxk=1,...,c |γk |.

(2) If the ML estimate Σ̂G = K̂G exists, then it is given by

K̂G =

c∑
k=1

[
(Σ̂γk ,γk )−1

]p
−

c−1∑
k=1

[
(Σ̂δk ,δk )−1

]p
.

See Lauritzen (1996), p. 146, for a proof. Results on the asymptotic distribution of
the restrained ML-estimator Σ̂G in the decomposable as well as the general case can
be found in Lauritzen (1996), Chap. 5. The exact, non-asymptotic distribution of
Σ̂G has also been studied. For decomposable G, it is known as the hyper Wishart
distribution (Dawid and Lauritzen (1993)), and the distribution of K̂G as inverse
hyper Wishart distribution (Roverato (2000)).

3.2 Testing

We want to test a graphical model against a larger one, possibly but not necessarily
the saturated model. Consider two graphs G = (V,E) and G0 = (V,E0) with E0 ⊂ E, or
equivalently M (G0) ⊂M (G). Then the likelihood ratio for testing M (G0) against
the larger model M (G) based on the observation Xn reduces to

LR(G0,G) =

 det Σ̂G

det Σ̂G0

 n
2

,

small values of which suggest to dismiss M (G0) in favour of M (G). It follows by
the general theory for LR tests that the test statistic

Dn(G0,G) = −2lnLR(G0,G) = n
(
lndet Σ̂G0 − lndet Σ̂G

)
(10)
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is asymptotically χ2 distributed with |E| − |E0| degrees of freedom under the model
M (G0). The test statistic Dn may be interpreted as a measure of how much the
appropriateness of model M (G0) for the data deviates from that of M (G). It is thus
also referred to as deviance and the LR test in GGMs is called deviance test.

It has been noted that the asymptotic χ2 approximation of the distribution of
Dn is generally not very accurate for small n. Several suggestions have been made
on how to improve the finite sample approximation. One approach is to apply the
Bartlett correction to the LR test statistic (Porteous (1989)). Another approximation,
which is considerably better than the asymptotic distribution, is given by the exact
distribution for decomposable models in Proposition 9 (Eriksen (1996)).

Decomposable models

Again decomposable models play a special role. We are able to give the exact distri-
bution of the deviance if both models compared are decomposable. Thus assume in
the following that G and G0 are decomposable. Then one can find a sequence of de-
composable models G0 ⊂G1 ⊂ ... ⊂Gk = G such that each successive pair (Gi−1,Gi)
differs by exactly one edge ei, i = 1, ...,k, cf. Lauritzen (1996), p. 20. Let ai denote
the number of common neighbours of both endpoints of ei in the graph Gi.

Proposition 9. If G0 and G are decomposable and G0 ⊂G, then

det Σ̂G

det Σ̂G0

= exp
(
−

Dn

n

)
∼ B1B2...Bk,

where the Bi are independent random variables with Bi ∼ Beta
(

n−ai−2
2 , 1

2

)
.

Since a complete graph and a graph with exactly one missing edge are both decom-
posable, the test of conditional independence of two components of a random vector
is a special case of Proposition 9. If we let G0 be the graph with all edges but {i, j},
some matrix calculus yields (cf. Lauritzen (1996), p. 150)

det Σ̂
det Σ̂G0

= 1− %̂2
i, j•.

By Proposition 9 this has a Beta( n−p
2 , 1

2 ) distribution, which is in concordance with
Proposition 7 (3).

3.3 Model Selection

Contrary to estimation and statistical testing in GGMs there is no generally agreed-
upon, optimal way to select a model. Statistical theory gives a relatively precise
answer to the question if a certain model fits the data or not, but not which model
to choose among those that fit. There are many model selection procedures (MSPs),
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and comparing them is rather difficult, since many aspects play a role—computing
time being just one of them. Furthermore, theoretic results are usually hard to de-
rive. For most MSPs, consistency can be shown, but distributional results are seldom
available. Selecting a graphical model means to decide, based on the data, which
partial correlations should be set to zero and which should be estimated freely. This
decision, of course, heavily depends on the nature of the problem at hand, for exam-
ple, if too few or too many edges are judged more severe. Ultimately, the choice of
the MSP is a matter of personal taste, and the model selection has to be tailored to
the specific situation. Expert knowledge should be incorporated to obtain sensible
and interpretable models, especially when it comes to choosing from several equally
adequate models.

The total number of p-dimensional GGMs is 2(p
2), and only for very small p

an evaluation of all possible models, based on some model selection criterion like
AIC or BIC, is feasible. With respect to interpretability one might want to restrict
the search space to decomposable models, cf. e.g. Whittaker (1990), Chap. 12, or
Edwards (2000), Chap. 6. Otherwise a non-complete model search is necessary.

Model search

The system of all possible models possesses itself a (directed) graph structure, cor-
responding to the partial ordering induced by set inclusion of the respective edge
sets. A graph G0, say, is a child of a graph G, if G has exactly one edge more than
G0. The fact that we know how to compare nested models, as described in Sect. 3.1,
suggests a search along the edges of this lattice. A classic, simple search, known
as backward elimination, is carried out as follows. Start with the saturated model,
and in each step remove one edge. To determine which edge, compute all deviances
between the current model and all models with exactly one edge less. The edge cor-
responding to the smallest deviance difference is deleted, unless all deviances are
above the significance level, i.e. all edges are significant. Then the algorithm stops.
The search in the opposite direction, starting from the empty graph and including
significant edges, is also possible and known as forward selection. Although both
schemes have been reported to produce similar results, there is a substantial concep-
tual difference that favours backward elimination. The latter searches among models
consistent with the data, while forward selection steps through inconsistent models.
The result of an LR test has no sensible interpretation if both models compared are
actually invalid. On the other hand, forward selection is to be preferred for sparse
graphs.

Of course, many variants exist, e.g., one may remove all non-significant edges
at once, then successively include edges again, apply an alternative stopping rule
(e.g. overall deviance against the saturated model) or generally alternate between
elimination and selection steps. Another model search strategy in graphical mod-
els is known as the Edwards-Havránek procedure (Edwards and Havránek (1985,
1987), Smith (1992)). It is a global search, but reduces the search space, similar to
the branch-and-bound principle by making use of the lattice structure.
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One step model selection

The simplicity of a one step MSP is, of course, very appealing. They become in-
creasingly desirable as there has been an enormous growth in the dimensionality
of data sets, and several proposals have been made in the recent past (Drton and
Perlman (2004, 2008), Meinshausen and Bühlmann (2006), Castelo and Roverato
(2006)). For instance, the SINful procedure by Drton and Perlman (2008) is a sim-
ple model selection scheme, which consists of setting all partial correlations to zero
for which the absolute value of the sample partial correlation is below a certain
threshold. This threshold is determined in such a way that overall probability of se-
lecting an incorrect edge, i.e. the probability that the estimated model is too large,
is controlled.

4 Robustness

Most of what has been presented in the previous section, the classical GGM the-
ory, has been developed in the seventies and the eighties of the last century. Since
then graphical models have become popular tools of data analysis, and the statisti-
cal theory of Gaussian graphical models remains an active field of research. Many
authors have in particular addressed the n < p problem (a weak point of the ML
theory) as in recent years one often encounters huge data sets, where the number of
variables exceeds by far the number of observations. Another line of research con-
siders GGMs in the Bayesian framework. It is beyond the scope of a book chapter
to give an exhaustive survey of the recent approaches—even if we restrict ourselves
to undirected graphical models for continuous data. We want to focus on another
weak point of the normal ML theory: its lack of robustness, which has been pointed
out, e.g., by Kuhnt and Becker (2003) and Gottard and Pacillo (2007).

Robustness denotes the property of a statistical method to yield good results also
if the assumptions for which it was designed are violated. Small deviations from
the assumed model shall have only a small effect, and robustness can be seen as a
continuity property. This includes the often implied meaning of robustness as invul-
nerability against outliers. For example, any neighbourhood of a normal distribution
(measured in the Kolmogorov metric) contains arbitrarily heavy-tailed distributions
(measured in kurtosis, say). Outlier generating models with a small outlier fraction
are actually very close to the pure data model.

There are two general conceptual approaches when it comes to robustifying a
statistical analysis: identify the outliers and remove them, or use robust estimators
that preferably nullify, but at least reduce the harmful impact of outliers. Graphical
modelling—as an instance of the model selection problem—is a field where the ad-
vantages of the second approach become apparent. In its most general perception an
outlier is a “very unlikely” observation under a given model, cf. Davies and Gather
(1993). Irrespective of the particular rule applied to decide, whether an observation
is deemed an outlier or not, any sensible rule ought to give different answers for
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different models. An outlier in a specific GGM may be a quite likely observation in
the saturated model.

This substantially complicates outlier detection in any type of graphical models,
suggesting it must at least be applied iteratively, alternating with model selection
steps. For Gaussian graphical models, however, we have the relieving fact that an
outlier w.r.t. a normal distribution basically coincides with an outlier in its literal
meaning: a point far away from the majority of the data. Hence, strongly outly-
ing points tend to be ouliers w.r.t. any Gaussian model, no matter which—if any—
conditional or marginal independences it obeys.

Our focus will therefore lie in the following on robust estimation. Note that Gaus-
sian graphical modelling, as presented in the previous section, exclusively relies on
Σ̂. It is a promising approach to replace the initial estimate Σ̂ by a robust substitute
and hence robustify all subsequent analysis. We can make use of the well developed
robust estimation theory of multivariate scatter.

4.1 Robust estimation of multivariate scatter

Robust estimation in multivariate data analysis has long been recognized as a chal-
lenging task. Over the last four decades much work has been devoted to the problem
and many robust alternatives of the sample mean and the sample covariance ma-
trix have been proposed, e.g. M-estimators (Maronna (1976), Tyler (1987)), Stahel-
Donoho estimators (Stahel (1981), Donoho (1982), Maronna and Yohai (1995),
Gervini (2002)), S-estimators (Davies (1987), Lopuhaä (1989), Rocke (1996)),
MVE and MCD (Rousseeuw (1985), Davies (1992), Butler et al. (1993), Croux and
Haesbroeck (1999), Rousseeuw and Van Driessen (1999)), τ-estimators (Lopuhaä
(1991)), CM-estimators (Kent and Tyler (1996)), reweighted and and data-depth
based estimators (Lopuhaä (1999), Gervini (2003), Zuo and Cui (2005)). Many vari-
ants exist, and the list is far from complete. For a more detailed account see e.g. the
book Maronna et al. (2006) or the review article Zuo (2006).

The asymptotics and robustness properties of the estimators are to a large extent
well understood. The computation often requires to solve challenging optimization
problems, but improved search heuristics are nowadays available. What remains
largely an open theoretical question is the exact distribution for small samples, and
constants of finite sample approximations have to be assessed numerically.

There are several measures that quantify and thus allow to compare the robust-
ness properties of estimators. We want to restrict our attention to the influence func-
tion, introduced by Hampel (1971). Toward this end we have to adopt the notion that
estimators are functionals S : F → Θ defined on a class of distributions F . In the
case of matrix-valued scatter estimators S , the image spaceΘ is Sp. The specific es-
timate computed from a data set Xn is the functional evaluated at the corresponding
empirical distribution function Fn = 1

n
∑n

i=1 δXi , where δx denotes the Dirac-measure
which puts unit mass at the point x ∈ Rp. For instance, the sample covariance ma-
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trix Σ̂ is simply the functional Var(·), which is defined on all distributions with finite
second moments, evaluated at Fn. The influence function of S at the distribution F
is defined as

IF(x;S ,F) = lim
ε↘0

1
ε

(
S (Fε,x)−S (F)

)
, x ∈Rp,

where Fε,x = (1−ε)F +εδx. In words, the influence function is the directional deriva-
tive of the functional S at the “point” F ∈ F in the direction of δx ∈ F . It de-
scribes the influence of an infinitesimal contamination at point x ∈Rp on the func-
tional S , when the latter is evaluated at the distribution F. Of course, in terms of
robustness, the influence of any contamination is preferably small. A robust esti-
mator has in particular a bounded influence function, i.e. the maximal influence
sup{ ||IF(x;S ,F)|| |x ∈Rp}, also known as gross-error sensitivity, is finite.

The influence function is said to measure the local robustness of an estimator.
Another important robustness measure, which in contrast measures the global ro-
bustness but which we will not pursue further here, is the breakdown point (asymp-
totic breakdown point (Hampel (1971)), finite-sample breakdown point (Donoho
and Huber (1983)), see also Davies and Gather (2005)). Roughly, the finite-sample
replacement breakdown point is the minimal fraction of contaminated data points
that can drive the estimate to the boundary of the parameter space. For details on
robustness measures see e.g. Hampel et al. (1986).

It is a very desirable property of scatter estimators to transform in the same way
as the (population) covariance matrix—the quantity they aim to estimate—under
affine linear transformations. A scatter estimator Ŝ is said to be affine equivari-
ant, if it satisfies Ŝ (XnAT + 1nbT ) = AŜ (Xn)AT for any full rank matrix A ∈ Rp×p

and vector b ∈ Rp. We want to make a notational distinction between S , the func-
tional working on distributions, and Ŝ , the corresponding estimator working on data
(strictly speaking a series of estimators indexed by n), i.e. S (Fn) = Ŝ (Xn). The equiv-
ariance is indeed an important property, due to various reasons. For instance, any
statistical analysis based on such estimators is independent of any change of the
coordinate system, may it be re-scaling or rotations of the data. Also, affine equiv-
ariance implies that at any elliptical population distribution (such as the Gaussian
distribution) indeed a multiple of the covariance matrix is unbiasedly estimated, cf.
Proposition 10 below. Furthermore the estimate obtained is usually positive definite
with probability one, which is crucial for any subsequent analysis, e.g. we know
that the derived partial correlation matrix estimator −Corr(Ŝ −1) actually reflects a
“valid” dependence structure.

The classes of estimators listed above all possess this equivariance property—or
at least the pseudo-equivariance described below. Historically though, affine equiv-
ariance for robust estimators is not a self-evident property. Contrary to univariate
moment-based estimators (such as the sample variance), the highly robust quantile-
based univariate scale estimators (such as the median absolute deviation, MAD) do
not admit a straightforward affine equivariant generalization to higher dimensions.

In Gaussian graphical models we are interested in partial correlations and zero
entries in the inverse covariance matrix, for which we need to know Σ only up to a
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constant. The knowledge of the overall scale is not relevant, and we require a slightly
weaker condition than affine equivariance in the above sense, which we want to call
affine pseudo-equivariance or proportional affine equivariance.

Condition C1 Ŝ (XnAT +1nbT ) = g(AAT )AŜ (Xn)AT for b ∈Rp, A ∈Rp×p with full
rank, and g :Rp×p→R satisfying g(Ip) = 1.

This condition basically merges two important special cases, the proper affine equiv-
ariance described above, i.e. g ≡ 1, and the case of shape estimators in the sense of
Paindaveine (2008), which corresponds to g = 1/det(·). The following proposition
can be found in similar form in Bilodeau and Brenner (1999), p. 212.

Proposition 10. In the MVN model, i.e.Xn = (XT
1 , ...,X

T
n )T with X1, ...,Xn ∼Np(µ,Σ)

i.i.d., any affine pseudo-equivariant scatter estimator Ŝ = Ŝ (Xn) satisfies

(1) EŜ = anΣ and
(2) Var(vec Ŝ ) = 2bn Mp(Σ ⊗Σ) + cn vecΣ(vecΣ)T ,

where (an), (bn) and (cn) are sequences of real numbers with an,bn ≥ 0 and cn ≥

−2bn/p for all n ∈N.

Proposition 7 tells us that for Ŝ = Σ̂ we have an = n
n−1 , bn = 1

n and cn ≡ 0. For root-
n-consistent estimators the general form of variance re-appears in the asymptotic
variance, and they fulfill

Condition C2 There exist constants a,b ≥ 0 and c ≥ −2b/p such that

√
nvec(Ŝ −aΣ)

L
−→ Np2

(
0, 2a2bMp(Σ ⊗Σ) + a2cvecΣ(vecΣ)T

)
.

The continuous mapping theorem and the multivariate delta method yield the gen-
eral form of the asymptotic variance of any partial correlation estimator derived
from a scatter estimator satisfying C2.

Proposition 11. If Ŝ fulfils C2, the corresponding partial correlation estimator
P̂S = −Corr(Ŝ −1) satisfies

√
nvec(P̂S −P)

L
−→ Np2 (0,2bΓMp(K ⊗K)ΓT ) (11)

where b is the same as in Condition C2 and Γ is as in Proposition 5.

Thus the comparison of the asymptotic efficiencies of partial correlation matrix esti-
mators based on affine pseudo- equivariant scatter estimators reduces to the compar-
ison of the respective values of the scalar b. For Ŝ = Σ̂ we have b = 1 by Proposition
5. Also, general results for the influence function of pseudo-equivariant estimators
can be given, cf. Hampel et al. (1986), Chap. 5.3.

Proposition 12.
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(1) At the Gaussian distribution F = Np(µ,Σ) the influence function of any func-
tional S satisfying Condition C1 has, if it exists, the form

IF(x;S ,F) = g(Σ)
(
α(d(x))(x−µ)(x−µ)T −β(d(x))Σ

)
, (12)

where d(x) =
√

(x−µ)T K(x−µ), g is as in Condition C1 and α and β are suit-
able functions [0,∞)→R.

(2) Assuming that Ŝ is Fisher-consistent for aΣ, i.e. S (F) = aΣ, with a > 0, cf. Con-
dition C2, the influence function of the corresponding partial correlation matrix
functional PS = −Corr(S −1) is

IF(x; PS ,F) =
α(d(x))g (Σ)

a

(
1
2
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)
,

where Π = K(x−µ)(x−µ)T K.

In the case of the sample covariance matrix Σ̂(Xn) = Var(Fn) we have a = 1 and
α = β ≡ 1. Thus (12) reduces to IF(x;Var,F) = (x−µ)(x−µ)T − Σ, which is not
only unbounded, but even increases quadratically with ||x||. We will now give two
examples of robust affine equivariant estimators, that have been proposed in the
context of GGMs.

The minimum covariance determinant (MCD) estimator

The idea behind the MCD estimator is that outliers will increase the volume of
the ellipsoid specified by the sample covariance matrix, which is proportional to the
square root of its determinant. The MCD is defined as follows. A subset η ⊂ {1, ...,n}
of fixed size h = bsnc with 1

2 ≤ s < 1 is determined such det(Σ̂η) with

Σ̂η =
1
h

∑
i∈η

(Xi− X̄η)(Xi− X̄η)T and X̄η =
1
h

∑
i∈η

Xi

is minimal. The mean µMCD and covariance matrix Σ̂MCD computed from this sub-
sample are called the raw MCD location, respectively scatter estimate. Based on
the raw estimate (µMCD, Σ̂MCD) a reweighted scatter estimator Σ̂RMCD is computed
from the whole sample:

Σ̂RMCD =

 n∑
i=1

wi

−1 n∑
i=1

wi(Xi−µMCD)(Xi−µMCD)T

where wi = 1 if (Xi −µMCD)T Σ̂−1
MCD(Xi −µMCD) < χ2

p,0.975 and zero otherwise. Usu-
ally the estimate is multiplied by a consistency factor (corresponding to 1/a in Con-
dition C2) to achieve consistency for Σ at the MVN distribution. Since this is irrel-
evant for applications in GGMs we omit the details. The respective values of the
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constants b and c in Condition C2 as well as the function α and β in Proposition 12
are given in Croux and Haesbroeck (1999).

The reweighting step improves the efficiency and retains the high global robust-
ness (breakdown point of roughly 1− s for s ≥ 1/2) of the raw estimate. Although
the minimization over

(
n
h

)
subsets is of non-polynomial complexity, the availability

of fast search heuristics (e.g. Rousseeuw and Van Driessen (1999)) along with the
aforementioned good statistical properties have rendered the RMCD a very popu-
lar robust scatter estimator, and several authors (Becker (2005), Gottard and Pacillo
(2008)) have suggested its use for Gaussian graphical modelling.

The proposal by Miyamura and Kano

Miyamura and Kano (2006) proposed another affine equivariant robust scatter es-
timator in the GGM framework. The idea is here a suitable adjustment of the ML
equations. The Miyamura-Kano estimator Σ̂MK falls into the class of M-estimators,
as considered in Huber and Ronchetti (2009), and is defined as the scatter part Σ of
the solution (µ,Σ) of

1
n

n∑
i=1

exp
(
−
ξd2(Xi)

2

)
(Xi−µ) = 0 and

1
n

n∑
i=1

exp
(
−
ξd2(Xi)

2

) (
Σ − (Xi−µ)(Xi−µ)T

)
=

ξ

(ξ+ 1)(p+2)/2 Σ

where ξ ≥ 0 is a tuning parameter and d(x) is, as in Proposition 12, the Mahalanobis
distance of x ∈ Rp w.r.t. µ and Σ. Large values of ξ correspond to a more robust
(but less efficient) estimate, i.e. less weight is given to outlying observations. The
Gaussian likelihood equations are obtained for ξ = 0.

4.2 Robust Gaussian graphical modelling

The classical GGM theory is completely based on the sample covariance matrix Σ̂:
the ML estimates in Theorem 2, the deviance test statistic Dn in (10) and model
selection procedures such as backward elimination, Edwards-Havránek or Drton-
Perlman. Thus replacing the normal MLE by a robust, affine equivariant scatter
estimator and applying the GGM methodology in analogous manner is an intuitive
way of performing robust graphical modelling, insensitive to outliers in the data.
Since the asymptotics of affine (pseudo-)equivariant estimators are well established
(at the normal distribution), and, as described in Sect. 4.1, their general common
structure is not much different from that of the sample covariance matrix, asymptotic
statistical methods can rather easily be adjusted by means of standard asymptotic
arguments.
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Estimation under a given graphical model

We have discussed properties of equivariant scatter estimators and indicated their
usefulness for Gaussian graphical models. However they just provide alternatives
for the unconstrained estimation. Whereas the ML paradigm dictates the solution
of (9) as an optimal way of estimating a covariance matrix with a graphical model
and exact normality, it is not quite clear what is a best way of robustly estimating
a covariance matrix that obeys a zero pattern in its covariance. Clearly, Theorem 2
suggests to simply solve equations (9) with Σ̂ replaced by any suitable robust esti-
mator Ŝ . This approach has the advantage that consistency of the estimator under
the model is easily assessed. In case of a decomposable model the estimator can be
computed by the decomposition of Proposition 8, or generally by the IPS algorithm,
for which convergence has been shown and which comes at no additional computa-
tional cost. Becker (2005) has proposed to apply IPS to the reweighted MCD.

However, a thorough study of scatter estimators under graphical models is still
due, and it might be that other possibilities are more appropriate in certain situa-
tions. Many robust estimators are defined as the solution of a system of equations.
A different approach is to alter these estimation equations in a suitable way that
forces a zero pattern on the inverse. This requires a new algorithm, the convergence
of which has to be assessed individually. This route has been taken by Miyamura
and Kano (2006). Their algorithm performs an IPS approximation at each step and
is hence relatively slow.

A problem remains with both strategies. Scatter estimators, if they have not a
structure as simple as the sample covariance, generally do not possess the “consis-
tency property” that the estimate of a margin appears as a submatrix of the estimate
of the whole vector. The ML estimate Σ̂G in the decomposable as well as the gen-
eral case is composed from the unrestricted estimates of the cliques, cf. Theorem
2 and Proposition 8, which makes it in particular possible to compute the MLE for
p ≥ n. One way to circumvent this problem is to drop the affine equivariance and
resort to robust “pairwise” estimators, such as the Gnanadesikan-Kettenring estima-
tor (Gnanadesikan and Kettenring (1972), Maronna and Zamar (2002)) or marginal
sign and rank matrices (Visuri et al. (2000), Vogel et al. (2008)). Besides having the
mentioned consistency property pairwise estimators are also very fast to compute.

Testing and model selection

The deviance test can be applied analogously with minor adjustments when based
on an affine equivariant scatter estimator. Similarly to the partial correlation esti-
mator P̂S in Proposition 11, the asymptotic distribution of the generalized deviance
DS

n , computed from any root-n-consistent, equivariant estimate Ŝ, differs from that
of the ML-deviance (10) only by a factor, see Tyler (1983) or Bilodeau and Brenner
(1999), Chap. 13, for details. However, as noted in Sect. 3.2, the χ2 approximation
of the uncorrected deviance may be rather inaccurate for small n. Generalizations
of finite-sample approximations or the exact test in Proposition 9 are not equally
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straightforward. Since the exact distribution of a robust estimator is usually un-
known, one will have to resort to Monte Carlo or bootstrap methods.

Model selection procedures that only require a covariance estimate can be robus-
tified in the same way. Besides the classical search procedures this is also true for
the SINful procedure by Drton and Perlman (2008), of which Gottard and Pacillo
(2008) studied a robustified version based on the RMCD.

4.3 Concluding remarks

The use of robust methods is strongly advisable, particularly in multivariate analy-
sis, where the whole structure of the data is not immediately evident. Even if one
refrains from relying solely on a robust analysis, it is in any case an important di-
agnostic tool. A single gross error or even mild deviations from the assumed model
may render the results of a sample covariance based data analysis useless. The use
of alternative, robust estimators provides a feasible safeguard, which comes at the
price of a small loss in efficiency and a justifiable increase in computational costs.

Although there is an immense amount of literature on multivariate robust estima-
tion and applications thereof (robust tests, regression, principal component analysis,
discrimination analysis etc., see e.g. Zuo (2006) for references), the list of publica-
tions addressing robustness in graphical models is (still) rather short. We have de-
scribed how GGMs can be robustified using robust, affine equivariant estimators.
An in-depth study of this application of robust scatter estimation seems to be still
open.

The main limitation of this approach is that it works well only for sufficiently
large n, and on any account only for n > p, since, as pointed out above, usually
an initial estimate of full dimension is required. Also note that, for instance, the
computation of the MCD requires h> p. The finite-sample efficiency of many robust
estimators is low, and with the exact distributions rarely accessible, methods based
on such estimators rely even more on asymptotics than likelihood methods.

The processing of very high-dimensional data (p >> n) becomes increasingly
relevant, and in such situations it is unavoidable and even, if n is sufficiently large,
dictated by computational feasibility, to assemble the estimate of Σ, restricted to a
given model, from marginal estimates. A high dimensional, robust graphical mod-
elling, combining robustness with applicability in large dimensions, remains a chal-
lenging topic of future research.
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