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Chapter 1
General Introduction

1.1 Functions of Ions in Nucleic Acid Chemistry
In the human body “natural” ions occur at different concentrations: potassium

(K+: 0.2 M), magnesium (Mg2+: 0.1 M) and sodium (Na+: 0.01 M). The role of calcium (Ca2+)

is unclear, but possibly should be added to this list. These “natural” ions have several

important functions. Firstly, as DNA is a polyanionic molecule, its charge should be

neutralised. Instead of being a huge cloud around the DNA as proposed by Manning[1]

distinct sites can be assigned where ions occupy the minor (Na+, Mg2+, Ca2+) or major

(Na+, K+, Mg2+, Ca2+) groove, thereby making DNA a possible ionophore.[2] An uneven

distribution leads to DNA curvature.[3] Secondly, the “natural” metal ions are also needed to

keep nucleic acid structures in their form. Examples include the structure of ribozymes

(catalytic RNA, Mg2+)[4] and guanine quartets (Na+, K+).[5] Another need for Mg2+ becomes

also clear in the formation or degradation of the phosphodiester bond.[6] The function of Mg2+

for these kind of reactions is to polarise the P-O bonds, to provide the nucleophile OH–, or to

stabilise one of the transition states or the departing group.[5]

The occurrence of heavy-metal ion species is also relevant because these are under the

tight control of chaperone proteins. However, in some diseases these species may be become

abundant. Examples are the pile-up of iron (Fe) in thalassemia or hematochromatosis or of

copper (Cu) in Wilson’s disease.[7] Other heavy metal ion species fulfil several roles. It has

been found that manganese (MnV) is involved in oxidative damage of guanine which in the

end may lead to DNA strand breakage.[8] The glycosidic bond (the bond between the

nucleobase and sugar moiety) can break due to platination (PtII) of a nucleobase.[9]

Sometimes, the function of heavy metal ions may resemble that of the “natural” ions in that

they may contribute to the thermal stabilisation and destabilisation of the nucleic acid.[10]

Furthermore, these species may also lead to local charge neutralisation, which may cause a

collapse of the DNA, or eventual DNA condensation, or a simple distortion of DNA.[11]

Heavy metals that are involved in here are, CuII, MnII, cobalt (CoII), nickel (NiII), zinc (ZnII)

and cadmium (CdII). The kinking, due to platination, of DNA may have large effects. It is

believed that through the kinking of DNA, cisplatin exerts its anti-cancer function.[12] More

subtle changes induced by metal binding are the shift of tautomer equilibria that may induce

mutations and influence base pairing properties.[13]
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1.2 DNA
In this section, DNA is focussed on and the most common forms are A-DNA, B-DNA

and Z-DNA, which are shown in Figure 1.1.

Figure 1.1. Schematic representation of A-DNA (left), B-DNA (middle), Z-DNA (right).

1.2.1 B-DNA
This form of DNA is the most common form of DNA and structural data about this

molecule were proposed by James Watson and Francis Crick in 1953.[14] The main features

they found will be discussed now. B-DNA, consists of two right handed helical chains

existing of a central building block, the deoxyribonulecotides. These consist of one of the

four nitrogenous bases, a sugar group and a phosphate group. The four nitrogenous bases are

adenine (A), guanine (G), cytosine (C) and thymine (T). The nitrogenous bases can also be

classified as a purine (A and G) or pyrimidine (C and T). The bases are at the inside of the

helical chain, whereas the phosphate group are at the outside of the chain. Under normal

conditions A pairs with T and G with C, which have two and three hydrogen bonds,

respectively (Figure 1).[15a] In RNA thymine is substituted for uracil (U) and pairs with A.

Because the two helical chains wind around each other, two gaps are formed, the major and

minor groove. Restrictions of the actual sequence of AT and GC pairs do not occur and it is

this unique sequence that contains the genetic information. In later crystallographic studies on

small ribonucleic acid (RNA) fragments, such as AU and GC dimers, structural information

became available and showed the base pairing directly.[16] Nowadays,  crystallographic

studies of larger fragments are known, but the observations that Watson and Crick made on

the base pairing (e.g. A pairs T and G bairs C) in early days were recovered.[17] Furthermore,

the base pairs AT and GC are widely used in supramolecular chemistry.[18]
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Scheme 1.1. The base pairs adenine-thymine and guanine cytosine. Heavy atoms
participating in hydrogen bonding are shown in bold.

1.2.2 Other Forms of DNA: A-DNA, Z-DNA and Multiple Stranded DNA
Although B-DNA is the best known form of double stranded DNA, other forms are

known as well, namely, A- and Z-DNA.[15] There are some differences between these types of

double stranded DNA. A- and B-DNA are right-handed but Z-DNA is left-handed. B-DNA is

found in a relative high humid environment, whereas A-DNA is found in a relatively low salt

environment. Apart from duplex DNA, multi-stranded DNA also exists. In this respect,

triplex and quadruplex DNA will be discussed because of their biological role. Triplex DNA

was discovered in 1957,[19a] only 4 years after the discovery of B-DNA. One of the first X-ray

diffraction studies on triplex DNA appeared in 1974.[19b] The importance of triplex DNA

stems from its potential use in gene therapy. Most illnesses occur due to a malfunctioning

gene and, thus, leads to a malfunctional protein. First, the DNA is transcribed into RNA

followed by the translation of the RNA into a protein. Due to the formation of triple helices,

the DNA replication as well as transcription is inhibited, therefore, the malfunctioning

protein will not be produced. In some case the illness is due to a single gene order

(e. g. cystic fibrosis). The normal function of the gene can be restored by triple helix

mediated mutagenesis, which in the end leads to a normal functioning protein.[20] The triple

helices are formed in a site specific manner, according to the sequence of the malfunctioning

gene, which makes the therapy very powerful. In analogy to duplex DNA, triplex DNA

contains base triplets; these comprise C-G·C, T-A·A, T-A·T, C-G·G and C-C·(HC+).

Concerning the nomenclature of the triplets, a dash (-) indicates Watson-Crick base pairing

and a dot (·) indicates Hoogsteen pairing, which was discovered in 1959 for the base pair AT

(Scheme 1.2).[21]
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Scheme 1.2. The base pair AT in Watson-Crick (left) and Hoogsteen (right) arrangement.

Apart from duplex and triplex DNA, quadruplex DNA or four stranded DNA, is also

found. In quadruplex DNA, quartet arrangments of nucleobases are found. It has been found

that the stabilisation of G-quartets inhibits telomerase, a crucial enzyme for the development

of cancer. Under normal conditions, only double stranded DNA is target for telomerase,

whereas quadruplex DNA is not. Stabilisation of G-quartets can be done via small aromatic

molecules having an electron deficient ring, that can participate in stacking with the electron

rich G-quartet.[22a] Other nucleobase quartets may also form, but it seems that the G-quartet is

a scaffold for their formation, in the sense that it serves as a partner to stack with.[22b,c]

G-quartets are also widely used in supramolecular chemistry.[23a] For example, by attaching

them to calixarenes,[23b,c] recognition of ion-pairs is possible. The question now arises whether

the role of the calixarene that recognises the anion, can be taken over by, for instance, an

adenine quartet. Which implies that quadruplex DNA can be used as a salt extractor, as it

binds an ion-pair.

1.3 Metal-Nucleic Acid Interactions:
Binding Aspects and Implications
1.3.1 Metal Binding to Nucleic Acids

There is already ample information on metal-nucleic acids interactions,[24] but in this

section a condensed overview about this issue will be given. Taking into account the structure

of a nucleotide several binding parts are possible. First, binding to the phosphate backbone is

possible for alkali and earth alkali metal ions and a large amount of X-ray structures is

available.[25] Second, binding to the sugar entity is possible. Although it is the least frequent

one, a chelate of O2’ and O3’ is formed with a variety of metal ions: Na+,[26] CuII,[27] SnIV,[28]

and OsIV.[29] Third, and by far the most frequent occurring one, is the interaction of a metal

ion with the heterocyclic ring of the nucleobase. Almost every binding pattern is possible: a
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single metal may bind but multiple metal binding is possible as well, and the metal species do

not need to be the same.[24] With regard to binding to the heterocyclic ring of a nucleobase,

there are two possibilities for metal binding. The first possibility is metal binding to a site that

is not involved in Watson-Crick hydrogen bonding, thereby not changing the tautomeric

structure of the nucleobase. A second possibility is that a metal replaces a proton that

normally is involved in Watson-Crick hydrogen bonding. In this case, the metal “forces” the

proton to reside at another place, thereby creating a different tautomer structure. So called

“metal-stabilised-rare tautomers” are possible for all nucleobases, and occur for A-N6, G-N1,

G-N2, C-N4 and T/U-N3. As a consequence of the changed tautomeric structure the normal

base pairing scheme is affected and mutations may result.[24,30]

1.3.2 Implications for Metal Binding to Nucleic Acids
Generally, the binding of a metal ion will as a result in an increase of the acidity

(decrease of the pKa) of endocyclic NH groups and exocyclic NH2 groups, or a decrease of

the basicity (increase of the pKa) of endocyclic N atoms.[24] To understand the changes in pKa

values one should have a clear view of the metal-nucleobase bond and some aspects should

be discussed. First, the major contribution of the metal-nucleobase interaction is to be

addressed to the electrostatic interaction.[31] This component is more pronounced in the gas

phase than in solution. Secondly, stabilising interactions such as hydrogen bonding between

co-ligands of the metal and the nucleobase will further improve the overall interaction.[32] The

third and last aspect concerns non-electrostatic effects such as polarisation and

charge-transfer.[33] These interactions refer to the redistribution of electrons in the nucleobase

due to metal binding. The degree of the acidification depends both on the electronic effects

brought about by the metal-ion, occurring though bonds as well as long range electrostatic

repulsion between the positively charged metal and the proton under consideration. Of

course, many factors will influence the latter factor namely: distance between the metal and

the proton and net charge of the metal (take co-ligands into account). Solvent effects will

affect both factors.[24]

1.3.3 Biological Applications
There are some applications that are important with regard to nucleic acid chemistry and

several will be discussed shortly: acid-base chemistry, antisense therapy and the medicinal

application of cisplatin. The pKa-shift towards physiological values (7.0 - 7.4), due to metal
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binding, is most relevant because acid-base catalysis seems to be a fruitful application. For

instance protein synthesis (translation) is a process in which acid-base catalysis is involved.

This is largely possible in ribozymes.[34] Binding patterns of nucleobases that will draw the

pKa to the physiological range are G-N7, G-N1, A-N6 and C-N4.[24] In this context, the pKa

value of 7.6 of an adenine residue should be mentioned.[34b-d]

Another application stems from the fact that within a base pair a proton that normally

participates in hydrogen bonding can be substituted for a metal. One can take advantage of

this property in antisense and antigene strategy.[35] In essence, one creates, apart from the

reversible hydrogen bonding, an irreversible cross-link between the oligonucleotide and

target RNA or DNA strand can be made. To this end one has managed to modify

oligonucleotides with a trans-(NH3)2PtII entity.[36] This Pt-modified oligonucleotide was

successfully hybridised with single stranded oligonucleotides,[37] and double stranded

DNA.[38]

In medicinal chemistry, especially cancer treatment, cisplatin is commonly used. The

antitumour activity of cisplatin (cis-[PtIICl2(NH3)2]) was reported on in 1969 by

Rosenberg.[39a] This was after the same author reported on the filamentous growth of

Escherichia Coli bacteria.[39b] Rather than RNA or protein synthesis, DNA synthesis was

affected which turned the investigations towards interactions between Pt and DNA.[40] One

set out to investigate the reactivity towards DNA and several binding patterns were found or

at least proposed: DNA interstrand cross-linking,[41a] DNA intrastrand cross-linking,[41b] and

DNA protein cross-linking[41c] were identified. Around the 1980s the significance of the

intrastrand binding of two adjacent guanines or adjacent guanine and adenine was recognised,

and a few years later the major adducts of cisplatin were found.[42] It took some years before

evidence based on X-ray crystallography became available but the structure of 1,2-GG adduct

in a DNA fragment is noteworthy.[43] There also exist X-ray data on the 1,2-AG adduct, but

this concerns a model nucleobase.[44]

The following intrastrand cross-link adducts occur at most: 60-65% (1,2-GG) and

20-25% (1,2-AG), less important is the 1,3-intrastrand crosslink adduct, which is formed up

to a few percents.[42] With regard to the binding of PtII, the N7 position of A and G is crucial,

and is readily accessible in the major groove of DNA.[45] Due to the metal binding the DNA

helix is kinked such, that several complicated mechanisms in the cell are put to work which

in the end will lead to apoptosis.[46] Although cisplatin is widely used, there are other

transition metal complexes that have an anti-cancer activity, such of Fe, Co, gold (Au),
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titanium (Ti), ruthenium (Ru), gallium (Ga) [47] Cancer can not only be cured through the

interaction of metals with nucleic acids, it can also be detected alone by nucleic acid based

methods.[48] In general, metals are widely used in medicinal chemistry, not only as

therapeutics but also as diagnostics.[49]

1.4 Overview of This Thesis
In this thesis, some of the above mentioned topics in metal nucleic acid chemistry are

discussed. The remainder of the thesis is organised as follows. Chapter 2 will give an

overview of the theory and computational methods used in this thesis. Chapter 3

demonstrates the excellent performance of the BP86 functional for hydrogen bonds of the

Watson-Crick base pairs AT and GC, whereas the popular B3LYP functional is shown to

perform less satisfactory. Chapter 4 shows how one can influence, by means of PtII

coordination, the relative stabilities of rare tautomers of 1-methylthymine and 1-methyluracil.

From Chapter 5 on larger nucleobase aggregates will be treated, namely quartet structures.

For this kind of systems dispersion should be treated well. Chapter 5 deals with this question:

here, a performance study is carried out and shows the excellent performance of the

dispersion-corrected BLYP-D functional. The latter performs very well for stacked AT and

GC base pairs. Furthermore, it is demonstrated that the minima found with the BLYP-D

functional do not coincide with those of the B3LYP functional. Thus, B3LYP fails

particularly for stacking interactions. In Chapter 6 the bonding of cations and anions to

diverse adenine quartets is demonstrated. As an extension of this work, chapter 7

demonstrates the possibility of a ditopic ion pair receptor for sodium chloride based on a

stacking complex of A4 and G4.
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Chapter 2
Theory and Computation

This chapter serves to give the reader some more insight into the theory that has been

used in this thesis. It discusses the key concepts of quantum mechanics. For a more elaborate

description, the interested reader is referred to various text books.[1] Moreover, a more

detailed overview will be given on the computational settings being used in this thesis.

2.1 The Schrödinger Equation
The central problem in theoretical chemistry is to solve the Schrödinger equation, which

can be written for all molecular systems.[1,2] The equation itself is named after Erwin

Schrödinger, who proposed it in 1926.[2] The time-dependent Schrödinger equation can be

written as follows:

  

€ 

ˆ H Ψ = ih∂Ψ
∂t

(Eq. 2.1)

In equation 2.1 are several symbols: 

€ 

ˆ H  is the Hamiltonian (or Hamilton operator). An

operator is indicated by putting a circumflex on the letter representing the operator, 

€ 

Ψ

represents the wavefunction, i is a complex number,   

€ 

h  is the Planck constant

(h = 6.626*10–34 m2kg / s) divided by 2π and t represents the time. In this thesis, the

molecular properties that are investigated (energy and geometry) are not dependent on time

and the Schrödinger equation can be rewritten in a time-independent form.

€ 

ˆ H Ψ = EΨ (Eq. 2.2)

This equations says that when the Hamiltonian acts on the wavefunction, the total energy (E)

is obtained. Since the state of a system is fully described by 

€ 

Ψ, solving this equation leads to

information about all molecular properties of the system. For a general chemical system 

€ 

ˆ H 

contains terms due to kinetic (T) and potential energy (V) and one may write:

€ 

ˆ H = ˆ T + ˆ V = ˆ T N + ˆ T n + ˆ V NN + ˆ V nn + ˆ V Nn (Eq. 2.3)
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Equation 2.3 describes kinetic-energy effects due to electrons (

€ 

ˆ T N ) and nuclei (

€ 

ˆ T n ), as well as

the potential energy effects due to mutual repulsion of electrons (

€ 

ˆ V NN ) and nuclei (

€ 

ˆ V nn ), as

well as electron–nuclear attraction (

€ 

ˆ V Nn ). However, nuclei are heavier than electrons, thus the

former will have a smaller velocity than the latter. We can now, as an approximation, treat

the electrons in the field of fixed nuclei. This approximation is known as the

Born-Oppenheimer approximation. Thus, Eq. 2.3 can be rewritten as:

€ 

ˆ H elec = ˆ T N + ˆ V NN + ˆ V Nn (Eq. 2.4)

The electronic Schrödinger equation reads as:

€ 

ˆ H elecΨelec = EelecΨelec (Eq. 2.5)

€ 

E  is now a sum of the electronic (

€ 

Eelec) and the nuclear energy (

€ 

Enuc) and the energy 

€ 

Eelec

itself is calculated as an expectation value of the electronic Hamiltonian.

€ 

E = Eelec + Enuc (Eq. 2.6a)

€ 

Eelec = Ψelec
ˆ H Ψelec (Eq. 2.6b)

According to the variational theorem, the expectation value of the exact Hamiltionian H for a

(normalised and quadratically integrable) trial wavefunction (Ψtrial) is always greater than or

equal to the exact groundstate energy. Therefore, one seeks in practice for approximations to

the exact wavefunction that yield the lowest possible energy 

€ 

Ψtrial
ˆ H Ψtrial .

2.2 Electronic Structure Calculations
It is a pity that an analytical solution of the Schrödinger equation is only known for the

hydrogen atom, containing only one electron. The solutions are the well known atomic

orbitals. However, one is more interested in larger molecular systems, having 2 or many more

electrons. But what should a many electron or N-electron wavefunction look like? A good

example of how such a wavefunction can be constructed is offered by the Hartree-Fock (HF)

approximation. In this approximation the N-electron wavefunction (

€ 

Ψelec ) is written as an
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anti-symmetrised product of one-electron functions, spin-orbitals that constitute the

so-called Slater determinant (

€ 

ΦSD), which is used in Hartree-Fock theory.

  

€ 

ΦSD =

χ1(
r x 1) χ2(r x 1) ... χ3(r x 1)

χ1(
r x 2) χ2(r x 2) ... χ3(r x 2)

... ... ... ...
χN(r x 1) χN(r x 2) ... χN(r x N)

(Eq. 2.7)

By definition, the Slater determinant obeys the Pauli principle which states that the

wavefunction must be anti-symmetric, i.e., it changes sign under permutation of two

fermions, in our case electrons. The spin-orbitals consists of a spatial part (  

€ 

φ(r r )) and a spin

part (

€ 

σ(s)).

  

€ 

χ(r x ) = φ(r r )σ (s) (Eq. 2.8)

For 

€ 

σ(s) there are two options, spin up (α) and spin down (β). It has to be noted that

anti-symmetry leads to a well-known phenomenon, the Pauli principle: two electrons can be

placed in the same molecular orbital, only if these have opposite spins. The phenomenon that

electrons of same spin, and same spatial part avoid each other is called exchange correlation.

One may now minimise the energy, by variation of the spin-orbitals. The fact that one

uses in Hartree-Fock theory a one-determinant wavefunction corresponds to employing a

meanfield approximation to the electron-electron repulsion. In this approximation, the

electron “feels” the presence of the other electrons through an average field. This means that

the instantaneous Coulomb correlation is neglected. Normally the movements of electrons are

correlated, as they repel each other. There are several techniques to include this kind of

correlation, which are designated post-Hartree-Fock methods for instance second order

perturbation theory due to Møller and Plesset (MP2) or coupled cluster (CC) methods.[3]

Highly correlated ab inito methods can serve to produce reference data which can be used to

evaluate the performance of the various approximate approaches in density functional theory

(DFT). This can guide one to choose the optimal the functional for a given type of chemical

problems. This will for instance be demonstrated in chapters 3 and 5.
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2.3 Density Functional Theory (DFT)
The wavefunction itself is a mere mathematical description, and it may be more

interesting to work with a more physical quantity that is also able to give the total energy 

€ 

E .

This can indeed be done by using the electron density, 

€ 

ρ , and this property is the fundament

of DFT.[4] In 1964 Hohenberg and Kohn proved two theorems.[5] First, E is uniquely

determined by the electron density ρ, i.e., the energy is a functional of the density (Eq. 2.9):

€ 

E = E ρ[ ] (Eq. 2.9)

Of course the first question is: what is a functional? The reader will be more familiar with the

mathematical function: a number is put in a function and another number is put out. A

functional is a bit more complicated. It assigns a number to a function. Pictorially speaking

the working of a functional can be made clear through Equation 2.10:

€ 

f (x) F [ f (x )] →   y (Eq. 2.10)

In the same 1964 paper it was proven that the variational principle holds also for DFT.

However, the theory seems very interesting, but the functional form is not known, but a year

later, in 1965, Kohn and Sham invented a scheme to put the theory to work. In this scheme

one starts from a non-interacting system, but this is the starting point to come to the results of

the fully interacting system. In the end, one may write

€ 

E ρ[ ] = TS[ρ]+ J[ρ]+ ENn[ρ]+ EXC[ρ] (Eq. 2.11)

In this Equation 

€ 

TS[ρ]  is the kinetic energy of the non-interacting system, 

€ 

J[ρ] is the

classical Coulomb interaction, 

€ 

VNn[ρ] the electron-nuclei attraction term. The term that is the

most difficult is 

€ 

EXC[ρ]  and accounts for exchange correlation, Coulomb correlation,

self-interaction as well as the differences in kinetic energy between the non-interacting and

the interacting system. However the last term is completely unknown and has to be modelled.

In the past years several approximations have become available.

A very rudimentary way to model 

€ 

EXC[ρ]  is the Local Density Approximation (LDA). In

the LDA, the functional that holds for a homogeneous electron gas is applied to molecular

systems. 

€ 

EXC[ρ]  is then written according to Eq. 2.12:
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€ 

EXC
LDA = ρ(r)εXC(ρ(r))dr∫ (Eq. 2.12)

Here, 

€ 

εXC is the exchange correlation energy per particle of a uniform electron gas of density

€ 

ρ(r). This entity can be decomposed into individual contributions of exchange and

correlation.

€ 

εXC(ρ(r)) = εX (ρ(r))+ εC(ρ(r)) (Eq. 2.13)

The LDA approximation will in general lead to an overestimation of binding energies, or

differently stated in too negative energies. It is not surprising that one seeks now for better

approximations. This can be done by the generalised gradient approximation (GGA), which

contains not only the density itself but also contributions of its gradient (

€ 

∇ρ(r)). After all, a

homogenous electron density was assumed, which intuitively is definitely not physical for the

highly inhomogeneous molecular systems. Gradient corrections can be made to the exchange

and correlation individually. Another solution is found in the use of hybrid functionals in

which the exchange is calculated exactly from the HF approximation, and the correlation is

approximated with DFT.

2.4 Computational Settings
In this section detailed information is given about the computational settings used in this

thesis. However, because it is a lot of data, the most important settings are repeated in each

chapter. The reader should be aware that all important aspects are described here.

2.4.1 Programs and Their Basis Sets
As major DFT programs the Amsterdam Density Functional (ADF)[7] was used alone or

in combination with the program QUantum-regions Interconnected by Local Descriptions

(QUILD). The latter is a wrapper around ADF used for its superior geometry optimiser based

on adapted delocalized coordinates coordinates.[8] Adapted delocalized coordinates are

expressed in terms of internal coordinates, i.e., bond length, bond angle and dihedral angle.

For the geometry optimisations using B3LYP, Gaussian was used because this was originally

not possible in ADF. In these instances, ADF was used to do an energy calculation on a

single geometry obtained with another functional, which is done in chapter 5. A very

important difference between ADF and Gaussian are the basis sets, which are the set of
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functions, the atomic orbitals, from which the wavefunction is built. ADF and Gaussian use

two different types of basis sets.

For ADF, the molecular orbitals (MOs) were expanded in a large un-contracted set of

Slater type atomic orbitals (STOs) containing diffuse functions: TZ2P (no Gaussian functions

are involved).[10a] The basis set is of triple-ζ quality for all atoms and has been augmented

with two sets of polarization functions, i.e. 2p and 3d on H, 3d and 4f on C, N, O, Li, Na, K,

F and Cl, 4d and 4f on Br, and 5f and 6p on Pt. The 1s core shell of carbon, nitrogen, oxygen,

lithium, sodium and fluorine, up to and including the 2p core shell of chlorine and potassium,

up to and including the 3p of bromine and up to and including the 4d core shell of the Pt atom

were treated by the frozen-core approximation.[10b] A frozen-core means that core electrons

are not treated in a calculation, but only the valence ones, which will make the calculation

faster. Moreover, core electrons are less influenced by bond formation, than valence electrons

are. An auxiliary set of s, p, d, f and g STOs was used to fit the molecular density and to

represent the Coulomb and exchange potentials accurately in each self-consistent field

cycle.[10c] The meaning of triple-ζ quality quality is that three basis functions per nl-shell of

an atom have been used. One could have used single-ζ and double-ζ quality, but this is less

accurate. In Gaussian a basis set of comparable accuracy was used, namely the cc-pVTZ

basis set.[10d,e] The similarity of the STO-based TZ2P basis set and the GTO-based basis set is

demonstrated in chapter 3.

The use of polarisation functions is to let the atomic orbitals have some more flexibility to

describe the wavefunction better. Polarisation is indicated mostly by adding a “P” in the

acronym for the basis set, as can be seen from the name TZ2P. Diffusion functions, at last,

are needed to treat weak interactions.

2.4.2 Geometry Optimisations and Some of its Aspects
Throughout this thesis different density functionals have been used. They can be grouped

into generalised gradient approximation (GGA) and hybrid functionals. The following

functionals will occur in chapters 1-4: BLYP, BP86 mPW, OPBE, PBE and PW91 which are

at the DFT level of GGA, but also at the hybrid level, B3LYP. For all GGA functionals

exchange is described by Slater’s Xα  potential[11a] and correlation is treated in the

Vosko-Wilk-Nusair (VWN) parameterisation[11b] (this is not true for BLYP, see later).

The non-local GGA corrections are made as follows: (a) BLYP: exchange corrections due to

Becke88,[12a] correlation is computed entirely by the Lee-Yang-Parr (LYP) scheme,[12b]
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(b) BP86: exchange corrections due to Becke88,[12a] correlation corrections due to

Perdew86,[13] (c) mPW: exchange corrections due to Adamo and Barone,[14a] correlation

corrections due to Perdew and Wang (PW91c),[14b] (d) OPBE: exchange corrections from

Cohen and Handy (OPTX),[15a] correlation corrections from the Perdew-Burke-Ernzerhof

scheme (PBEc),[15b] (e) PBE: exchange and correlation corrections both from the

Perdew-Burke-Ernzerhof scheme,[15b] (f) PW91: exchange and correlation corrections from

Perdew and Wang (PW91),[14b, 16] (g) B3LYP: a hybrid functional formed by mixing a portion

of exact exchange, local Slater exchange and non-local Becke88 exchange corrections, and

for the correlation part a mix of local VWN and non-local LYP correlation.[12b, 17a, 17b]

Most GGA functionals can not deal with dispersion,[4a] although for some of the

molecular systems that are treated a proper description of π-stacking, especially in chapter 5,

6 and 7 is mandatory to obtain good results. Dispersion corrected schemes were developed by

S. Grimme for BLYP and PBE, and are because of their correction named BLYP-D,[18]

BP86-D and PBE-D.[18a] The correction is done by augmenting these with an empirical

correction for long-range dispersion effects, described by a sum of damped interatomic

potentials of the form C6R–6 added to the usual DFT energy.[18] Within this correction it is

chosen as such that that normal bonds, which are well below the Van der Waals distance, are

not affected by the correction. Another way to take into account dispersion is done using the

M06-2X functional, which has been constructed to recover accurate ab initio (MP2 and

CCSD(T)) data on dispersion complexes. This directness implies that no correction term is

added to the energy calculated with the M06-2X functional.[19]

For atoms like Pt, velocities at the nucleus may reach the speed of light (c = 3.0*108 m/s),

which requires to treat relativistic effects. In chapter 4, scalar relativistic effects are included

by the zeroth-order regular (ZORA) approximation, which is implemented in ADF.[20]

To save time, one may apply symmetry to a molecule. For instance, as will be made clear

in subsequent chapters, base pairs adenine-thymine (AT) and guanine-cytosine (GC) can be

optimised in planar arrangement, which is associated with the CS point group. Other

symmetries, such as C4h, C 4 and S 4 have also been used, especially where quartet

arrangements are concerned, see chapters 5 and 6.

At the end of a geometry optimisation the respective geometry will fulfil several criteria.

One of the most important ones is the convergence of the geometry. This means, a geometry

does not, to a used-defined criteria, changes in geometry. It is now interesting to check

whether this converged structure is a minimum. i.e., an equilibrium structure. This can be
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verified by means of a frequency analysis.[21] One can judge from the number of imaginary

frequencies whether a structure is a minimum or not. A structure is a minimum in case the

number of these imaginary frequencies is 0 (zero). Frequency analyses have been performed

in chapter 4, 5 and 6. The frequency values are given in cm–1. If a frequency is imaginary, it

is preceded by the imaginary number i.

 Let’s take now the example in which the binding energy of AT is calculated as done in

chapter 3, and assume that the geometry is converged, and is a minimum. The calculation of

the binding energy is done by calculating the energy difference between the AT base pair and

its bases. However, an oddity occurs: for a given basis set, the number of basis functions on

each of the individual bases adenine and thymine is less than the number of basis functions

used on the combined base pair. This difference may lead to a non-physical lowering of the

energy, and is ascribed to the so-called basis super position error. This error can be calculated

by use of the counterpoise method by Boys and Bernardi.[22] In effect, the monomers are

calculated in the larger basis set of the dimer.

To end with some explanation on nomenclature: a geometry optimisation using functional

A and basis set B is denoted as A/B. Thus BP86/TZ2P is a geometry optimisation using the

BP86-functional and using a TZ2P basis set. This notation can be extended as follows:

A/B // C/D. This means that first a geometry at the C/D level of theory is performed, this

optimised geometry is then submitted to a so-called single point calculation, in which the

used geometry is not optimised anymore, and the energy is evaluated at the A/B level.

2.4.3 Solvation
Most experiments are done in (aqueous) solution and that is the main reason that solvent

effects have been treated throughout this thesis. One may do this explicitly and implicitly.

In chapter 3 solvent effects are treated explicitly, and up to five water molecules are part

of a geometry optimisation. Of course one can extend the number of water molecules at one’s

own judgement, but the number that is tractable in a quantum chemical way is surely

bounded. However, in molecular dynamics based on classical force fields one may take into

account several thousands of molecules.

Another way to take solvent effects into account is by doing this implicitly by simulating

the effect of the solvent by a dielectric continuum, as done in chapters 4-7. This has been

done using the Conductor Like Screening Model (COSMO), which is implemented in

ADF.[23] The settings for uncharged atoms have been published in the past.[24] From the
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respective chapters it will become clear that the inclusion of solvation will influence both

energetical and geometrical data. In this thesis water, having a dielectic constant of 78.4,

interacts with the solvent. It has been shown that COSMO BP86/TZ2P solvation free

energies of methylated DNA agree within ca. 1 kcal/mol with the solvation free energies

obtained with AMBER/TI by Miller and Kollman[25], see Table 2.1.

The radii used for the atoms can be found in Table 2.2. They are based on an empirical

modification of atomic radii used in a force-field method by Allinger and co-workers.[26] In

COSMO the energy terms are calculated first for a conducting medium and then scaled by a

factor (ε-1)/ε. As the solute is immersed in the solvent, a cavity has to be formed. The surface

of this cavity is defined by following the path traced by a spherical solvent molecule rolling

over the Van der Waals surface of the solvent molecule. One may think that concerning

DFT-D the dispersion correction should be modified with respect to the gas phase, but this is

not the case.[27]

Table 2.1. Solvation energies, ΔGSolv  and ΔGSolv (in kcal/mol).

ΔGSolv
[a] ΔGSolv

[b]

9-methyladenine –12.4 –12.0
9-methylguanine –22.2 –22.4
1-methylcytosine –18.6  –18.4
1-methylthymine –11.7 –12.4
1-methyluracil –12.7 –14.0
[a] Data taken from ref. 24.
[b] Data taken from ref. 25.

Table 2.2. Atomic radii (R, in Å) for several atoms.

Atom R (in Å)[a]

H 1.350
C 1.700
N 1.608
O 1.517
[a] See ref. 26.

In Chapter 5 and onward dispersion corrected functionals are used which feature effective

atomic radii as parameters that have been optimised for neutral atoms.[26] However, for the

bare ions new parameters were derived based on experimental data on solvation free

energies; they are presented in Table 2.3.[28] These new parameters are used in chapter 6

and 7.
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Table 2.3. Experimental, ΔG(exp.) and calculated, ΔG(calcd.) hydration free energies
(in kcal/mol) of several ions. Experimental data is given to compare with. The ionic radii
(R in Å) are given as well. Calculations were done at the BLYP-D/TZ2P level of theory.

ΔG(exp.) ΔG(calcd.) R (in Å)
Li+ –118.1[a] –118.7 1.364
Na+ –90.6[a] –90.5 1.775
K+ –73.1[a] –73.6 2.200

F– –110.7[a] –103.1 1.250
Cl– –81.4[a] –74.8 1.794
Br– –76.1[a] –68.0 1.925
[a] See ref. 28.
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Chapter 3
Performance of Various Density Functionals

for the Hydrogen Bonds
in the DNA Base Pairs AT and GC

3.1 Introduction
Although the hydrogen bond is a weak interaction, it nevertheless plays an important role

in biological systems.[1] As an example its role in the working of the genetic code should be

mentioned. In B-DNA the double helical chains of nucleotides are stabilised through the

hydrogen bonds that selectively occur between the base pairs adenine-thymine (AT) and

guanine-cytosine (GC) as proposed by Watson and Crick in 1953 (see Scheme 3.1).[2]
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Scheme 3.1. The Watson-Crick base pairs AT and GC. Heavy atoms participating in
hydrogen bonding have been indicated in bold.

Many theoretical investigations were devoted to these hydrogen bonds in DNA at

different levels of theory. MP2 is a very good method, but very time consuming. As a

compromise, DFT is an excellent workhorse for treating hydrogen bonds. A very popular

functional is B3LYP and is widely used for different chemical problems, and is a good

alternative for MP2. This does not mean at all that B3LYP is a universal functional, for

instance the functional OLYP performs much better when reaction-barriers are concerned,[3]

and in the worst case B3LYP does not reproduce the reaction barrier. Another feature

concerns a strange observation in the gas phase calculation on DNA base pairs.[4] Although

the calculated hydrogen bond lengths of the base pair AT could be very well compared to

crystallographic data,[5a] this comparison failed for the base pair GC.[5b]

Other studies showed that the functional BP86 gave base pair geometries of AT and GC

that deviated much from the experimental data. Interestingly, this discrepancy could be taken
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away by modelling the first-shell crystal environment.[6] Very interesting results were

obtained for the base pair GC by going from the gas phase to the modelled crystal

environment. The hydrogen bond length found in the upper (O6–N4), middle (N1–N3) and

lower (N2–O2) hydrogen bond changed from short-long-long, respectively, for the gas phase

(no water, no counter ions) to long-long-short, respectively, with inclusion of the first shell

crystal environment. This latter pattern matches the one found in the X-ray structures

measured for the crystal of sodium guanylyl-3',5'-cytidine nonahydrate.[5] The molecular

environment consists of crystal water, ribose OH-groups of neighbouring base pairs

(modelled also by water in the BP86 computations) and sodium (Na+) ions.

The results that are presented in this chapter serve two different goals. First, it is

investigated whether the geometrical changes due to the crystal-environment are an artefact

of the method (i. e. BP86), or whether they are physically meaningful. Second, an evaluation

of the performance of the different functionals for reproducing both gas phase and the above

condensed phase Watson-Crick hydrogen bond structures is made.[6] As has already been

mentioned in chapter 2, good benchmark results are needed for comparison with the DFT

results. In this study we make, for the gas phase, use of very accurate ab initio MP2 data

obtained recently by Sponer et al.,[7a] and coupled cluster (CC) energies obtained by Jurecka

et al..[7b] By comparing the MP2 and CC results with the results obtained with the different

functionals, an indication is obtained to which extent a given functional is adequate for the

description of the DNA base pairs AT and GC. It is expected that the different effects

induced by the crystal environment are reproduced by all functionals. However, it is expected

that B3LYP is not an appropriate functional to describe the DNA base pairs.

3.2. Summary of Computational Methods
Calculations were done with two different programs: an adapted version (QUILD) of the

Amsterdam Density Functional Program (ADF), which uses  Slater-type orbital (STO) basis

sets, and the Gaussian03 program, which uses Gaussian-type orbital (GTO) basis sets. In this

study an STO TZ2P basis set and a GTO cc-pVTZ were used. Geometries were optimised at

the BLYP, BP86, mPW, OPBE, PBE and PW91 level of the generalised gradient

approximation (GGA), but also at the hybrid level, B3LYP.
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 The hydrogen bond energy (ΔEHB) is defined as follows:

ΔEHB = EBase pair  – EBase1 – EBase2 (Eq. 3.1)

The terms on the right hand side of Eq. 3.1 are the energies of the base pair (EBase pair) and its

constituting bases, base 1 and base 2 (EBase1 and EBase2). The base pairs were optimised in CS

symmetry, its constituting bases in C1 symmetry, to account for the pyramidalisation of the, if

present, amino group.[8] Due to this pyramidalisation, a non-planar conformation of the amino

group is obtained. The hydrogen bond energy is corrected for the basis superposition error

(BSSE), through the counterpoise method using the DNA bases as fragments. The interested

reader is referred to chapter 2 for more information about the theoretical aspects.

3.3 Results and Discussion
3.3.1 Base Pairs AT and GC in the Gas Phase

In Table 3.1 and 3.2 the hydrogen bond distances and their energy of the Watson-Crick

base pairs AT and GC are given, respectively, along with the benchmark data of Sponer

et al.,[7a] and Jurecka et al.[7b] Due to the different computational programs (ADF and

Gaussian03) we first address a technical aspect concerning the basis sets. Previous studies

showed a good performance of the STO TZ2P basis set.[6] One needs a GTO set of similar

accuracy, which is obtained with the cc-pVTZ GTO basis set, as will be demonstrated. It can

be taken from Table 3.1 and 3.2 that differences in hydrogen bond length are typically

0.02 Å, whilst the hydrogen bond energy differs by about a 0.5 kcal/mol. For instance the

N6-O4 hydrogen bond distance at BP86/TZ2P is 2.92 Å and at BP86/cc-pVTZ 2.93 Å and

the corresponding bonding energies are –11.0 and –11.6 kcal/mol, respectively.

To compare the energetical data one should also correct for the BSSE, because different

values may be obtained for the STO and GTO basis set. Table 3.1 shows that this error is

about 1 kcal/mol or less for the TZ2P STO basis set, but up to 2 kcal/mol for cc-pVTZ GTO

basis set. By correcting for the BSSE one can compare, for instance, the B3LYP/cc-pVTZ

data with the data of other functionals at the TZ2P level.

The results are now discussed in more detail. Eye-catching is how the gas phase results

for the base pair AT obtained with B3LYP compare very well with the experimental

hydrogen bond lengths in the crystal structure. In the gas phase B3LYP obtains hydrogen

bond lengths for 2.93 and 2.88 Å (Table 3.1) for the upper and lower hydrogen bond,
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respectively which is compared to the experimental values of 2.93 and 2.85 Å (Table 3.3),

again, respectively.[5a] It can however be seen that this result emerges from coincidence and

is, therefore, spurious as already found in previous results.[4] At variance, the results for the

base pair GC for the gas phase are not in agreement with experimental results as judged from

their hydrogen bonding pattern.[5b] The hydrogen bond pattern for the O6–N4, N1–N3 and

N2–O2 hydrogen bond lengths is short-long-long for the gas phase and, on contrary,

long-long-short in experiment, all respectively.

Table 3.1. Hydrogen bond distances (in Å) and bond energy, ∆EHB (in kcal/mol), for AT
computed at various levels of theory.

Method N6–O4 N1–N3 MAD[a] ∆EHB BSSE ∆EHB
[b]

Ab initio data

RI-MP2/aug-cc-pVQZ//
RI-MP2/cc-pVTZ[c]

2.86 2.83 –15.1

"CCSD(T)/aug-cc-pVQZ"//
RI-MP2/cc-pVTZ[c]

2.86 2.83 –15.4

STO basis: TZ2P
BLYP 2.92 2.88 0.055 –11.6 0.6 –11.0
BP86 2.85 2.81 0.015 –13.0 0.7 –12.3
mPW 2.87 2.83 0.005 –12.7 0.7 –12.0
OPBE 3.00 2.93 0.120 –6.9 0.9 –6.0
PBE 2.87 2.80 0.020 –14.6 0.7 –13.9
PW91 2.85 2.79 0.025 –15.2 0.7 –14.5

GTO basis: cc-pVTZ

B3LYP 2.93 2.88 0.060 –13.0 1.4 –11.6
BLYP 2.94 2.90 0.075 –12.5 1.7 –10.8
BP86 2.87 2.83 0.005 –13.7 1.5 –12.2
[a] Mean absolute deviation (MAD) in computed N6–O4 and N1–N3 distances between DFT
and MP2.
[b] Bond energy with inclusion of BSSE correction, using the counterpoise method.
[c] Data from ref. 7a and 7b. The coupled-cluster energy has been obtained by adding a
correction to the MP2 energies. This correction is calculated as a difference between the
coupled-cluster energy and the MP2 energy obtained with smaller basis sets as explained in
ref. 7a.

One may think that the above mentioned hydrogen bond length pattern difference is

ascribed to the computational method (i.e., DFT). This is however not true if one compares

the various DFT results with the ab initio MP2/aug-cc-pVQZ results of Sponer and et al.,[7a]

as seen from Tables 3.1 and 3.2. It appears that DFT compares much better to the MP2



Chapter 3: Hydrogen Bonding in DNA Base Pairs AT and GC

27

results than to the experimental values, and the MP2 results show for GC the same, wrong,

hydrogen bond pattern: short-long-long. Next, four density functionals show excellent

agreement with MP2. These are BP86, mPW, PBE and PW91 and their mean absolute

deviation (MAD) values are below 0.027Å (Table 3.2).

Table 3.2. Hydrogen bond distances (in Å) and bond energy, ∆EHB (in kcal/mol), for GC
computed at various levels of theory.

Method O6-N4 N1-N3 N2-O2 MAD[a] ∆EHB BSSE ∆EHB
[b]

Ab initio data
RI-MP2/aug-cc-pVQZ//
RI-MP2/cc-pVTZ[c]

2.75 2.90 2.89 –27.7

"CCSD(T)/aug-cc-pVQZ"//
RI-MP2/cc-pVTZ[c]

2.75 2.90 2.89 –28.8

STO basis: TZ2P
BLYP 2.79 2.94 2.93 0.040 –23.9 0.7 –23.2
BP86 2.73 2.88 2.87 0.020 –26.1 0.9 –25.2
mPW 2.74 2.90 2.89 0.003 –25.4 0.9 –24.5
OPBE 2.80 2.97 2.98 0.070 –17.1 1.1 –16.0
PBE 2.73 2.89 2.87 0.017 –27.8 0.9 –26.9
PW91 2.72 2.88 2.86 0.027 –28.5 0.9 –27.6

GTO basis: cc-pVTZ
B3LYP 2.79 2.94 2.93 0.040 –26.1 1.7 –24.4
BLYP 2.80 2.96 2.96 0.060 –24.6 2.0 –22.6
BP86 2.73 2.90 2.89 0.007 –26.6 1.8 –24.8
[a] Mean absolute deviation (MAD) in computed O6–N4, N1–N3 and N2–O2 distances
between DFT and MP2.
[b] Bond energy with inclusion of BSSE correction.
[c] Data from ref. 7 and 7b. The coupled-cluster energy has been obtained by adding a
correction to the MP2 energies. This correction is calculated as a difference between the
coupled-cluster energy and the MP2 energy obtained with smaller basis sets as explained in
ref. 7a.

Summarising from Tables 3.1 and 3.2, one can compare the PW91 results of –14.5 and

–27.6 kcal/mol for AT and GC to the corresponding MP2 results of –15.1 and –27.7 kcal/mol

along with the CC-values of –15.1 and –28.2 kcal/mol. It should be mentioned that the

difference between MP2 and CC is 0.5 kcal/mol for GC. BLYP and B3LYP underestimate

the hydrogen bond energy by 3 to 5 kcal/mol and as a result thereof hydrogen bond lengths

are longer than the ones at the MP2 level. The finding that PW91 outperforms B3LYP is not

new as confirmed by other studies.[7a,9] A functional that performs quite bad is OPBE as it
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underestimates the hydrogen bond energy severely and, as a result, gives hydrogen bond

lengths that are too long.

To this end no comparison has been made with the complexation enthalpies, which are

available for methylated base pairs AT and GC which amount to –13.0 and –21.0 kcal/mol,

respectively.[10] These values are, however not useful to compare with DFT data, because the

experimental enthalpies were calculated from the temperature dependence of the equilibrium

constant at 323 and 381 K. Morever Kabelác and Hobza showed, based on molecular

dynamics, that at elevated temperatures that the Watson-Crick hydrogen bonded base pairs

are negligibly populated,[11] and that instead under these circumstances π-stacked species are

predominant. In chapter π-stacked species are not dealt with, but this will be the case from

chapter 5 on.

From the above discussion it is concluded that BP86 along with PW91 agree to large

extent with the ab initio MP2 benchmark data of Sponer on Watson-Crick base pairs as

derived from the comparison between their hydrogen bond distances as well as their binding

energies. Therefore, both functionals are recommended to be used in case hydrogen bonding

in biological systems is concerned.

3.3.2 AT and GC with Modeled Crystal-Environment
An aspect that is yet to be solved, is the difference between the calculated and the

experimental geometry of the Watson-Crick base pairs. Is has already been mentioned that

this difference is not an artefact of DFT as judged from its agreement with the benchmark

data. Previously, it has been shown that the geometries agree better, at least for BP86,[6] when

one takes into account the molecular environment that the base pairs face in their crystals of

sodium adenylyl-3',5'-uridine hexahydrate (1),[5a] and sodium guanylyl-3',5'-cytidine

nonahydrate (2),[5b] into the theoretical model systems.

The question that has to be answered is whether this trend is also found with other

functionals. Therefore, two model systems per base pair were chosen from previous studies

that resemble the full crystal environment at best.[6] These model systems are shown in Figure

3.1 and these are 1a and 1b for AT and 2a and 2b GC. The models comprise a sodium cation

(Na+) and up to five water molecules (in case of GC) that model the crystal water or hydroxy

molecules of neighbouring ribose units. The sugar-phosphate backbone has been left out, as

its inclusion does not have a large effect on the base pair hydrogen bonds. This is confirmed

in a previous study,[6b] in which the backbone at the N1 of the pyrimidines and N9 of the
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purine was modelled consecutively by a methyl group, sugar group and phosphate-sugar

group. It was found that the effect of the backbone was in the order of 0.01 Å, which is

negligible.

Figure 3.1. Model systems of AT and GC with water molecules and counter ions (Na+) that
simulate the crystal environment: 1a = AT with two water molecules, 1b = AT with two
water molecules and sodium cation, 2a = GC with four water molecules and a sodium cation,
and 2b = GC with five water molecules and a sodium cation. The yellow ball represents the
Na+ ion.

Geometry optimisations for 1a, 1b, 2a and 2b were performed for BLYP, BP86 and

PW91 in combination with a TZ2P basis set, and for B3LYP and BP86 in a cc-pVTZ basis

1a 1b

2b2a
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set. The results of these optimisations are shown in Table 3.3 and comparison is made with

experimental data. First, an aspect on the experimental data has to be discussed. For AT there

are two different values for the hydrogen bond length because the two AU pairs in (ApU)2

have different environments. The first value of N4–O6 and N1–N3 refers to the first pair and

the second value of N4–O6 and N1–N3 refers to the second pair. Now, again, a technical

aspect of the use of different basis sets in Gaussian and ADF is addressed based on the results

obtained with BP86 for which both sets were used. The difference in hydrogen bond lengths

obtained at either BP86/cc-pVTZ or BP86/TZ2P is in the order of 0.02 Å, which is quite

small and comparable to the gas phase situation, which was discussed in the previous section.

As the difference is only small it is justified to compare the B3LYP/cc-pVTZ results with the

other results obtained at the TZ2P level. The central result of these computations is that the

same effect is seen when going from the gas phase (Tables 3.1 and 3.2) to the situation in

which the crystal environment is modelled (Table 3.3). In the base pair AT the upper

hydrogen bond (N6–O4) becomes longer by about 0.1 Å, the lower hydrogen bond (N1–N3)

does not change in length and remains effectively the same. In the base pair GC the upper

(O6–N4) and middle hydrogen bond (N1–N3) become longer by about 0.1 Å, and the lower

one (N2–O2) does not change effectively. As the effect that is induced by the modelled

crystal environment on the base pairs is found for all functionals, it strongly advocates that

these effects are brought about by physically meaningful events and are not an artefact of the

specific method BP86/TZ2P.[6] Interestingly, for the GC pair, due to the inclusion of the

crystal environment, the experimental order long-long-short is recovered with all functionals

for 2a, in 2b this becomes short-long-short. Thus, it also depends on the modelling of the

crystal environment to which extent the calculation will reproduce the experimental pattern.

For BP86 the effects induced by the modelled crystal environment lead to results that can

be very well compared with the experimental results. This is best represented by the MAD

values: for the systems 1b and 2a this value amount with respect to the experiment to less

than 0.035 Å (see Table 3.3). This should be contrasted to the MAD values of the hydrogen

bond lengths of the gas phase base pairs AT and GC with respect to the experiments and

amounts to a maximum value of 0.086 Å (not shown in the tables). Again PW91 shows a

good performance that is yet a bit worse than BP86. The MAD of the hydrogen bond lengths

in 1a and 2b with respect to the experimental is less than 0.040 Å (see Table 3.3). Systems

with modelled crystal environment the functionals B3LYP and BLYP give again hydrogen
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bond lengths that are too long. The MAD values with respect to the experimental results are

0.043 and 0.060 Å for BLYP and B3YP, respectively.

Table 3.3. Hydrogen bond lengths (in Å) for model systems of AT (1a, 1b) and GC (2a, 2b)
in the crystal environment computed with various DFT methods.

  System H-bond Exp[a,b] .GTO: cc-pVTZ STO: TZ2P
B3LYP BP86 BLYP BP86 PW91

1a N4–O6 2.93
2.95

3.00 2.93 2.98 2.92 2.91

N1–N3 2.85
2.82

2.88 2.82 2.87 2.80 2.79

MAD[c,d] 0.050
0.055

0.015
0.010

0.035
0.040

0.030
0.025

0.040
0.035

1b N4–O6 3.01 2.96 2.98 2.93 2.91
N1–N3 2.88 2.81 2.87 2.79 2.79

MAD[c,d] 0.055
0.060

0.035
0.010

0.035
0.040

0.030
0.025

0.040
0.035

2a O6–N4 2.91 3.00 2.93 2.97 2.91 2.89
N1–N3 2.95 3.00 2.95 2.99 2.94 2.93
N2–O2 2.86 2.88 2.85 2.88 2.83 2.83
MAD[c] 0.053 0.010 0.040 0.013 0.023

2b O6–N4 2.93 2.87 2.93 2.86[e] 2.85
N1–N3 3.01 2.97 3.01 2.95[e] 2.94
N2–O2 2.93 2.89 2.91 2.86[e] 2.86
MAD[c] 0.050 0.030 0.043 0.017 0.023

[a] X-ray crystallographic data taken from ref. 5a.
[b] X-ray crystallographic data taken from ref. 5b.
[c] Mean absolute deviation (MAD) between the calculated and the experimental hydrogen
bond distances for each system.
[d] First and second MAD values refer to deviation with respect to the first and second AU
pair in (ApU)2, respectively.
[e] Geometry converged to 2.6*10–5 Hartree/Bohr.

It is concluded that BP86 and also PW91 agree very well with the experimental measured

hydrogen bond distances. The fine agreement that is achieved by the B3LYP level between

the geometry of the gas-phase AT pair and the crystallographic structure of this base pair

(i.e., sodium adenylyl-3',5'-uridine hexahydrate (1)),[5a] is the result of the a cancellation

between a physical effect, the N6–O4 bond in the crystal 1 is longer than in the isolated gas-

phase AT, and an error in B3LYP, which leads to an overestimation of the N6–O4 hydrogen

bond and an underestimation of the hydrogen-bond strength in AT, and in general.
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3.4 Conclusions
The performance of seven popular density functionals (B3LYP, BLYP, BP86, mPW,

OPBE, PBE, PW91) on the hydrogen bond lengths and their energy of the Watson-Crick base

pairs AT and GC is evaluated. The gas phase results were compared to very accurate ab initio

results (MP2). To compare the results with the experiment the first crystal-environment shell

was taken into account that consisted of several water molecules and a counter ion. The

effects that were induced by the modelled crystal environment were observed for all DFT

results. The fucntionals BP86 and PW91 are furthermore able to reproduce to high extent the

good ab initio data as well as the experimental values. B3LYP consistently underestimates

hydrogen bond strengths for both AT and GC and it gives significantly too long

hydrogen-bond distances for the gas phase as well as for the systems with modelled crystal

environment.
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Chapter 4
Metal-Stabilised Tautomers of

1-Methyluracil and 1-Methylthymine
4.1 Introduction

Tautomer equilibria, those of heterocycles included, are influenced by factors such as

temperature and bulk solvent properties (polarity and dielectric constant).[1] Trivial to state,

any chemical modification may change the tautomer equilibrium. Due to the introduction of

computational chemistry it has been possible to improve the knowledge about the

dependence of tautomer equilibria on factors such as solvent,[2a-g] and metal binding.[2h-n]

Important for nucleobases in this respect are the amino-imino and keto-enol tautomer

equilibria. Amino and keto species are more present than the rare imino and enol species.

Shifts in tautomer equilibria towards the rarer form are important with regard to

nucleobases, the constituents of DNA. Shifts in which a rare form is stabilised will in the end

lead, if not repaired in an early stage, to a mutation.[3] Mutations may also result from more

drastic changes in DNA composition such as hydrolytic or oxidative damage of nucleobases,

deletion of bases, or addition of new ones. These pathways are not the focus of this chapter,

however.

In the past there was a large interest in the possible roles of metal ions in mutagenic

events. For this reason, scenarios were designed that could rationalise metal-mediated

processes of nucleobases.[4] These can include effects on metal coordination to DNA

(e.g. DNA kinking), strand cross-linking by metal ions, or changes in electronic structure of

nucleobases with effects on acid-base equilibria, base-pairing patterns, and base-pair

strength.[5]

A tautomeric change can be achieved via two pathways. The first one concerns metal

binding to a site that does not participate in Watson-Crick hydrogen bonding. This situation

occurs for adenine (A) in which a [Pt(NH3)3]2+ fragment is bonded to N7 and in this sense

through hydrogen bonding can stabilise a rare imino-form (A*), as demonstrated by a density

functional theory (DFT) calculation.[6] The addition of an asterisk (*) to the name of the

nucleobase means that this nucleobase is in a rare tautomer form. The stabilisation of a rare

tautomer of guanine (G*) by a neutral PtII species considered unlikely, again based on DFT

calculations.[7] Experimentally, efforts made to determine a shift in tautomeric equilibrium in
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water for adenine were not sufficiently indicative to conclude a rare tautomer was present

indeed.[8]

The second one concerns metal binding to a site that is normally blocked by a proton, at

least in its canonical form, e.g. N1 or N2 of G, N6 of A, N4 of cytosine (C), and N3 of

thymine (T) or, in RNA, uracil (U). In such, metal binding is only possible after

deprotonation, and the liberated proton can potentionally bind at another site. The result is a

so-called metal-stabilised rare tautomer and examples of these are shown in Scheme 4.1.
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Scheme 4.1. Metal-stabilised rare tautomers of G, C, A and T bases.

Representations in which metal-binding occurs along the second pathway have been

synthesised for the common model nucleobases 9-methyladenine,[9] 9-alkylguanine,[10]

1-methylcytosine,[11] 1-methyluracil,[12] and 1-methylthymine.[13] With un-substituted parent

nucleobases such as cytosine,[14] or thymine/uracil,[15] or related iso-cytosine[16] metal

complexes of individual tautomers were reported as well.

These metal-stabilised rare tautomers are relevant for several mutagenic events. For

instance the anti-rotamers of M-A* or M-C* (M = PtII) may mispair via their Watson-Crick

faces. This mispairing is not possible with M-T*, as the PtII-species blocks the Watson-Crick
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face of the nucleobase. However the M-T* bond is prone to hydrolysis, at least in acidic

medium, and in such the free rare tautomer is formed. Although this rare T* species will have

a short lifetime, there is still the possibility that it may mispair with a complementary

nucleobase, such as guanine.[12a]

By using density functional theory (DFT), in this chapter insight is first gained in the

tautomerisation energy of uracil and thymine and their N1-methylated analoga. Thereafter,

insight is gained on how the relative stabilities of tautomers of 1-methyluracil (1-MeUH) and

1-methylthymine (1-MeTH) can be modified through coordination to PtII complexes with a

given set of ligands. Essentially, we have investigated the water/1-MeUH exchange reactions

of [PtII(A)(B)(C)(OH2)]q + 1-MeUH, shown in Scheme 4.2. A negative reaction energy

indicates a given product is formed, and the more negative the reaction energy, the more

stable a given product is. Consequently, the more plausible, at least on a thermodynamic

basis, the exchange reaction may occur.

B

Pt OH2

C

A

B

Pt (1-MeUH)

C

A H2O1-MeUH+ +

q q

Scheme 4.2. Water-(1-MeUH) exchange reaction at platinum complex. An analogous
reaction exists for 1-MeTH.

Another aspect of this study is to investigate what role the overall charge q in the

complex plays, i.e. to what extent the reaction energy is affected. Ligands A, B and C are

neutral amine (NH3) or anionic chlorido (Cl–) ligands and the composition of A, B and C is

varied from all ammine (q = +2) to all chlorido, (q = –1) via consecutive substitution of an

ammine for a chlorido ligand. The effect of q will be largest in the gas phase but due to the

screening effect of, for instance water, the charge effect will be less pronounced. For this

reason, solvent effects due to water have been taken into account as well.

The effects that PtII binding has on the tautomeric structure, has not only been

investigated for 1-MeUH but also for 1-MeTH. In addition the effect on 1-MeTH

tautomerisation by the anti-cancer drug cisplatin cis-[Pt(NH3)2Cl2], which is known to

convert, in a first hydrolysation step, into cis-[PtII(NH3)2Cl(OH2)]+ (A, B = NH3 and C = Cl–)

and, in a second hydrolisation step, into cis-[PtII(NH3)2(OH2)2]2+ is also discussed.[17] Some

more details of cisplatin are given in chapter 1.
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4.2 Summary of Computational Methods
 Geometry optimisations have been carried out with the program QUILD, a wrapper

around ADF. The tautomerisation energies of uracil, thymine and its N1-methylated analoga

are investigated by the BP86/TZ2P method and the bases were kept planar, CS. The

tautomerisation energies (ΔETaut) are computed according to Eq. 4.1.

ΔETaut = ERare tautomer – ECanonical tautomer (Eq. 4.1)

The terms on the right hand side are the energies of a given rare tautomer (ERare tautomer) and the

canonical tautomer (ECanonical tautomer). Because the total energy of the canonical tautomer is

more negative than the one of the rare tautomer the tautomerisation is a positive entity.

The reaction energies were computed by optimising every component without any

symmetry constraint, C1, and by taking, for all components, relativistic effects into account.

This method is referred to as ZORA-BP86/TZ2P. This latter method proved to be well

working for several transition metals.[18] The reaction energy (ΔE Reaction) is computed

according to Scheme 4.2 and can be represented as follows, Eq. 4.2.

ΔEReaction = ΣEProducts – ΣEReactants (Eq. 4.2)

According to Eq. 4.2 the reaction energy is computed as the difference between the sum of

the energies of the products (ΣEProducts) and the sum of the energies of the reactants (ΣEReactants).

In the gas phase a frequency analysis was performed to check whether PtII-nucleobase

complex is an equilibrium structures. In only a few cases an imaginary frequency of about

i 20 cm–1 was found, but was judged to be spurious as it concerned an unhindered rotation of

an ammine ligand, or a rotation of the nucleobase with respect to the [PtII(A)(B)(C)]q

fragment. The solvent effects are treated implicitly by the COSMO method. The interested

reader is referred to chapter 2 in which a complete overview of the computational settings is

given.

4.3 Results and Discussion
The main feature of this chapter is to discuss which tautomer is stabilised by a given

[PtII(A)(B)(C)]q moiety. However first results are presented of the tautomerisation of free

uracil and thymine, followed by a short summary of their metal binding patterns.
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4.3.1 Tautomer Energies of Uracil and Thymine
First, the results of tautomerisation on uracil (R1 = H, R2 = H), 1-MeUH

(R1 = H, R2 = Me), thymine (R1 = Me, R2 = H) and 1-MeTH (R1 = Me, R2 = Me) are discussed,

thus, without the binding of a PtII-complex. These results have been summarised in Table 4.1

and the respective structures can be found in Scheme 4.3.
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Scheme 4.3. Different tautomeric forms of uracil (R1, R2 = H), 1-methyluracil
(R1 = H, R2 = Me), thymine (R1 = Me, R2 = H) and 1-methylthymine (R1, R2 = Me).

 There are a lot of tautomers, but to start with, the tautomers are discussed whose proton

at N3 is shifted (1 - 5 ). In all cases the relative order of stability is 1 < 3 < 2 < 5 < 4, in which

“<” means the preceding species is more stable than the following species. This indicates that

methylation at either N1 or C5 does not have any significance on tautomerisation. This order

is observed in both the gas phase as well as in water. It is, however, unrealistic that a rare

tautomer will be present in water, because the tautomerisation energy of the most stable

tautomer (i.e, species 3) is 10 kcal/mol. Rejnek et al.[2d] have investigated the tautomerisation

of unsubstituted thymine and uracil as well at the MP2/TZVPP//RI-MP2/TZVPP level of

theory. The relative order of stability that is found with this accurate MP2 method does not

fully recover our order: 1 < 3 < 5 < 2 < 4. Thus, there is a change of tautomers 2 and 5, which
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is not quite surprising in the sense that 2 and 5 lie quite close in energy at both levels of

theory (BP86/TZ2P and RI-MP2/TZVPP).

Table 4.1. Tautomerisation energies (in kcal/mol) for the tautomers of uracil (R1, R2 = H),
thymine (R1 = Me, R2 = H), 1-methyluracil (R1 = H, R2 = Me) and 1-methylthymine
(R1 = Me, R2 = Me) in the gas phase and in water.

R1 = H R1 = Me
          Gas phase Water           Gas phase Water

BP86 MP2[a] BP86 BP86 MP2[a] BP86
R2 = H
1 0.0 0.0 0.0 0.0 0.0 0.0
2 17.8 20.3 11.6 18.9 21.8 13.0
3 11.6 12.5 10.3 12.5 13.4 11.0
4 29.2 31.3 18.0 28.3 32.1 17.4
5 19.7 19.8 15.5 18.9 19.2 14.9
6 20.9 22.3 16.7 22.3 25.2 18.5
7 23.5 25.7 18.5 25.0 27.7 19.6
8 11.5 11.1 14.6 11.3 10.7 14.3
9 18.7 19.9 16.9 18.5 19.5 16.6
10 18.4 17.4 20.4 19.1 18.5 21.5
11 18.5 17.4 20.6 19.2 18.5 21.7
12 13.6 11.6 19.7 14.2 13.2 20.0
13 14.7 12.8 20.0 15.3 14.3 20.2

R2 = Me
1 0.0 0.0 0.0 0.0
2 17.0 10.8 18.0 12.1
3 10.9 9.6 11.8 10.2
4 29.6 19.2 28.6 18.4
5 20.3 15.8 19.4 15.1
[a] Computed at RI-MP2/TZVPP under CS symmetry constraint; data taken from ref. 2d.

With regard to the unsubstituted tautomer, species 8 is even more stable than species 3. It

should be noted, however, that in this case the shifted proton comes from N1, the site that is

in DNA blocked by the sugar moiety. These species, including the di-hydroxo species will

not be discussed further, when metal binding is concerned.

4.3.2 Reaction Energies for Exchange of Water by 1-MeUH and 1-MeTH in PtII

Complexes in the Gas-Phase
We have investigated which 1-MeUH and 1-MeTH tautomers are stabilised by which

[PtII(A)(B)(C)]q moiety by calculating reaction energies of the reaction shown in Scheme 4.3.

In this reaction energy, when applicable, contributions owing to tautomerisation are included.
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This is the case when due to PtII binding 1 tautomerises into 2, 3, 4 or 5 (Scheme 4.4). There

are a lot ways by which a metal can coordinate to uracil and thymine,[19] which will be

discussed in more detail. According to Scheme 4.4 tautomer 1 can coordinate in four possible

ways to PtII: O2, O4 in either anti or syn arrangement. O4 binding is represented by 1a and

1b . This binding pattern was first settled for HgCl2
[20a] and later by other transition

metals.[20b-e] Binding of alkali cations to O2 as represented by 1c and 1d is possible in

B-DNA,[21] but has also been observed with model compounds.[20e-22] There are no examples

in which PtII binds O2 or O4, because they are poor donors.[19] Stated differently, PtII is a soft

acid and oxygen is a hard base, which does not interact strongly according to the theory of

‘Hard and Soft Acid and Bases’ (HSAB) as proposed by Pearson.[23] Good partners are those

in which the acid and base are both soft or both hard. There are, however, examples of oxo

compounds including platinum to be found in the literature, but instead of the soft PtII the

much harder PtIV is used.[24]

Tautomers 2-5 can coordinate in three ways to PtII: N3, or O2 (anti or syn) or O4

(anti or syn). For PtII a rare tautomer has been found experimentally and resembles products

2a or 3a.[12, 13] At least the rare tautomer was protonated at O4, but there was no evidence on

how the proton was orientated, either anti or syn. Rare tautomer products 2b-5b and 2c-5c

were not observed in combination with PtII binding. Note that 2b-5b  and

2c-5c differ from 2a-5a in the sense that PtII is bound to O2 or O4 instead of N3. In this study

only the hetero-atoms were treated as possible binding site of a PtII atom, but there are

examples of C5 binding for Hg(CH3COO)2,[25] PtIII,[26] PtII[27] and AuIII.[28] From Scheme 4.4 it

is furthermore clear that only one PtII atom per nucleobase has been concerned, also termed

as 1:1 complexes.

The reaction energies due to the formation of all possible products with different ligand

compositions are presented in Table 4.2 and calculated according to Scheme 4.2. In

Table 4.2, the net charge and  the PtII binding sites (X) are also given. In the columns one can

find the ligand  composition, starting with the most positively charged species

[PtII(NH3)(NH3)(NH3)]2+ and ending with the most negatively charged complex

[PtII(Cl)(Cl)(Cl)]–. The rows represent the products and a separation between normal tautomer

and rare tautomer products is made. The set-up of Table 4.2 is used for most forthcoming

tables. The more negative a reaction energy is, the more stabilised the respective product is,

or differently stated: the higher the likelyhood it will form.
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Taking a closer look at the reaction energies in Table 4.2, one can see that all products

[PtII(NH3)3(1-MeUH)]2+ can form, because the associated reaction energy is negative. Upon

binding of the dipositive species, containing three neutral NH3 ligands, not only all products

can form, but these are also the most stable, because the reaction energy is the most negative.

The most and least favoured products are 2c and 1d. They have reaction energies of –39.0

and –24.5 kcal/mol, respectively. However, experimental data that corroborate this

calculation are not available.

If the net charge is lowered from +2 to –1, by substituting an ammine ligand for a

chlorido ligand, the reaction energy becomes more and more positive. In some cases

products, either in rare or normal tautomer form will not be formed, as is the case when the

charge of the PtII-complex is 0 or –1 and is mirrored by a positive value of the reaction

energy. For instance, product 2c is favoured in combination with [PtII(NH3)(NH3)(NH3)]+2 by

–39.0 kcal/mol but as the charge is decreased, the reaction energy gradually rises and the

product becomes least favoured with [PtII(Cl)(Cl)(Cl)]-1 as indicated by the postive reaction

energy of 29.9 kcal/mol.

Depending on their coordination mode, tautomers of 1 and 3 form stable reaction

products, independent of the PtII-complex used. Tautomer 1 gives stable products through O4

coordination in a syn orientation (1b), and allowing for tautomerisation of 3 into 3a, always a

stable reaction product is formed. This is very interesting as this is a metal-stabilised rare

tautomer and has even been observed experimentally in an X-ray structure.[12] However the

orientation of the proton at O4 could not be determined from the experiment, and so product

2a could also have been oberved but this product is only formed when, positively charged

PtII-complexes are used.
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Scheme 4.4. The reaction of exchanging water by 1-MeUH and 1-MeTH in the
[PtII(A)(B)(C)(OH2)]q complex. The methyl group at C5 in 1-MeTH  and formal charges have
been omitted for clarity (see Scheme 4.2).
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The reaction energies were not only calculated for 1-MeUH but also for 1-MeTH. It can

be seen from Table 4.3, that the substitution of H5 (1-MeUH) by a methyl group (1-MeTH)

will lead to some changes. Especially the products, in which the PtII-species binds O4 in an

anti manner, are affeced: 1a, 4b, 5b. The reaction energies are increased by about 3 kcal/mol,

wih respect to the non-methylated analogs. Obviously, there is a repulsive interaction

between the methylgroup of thymine and the PtII complex.

Products having a 1-MeTH moiety, exothermic reaction energies (i.e., negative reaction

energy) occur for positively charged PtII-complexes and can, therefore, form. At contrast, in

case of the negatively charged PtII-complexes, most reaction energies are or become

endothermic (i.e., positive reaction energy) and are, therefore, not feasible. Importantly,

products 1b and 3a are formed independent of the used PtII-complex. The existence of 3a has

been settled experimentally,[13] and may participate in mutagenic events (see later). Again,

because the position of the proton at O4 could not be determined from the experiments, the

obseved product could also be 2a, but is only formed when positively charged PtII complexes

are applied.
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Table 4.2. Reaction energies (in kcal/mol) in the gas phase for the exchange of H2O by
1-MeUH in [PtII(A)(B)(C)(OH2)]q forming [PtII(A)(B)(C)(1-MeUH)]q.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge q 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 –35.7 –15.9 –17.5 –2.1 –2.3 3.8
1b O4 –34.8 –19.1 –18.3 –7.2 –5.4 –1.0
1c O2 1d[a] 1d[a] –4.8 3.2 3.7 5.3
1d O2 –24.5 –10.5 –11.7 –1.4 –2.4 0.3

Rare
Tautomer
2a N3 –38.9 –14.7 –17.0 4.8 5.2 18.3
2b O2 2c[a] 2c[a] 2c[a] 16.4 18.1 24.9
2c O2 –39.0 –7.9  12.3 14.3 15.4 29.9
3a N3 –35.1 –21.6 –20.6 –10.8 –7.6 –3.3
3b O2 3c[a] 3c[a] 3c[a] 10.8 12.0 18.4
3c O2 –36.4 –8.9 –13.0 10.0 8.9 22.0
4a N3 –27.4 –4.8 –5.0 5a[a] 17.7 31.8
4b O4 –24.6 0.9 0.8 21.5 22.9 34.3
4c O4 –37.0 0.4 –6.8 24.7 24.7 41.5
5a N3 –27.6 –16.6 –12.9 –6.1 0.4 4.1
5b O4 –32.1 –6.9 –7.6 13.0 13.7 24.9
5c O4 –38.3 –6.9 –10.9 15.4 14.8 29.3
[a] Expected species spontaneously transforms into indicated species.
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Table 4.3. Reaction energies (in kcal/mol) in the gas phase for the exchange of H2O by
1-MeTH in [PtII(A)(B)(C)(OH2)]q forming [PtII(A)(B)(C)(1-MeTH)]q.[a]

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge q 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 –32.9 –13.0 –14.0 1.2 0.4 6.5
1b O4 –35.9 –18.9 –18.8 –6.7 –5.6 –1.2
1c O2 1d[a] 1d[a] –8.0 2.5 3.1 5.7
1d O2 –28.5 –12.6 –13.8 –2.1 –3.0 0.7

Rare
Tautomer
2a N3 –41.4 –15.6 –17.8 5.1 5.9 19.7
2b O2 2c[a] 2c[a] 2c[a] 16.7 18.4 26.3
2c O2 –42.2 –9.0 –13.5 14.7 15.9 31.3
3a N3 –37.5 –22.5 –21.4 –10.6 –7.2 –2.4
3b O2 3c[a] 3c[a] 3c[a] 10.9 12.2 19.7
3c O2 –39.8 –10.2 –14.3 10.2 9.1 23.2
4a N3 –31.5 –7.0 –7.3 5a[a] 16.5 31.3
4b O4 –22.7 4.4 3.7 25.4 25.7 37.6
4c O4 –39.4 –2.1 –8.4 22.8 23.2 40.5
5a N3 –31.5 –18.5 –15.1 –6.7 –0.7 3.8
5b O4 –29.9 –3.6 –4.4 16.8 16.5 28.0
5c O4 –40.5 –8.2 –12.3 14.6 13.5 28.4
[a] Expected species spontaneously transforms into indicated species.
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4.3.3 Reaction Energies for Exchange of Water by 1-MeUH and 1-MeTH in PtII

Complexes in Water
The solvent effects due to water on the reaction were also taken into account, and led to

some interesting differences with respect to the gas phase. The results can be found in Table

4.4. In water, the charge effect has almost been eliminated, due to the charge screening effect

of the solvent. This phenomenon describes the decrease in attraction between the electon and

the nucleus of an atom. This will have as an effect that electrostatic contribution becomes

less, and the reaction energies will be less dependent on the charge. Thus, for all products

(1a to 5c) there is only a small change in reaction energy in the order of a few kcal/mol when

the composition of the PtII-complex, and thus the overall charge, q, is changed.

In accordance with the gas phase, tautomer 1 and 3 lead to stable reaction products 1b

and 3a, irrespective of the PtII complex used, as all reaction energies are negative. However,

in solution the products 1a, 1d, 2a (and to lesser extent 5a) become stable products as well. It

should be noted that the reaction energy associated with the formation of 1d is only small:

–0.8 to –1.8 kcal/mol. The formation of 5a is also doubtful as its reaction energy is,

depending on the PtII-complex slightly positive or negative. Thus, under experimental

conditions, it is expected that coordination of a PtII complex will occur through binding via

O4 in either anti (1a) or syn (1b) orientation, or binding via the (deprotonated) N3 atom.

However, the former possibility contradicts the expectations from the HSAB theory. In case

the charge of the complex is +2 the preference of the O4 binding mode is favoured by

1.2 kcal/mol over the N3 binding mode by comparing products 1a and 3a. Clearly, all other

PtII complexes with a charge of +1, 0 or –1 will prefer the N3 coordination, and in particular

products 2a and 3a. The reaction energies of these rare tautomer products are all negative,

irrespective of the PtII complex, and this species is also found experimentally.[12] Note, that

from the experiment, the proton orientation (anti or syn) at O4 could not be determined. One

can calculate that 1b is preferred over 3a by 0.8, 2.5, and 3.6 kcal/mol for a positively

charged (q = +1), neutral (q = 0) and negatively charged (q = –1) PtII complex, respectively.

In water the results for 1-MeTH (see Table 4.5) are, again, quite similar to those obtained

with 1-MeUH and the charge effect is almost eliminated. Binding modes that are most

feasible are syn binding to O4 (1b), and N3 binding (2a and 3a). Other products are only

slightly stable (1d), or either stable or not (5a). With respect to 1-MeUH, reaction energies

become more positive for 1a, 4b an 5b, which have an anti binding to O4 in common. The

increase of the reaction energy is due to the larger steric repulsion between the methyl group
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and the PtII-complex. Interestingly the syn binding of a dipositive species (q = +2) to O4 is

preferred by 0.5 kcal/mol over N3 binding, compare 1b and 3a. All other complexes prefer

the N3 binding (3a) by 0.9, 2.2 and 3.3 kcal/mol for a positively (q = +1), neutral (q = 0) and

negatively (q = –1) charged PtII complex over O4 binding (1b). Again, all reaction energies

for the formation 2a and 3a are negative, and these rare tautomer products have been found

experimentally.[13] However, the orientation of the proton at O4 could not be determined from

the experiment.

Apart from preferred binding modes, there are other aspects that are of interest. Some

years ago Deubel also investigated the same water exchange reaction with the

[Pt(NH3)3(OH2)]2+ fragment, albeit with an other nucleobase ligand, namely guanine.[29] It was

essentially shown that the reaction energy became less exothermic, and even endothermic in

one case, as the dielectric constant was increased from 1 (vacuum, gas phase) to 78.4 (water).

This result is confirmed in our study for [PtII(NH3)3(OH2)]2+ (q = +2) and is reflected by the

formation of product 3a. The formation of this product in the gas phase goes along with

–35.1 and –37.5 kcal/mol using 1-MeUH and 1-MeTH, respectively. However, in solution,

these reaction energies amount to –4.6 and –3.7 kcal/mol, again by using 1-MeUH and

1-MeTH. Obviously, the reaction energy has become less exothermic, for a doubly charged

PtII complex.  This feature changes however, as the charge of the species is decreased and it

most pronounced in case of the tri-chlorido complex (q = –1). The reaction energy in the gas

phase forming 3a is –3.3 and –2.4 kcal/mol using 1-MeUH or 1-MeTH respectively. In water

these reaction energies amount to –7.8 and –7.9 kcal/mol, again respectively for using

1-MeUH and 1-MeTH. This shows that the reaction energy has become more exothermic.

This means that the exchange reaction using positively charged PtII complexes become less

feasible and those of negative complexes are more feasible, due to the treatment of solvent.

Thus, as was already alluded on in chapter 2, solvent treatment is important.
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Table 4.4. Reaction energies (in kcal/mol) in water for the exchange of H2O by 1-MeUH in
[PtII(A)(B)(C)(OH2)]q forming [PtII(A)(B)(C)(1-MeUH)]q.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge q 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 –5.8 –5.2 –5.2 –3.4 –3.8 –2.3
1b O4 –5.1 –5.6 –5.3 –4.6 –4.9 –4.2
1c O2 4.4 2.3 3.9 3.2 3.5 4.3
1d O2 –0.8 –1.8 –1.0 –0.9 –1.6 –1.2

Rare
Tautomer
2a N3 –3.8 –3.9 –4.8 –3.1 –3.6 –3.3
2b O2 10.7 12.3 11.5 10.6 10.9 12.0
2c O2 2.3 4.8 3.7 6.4 6.2 7.2
3a N3 –4.6 –6.4 –5.9 –6.4 –7.4 –7.8
3b O2 10.3 8.1 10.4 9.7 10.0 10.9
3c O2 3.1 4.6 3.7 6.0 5.6 6.5
4a N3 4.8 4.4 4.2 5.5 5.7 6.0
4b O4 8.7 10.0 10.0 12.0 11.5 13.3
4c O4 7.1 9.5 8.3 11.4 11.3 12.3
5a N3 1.8 –0.7 0.2 –0.2 –1.3 –1.7
5b O4 5.5 6.7 6.7 8.9 8.3 10.1
5c O4 4.8 7.1 5.7 8.6 8.3 9.5
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Table 4.5. Reaction energies (in kcal/mol) in water for the exchange of H2O by 1-MeTH in
[PtII(A)(B)(C)(OH2)]q forming [PtII(A)(B)(C)(1-MeTH)]q.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge q 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 –1.3 –1.7 –0.8 0.5 –0.5 0.9
1b O4 –4.2 –5.1 –4.5 –4.3 –5.0 –4.6
1c O2 3.3 2.7 3.6 2.5 2.8 3.7
1d O2 –1.0 –2.2 –1.6 –1.4 –2.0 –1.6

Rare
Tautomer
2a N3 –2.3 –2.3 –2.9 –1.7 –2.1 –2.0
2b O2 11.7 9.8 12.3 11.2 11.8 12.9
2c O2 3.6 6.1 5.0 7.8 7.4 8.4
3a N3 –3.7 –5.8 –5.4 –6.1 –7.2 –7.9
3b O2 10.5 7.9 10.4 9.3 10.1 11.0
3c O2 3.2 4.7 3.8 6.3 5.8 6.8
4a N3 4.2 3.8 3.4 5.1 4.6 4.9
4b O4 13.0 13.4 14.1 16.1 14.8 16.6
4c O4 6.5 9.3 8.0 11.0 10.6 11.6
5a N3 0.9 –1.3 –0.4 –0.3 –2.0 –2.6
5b O4 9.7 10.6 10.9 12.9 11.7 13.4
5c O4 4.2 7.4 5.6 8.1 7.8 8.8



Chapter 4: Stabilisation of Rare Tautomers

50

4.3.4 Geometrical Aspects
Apart from the energetics, some geometrical features shall be discussed in more detail.

With B = Cl– and the possibility of interacting with the proton at N3, the complex becomes

flat as is the case for 1b and 1d, i.e., a dihedral angle of approximately 0°. This dihedral

angle is defined as the angle between the coordination plane of the PtII metal and that of

1-MeUH, connected through the coordination bond. The dihedral angle becomes for the same

structures, in contrast, approximately 90° in case B and C are NH3, because the propensity of

a favourable interaction has vanished. In complex 2c, 3c, 4c, and 5c in which B and C are

both Cl– the dihedral angle between the planes is roughly 90°. The explanation lies in the fact

that repulsion occurs between Cl– and the lone pair at N3 of 1-MeUH.

In Table 4.2 and 4.3 it can be seen that some anti structures (1c, 2b and 3b) were not

located on the potential energy surface (PES), but spontaneously turned into their syn analoga

(1d, 2c and 3c). The products in which this anti to syn transition takes place have a PtII

binding to O2. In contrast, the anti structures in which PtII is bound to O4 (1a, 4b, 5b) could

be located on the PES. Thus, an anti to syn transition is not induced by the substitution of a

proton by a methyl group at C5. In case the anti to syn transition takes place, though, it can

be explained as follows. The PES has normally two wells: the deeper well is the syn structure

and the higher well is the anti structure and the two wells correspond to the global and local

minimum, respectively. There are two processes that may happen now, that have as a

consequence that the anti structure can not be located anymore. The minimum of the anti

structure can raise in energy due to repulsive interactions and/or the barrier between the

minima can drop due to attractive interaction leading to the anti structure becoming a

shoulder (but no longer a stationary point) on the PES.

Furthermore, a relation between the reaction energies and the PtII-X distance (X is the PtII

binding site). From Tables 4.6 - 4.9 it becomes clear that such a relationship does not exist, as

there is no change in the PtII-X distance as the charge is varied. Rather the bond length is

detemined by the ligand that is trans to X, thus ligand A. The PtII-X distance is in general

longer in case A = Cl–, than in case A = NH3. This observation can be explained by the

“structural trans-effect” (or “trans-influence”). This is termed as the ability of a ligand to

lengthen the bond trans to it, in preference to those that are cis,[30] and this effect is indeed

larger for Cl– than for NH3, as supported by the results. The experimental distance, measured

in a crystal-structure, of the PtII-N3 bond is 2.04 Å (O4 protonated, product 3a), and has

standard deviation of 0.023 Å.[12a] This distance is better reproduced in water, than in the gas
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phase. In the gas phase there is a deviation of up to 0.05 Å, depending on the PtII complex. In

solution, the deviation is always 0.01 Å, and there is thus a much better agreement between

experiment and theory. The effect of the identity of the nucleobase, either 1-MeUH or

1-MeTH, is negligible. In almost all cases the bond distance is the same. If not, the absolute

difference amounts to only 0.02 Å, which coincides with the experimentally found standard

deviation.

Table 4.6. Bond distances (in Å) in the gas phase between Pt and its binding atom (X) of
1-MeUH.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 2.03 2.04 2.09 2.09 2.04 2.07
1b O4 2.03 2.05 2.09 2.09 2.04 2.07
1c O2 1d[a] 1d[a] 2.12 2.13 2.06 2.13
1d O2 2.04 2.06 2.11 2.11 2.05 2.09

Rare
Tautomer
2a N3 2.07 2.06 2.09 2.06 2.02 2.02
2b O2 2c[a] 2c[a] 2c[a] 2.12 2.05 2.12
2c O2 2.05 2.05 2.10 2.08 2.05 2.11
3a N3 2.05 2.07 2.08 2.10 2.03 2.05
3b O2 3c[a] 3c[a] 2.10 2.12 2.05 2.11
3c O2 2.04 2.05 2.10 2.11 2.05 2.08
4a N3 2.07 2.06 2.10 5a[a] 2.03 2.03
4b O4 2.01 2.03 2.07 2.07 2.03 2.06
4c O4 2.04 2.04 2.08 2.06 2.03 2.04
5a N3 2.05 2.08 2.08 2.11 2.03 2.06
5b O4 2.01 2.03 2.07 2.07 2.03 2.07
5c O4 2.03 2.04 2.07 2.08 2.03 2.05
[a] Expected species spontaneously transforms into indicated species.
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Table 4.7. Bond distances (in Å) in the gas phase between Pt and its binding atom (X) of
1-MeTH.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 NH3 NH3 Cl Cl Cl
C NH3 Cl NH3 NH3 Cl Cl

Charge 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 2.03 2.04 2.09 2.09 2.04 2.07
1b O4 2.03 2.05 2.09 2.09 2.04 2.07
1c O2 1d[a] 1d[a] 2.10 2.13 2.05 2.13
1d O2 2.04 2.06 2.10 2.11 2.06 2.10

Rare
Tautomer
2a N3 2.07 2.06 2.10 2.06 2.02 2.03
2b O2 2c[a] 2c[a] 2c[a] 2.13 2.05 2.12
2c O2 2.05 2.05 2.10 2.09 2.04 2.11
3a N3 2.05 2.07 2.08 2.10 2.03 2.05
3b O2 3c[a] 3c[a] 3c[a] 2.12 2.05 2.11
3c O2 2.04 2.05 2.10 2.11 2.05 2.08
4a N3 2.07 2.06 2.10 5a[a] 2.03 2.03
4b O4 2.01 2.03 2.07 2.06 2.02 2.05
4c O4 2.04 2.04 2.08 2.06 2.03 2.04
5a N3 2.05 2.08 2.08 2.11 2.03 2.06
5b O4 2.01 2.03 2.07 2.07 2.03 2.06
5c O4 2.03 2.04 2.07 2.06 2.03 2.05
[a] Expected species spontaneously transforms into indicated species.
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Table 4.8. Bond distances (in Å) in water between Pt and its binding atom (X) of 1-MeUH.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 NH3 NH3 Cl Cl Cl
C NH3 Cl NH3 NH3 Cl Cl

Charge 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 2.04 2.05 2.07 2.07 2.06 2.07
1b O4 2.05 2.06 2.07 2.07 2.06 2.07
1c O2 2.07 2.08 2.09 2.09 2.09 2.10
1d O2 2.06 2.07 2.08 2.08 2.07 2.08

Rare
Tautomer
2a N3 2.06 2.06 2.06 2.05 2.05 2.05
2b O2 2.06 2.07 2.08 2.08 2.07 2.09
2c O2 2.06 2.06 2.07 2.07 2.06 2.07
3a N3 2.05 2.05 2.05 2.05 2.05 2.05
3b O2 2.06 2.07 2.08 2.08 2.08 2.09
3c O2 2.05 2.06 2.07 2.07 2.06 2.07
4a N3 2.06 2.06 2.06 2.06 2.05 2.05
4b O4 2.04 2.05 2.05 2.06 2.05 2.06
4c O4 2.05 2.05 2.06 2.06 2.05 2.06
5a N3 2.05 2.05 2.06 2.07 2.05 2.05
5b O4 2.04 2.05 2.06 2.06 2.05 2.06
5c O4 2.04 2.05 2.06 2.06 2.05 2.06
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Table 4.9. Bond distances (in Å) in water between Pt and its binding atom (X) of 1-MeTH.
Ligands A NH3 NH3 Cl Cl NH3 Cl

B NH3 NH3 NH3 Cl Cl Cl
C NH3 Cl NH3 NH3 Cl Cl

Charge 2 1 1 0 0 –1

Normal
Tautomer X
1a O4 2.04 2.05 2.06 2.06 2.06 2.07
1b O4 2.05 2.06 2.07 2.07 2.06 2.07
1c O2 2.06 2.06 2.09 2.09 2.08 2.10
1d O2 2.06 2.07 2.08 2.08 2.07 2.08

Rare
Tautomer
2a N3 2.06 2.06 2.06 2.05 2.05 2.05
2b O2 2.05 2.07 2.08 2.09 2.07 2.09
2c O2 2.06 2.06 2.07 2.07 2.06 2.07
3a N3 2.05 2.05 2.05 2.05 2.05 2.05
3b O2 2.05 2.07 2.08 2.09 2.07 2.09
3c O2 2.05 2.06 2.07 2.07 2.06 2.07
4a N3 2.06 2.06 2.06 2.06 2.05 2.05
4b O4 2.04 2.04 2.05 2.05 2.05 2.05
4c O4 2.05 2.05 2.06 2.06 2.05 2.05
5a N3 2.05 2.05 2.06 2.07 2.05 2.05
5b O4 2.03 2.04 2.05 2.05 2.05 2.05
5c O4 2.04 2.05 2.05 2.06 2.05 2.05

The existence of a crystal structure in which a PtII ion bridges two uracil molecules (one

neutral and one deprotonated), of which the neutral one is in its rare tautomer form, has been

mentioned several times by now. The rare tautomer was platinum bound via N3 and present

in its 2-oxo-4-hydroxo-structure. In this very study,[12a] predictions were made on the

geometry of the free rare tautomer. According to these, the largest changes were observed for

the internal ring angles at C2, N3 and C4. With respect to the platinum-bound rare tautomer,

the free rare tautomer should have internal ring angles at C2 and C4 that are increased by

1-2.5°, the internal ring angle at N3 should be decreased by the same amount. This has been

checked computationally, and the ring angles have been measured and shown in Table 4.10.

In Table 4.10 internal ring angles values in solution are shown for a cis-[PtII(NH3)2(Cl)]+

moiety for products 2a and 3a and the free rare tautomer 3. Note that in the experimental

structure a uracil and a uracilate are present, for the computation the uracilate has been

substituted for a chlorido ligand.
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Table 4.10. Internal ring angles (in degrees) at C4, N3 and C2 in solution.

2a 3a 3
Ligands A NH3 NH3 --

B Cl Cl --
C NH3 NH3 --

q 1 1 0

N3-C4-C5 122.2 121.9 124.3
C2-N3-C4 120.5 121.3 119.7
N1-C2-N3 117.0 116.3 117.9

The internal ring angles for product 2a and 3a do differ a little bit, and the largest

absolute difference is found with the N3 ring angles and amounts to 0.8˚. Much importantly,

with respect to the platinated rare tautomer, the C4 internal ring angle increases by 2.3˚, the

C2 internal ring angle increases by 1.3˚, and the N3 internal ring angle decreases by 1.2˚. The

latter ring angle changes are averages over 2a and 3a. These changes confirm the predictions

based on experimental data, which were discussed above.

4.3.5 Complexes Containing the 1-MeU− Anion
In the literature there are several X-ray structures of PtII complexes known having either

1-methyluracil or 1-methylthymine in their N3 deprotonated form (see structure 18 in

Scheme 4.7), also denoted as 1-MeU– and 1-MeT–.[31] This metal binding pattern has been

found with HgII,[32] PtII,[33] PtIV,[34] RhI,[35] AuI,[36] and AuIII[37] We, therefore, have also

investigated the formation of these products via an exchange reaction, as shown in Scheme

4.5, with some slight modifications. Instead of using [PtII(A(B)(C)(OH2)]q as done previously,

[PtII(A)(B)(C)(OH)]q-1 has been used because the aqua ligand is more acidic than 1-MeUH by

a 4-5 log units.[38]

In the reaction the nucleobase can be bound to PtII via O4 or O2 in either anti or syn

orientation (14 – 18), or can be bound via N3 (18). The reaction energies in water are shown

in Table 4.11. The reaction energies for products 14 and 17 are all endothermic, irrespective

of the ligand composition, indicating these species will not be present in water. The reaction

energy for 15 is slighly exothermic by up to –0.2 kcal/mol. Consequently, its existence in

water is very questionable. On the contrary, the reaction energy for product 18 is always

exothermic, and will be present, as corroborated by several experimental findings.
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Scheme 4.5. The reaction of exchanging OH– by 1-MeU– in the [PtII(A)(B)(C)(OH)]q–1

complex.

Structure 18 is a building block for other structures, because the basicity of O4 is

increased.[19] First, 18 can be reprotonted at O4 or O2, by using the free proton of N3 to form

a rare tautomer structure. The reprotonation can be observed by vibrational spectroscopy,[39]

or by determination of the pKa values.[12,13] Second, another metal can bind to the oxygen

atoms, leading to multiple metal binding motifs.[19] The maximum number is four metals, that

do not need to be the same.[40]

Table 4.11. Reaction energy (in kcal/mol) in water for the exchange of OH– by 1-MeUH in
[PtII(A)(B)(C)(OH)]q–1 forming H2O and [PtII(A)(B)(C)(1-MeU)]q–1.

Ligands A NH3 NH3 Cl Cl NH3 Cl
B NH3 Cl NH3 Cl Cl Cl
C NH3 NH3 NH3 NH3 Cl Cl

Charge (q–1) 1 0 0 –1 –1 –2

14 O4 anti 3.3 2.7 2.6 3.4 1.2 2.2
15 O4 syn –0.2 1.3 –0.1 1.9 1.1 1.4
16 O2 anti 17[a] 9.7 17[a] 9.5 8.9 9.1
17 O2 syn 4.5 5.5 4.1 5.8 4.9 5.1
18 N3 –7.5 –6.8 –9.2 –7.3 –8.5 –9.0
[a] Expected species 16 spontaneously transforms into indicated species 17.

4.4 PtII Coordination and Implications for Biology
It is well known that thymine in DNA and uracil in RNA are not the kinetically preferred

targets for cisplatin, which are rather guanine, adenine or cytosine. However, the binding of
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PtII to N3 of uracil or thymine in either their free state or in DNA or RNA was reported.[41]

Judging form the pKa of the N(3)H proton which is around 9 – 10,[42] one would expect that

one needs alkaline conditions to accomplish this binding. However this view is not quite true

as binding has also been observed at very low pH values (3.5 – 4.0).[41a,43] There are, however,

two explanations that rationalise why PtII binding takes place even at these low pH values,

see also Scheme 4.6.
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Scheme 4.6. Proposed tautomerisation pathway of 1-MeTH due to the binding of cisplatin.

First, before reaching its target, N3, initial binding to either O4 or O2 or both simultaneously,

can be proposed, and this will acidify the proton at N3.[44] Secondly, the aquated species has

is own base included, Pt-OH, (pKa1 of cis-[Pt(NH3)2(H2O)]2+ is ca. 5.5[45]). Thus, a change in
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the tautomer structure can be explained in terms of initial N3 deprotonation by PtII-OH,

followed by metal migration from O4/O2 to N3,[46] and reprotonation of either O4 or O2. The

substitution of the proton at N3 by an PtII moiety, will increase the basicity of the exocyclic

oxygen atoms, notably O4, which facilitates protonation of these and thus permits formation

of a neutral rare tautomer.[5,12,13] The pKa values of these protons are rather acidic, at least

3 – 4 in model systems, but its value depends, amongst others, on the co-ligands of the

complex and complex charge.[47] In the respect of “shifted pKa values”, which are the result in

shift of the parent pKa of a nucleobase (metalated or not) in either direction (upward or

downward) depending on the microenvironment,[48] the existence of a platinated rare tautomer

of thymine or uracil at physiological pH is not completely excluded. Stated differently,

species 2a or 3a might occur in a pH range in which Pt-N3 binding can take place (weakly

acidic pH), and at a pH approaching 7. Under alkaline pH the nucleobase is deprotonated

without doubt, making any discussions about changes in tautomer structure irrelevant.

Another issue is the mispairing possibility with G, C or T*, that may result from Pt-T*,

but on steric arguments only it is not realistic that platinated complexes 2a or 3a will do so.

The metal as well as its co-ligands prevent this mispairing as they completely block the

Watson-Crick face. From a steric point of view complex 3b could mispair with G, but the

formation of the corresponding complex with 1-MeTH is endothermic (7.9 kcal for formation

of cis-[PtII(NH3)2Cl(1-MeTH)]+, 8.8 kcal/mol for formation of cis-[PtII((NH3)2(H2O)(1-

MeTH)]+), thus such pathway is ruled out. The species T* can only participate in mispairing

if the Pt-N3 bond is cleaved.[12a,13a] However, in that case the rare tautomer that is produced

thereby, should be stable as long as the next base pairing step takes place. Although this kind

of decomposition takes place, at least under acidic condition, it must be questioned if such

happens at a biological relevant (physiological) pH value.

All in all, mispairing that stems from a platinated rare tautomer of thymine, in the end

leading to a mutation, is not a likely pathway. Although the mispairing event due to a free

rare tautomer generation though Pt binding will not be completely ruled out, there may be

other mechanisms at work by which PtII complexes, and notably cisplatin, could cause

mutagenesis.[4,49]
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4.5 Metal-Stabilised Rare Tautomers of Guanine
In the preceding sections the focus was put on uracil and thymine. However, for other

nucleobases the stabilisation of rare tautomer can also be investigated. Complexes of

9-methylguanine (9-MeGH) and PtII (bound via N1) are known,[10] and the question arises

which site (N7, N3 or O6) could be protonated to form a rare tautomer complex. The proton

comes from N1, and is liberated by PtII-binding. To answer the question, exactly the same

procedure has been applied as with 1-MeUH  and 1-MeTH, but the study has been restrained

to one set of ligands, A = Cl–, B = NH3 and C = NH3, that are trans-oriented. Complexes

under investigation are termed 19a-d and are shown in Scheme 4.7.

Scheme 4.7. Possible structures of trans-[Pt(NH3)2(Cl)(9-MeGH-N1)]+ complex.

The reaction energies are shown in Table 4.12 and it can be seen that the formation of all

products is possible in both the gas phase and water solution. In both phases the reaction

energy for 19d is the most exothermic, and the proton will thus reside at N7. Note, however,

that the reaction energy has decreased by more than 50%. It is not very surprsing that the

proton binds N7 of G, because it is also the best metal-binding site.[19] The rare tautomer form

in which G occurs has also been found by NMR.[10a]

Table 4.12. Reaction energy (in kcal/mol) in water for the exchange of H2O by 9-MeGH in
[Pt(NH3)2(OH2)]+ forming trans-[PtII(Cl)(NH3)(NH3)(9-MeGH-N1)]+.

Gas phase Solution
19a –27.0 –2.5
19b –23.9 –3.4
19c –16.9 –6.1
19d –31.5 –12.1
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4.6 Conclusions
In this chapter light was shed on how rare tautomers of 1-MeUH and 1-MeTH can be

stabilised. To this end, reaction energies of the water exchange of [PtII(A)(B)(C)(OH2)]q

(A, B, C = NH3, Cl–) by 1-MeUH have been calculated using DFT at the ZORA-BP86/TZ2P

level. It has been found that in the gas phase the order of the stabilisation of a given reaction

product is governed by the charge q of the PtII complex. So, all tautomers were stabilised best

by reaction with the dipositive species [PtII(NH3)3(OH2)]2+, and this number diminished by

decreasing the charge stepwise from +2 to –1. Treatment of solvent effects (water) changed

the gas phase result completely. The charge becomes almost irrelevant, as variations in the

reaction energy are only a few kcal/mol. Moreover, only few tautomers are stabilised, notably

the N3 coordinated systems.

As a major result it has been found, as an extension of an earlier result by Deubel, that

with regard to the gas phase the exchange reaction in water is less favourable for positively

charged complexes, but more favourable when negatively charged are applied. This strongly

advocates the inclusion of solvent effect when tautomerisation of DNA nucleobases is

concerned, as these may strongly alter trends in relative stability observed in the gas phase.

The computations indicate that N3 coordination of PtII to either 1-MeUH or 1-MeTH is

preferred over O2 and O4, be it in either anti or syn orientation. Although this result is not

surprising for its N3 deprotonated analoga, it is more important to stress that this stabilisation

is also possible when the neutral nucleobase is concerned. The latter thus implies that a rare

tautomer of either 1-MeUH or 1-MeTH is present in its 4-hydroxo-2-oxo species.

For 9-MeGH the tautomerisation has been investigated as well. In case a PtII-complex

(trans-[PtII(Cl)(NH3)(NH3)(OH2)]+) binds to N1, the proton that was initially bound there

becomes liberated. Calculations shown that the liberated proton will be bound to N7, thereby

generating a rare form that was also experimentally observed.[10]

When not coordinated to PtII, the rare tautomer species are very rare (KTaut ~ 10–5).[8] So,

the earlier coined term “metal-stabilised rare tautomer” is thus very appropriate, and despite

their low abundance, rare tautomers are chemically relevant.[50]
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Chapter 5
Dispersion-Corrected DFT Study on the Differences

in π-Stacking and Hydrogen-Bonding Behaviour
between the Guanine and Adenine Quartet

5.1 Introduction
The Watson-Crick base pairs adenine-thymine (AT) and guanine-cytosine (GC) are by far

the most famous arrangements (Scheme 5.1) for nucleobases. However, larger aggregates are

also found, among which a quartet arrangement is the most common. These quartets can

stack together through π-stacking.[1-5] The biological relevance of these quartets is

increasingly recognised.
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Scheme 5.1. Watson-Crick base pairs AT and GC with atom numbering. Heavy atoms
participating in hydrogen bonds are indicated in bold.

The most famous quartet structure is the guanine quartet (G4), and has an exceptional

stability because two hydrogen bonds occur between neighbouring G bases, i.e. the N1–O6

and N2–N7 hydrogen bond (see Scheme 5.2). The arrangement of the neighbouring bases is

Hoogsteen-like. Stabilisation of G4 quartets is brought about notably by the alkali cations Na+

and K+.[2] Because of the relative high stability of the G4 quartet, it can serve as a scaffold to

stack other quartets on, for instance an adenine (A4) quartet.[4] There is experimental evidence

for three kinds of A4 quartets, which are sandwiched between two G4 quartets.[4] Contrary to

the G4 quartet, two neighbouring bases of an A4 quartet are not connected via two but via only

one hydrogen bond between the bases. The three A4 quartets have a common proton donor,

namely N6–H of the amino-group, but different acceptor sites: the N1 atom (A4-N1),[4a,b] the

N3 atom (A4-N3),[4c] or the N7 atom (A4-N7),[4d] see Scheme 5.2.
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Scheme 5.2. The quartets used in this study. Heavy atoms participating in hydrogen bonding
are shown in bold.

Apart from the experimental work on the G4 and A4 quartet, computational studies are

available for both quartets.[6,7] This chapter deals with the stability of these four quartets in

both the gas phase as well as in aqueous solution using dispersion-corrected density

functional theory (DFT-D), as developed by Grimme,[8] see also chapter 2. First the

performance of several DFT-D functionals is investigated for several molecular sets which

are grouped in hydrogen bonded, dispersion bonded and other weakly bonded molecules.

Doing the same for the hydrogen and dispersion bonded base pairs AT and GC, this
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evaluation is sharpened. Results of the hydrogen bonded AT and GC have already been

discussed in detail in chapter 3, but only for dispersion-uncorrected DFT. For the dispersion

bonded molecules, it is very interesting what the performance of the dispersion corrected

functionals will be, because most uncorrected density functionals fail for π-π interactions.[9]

The best dispersion-corrected functional will then be used to investigate the G4 and A4

quartets in several symmetrical arrangements, namely C4h (planar), C4 (bowl-shaped) and S4,

under the constraint that the hydrogen bond pattern as shown in Scheme 5.2 remains the

same. Experimentally it is found, that A4 quartets are planar, by stacking with a G4 quartet.

The question that arises, is what may happen if this stacking partner is taken away.

Finally the performance of the widely used functional B3LYP is also assessed, and it is

reconfirmed that this functional will lead to wrong results, because it does not deal properly

with π-stacking.

5.2 Summary of Computational Methods
All calculations were done with QUILD, a wrapper around ADF. Geometry optimisations

were performed at the BLYP-D/TZ2P, BP86-D/TZ2P, PBE-D/TZ2P and M06-2X/TZ2P

level of theory. These functionals should be able to treat dispersion in the DFT framework.

In the first part of this chapter, a lot of bond energies (ΔEBond) of several complexes are

computed according to Eq. 5.1.

ΔEBond = EComplex – ΣEFragments (Eq 5.1)

Thus, the bond energy is defined as the difference between the energy of the complex

(EComplex) and the sum of the energies of its constituting fragments (ΣEFragments). In some cases

an interaction energy (ΔEInt) is calculated, which is done in the same way as done for ΔEBond,

but the energy of the fragments is calculated by a single point calculation and not by an

geometry optimisation, thus, a given geometry is used. The geometry of the fragments, in this

case, is the one they have in the complex. The hydrogen bond energy (ΔEHB) or stacking

energy (ΔEStack) of the base pairs AT and GC is computed according Eq. 5.2.

ΔEHB or ΔEStack = EComplex – EBase 1 – EBase 2 (Eq. 5.2)
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The terms in this equation have the same meaning as in Eq. 3.1 and the complex is either a

hydrogen bonded or a stacked base pair. Hydrogen bonded base pairs were optimised in CS

symmetry. The stacked base pairs as well as the constituting bases were optimised without

any symmetry constraint, C1.

The hydrogen bond energy of G4 or A4 is defined as follows:

ΔEHB = EQuartet – 4*EBase (Eq. 5.3)

The terms on the right hand side of the equation are the energy of A4 and G4 (EQuartet) in a

given symmetry (C4h, C4h, S4) and the energy of the constitiuting bases (EBase), either adenine

or guanine. At last a planarisation energy (ΔEPlan) is calculated, which is defined as

ΔEPlan = EQuartet, C4h – EQuartet, global minimum (Eq. 5.4)

This planarisation energy shows how much energy is needed to make a quartet planar with

respect to its global minimum. EQuartet, C4h is the energy of a fully planar quartet, and

EQuartet, global minimum is the energy of the quartet in its global minimum. The global minimum

corresponds to the structure of A4 or G4 that is the most stable, i.e., has the most negative

hydrogen bond energy.

All energy minima of hydrogen-bonded AT and GC pairs, stacked AT and GC dimers,

and the global energy minima of DNA-base quartets, were verified in the gas phase and in

water to be equilibrium structures through vibrational analysis, albeit only at the

BLYP-D/TZ2P level of theory.

The basis superposition error (BSSE) is already absorbed in the dispersion-corrected

functionals. This is not true for the M06-2X functional. The BSSE has been included

afterwards, in case of the base pairs AT and GC, the bases were used as fragments.

Solvent effects were treated implicitly using the COSMO method, and the dispersion

correction should not be modified when sovent effects are treated. Ample details on the

computational settings can be found in chapter 2.
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5.3 Results and Discussion
5.3.1 Test Sets

In Tables 5.1-5.3 DFT-D results of binding and interaction energies are discussed for the

different molecular sets and compared to accurate ab initio data.[10] The sets contain hydrogen

bonded (Table 5.1), dispersion bonded (Table 5.2) and weakly bound (Table 5.3) dimers. To

judge which dispsersion corrected functional performs best, the Mean Absolute Error (MAE)

with respect to the ab initio data was calculated. Interestingly, the MAE for the first set is an

order of magnitude larger than for the other two. This is not surprising because the DFT-D

functionals are not tailored for hydrogen bonded systems, the lowest MAE is found for

BLYP-D and amounts to 1.9 kcal/mol. For the set of dispersion and weakly bonded

molecules, lowest MAE values are obtained with BLYP-D and BP86-D and amount each

0.2 kcal/mol, all respectively. However, the performance on the base pairs AT and GC is,

especially for the stacked ones, decisive for a proper choice.



Chapter 5: Hydrogen Bonding and Stacking in G4 and A4

69

Hydrogen Bonded Dispersion Bonded

Weakly Bound

Scheme 5.3 Schematic repsresentation of the molecules that have been used to test the
performance of BLYP-D, BP86-D and PBE-D. If needed, atoms between which the distance
is determined, are indicated in bold.
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Table 5.1. Bond, ΔEBond, and interaction energy, ΔEInt, (in kcal/mol) and hydrogen-bond
distances[a1] (in Å) for various hydrogen-bonded complexes.

DFT-D
BLYP-D BP86-D PBE-D ab initio

(NH3)2 (C2h)
ΔEBond –3.6 –3.4 –4.0 –3.0[c]

R(N-N) 3.17 3.13 3.13 3.17[c]

(H2O)2 (CS)
ΔEBond –5.4 –5.3 –5.9 –4.8[b]

R(O-O) 2.90 2.86 2.87 2.92[d]

(HCOOH)2 (C2h)
ΔEBond –17.7 –19.2 –19.5 –13.9[b]

R(O-O) 2.67 2.61 2.61 2.66[d]

(HCONH2)2 (C2h)
ΔEInt –17.3 –18.6 –18.8 –16.0[e]

R(N-O) 2.85 2.81 2.82 2.86[e]

(Uracil)2 (C2h)
ΔEInt –21.8 –23.3 –23.4 –20.7[e]

R(N-O) 2.78 2.74 2.74 2.80[e]

2-Aminopyridone
2-Aminopyridine (C1)
ΔEInt –20.0 –21.9 –21.9 –16.7[e]

R(N-O) 2.83 2.78 2.79 2.90[e]

R(N-N) 2.83 2.79 2.80 2.90[e]

MAE (ΔE)[f] 1.9 2.9 3.2
[a] Definition of distances can be found in Scheme 5.3.
[b] Reference data taken from ref. 8a.
[c] Reference data taken from ref. 10a. Energy calculated at the MP4 level of theory.
[d] Reference data taken from ref. 10b. Energy calculated at the CCSD(T) level of theory.
[e] Reference data taken from ref. 10c. Geometries and energies are calculated at the MP2 or
CCSD(T) level of theory. See reference for the level of theory.
[f] Mean Absolute Error (in kcal/mol) between DFT-D and MP2.
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Table 5.2. Bond, ΔEBond, and interaction, ΔEInt, energies (in kcal/mol) and intermolecular
distances[a] (in Å) for various van der Waals complexes.

DFT-D
BLYP-D BP86-D PBE-D ab initio

(CH4)2 (D3d)
ΔEBond –0.5 –0.2 –0.9 –0.5[c]

R(C-C) 3.52 3.54 3.53 3.60[c]

(C2H4)2 (D2d)
ΔEBond –1.8 –1.8 –2.2 –1.3[c]

R(C-C) 3.62 3.57 3.66 3.80[c]

C6H6•CH4 (C3v)
ΔEBond –1.6 –1.5 –1.9 –1.6[b]

R 3.70 3.65 3.80 3.62[b]

(C6H6)2 (C2h)
ΔEBond –2.3 –2.4 –2.6 –2.8[d]

R 3.56 3.41 3.63  3.40[d]

(C6H6)2 (D6h)
ΔEBond –1.4 –1.1 –0.6 –1.8[d]

R 4.17 4.10 5.28 3.70[d]

(Pyrazine)2 (CS)
ΔEInt –4.2 –4.3 –4.4 –4.4[f]

R[e] 3.32 3.20 3.31 3.26[f]

MAE[g] (ΔE) 0.3 0.4 0.5
[a] Definition of distances can be found in Scheme 5.3
[b] Reference data is taken from ref. 8a.
[c] Reference taken from ref. 10b. Energies are at the CCSD(T) level of theory.
[d] Reference taken from ref. 10d. Energy calculated at the CCSD(T) level of theory.
[e] Between molecular planes.
[f] Reference data taken from ref. 10c. Geometries and energies are calculated at the MP2
CCSD(T) level of theory. See reference for the level of theory.
[g] Mean Absolute Error (in kcal/mol) between DFT-D and MP2.
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Table 5.3. Bond, ΔEBond, and interaction, ΔEInt, energies (in kcal/mol) and intermolecular
distances[a] (in Å) for other weakly bound complexes.

DFT-D
BLYP-D BP86-D PBE-D ab initio

Ethene•Ethine(C2v)
ΔEBond –1.8 –1.8 –2.3 –1.5[b]

R 3.74 3.71 3.71 3.82[b]

Benzene•H2O (CS)
ΔEBond –3.4 –3.5 –3.6 –3.9[c]

R 3.58 3.36 3.82 3.21[c]

Benzene•NH3 (CS)
ΔEBond –2.4 –2.4 –2.8 –2.4[b]

R 3.60 3.50 3.62 3.45[b]

Benzene•HCN (CS)
ΔEInt –4.9 –5.1 –5.4 –4.5[d]

R 3.40 3.35 3.38 3.39[d]

(Benzene)2 (C2v)
ΔEBond –2.9 –2.9 –3.2 –2.7[e]

R 4.90 4.84 4.93 4.90[e]

Indole•Benzene
T-Shaped (C1)
ΔEBond –6.0 –6.2 –6.3 –6.2[f]

R 3.29 3.24 3.28 3.16[f]

(Phenol)2 (C1)
ΔEInt –7.5 –7.6 –7.7 –7.1[d]

R (O–O) 2.84 2.79 2.82 2.89[d]

MAE (ΔE)[g] 0.3 0.2 0.5
[a] Definition of distances can be found in Scheme 5.3.
[b] Reference data is taken from ref. 8a.
[c] Reference data is taken from ref. 10e.
[d] Reference data is taken from ref. 10c. Geometries and energies are calculated at the MP2
or CCSD(T) level of theory. See reference for the level of theory.
[e] Reference data is taken from ref. 10d. Energy calculated at the CCSD(T) level of theory.
[f] Reference data is taken from ref. 10f.
[g] Mean Absolute Error (in kcal/mol) between DFT-D and MP2.
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5.3.2 Hydrogen Bonded base pairs AT and GC
In Table 5.4 and 5.5 the hydrogen bond distances and their energies of the Watson-Crick

base pairs AT and GC, respectively, in both the gas phase as well as solution are presented at

several different levels of DFT-D together with accurate ab initio data.[11] Their structures can

be found in Scheme 5.1. The hydrogen bond energy obtained with all dispersion-corrected

and the M06-2X functionals is a bit weaker than the CCSD(T) reference value. Of the three

dispersion-corrected functionals, the best agreement is found with BLYP-D, although

BP86-D and PBE-D both perform reasonably well. The hydrogen bond energies for AT and

GC using BLYP-D amount to –16.7 kcal/mol and –30.1 kcal/mol, respectively, which are

both 1.3 kcal/mol more stable than the CCSD(T)/aug-cc-pVQZ//RI-MP2/cc-pVTZ reference

value.[11] This close agreement between the ab initio  and disperson-corrected DFT results has

been found also by Grimme using a triple or quadruple zeta basis.[8c] In case solvent is treated

as well, the hydrogen bond energies decreased to about 50% of their gas phase value.

Because the BLYP-D functional performs relatively well, a frequency analysis has been

performed to check whether these structures are minima.

Table 5.4. Hydrogen bond distances (in Å) and bond energies (in kcal/mol) for AT computed
at various levels of theory.[a]

Method N6–O4 N1–N3 ∆EHB

Ab initio
RI-MP2/aug-cc-pVQZ//RI-MP2/cc-pVTZ[b] 2.86 2.83 –15.1
"CCSD(T)/aug-cc-pVQZ"//RI-MP2/cc-pVTZ[b] 2.86 2.83 –15.4

DFT
BLYP-D 2.89 2.78 –16.7
BP86-D 2.83 2.74 –17.9
PBE-D 2.84 2.75 –18.0
M06-2X[c] 2.91 2.79 –13.5

Inclusion of water
BLYP-D 2.91 2.82 –9.8
BP86-D 2.85 2.78 –10.8
PBE-D 2.86 2.80 –11.1
[a] Calculations were done in Cs symmetry with a TZ2P basis set.
[b] Data from take from references 11a and 11b. The coupled-cluster energy has been obtained
by adding a correction to the MP2 energies. This correction is calculated as a difference
between the coupled-cluster energy and the MP2 energy obtained with smaller basis sets.
[c] Minimum was not checked by vibrational analysis. BSSE is calculated afterwards.
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Table 5.5. Hydrogen bond distances (in Å) and bond energies (in kcal/mol) for GC computed
at various levels of theory.[a]

Method O6-N4 N1-N3 N2-O2 ∆E

Ab initio
RI-MP2/aug-cc-pVQZ//RI-MP2/cc-pVTZ[b] 2.75 2.90 2.89 –27.7
"CCSD(T)/aug-cc-pVQZ"//RI-MP2/cc-pVTZ[b] 2.75 2.90 2.89 –28.8

DFT with dispersion
BLYP-D 2.74 2.89 2.88 –30.1
BP86-D 2.70 2.84 2.83 –31.9
PBE-D 2.70 2.86 2.85 –31.9
M06-2X[c] 2.74 2.89 2.88 –26.5

DFT with dispersion in water
BLYP-D 2.85 2.90 2.84 –13.6
BP86-D 2.80 2.85 2.79 –14.9
PBE-D 2.82 2.87 2.80 –15.0
[a] Calculations were done in CS symmetry with a TZ2P basis set.
[b] Data taken from references 11a and 11b. The coupled-cluster energy has been obtained by
adding a correction to the MP2 energies. This correction is calculated as a difference between
the coupled-cluster energy and the MP2 energy obtained with smaller basis sets.
[c] Minimum was not checked by vibrational analysis, BSSE is calculated afterwards.

5.3.3 Stacked Base Pairs AT and GC
In Table 5.6 the stacking distance and the energies of the stacked base pairs AT and GC,

respectively, in both the gas phase as well as solution are presented at several different levels

of DFT-D together with accurate ab initio data of Jurecka et al..[10c,11b] The DFT-D functionals

are in very good agreement with this data, but BLYP-D performs the best. The BLYP-D

energies –11.7 kcal/mol and –16.9 kcal/mol for AT and GC, respectively, are in excellent

agreement with the energies of –11.6 and –16.9 kcal/mol, again respectively, at the

CCSD(T)/aug-cc-pVQZ//RI-MP2/TZVPP level of theory. The M06-2X functional gives a

bond energy that is 2 kcal/mol below the CCSD(T) reference value.

As has already been said in chapter 3, the B3LYP functional is very popular but is not

working at all for stacking.[9] This is corroborated once again here, evaluating the

B3LYP/TZ2P stacking energies with the use of the BLYP-D minima

(B3LYP/TZ2P//BLYP-D/TZ2P). Notice that no geometry optimalisation has been done,

because this is for B3LYP not possible in ADF, as stated in chapter 2. However, a single

point calculation using B3LYP is possible, and is performed on the BLYP-D/TZ2P

minimum. This reveals that the stacking energy of AT in the gas phase is 2.1 kcal/mol, for

GC this equals –7.5 kcal/mol. The latter energy implies a big attraction, which can be
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explained by its geometry, as shown in Figure 5.1. It can be very well seen, that AT is a more

or less a parallel stack but GC is not. There is an angle between G and C due to the fact that

two hydrogen bonds may be formed. In this respect the AT stack is governed by a pure π–π

interaction, in GC this is not the case. Due to the small repulsive binding energy value for

AT, it is clear that B3LYP can not deal with stacking. Things get even worse in solution

where the stacking energy for AT and GC is 4.2 kcal/mol and 6.0 kcal/mol, respectively. This

would imply that in DNA this kind of stacks are not present, which is obviously not the case.

In water, the stacking energies are attractive, but are decreased by about 50%. Once again,

the BLYP-D functional is performing best, and therefore it has been checked whether the gas

phase as well as the solution structure are equilibrium structures, which they are both.

Figure 5.1. Stacked AT and GC dimers in the gas phase shown from two side views

(BLYP-D/TZ2P).
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Table 5.6. Stacking energies, ∆EStack, (in kcal/mol) and distances between the bases (in Å) for
AT and GC computed at various levels of theory.[a]

AT GC
Method R(C4–N1)[b] ∆EStack R(N1–C2)[b] ∆EStack

Ab initio
"CCSD(T)/aug-cc-pVQZ"//RI-MP2/cc-pVTZ[c] 3.31 –11.6 3.34 –16.9

DFT-D
BLYP-D 3.39 –11.7 3.36 –16.9
BP86-D 3.26 –12.3 3.30 –17.4
PBE-D 3.40 –11.2 3.37 –17.0
M06-2X[d] 3.29 –9.6 3.17 –14.9
B3LYP//BLYP-D 2.3 –7.5

DFT-D with inclusion of water
BLYP-D 3.35 –8.0 3.32 –7.9
BP86-D 3.25 –8.5 3.27 –5.8
PBE-D 3.36 –7.7 3.33 –7.9
B3LYP//BLYP-D 4.2 6.0
[a] Calculations were done in C1 symmetry with a TZ2P basis set.
[b] For the definition of the distances see reference 8a.
[c] Data taken from refs. 11b. The coupled-cluster energy has been obtained by adding a
correction to the MP2 energies. This correction is calculated as a difference between the
coupled-cluster energy and the MP2 energy obtained with smaller basis sets.
[d] Minima not checked by vibrational analysis, BSSE corrected afterwards.
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5.4 Adenine and Guanine Quartets in the Gas Phase
In Table 5.7 the results of our BLYP-D/TZ2P study on the formation of the G4, A4-N1,

A4-N3 and A4-N7 quartets in the point group symmetries C4h, C4 and S4 in the gas phase and

in water are summarised.

Table 5.7. Hydrogen bond energies (in kcal/mol) for DNA quartets in the gas phase and in
water.

BLYP-D B3LYP//BLYP-D
C4h C4 S4 S4 local C4h C4 S4 S4 local

Gas phase G4 –79.2 C4h –79.8 –66.4 C4h –66.3
A4-N1 –25.5 –30.2 –46.0 –31.2 –9.5 –12.1 –9.7 –14.4
A4-N3 –33.1 –32.7 –32.8 –25.1 –19.9 –19.1 –10.0 –9.0
A4-N7 –31.9 –33.1 –45.5 –19.4 –19.1 –7.4

Water G4 –33.6 C4h –33.8 –20.0 C4h –20.3
A4-N1 –10.9 –17.0 –33.2 –15.3 3.0 –1.3 1.3 –0.4
A4-N3 –16.8 –16.3 –17.0 –15.3 –6.3 –6.2 –5.7 6.7
A4-N7 –16.2 –16.3 –27.2 –6.9 –6.5 6.0

Pictures of the quartets can be found in Figures 5.2-5.4 for respectively C4h, C 4 and S 4

symmetries. There is a similarity between the geometries in the gas phase and in condensed

phase, however not for A4-N3 in S4 symmetry, see later. For C4 symmetry all adenine quartets

adopt a nice bowl shape but the G4 quartet spontaneously converges to a C4h symmetric

arrangement. The S4 structures can be grouped in two classes: G4 and A4-N3 adopt a distorted

or twisted C4h geometry, but A4-N1 and A4-N7 are described as a stack of adenine dimers

(Figure 5.4) with one cyclic hydrogen bond according to the pattern in Scheme 5.2. Figure

5.5 shows the gas phase structure of A4-N3, and its large difference with respect to the other

structures can be seen. The number of imaginary frequencies can be found in Table 5.8.

Importantly, all global minima, i.e. the structure with the most negative binding energy, have

no imaginary frequencies and are, therefore, equilibrium structures, which is true for both the

gas phase as well as for solution.

The group of Meyer and co-workers have already published data on the G4 quartet, albeit

at the B3LYP level.[7b] Our BLYP-D data give an energy difference of only 0.6 kcal/mol

between the C4h and the S4 structures, which is in line with the data of Meyer. Also for the

A4-N3 quartet good agreement is found with previous work of Meyer.[7a] Our BLYP-D data

predict that the C4 geometry is 0.4 kcal/mol and the S4 geometry 8.0 kcal/mol higher in

energy than the C4h structure. However, our S4 structure differs from theirs.
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For the S4 structures of A4-N1 and A4-N7, it is found that these are 15.8 and 13.6 kcal/mol

more stable than the C4h symmetric system. This differs from the B3LYP results of Meyer.[7b]

In the work by Meyer, the S4 arrangement of A4-N1 structure is a few kcal/mol lower in

energy than the C4h or C4 structure, and for the A4-N7 quartet all symmetries lead to bond

energies that are within a 0.5 kcal/mol equal. However, this difference between this work and

the work by Meyer can be explained by means of geometry. The A4-N1 and A4-N7 S4

BLYP-D minima are like stacked adenine dimers, yet the structures that Meyer found are

distorted C4h structures. However, an S4 local minima of A4-N1 could be localised at the

BLYP-D level of theory and was similar to the S4 structure of Meyer, see Figure 5.6. This

local S4 structure has a binding energy of only –31.2 kcal/mol, and is thus 14.8 kcal/mol less

stable than its global minimum. This brought up the question, whether B3LYP could

reproduce this result. Therefore, B3LYP/TZ2P bonding energies were calculated with the use

of the geometries of the global BLYP-D/TZ2P minima. The stacked S4 structure has a

binding energy of –9.7 kcal/mol and the distorted C4h geometry has a binding energy of –14.4

kcal/mol. Thus, in the first place an underestimation is found. Moreover the stacked S4

structure is not the global minimum anymore at the B3LYP level, this is now the distorted C4h

structure. This means that the B3LYP functional leads to an erroneous energy ordering and to

wrong chemical conclusions.

Table 5.8. Number of imaginary frequencies for optimised DNA quartets in the gas phase
and in water.[a]

BLYP-D
C4h C4 S4 S4 local

Gas phase G4 b c 0
A4-N1 b 1 0 0
A4-N3 0 0 0 0
A4-N7 b 0 0

Water G4 d c d
A4-N1 d d 0 0
A4-N3 0 d 0 0
A4-N7 d d 0

[a] All calculations were done at the BLYP-D/TZ2P level of theory.
[b] These small imaginary frequencies found were shown to be spurious using an explicit
potential-energy scan.
[c] C4 starting geometry collapses spontaneously to C4h structure.
[d] Vibrational analysis not carried out for these species.
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Figure 5.2. The C4h structures in water of G4, A4-N1, A4-N3 and A4-N7 at the BLYP-D/TZ2P
level of theory. Hydrogen-bond distances (in Å) are given for aqueous solution (gas-phase
values in parentheses).
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Figure 5.3. Side view and top view of the C4 structures in water of A4-N1, A4-N3 and A4-N7
at the BLYP-D/TZ2P level of theory.
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Figure 5.4. Structures of the S4 global minima in water of G4, A4-N1, A4-N3 and A4-N7 at the
BLYP-D/TZ2P level of theory (for G4 and A4-N3 a side and a top view are shown)
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Figure 5.5. Top and side view of the gas phase S4 structure of A4-N3 at the BLYP-D/TZ2P
level of theory
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Figure 5.6. Side view of the local S4 minimum in the gas phase of A4-N1 at the BLYP-
D/TZ2P level of theory.
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5.5 Adenine and Guanine Quartets Solution:
To Stack or Not to Stack?

In water, the results for G4 show a small energy difference, which amounts to

0.2 kcal/mol between the S4 and C4h structure. This 0.2 kcal/mol is needed to planarise the G4

quartet, which is then able to act as stacking scaffold for other quartets. In water the bonding

energy has decreased by 50% with respect to the gas phase. For A4-N1 and A4-N7 the

bonding energy is of the same order of magnitude as found for the G4 quartet. However the

planarisation energies amount to 22.3 kcal/mol and 11.0 kcal/mol for A4-N1 and A4-N7

respectively. Due to the concomitant facts that the A4 quartets have high planarisation

energies and are in a planar configuration less stable than the planar G4, insight is gained into

why G4 quartets were found earlier than A4 quartets. The A4 quartet has to be sandwiched

between two G4 quartets.[4] The stacking between these quartets may compensate the

planarisation energy. The stacking occurs through the π-π interaction between the aromatic

rings.

5.6 Conclusions
In this chapter the suitability of dispersion-corrected density functionals, particularly

BLYP-D, for hydrogen bonded as well as stacked AT and GC pairs has been demonstrated. It

has been shown that this dispersion-corrected functional is able to reproduce very accurate ab

initio data of hydrogen bonded and stacked base pairs AT and GC, both bond energy as well

as geometry.

Moreover, it has been shown that the B3LYP function is not able to describe π-stacking

as it predicts A4 quartets to adopt planar structures instead of the stacked dimers that were

found with BLYP-D. This leads to the recommendation not to use B3LYP when DNA

systems are under investigation in which π-stacking plays a large role.

The BLYP-D results predict in water G4 to be the most stable quartet, which can easily

adopt a planar conformation. The stabilities of the planar A4 quartets in water are a factor 2-3

less stable than the planar G4. The most stable A4 quartet is surely not planar. To state it

differently, G4 adopts a geometry that is fine for stacking interactions, whereas the geometry

of A4 is not suited for stacking interactions. This result may be the reason why A4 quartets are

only found between two G4 quartets. The A4 quartet needs a lot of energy to become planar,

which may be supplied through stacking with G4 quartets
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Chapter 6
Differential Stabilisation of Adenine Quartets by

Anions and Cations

6.1 Introduction
Tetrastrand structures of nucleic acids gain more and more biological significance,[1] and

have numerous applications. These comprise, for example, protein recognition and

denaturation,[2] recognition of potassium ions,[3] and bio-electronic devices.[4] DNA and RNA

quadruplexes consist of nucleobase quartets, in which the bases are essentially coplanar and

interact through hydrogen bonds.  By far the most stable and at the same time longest known

nucleobase quartet is the guanine quartet (G4). It is arranged in a Hoogsteen fashion and two

hydrogen bonds occur, see also chapter 5.[5] Nowadays, quartet structures of all DNA or RNA

bases are known.[6] Compared to G4 these quartets have lower stabilities and they have a

larger structural diversity and often use G4 as scaffold to stack on. For example, the U4

quartet (U = uracil) may be planar,[7] or saddle-shaped,[8] it may involve different hydrogen

bonding patterns,[6] or may even contain a water molecule in the hydrogen bonding scheme.[9]

Other mono nucleobase quartets that have been observed are T4 (T = thymine),[10] C4 quartet

(C = cytosine),[11] and (isoG)4 (isoG = isoguanine).[12] The flexibility of quartets other than G4

is demonstrated by T4, which can have two different hydrogen bond patterns.[10]
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Scheme 6.1. Representation of A4-N1, A4-N3 and A4-N7. The different acceptor sited are
shown in bold. R = H and R = Me refer to adenine and 9-methyladenine, respectively.

Hetero nucleobase quartets, having two different nucleobase species are also known and

examples of these are ATAT,[13] (A = adenine) and GCGC.[14] The existence of the AGAG
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quartet remains surprisingly unclear,[15] although three mispairs of AG are known.[16] The use

of two different nucleobase species can even be extented to all four DNA nucleobases: in

fact, a GCAT quartet has been observed.[17]

Recently, three variants of adenine quartets (A4) have been characterised experimentally

and these have, as a common feature, four cyclic hydrogen bonds. There is a common donor

site, the N-H moiety of the amino group of adenine, but the acceptor site is variable and can

be N1 (A4-N1), N3 (A4-N3) and N1 (A4-N7). A4-N1 has been proven to exist by NMR

experiments,[18] whereas A4-N3,[19] and A4-N7,[20] have been characterised by X-ray

crystallography. Adenines can, instead of being arranged in a quartet, also form a ribbon of

adenine pairs,[21] but this feature will not be discussed here. Apart from experiments, all

quartets have been subjected to computational studies.[22]

G4, U4 and T4 gain extra stability through the incorporation of metal cations such as Na+,

K+, NH4
+, Ca2+, Sr2+, which are located in the center of the quartet or can be found in the

center of a sandwich of two adjacent quartets.[23] In these quartets, the inward pointing

cabonyl groups can interact, through their lone pairs, with the metal cation. Moreover, this

interaction will relieve the repulsion between these carbonyl groups.

In case of A4 two options are possible. These two possibilities rely on the position of the

amino groups, they can either point outward (A4-N3) or inward (A4-N3 and A4-N7). To start

with, for A4-N3 an experimental study is known,[18] showing unambiguously the

metal-binding possibility, which has also been corroborated by a computational study.[22c]

Another study by Pan et al.,[20] showed A4-N7 interacting with a sodium cation (Na+). This

feature prompted us also to look to the possibility whether this could in fact be an anion. The

statement that anions can also bind to DNA or RNA structures is not new, and has also been

observed experimentally.[24] Anions can also play a role in supramolecular chemistry. For

instance, these are found in assemblies of metal-nucleobase assemblies, albeit having the

anions at the pheriphery.[25] In the next chapter it will be shown that an ditopic ion-pair

receptor based on nucleobase quartets, in theory, can exist.

This chapter deals with a computational study in which the interactions between

monovalent anions (F–, Cl– and Br–) and cations (Li+, Na+ and K+) and adenine and

9-methyladenine (9-MeAH) quartets are investigated (A4-N1, A4-N3, A4-N7). These

interactions are investigated with dispersion corrected density functional theory (DFT-D), as

descibed in chapter 2. Apart from the quartets in Scheme 6.1, a rare tautomer quartet (A4*) is

also taken into account, see Scheme 6.2.
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Scheme 6.2. Representation of an A4 quartet having adenine in its most stable rare tautomer
conformation denoted as A4*.

Although there is no experimental evidence for such a rare tautomer quartet, the importance

of rare tautomers should not be underestimated.[26] As a last feature the binding of ions at the

periphery as opposed to the binding in the central cavity is addressed. This is a common

feature for duplex DNA,[24,27] but has recently been found for quadruplex DNA as well.[28]

The chapter is organised as follows: to start with the adenine quartets without ions and

followed by by the inclusion of cations and anions to investigate the influence of the ions on

the structures and bond energies. The arrangement that the empty quartets and these including

ions can adopt are fully planar (C4h) bowl-shaped (C4(Bowl) and box- or saddle-shaped (S4).

The chapter is ended by simulating the situation in a stack of quartets by keeping the A4

quartet planar in C4h symmetry with the exception of the amino groups which were allowed to

pyramidalise. Furthermore the ion was allowed to move along the C4-axis (C4(Rvert)).

Calculations were done in both the gas phase as well as aqueous solution.
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6.2 Summary of Computational Methods

This chapter can be regarded as a follow-up of the previous chapter. Again, stacking

interactions will play an important role in the quartets. Normal DFT does not take into

account stacking interactions properly, but dispersion corrected DFT (DFT-D) is very well

able to do so. In the previous chapter it was shown that the BLYP-D functional can reproduce

very accurate ab initio data of stacked base pairs of adenine-thymine and guanine-cytosine.

Geometry optimisations were done at the BLYP-D/TZ2P level of theory. Quartet without

ions were optimised in a fully planar arrangement (C 4h), bowl-shaped arrangement

(C4(Bowl)), and a saddle-like arrangement (S4). These arrangements including the ions can be

made as well. Finally, a special arrangement was considered: A4 was kept planar, but the

aminogroups were allowed to pyramidalise, and the anion were allowed to optimise its

vertical distance to the center of the quartet (Rvert). This option can be regarded as a

simulation of A4 in a stack, or oligonucleotide and is denoted as C4(Rvert). Note, that in the

previous chapter the addition “Bowl” has been kept away. 

In these arrangements, the anion or cation binds in the cavity of the quartet, this is

referred to as central cavity binding, or cavity binding along the C4-axis. A cation can also

bind to a site at the periphery of the quartet: N3 (A4-N1, A4-N7, A4*) and N7 (A4-N3), an

anion can also interact with the aminogroup (A4-N3). These latter binding modes are referred

to as peripheral binding and such complexes are optimised in planar arrangement (CS).

All energy values that are given in this chapter are based on structures that are minima. In

some cases an imaginary frequency was observed, but was spurious, as found with a potential

energy scan.

The hydrogen bond energy of A4 is defined as in the previous chapter, but as a base

adenine (R = H) or 9-methyladenine (R = Me) are used. The bonding for a quartet with an ion

is defined as

ΔEBond = EComplex – 4*EAdenine – EIon (Eq. 6.1)

In this equation EComplex is the energy of a quartet with ion in C4h, C4(Bowl), C4(Rvert) or S4

symetry, EAdenine is the energy of adenine or 9-methyladenine, and EIon is the energy of the ion.
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For calculations of ΔEHB and ΔEBond for the rare adenine quartet (A4*), the canonical adenine

base is used as a reference. In this way the tautomerisation energy of the four nucleobases is

taken into account as well as the complexation between these in A4*.

If the situation of A4 with an ion in a stack, in which A4 is kept planar apart from the

amino groups, is simulated or peripheral binding of the ion to A4 is treated, a stabilisation

energy (ΔEStab) by the ion is calculated defined by:

ΔEStab = EComplex, C4(Rvert) – EQuartet, C4h – EIon (Eq. 6.2a)

ΔEStab = EComplex, CS – EQuartet, C4h – EIon (Eq. 6.2b)

The stabilisation energy indicates what the energy gain or loss is due to the binding of an ion

with the respect to the empty A4 in fully planar arrangement. The energy of the complex of

A4 with ion in the stack is defined by EComplex, C4(Rvert) and complex of A4 with peripheral

binding by EComplex, CS. The energy of A4 without an ion in a planar geometry is defined by

EQuartet, C4h.

At last a planarisation energy (ΔEPlan) for empty A4 quartets is calculated exactly as done

in chapter 5.

All structures which are calculated for adenenine quartets (R = H) are checked to be

minima by vibrational analysis. In case of R = Me this was not possible as the methylgroups

can bias the outcome of result.

Solvent effects were treated by the COSMO model as implemented in ADF, but the

parameters of the free ions were adapted to reproduce experimental solvation energies.

Furthermore, upon treating solvent effects the dispersion correction should not be changed.

In the BLYP-D functional the basis super position error has been incorporate by its

construction, and has, therefore, not been calculated separatly. The reader is referred to

chapter 2 for a more detaillistic description of the used theoretical methods.

6.3 Results and Discussion
6.3.1 Adenine Quartets without Ions

The survey is started by investigating the bond energies of empty quartets

(i.e., A4-N1, A4-N3, A4-N7 and A4*) in both the gas phase and water solution. Some of the

data has been presented in chapter 5 already, but is repeated here for clarity. It is investigated

which geometrical shape is the most stable amongs the fully planar, bowl-shaped and
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saddle-shaped arrangement which are defined by C4h, C4(bowl) and S4, respectively. The bond

energies are presented in Table 6.1. Therein, apart from a differentiation between phases, a

differentiation between A4 is made; one group has R = H, one group has R = Me.

To start with, it is mentioned that quartets for which R = H, all given structures are

minima and representations of the structures in water can be found in Figure 6.1. The global

minima of the normal quartets A4-N1, A4-N3 and A4-N7 are box- or saddle shaped (S4) . On

visualising these minima (Figurer 6.1) an interesting difference shows up. A4-N1 and A4-N7

can be characterised by two stacks of an adenine dimer, which are rotated with respect to

each other by 90° but mutually bind through hydrogen bonding. For A4-N3 the global

minimum is box-shaped with the four bases positioned as the sides of a box. In this

arrangement, the hydrogen bond between N6 and N3 still exists, but there will also be

interactions based on dispersion that keep the structure together.

Table 6.1. Hydrogen bond energies (in kcal/mol) for the adenine (R = H) and
9-methyladenine (R = Me) quartets in the gas phase and in water.[a]

R = H R = Me
C4h C4(Bowl) S4 C4h C4(Bowl) S4

Gas phase A4-N1 –25.5 –30.2 –46.0 –25.5 –30.1 –49.0
A4-N3 –33.1 –32.7 –32.8 –33.3 –32.8 –39.9
A4-N7 –31.9 –33.1 –45.5 –32.5 –33.9 –52.3
A4* –0.6 –1.7 –0.2 –1.5

water A4-N1 –10.9 –17.0 –33.2 –10.3 –16.7 –36.0
A4-N3 –16.8 –16.3 –17.0 –17.1 –17.1 –19.3
A4-N7 –16.2 –16.3 –27.2 –16.0 –15.6 –31.2
A4* [b] 8.6 6.6 9.6 7.3

[a] Computed at BLYP-D/TZ2P. Quartets with R = H were verified to be equilibrium
structures through vibrational analysis.
[b] Destabilised complex, separated by a transition state from dissociation within C4h
symmetry into individual bases. This barrier occurs as it is unfavorable to break eight
hydrogen bonds at the same time.

When A4 is present in an oligonucleotide, it will adopt a more or less planar arangement.

Therfore, it is interesting how much energy it takes to planarise the quartet starting from its

global minimum. The global minma corresponds to the structure having the strongest

hydrogen bonds, in other words have the most negative hydrogen bond energy. Focussed on

an aqueous solution and R = Me, it costs 25.7 kcal/mol and 15.2 kcal/mol to planarise A4-N1

and A4-N7, respectively, with respect to their global minima (S4). On contrary, it takes 2.2
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kcal/mol to planarise A4-N3 from its global minimum. In constrast, it takes in solution for

R = H, only 0.2 kcal/mol to planarise A4-N3.

Another feature that has to be noted is the instability of A4* with respect to four canonical

adenine bases. The term canonical refers to the most stable tautomer of adenine. A4* is

destabilised by about 7 kcal/mol in solution irrespective of A4* having R = H or Me, based on

the global minima (C4(Bowl)). In the gas phase, the quartet is only slightly stabilised with

respect to four canonical adenine bases, the bond energy amounts to up to  –1.7 kcal/mol. The

reason that the A4* in water (C4h symmetry, R = Me) is not stable can be explained as

follows. The bonding energy with respect to four rare tautomers is –22.4 kcal/mol (data not

shown). However, the total tautomerisation of four adenine bases into the most stable rare

tautomer amounts to 32.0 kcal/mol. Consequently, the bonding energy can not compensate

the larger tautomerisation energy, thus the quartet is destabilised. The rare tautomer of

adenine, used to construct the quartet is the most stable rare tautomer, based on a

computational study.[29]

Figure 6.1. C4h-, C4(Bowl)-, and S4-symmetric equilibrium structures of empty A4 (R = Me)
in water (for C4 and S4, top and side view are shown).

C4h C4(Bowl) S4
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6.3.2 Adenine Quartets with Cations and Anions

This study is followed by investigating the possibility that adenine quartets can bind

alkali cations or halide anions, and if this is true, how strong the bonding is. Especially,

different complexes of adenine and ion are focussed on, i.e., C4h, C4(Bowl) and S4. The bond

energies calculated from either adenine (R = H) or 9-methyladenine (R = Me) are shown in

Table 6.2 and Table 6.3. Selected structures in water are shown in Figure 6.2 and Figure 6.3.

In the following discussion the quartets having R = H are focussed on, because for this

systems a frequency analysis has been carried out. This is not computationally possible for

systems having R = Me, because methyl groups can rotate which may bias results. The C4h

symmetric species may reflect the situation in a stack. However, it is in almost all cases not a

stationay point, hence, a minimum. The structures are quite flexible, which has to do with the

size of the ion, either it is too big, or too small. In the gas phase there is however a C4h

minimum possible for the canonical quartets with F–, which is obviously small enough to fit

in the quartet. The values for the bond energies are –111.7 kcal/mol, –91.5 kcal/mol and

–113.2 kcal/mol for A4-N1, A4-N3 and A4-N7, respectively. Another ion that is small enough

is Li+. It fits in A4*, and has a bonding energy of –121.3 kcal/mol. A4-N3 obviously has a

cavity that is big enough to accomodate K+, the A4-N3-K+ complex has a bonding energy of

–91.5 kcal/mol.

In aqeuous solution, these C4h symmetric complexes are even less stable, for instance

A4-N3-K+ and A4-N3-F– are no minimum anymore, all other complexe that were discussed

for the gas phase, are also minima in solution, but the binding energy has reduced

substantially, by up to 90% (!) for the A4*-Li+ complex.
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Table 6.2. Bonding energies (in kcal/mol) in the gas phase between four adenine bases
(R = H) or four 9-methyladenine bases (R = Me) and an ion for equilibrium structures in C4h,
C4(Bowl) and S4 symmetry.[a]

R = H R = Me
Quartet Ion C4h C4(Bowl) S4 C4h C4(Bowl) S4

A4-N1 Li+ –125.5 –151.0 –129.3 –158.1
Na+ –106.7 –119.7 –113.3 –126.3
K+ –90.2 –95.1
F– –111.7 –114.4 –109.1 –112.0
Cl– –77.8 –75.4
Br– –70.7 –68.4

A4-N3 Li+ –139.4 –143.4
Na+ –116.8 –121.0
K+ –91.5 –92.0 –91.9 –94.2 –94.8 –97.7
F– –53.3 –54.0 –52.7 –54.1
Cl– –35.6 –35.5
Br– –32.9 –32.7

A4-N7 Li+ –129.3 –145.3 –134.8 –159.0
Na+ –117.1 –116.3 –122.4 –129.2
K+ –94.6 –101.0
F– –113.2 –110.7
Cl– –80.8 –78.7
Br– –74.2 –72.2

A4* Li+ –121.3 –123.6 –125.2 –128.0
Na+ –95.4 –99.7
K+ –65.5 –69.0

[a] Computed at BLYP-D/TZ2P. Quartets with R = H were verified to be equilibrium
structures through vibrational analysis.
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Table 6.3. Bond energies (in kcal/mol) in water between four adenine bases (R = H) or four
9-methyladenine bases (R = Me) and an ion for equilibrium structures in C4h, C 4 and S4
symmetry.[a]

R = H R = Me
Quartet Ion C4h C4(Bowl) S4 C4h C4(Bowl) S4

A4-N1 Li+ –25.6 –49.8 –26.6 –50.9
Na+ –37.5 –46.8 –38.4 –41.9
K+ –34.3 –32.3 –35.0 –34.5
F– –27.1 –31.3 –26.8 –31.0
Cl– –23.9 –23.7
Br– –23.7 –23.6

A4-N3 Li+ –33.6 –33.6
Na+ –37.7 –38.1
K+ –31.0 –29.5 –30.2 –29.5
F– –6.6 –8.2
Cl– –10.2 –11.6
Br– –12.6 –13.9

A4-N7 Li+ –29.2 –47.5 –29.8 –51.2
Na+ –34.7 –43.5 –36.3 –48.1
K+ –32.1 –32.6 –33.3 –36.0
F– –26.7 –26.8 –26.5 –26.2
Cl– –21.7 –21.1
Br– –22.0 –21.6

A4* Li+ –13.2 –17.7 –12.3 –16.5
Na+ –16.0 –15.3
K+ –6.5 –5.2

[a] Computed at COSMO-BLYP-D/TZ2P. Quartets with R = H were verified to be
equilibrium structures through vibrational analysis.
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Figure 6.2. Top and side view of C4(Bowl)-symmetric equilibrium structure of the A4-N7
quartet binding halide anions (F–, Cl– and Br–) in water. The anions are indicated by the green
spheres.

C4(Bowl)
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Figure 6.3. Top and side view of C4(Bowl)- and S4-symmetric equilibrium structures of A4
quartets binding a potassium cation in water. The potassium is indicated by the yellow
sphere.

C4 S4
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With regard to the analogs with R = Me, there are no real changes. If present, these

translate into differences in bond energies. In the gas phase the absolute difference amounts

to 4 kcal/mol for the A4*-Li+ complex. In solution this difference is even smaller and amounts

to up to 0.9 kcal/mol for the same complex.

The global minima are surely not planar, which is in line with findings with the empty

quartets. Although the latter are all box- or saddle-shaped (S4), the quartets with an ion have

global minima, which are either bowl-shaped (C4(Bowl)) or box- or saddle shaped (S4). The

ion plays a decisive role with regard to this aspect.

In both the gas phase as well as in solution, anions prefer to stabilise a C4(Bowl)

arrangement for A4-N1, A4-N3 and A4-N7. In solution the bond energies of these systems

amount to –26.8 (A4-N7-F–), –21.7 (A4-N7-Cl–) and –22.0 (A4-N7-Br–) kcal/mol. Structures

of these can be found in Figure 6.2 and one can see that the larger the ion is (along F–, Cl– and

Br–) the more pronounced the bowl-shapedness is. There are three aspects that help to explain

this feature. First, by increasing the size of the ion, the ion can no longer reside in the central

cavity of the quartet. One can see clearly in Figure 6.2 that the complex with F– is near to

planar, but this situation changes as Cl– and Br– are applied. Second, one can cleary see that a

hydrogen bond exists between the N-H moiety of the amino group of adenine and the anion.

To retain this hydrogen bond, the quartet aligns itself towards the anion. The third and last

aspect emerges as a result of the previous two ones. By aligning the hydrogen bond, an

overlap with anion and the π-rich region of the quartet is avoided. There are no geometrical

differences that arise due to the fact that either adenine or 9-methyladenine is used, but it is

translated again in energy differences. In the gas phase the biggest absolute difference is 2.4

kcal/mol for A4-N1-X– and in solution 1.6 kcal/mol for the A4-N3-F– complex.

Cations prefer to stabilise box- or saddle-shaped arrangements (S4) instead of

bowl-shaped arrangements (C4(Bowl)). However, the preference of S4 over C4(Bowl) depends

on the size of the cation. In the gasphase the smaller ions Li+ and Na+ do all prefer the S4

symmetry, apart form one case. A4-N3-Na+ (R = H) prefers a bowl-shaped over a box- or

saddle-shaped arrangement, but the difference between these two arrangements is less than 1

kcal/mol. The large K+ ion has no stationary points when it should adopt a box- or

saddle-shaped arrangement with the A4-N1 or A4-N3 quartet. For A4-N3 the preference is

quite complicated and depends on whether R = H or Me. In case of R = H, a bowl-shaped

arrangment is preferred (–92.0 kcal/mol) over a box-arrangement (–91.9 kcal/mol), but the
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difference is negligible. For R = Me, the fact is inversed, hence, a box-shaped arrangments is

preferred (–129.2 kcal/mol) over a bowl-shaped arrangement (–122.4 kcal/mol).

In solution the smaller ions Li+ and Na+ always prefer a box- or saddle-arrangement. The

larger K+ ion prefers, on contrary, a bowl-shaped arrangement in combination with A4-N1

and A4-N3. With A4-N7 a box-shaped arrangement is preferred. This means that a switch in

the preferential stabilisation exists in the case of A4-N1 and A4-N3, but not for A4-N7. In

Figure 6.3 the minima in water for K+ with the different quartets are shown. They resemble

the empty structures of Figure 6.1 a lot. There are, however, changes with respect to the

quartets A4-N1 and A4-N7, because these fold around the cation. However, with respect to the

empty quartets, the arrangement is changed such, that the quartets engage an extra nitrogen

atom from the aromatic ring (i. e., N7 for A4-N1 and N1 for A4-N7) in bonding with the alkali

cation. 

To conclude this discussion, it is interesting to note, that A4* in combination with

metal-cations is stable in both the gas phase as well as solution. In solution, the stabilisation

energy due to the binding of a metal is up to –24.3 kcal/mol (R = H) and –23.8 kcal/mol (R =

Me) when a Li+ ion is concerned.

6.3.3 Models of Adenine Quartets in Stacks Binding Cations and Anions
In the last section of this chapter, the situation is simulated as if the quartet were part of a

fourstranded-oligonucleotide in which the A4 preserves a planar geometry. It has, however,

already been mentioned that planar structures (C4h) are in general no global minima. To make

the quartets planar it takes a few tenths of a kcal (A4-N3) to about 22 kcal/mol (A4-N1). This

planarisation energy should be compensated by the stacks that A4 may form with G4: one

above and one below, as observed experimentally.[19,20] This compensation will be gained

through the π - π interaction between the aromatic rings of the two quartets. In this section

the emphasis is laid on A4 in a geometry it may have in the stack. Therefore, quartet-ion

complexes were optimised in which the adenine quartet was kept planar, apart from the

amino group that was allowed to optimise in A4-N1 and A4-N7. Moreover, in all quartet-ion

complexes the vertical distance between the center of the quartet and the ion (Rvert) was

optimised as well (Scheme 6.3). The reader should be aware of the fact that these models are

no equilibrium structures on their own. The quartets that are described by this models have

quite large bonding energies in both the gas phase and solution, see Table 6.4 and 6.5,

respectively. However, when going from the gas phase to solution, the bonding energy is
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lowered. In the following discussion the solution (Table 6.5) shall be dealt with in more

detail. For these model systems, only the case of R = Me is treated.

H2NNH2
NH2NH2

C4

M+/X–

Scheme 6.3. The C4(Rvert)-symmetric systems in Tables 6.4 and 6.5 were optimised under the
constraint that all atoms of the bases are kept in one plane, except for the nitrogen and
hydrogen atoms of the amino groups of A4-N1 and A4-N7, which were allowed to
pyramidalise; the cation or anion was allowed to move along the C4-symmetry axes.

In case an alkali cation coordinates in the central cavity or along the C4 axis, a bond

energy of  up to –29 kcal/mol is found. This corresponds to a stabilisation energy of –12

kcal/mol for A4-N3-Na+ and A4-N3-K+ between alkali cations and a C4h quartet. The inner

coordination complexes are not stable for A4-N7, the bond energy is positive. However,

A4-N7 is able to coordinate a cation at the periphery, through N3, and a stabilisation energy is

obtained by up to –10 kcal/mol in the case of Na+. This peripheral coordination is also the

preferred coordination for A4-N1, also by using N3. However, coordination in the central

cavity is possible too for A4-N1 and the amino group can adapt itself such that  the lone pair,

situated on the N-atom (i.e., the HOMO–3) can interact with, for instance Na+, leading to a

stabilisation enery of –6 kcal/mol. This situation is shown in Figure 6.4, and because an

analysis was made thereafter, the gas phase structure is shown in which the A4-N1-Na+

complex is used as an example. Based on the left panel, the HOMO–3 on A4-N1, donates 0.1

electron into the 3s orbital of the sodium cation.

Interestingly, A4* a stabilisation energy of –22 kcal/mol is observed for Na+ in the cavity,

which is even larger than the stabilisation energies for the canonical quartets. Owing to this

large stabilisation, the rare imino A4 quartet becomes even stable with respect to four

canonical adenine bases, in the case of Na+, the bond energy is –12.7 kcal/mol. The reader is

C4
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reminded that empty A4* is not stable. The fact that A4* gets a negative bonding energy is a

nice feature but all in all the bond energy in which canonical quartets play a role are more

negative, thus an even better bonding exists. The values for Na+ are –16.3 kcal/mol and –28.9

kcal/mol in combination with A4-N1 and A4-N3, respectively. In general, the value of the

vertical distance (RVert) indicates the cation resides above the quartet. It varies between 0.1 Å

(A4-N3-K+) and 2.9 Å (A4-N1-K+). There is one case in which the ion prefers to reside in the

central cavity: A4*-Li+. 

Apart from cation binding, canoncial quartets are also able to bind anions, even in a quite

firm manner. For instance the bond energy between F– and A4-N1 amounts to –27 kcal/mol,

and yield a stabilisation of about –17 kcal/mol, see Table 6.5. In contrast to cations,

peripheral coordination is not possible for anions in case of A4-N7 and A4-N1 just because of

a lacking amino group having an N-H bond exposed to the outside (See Scheme 6.1). A4-N7,

for instance, binds with stabilisation energies of –10.5, –5.0 and –5.7 kcal/mol, F–, Cl– and

Br–, respectively. In the complexes A4-N7-Cl– and A4-N7-Br– the ions have an RVert of 2.19

and 2.51 Å, respectively, and the amino groups of the quartet are pyramidalised such that the

N-H bond that does not participate in hydrogen bonding with an adjacent adenine base, lines

up in the direction of the anion. In the right panel of Figure 6.4 a picture is shown for

A4-N1-Cl–. Again, for bonding analyses, the gas phase structure is shown. The LUMO of the

quartet accepts 0.09 electrons from the chloride 3p atomic orbitals. Thus, in case of

A4-N1-Na+ there is charge transfer from quartet to ion, in case of A4-N1-Cl– this is reversed,

charge flows from ion to quartet.

The A4-N3 quartet has different properties than A4-N1 and A4-N7, which has to do with

the orientation of the N-H bond of the amino group that does not participate in hydrogen

bonding with an adjacent adenine base. In the center of the quartet there are no such N-H

groups and this is the reason why no stable  complexes between anions and A4-N3 are found.

However, the N-H bond is exposed to the outside, thus, pheripheral coordination should be

more favorable as is the case. The complex A4-N3-F– has a maximum bond energy of –3.1

kcal/mol. However, in the center of A4-N3 the lone pairs of the N1 atoms point into the center

of the quartet and can interact favourably with a cation, and a maximum stabilisation energy

is obtained with Na+ and amounts to –8.7 kcal/mol.
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Table 6.4. Bond energies, ΔEBond, and stabilisation energies, ΔEStab,  (in kcal/mol), and
hydrogen bond distances, rHB, and vertical separation, RVert, (in Å) in the gas phase for the
complex of four 9-MeAH bases and an ion. [a]

C4h C4(Rvert) CS

Quartet Ion ∆EBond ∆EStab rHB
[b] ∆EBond ∆EStab rHB

[b] RVert
[c] ∆EBond ∆EStab

A4-N1 none –25.5 2.91 –25.5 2.91 –25.5
Li+ –32.4 –6.9 3.12 –105.5 –80.0 2.85 0.73 –83.2 –57.7
Na+ –48.8[d] –23.3[d] 3.28d –88.3 –62.8 2.88 1.30 –66.4 –40.9
K+ –47.1[d] –21.6[d] 3.30d –70.2 –44.7 2.90 1.89 –54.5 –29.0
F– –109.1 –83.6 3.08 –109.1 –83.6 3.08 0.00
Cl– –60.3 –34.8 3.49 –64.0 –38.5 3.04 1.93
Br– –49.4 –23.9 3.75 –56.1 –30.6 3.03 2.24

A4-N3 none –33.3 3.00 –33.3 3.00 –33.3
Li+ –101.4 –68.1 2.88 –101.4 –68.1 2.88 0.00 –86.5 –53.2
Na+ –103.9 –70.6 2.89 –103.9 –70.6 2.89 0.00 –70.4 –37.1
K+ –94.2 –60.9 2.99 –94.2 –60.9 2.99 0.00 –58.3 –25.0
F– –52.7 –19.4 3.06 –52.7 –19.4 3.06 0.00 [e]
Cl– –22.1 11.2 3.32 [f] [f] [f] [f] –54.8 –21.5
Br– –14.0 19.3 3.47 [f] [f] [f] [f] –51.1 –17.8

A4-N7 none –32.5 2.88 –32.5 2.88 –32.5
Li+ –50.4 –17.9 2.77 –91.1 –58.6 2.82 0.61 –90.2 –57.7
Na+ –44.3 –11.8 2.86 –82.5 –50.0 2.83 1.00 –73.4 –40.9
K+ –33.1 –0.6 2.97 –69.2 –36.7 2.85 1.53 –60.4 –27.9
F– –110.7 –78.2 2.86 –110.7 –78.2 2.86 0.00
Cl– –76.5 –44.0 3.00 –76.7 –44.2 2.98 0.57
Br– –66.7 –34.2 3.07 –68.8 –36.3 2.97 1.28

A4* none –0.2 2.87(3.07) –0.2 2.87(3.07) –0.2
Li+ –125.2 –125.0 2.92(3.19) –125.2 –125.0 2.92(3.19) 0.00 –58.4 –58.2
Na+ –92.5 –92.3 3.24(3.53) –93.0 –92.8 2.97(3.21) 1.22 –40.5 –40.3
K+ –54.0 –53.8 3.76(4.11) –68.7 –68.5 2.92(3.13) 1.92 –26.8 –26.6

[a] Computed at BLYP-D/TZ2P. In case of empty quartets the bond energy is equal to the
hydrogen bond energy.
[b] Hydrogen bond distances defined for each quartet as the distance between the proton donor
and the proton acceptor. N7–N1 hydrogen bond distance in A4* in parenthesis.
[c] Vertical separation between ion and plane of quartet.
[d] A4-N1 quartet switches connectivity: N1 hydrogen bonds with the other N-H moiety of the
aminogroup.
[e] F– abstracts a proton from the amino group.
[f] Ion does not bind.
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Table 6.5. Bond energies, ∆EBond, and stabilisation energies, ∆EStab, (in kcal/mol), and
hydrogen bond distances, rHB, and vertical separation, RVert, (in Å) in water for the complex of
four 9-MeAH bases and an ion.[a]

C4(RVert) CS

Quartet Ion ∆EBond ∆EStab rHB
[b] RVert

[c] ∆EBond ∆EStab

A4-N1 none –10.3 2.95
Li+ [d] [d] [d] [d] –17.8 –7.5
Na+ –16.3 –6.0 2.92 1.47 –20.5 –10.2
K+ –13.5 –3.2 2.94 2.05 –17.8 –7.5
F– –26.8 –16.5 3.11 0.00
Cl– –15.8 –5.5 3.02 2.19
Br– –16.0 –5.7 3.00 2.51

A4-N3 none –17.1 3.03
Li+ [e] [e] [e] [e] –25.6 –8.5
Na+ –28.9 –11.8 2.93 0.1 –25.8 –8.7
K+ –28.9 –11.8 3.02 0.1 –23.7 –6.6
F– [e] [e] [e] [e] –20.2 –3.1
Cl– [e] [e] [e] [e] –17.8 –0.7
Br– [e] [e] [e] [e] –18.5 –1.4

A4-N7 none –16.0 2.91
Li+ 5.4 21.4[f] 2.87 0.87 –22.2 –6.2
Na+ –9.0 7.0[f] 2.87 1.19 –26.1 –10.1
K+ –11.7 4.3[f] 2.89 1.75 –23.3 –7.3
F– –26.5 –10.5 2.89 0.00
Cl– –21.0 –5.0 2.88 1.55
Br– –21.7 –5.7 2.95 1.91

A4* none 9.6 2.91(3.07)
Li+ –12.3 –21.9 2.95(3.20) 0.00 3.8 –5.8
Na+ –12.7 –22.3 2.91(3.11) 1.50 –0.1 –9.7
K+ –5.5 –15.1 2.91(3.09) 2.09 2.6 –7.0

[a] Computed at COSMO-BLYP-D/TZ2P. In the case of empty quartets, the bond energy
equals the hydrogen bond energy.
[b] Hydrogen bond distances defined for each quartet as the distance between the proton
donorand the proton acceptor. N7–N1 hydrogen bond distance in A4* in parenthesis.
[c] Vertical separation between ion and plane of quartet.
[d] Ion does not bind.
[e] Ion binds very weakly at about 5.0 Å, which is not relevant for situation in stack of
quartets.
[f] Destabilised complex, separated by a transition state from dissociation.



Chapter 6: Anion and Cation Binding Properties of A4

105

Figure 6.4. Upper: top and side view of a planar A4-N1 quartet interacting in the gas phase
with a sodium cation (left) or chloride ion (right). Lower: corresponding A4-N1 HOMO-3
that donates charge into sodium 3s AO (left) and A4-N1 LUMO that accepts charge from
chloride 3p AO (right). The ion sizes in this picture do not scale.
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6.4 Conclusions
This chapter demonstrate, by the use of dispersion-corrected DFT, that adenine quartets

can bind both cations (Li+, Na+ and K+) and anions (F–, Cl– and Br–) in or above their central

cavity, in the gas phase as well as in aqueous solution. In this chapter three A4 quartets with a

canonical structure were presented (A4-N1, A4-N3 and A4-N7) as well as a rare

imino-tautomer quartet (A4*). In general global minima are bowl-, box- or saddle-shaped, but

in combination with Li+ or F– planar structures are local minima and are found for A4-N1-F–,

A4-N7-F– and A4*-Li+. Empty quartes prefer a non-planar geometry in both the gas phase as

well as in water, and this feature does not change due to the addition of an ion.

The ion-quartet interaction has also been simulated by keeping the quartet aritficially

planar, and the inner amino groups (A4-N1 and A4-N7) was allowed to be optimised,

furthermore the distance between the ion and the central cavity of the quartet (RVert) was

optimised as well. This model system leads to good stabilisations as well, and there is an

interesting feature. The cations prefer to bind to the outside in case of A4-N1 and, notably,

A4-N7, by interaction with the N lone pair of N3. Inner coordination of cations with A4-N1, is

also possible, though, via the amino group. In case of A4-N3, central cavity coordination is

the preferred binding mode of the cations, as it interacts with the N1 atoms having its lone

pair in the center. In constrast, A4-N1 and A4-N7 prefer to coordinate anions in the central

cavity (F–), or above it (Cl– and Br–). In the latter case, the amino groups pyramidalise such

that the N-H bond that does not participate in hydrogen bonding point toward the anion, and

the geometry that is obtained hereby guarantees an optimised electrostatic as well as

donor-acceptor interactions. The anions prefer to interact with the N-H bonds of the amino

groups at the outside. Consequently, it is the orientation of the N-H bond of the amino group

that does not participate in hydrogen bonding with an adjacent adenine base that decide

which ions are preferred and how they are bonded. However, one can also assume, that the

ion directs the geometry of the amino group. When this possibility is also taken into account,

the “hen-and-egg” problem arises: does the amino group decides, by its geometry, what ion is

bound or does the ion force the amino group in a given geometry. The answer is difficult to

give, and a mutuality between these possibilities may exist.

Finally, the results of anion binding to adenine quartets is relevant when these are present

in a tetrastranded structure. In case stacking interactions force an adenine quartet in a planar

geometry having the amino groups in the interior, halide ions, especially the smallest one,
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fluoride (F–), is a good choice for stabilising such an arrangement. A4 can occur in negatively

charged tetratranded oligonucleotides as well as artificial neutral analogues.
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Chapter 7
A Ditopic Ion-Pair Receptor Based on

Stacked Nucleobase Quartets

7.1 Introduction
The recognition of ionic species is an ongoing important topic in supramolecular

chemistry.[1] Historically, cation receptors were studied first,[2] which have lead to the design

of anion receptors.[3] However, one may also bind an anionic species and cationic species at

the same time,[4] and this is termed as a ditopic receptor. These molecules can, for example,

be chalix-like,[5] or have a crown ether.[6] Ditopic receptors are interesting because of the salt-

extracting and membrane transport properties.[5,6]

In this study we show that an ion-pair receptor for sodium chloride (NaCl) can be built

using DNA quartet structures: namely a guanine (G4) and adenine (A4) quartet. G4 is very

stable because of its ability to form two hydrogen bonds between neighbouring guanine

bases. Furthermore, the formation of G4 is brought about by cations, notably Na+ and K+.[7,8]

G4 will now be used to stack the anion binding partner on it, in this case the adenine quartet.

It must however be noticed, that a stack of G4’s on its own can act as ditopic receptor, a

cation coordinates in the central cavity and an anion interacts with the periphery.[9] The

choice of A4 is not straightforward, because throughout all possible quartet structures,[10] no

anion binding to these has been evidenced. There exists however a structure in which an

adenine quartet is stabilised by a sodium cation, which could feasibly have been an anion.[11]

Moreover, a platinum-modified purine quartet was synthesised, which showed a preference

for anion.[12]

In this chapter an NaCl ion pair receptor is presented. G4 and A4 bind the sodium cation

(Na+) and chloride anion (Cl–), respectively, see Scheme 7.1. The cation can favourably

interact with the cation through four coordinative bonds with the oxygen atom of the four

carbonyl groups (Scheme 7.1, left), the chloride anion may be able to form four hydrogen

bonds with the N-H moiety of the amino groups (Scheme, right).
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Scheme 7.1. G4–cation and A4–anion receptor.

In total a stack of two purine quartets is obtained, G4A4, for which will be shown that it can

act as a NaCl ion pair binder in water (Figure 7.1) according to Eq. 7.1.

G4A4(aq) + Na+(aq) + Cl–(aq) → G4NaClA4(aq) (Eq. 7.1)

Figure 7.1. Ditopic receptor G4NaClA4 in aqueous solution: top view and side view.
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7.2 Summary of Computational Methods
Calculations were performed in QUILD, a subprogram of ADF, and done at the

BLYP-D/TZ2P level of density functional theory. As in several reaction products π-stacking

plays a large role, it must be treated properly, which is done by the BLYP-D functional. In

chapter 5, the outstanding performance of BLYP-D has been demonstrated for stacked dimers

of adenine-thymine and guanine-cytosine, as it could reproduce very accurate ab initio

binding energies. The reaction as defined by Eq. 7.1, energy is calculated as follows

ΔEReaction = ΣEProducts – ΣEReactants (Eq. 7.2)

which means the reaction energy ΔEReaction is the difference between the sum of the energies

of the products and the sum of the energies of the reactants. In some cases the difference

between two reaction energies is given to indicate the extra stabilisation. Other parameters as

bond energy and stabilisation energy can be analoguously derived from previous chapters.

Individual bases were optimised without any symmetry restrictions. A4 and G4 were

optimised in C4h symmetry, fully planar arrangements, and stacks were optimised in

C4(Bowl) symmetry. Solvent effects due to water were treated implicitly by the COSMO

method. However, the parameters for the free ions were adapted such that experimental

solvation energies could be reproduced. Furthermore upon treating solvent effects, the

dispersion correction should not be modified. The interested reader is referred to chapter 2,

for more details about the computational settings.

7.3 Results and Discussion
In Scheme 7.2 several conceivable steps are shown that lead to the formation of the

ditopic receptor, in both the gas phase as well as solution. The numbers that are presented are

relative reaction energies and are, as explained above, done at the BLYP-D/TZ2P level. As a

common starting point the combination of the separate 9-methylated bases with the ions is

used: 4G + 4A + Na+ + Cl–. It can be easily seen that in water reaction energies are about

two- or threefold lower than in the gas phase, but the trends remain the same. Some features

will be discussed in more detail.

In the first step, the two empty quartets G4 and A4 are formed, which go along with a

reaction energy of of –112 and –50 kcal/mol in the gas phase and water solution,

respectively. The bonding in the G4 quartet is about as twice as strong in comparison with the
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bonding in of the A4 quartet, –79.2 kcal/mol and –32.5 kcal/mol in the gas phase and –33.8

kcal/mol and –16.0 kcal/mol, both respectively (see also previous chapters). This goes nicely

along with the fact that the G4 quartet has twice as many hydrogen bonds, eight, than the A4

quartet, namely four.

In the second step, out of the quartets two species can form i) a G4 quartet with Na+ and

an A4 quartet with Cl– or ii) the formation of a G4A4 stack. With respect to the first step the

formation of G4Na+ and A4Cl– goes along with an extra stabilisation of –158 kcal/mol and the

formation of the G4A4 stack yields an extra stabilisation of –54 kcal/mol. These two events

yield in water the same energy stabilisation of –36 kcal/mol. Individually the insertion of Na+

in G4 and of Cl– in A4 gains –114.5 kcal/mol and –44.1 kcal/mol, respectively in the gas

phase, and –33.9 and –2.9 kcal/mol, respectively, in water solution.

Scheme 7.2. Reaction energies (in kcal/mol) of various stages of complexation in the
formation of the ditopic receptor G4NaClA4, starting from four 9-methylguanines (G), four 9-
methyladenines (A) and the ions Na+ and Cl– in the gas phase (in black) and in aqueous
solution (in red), computed at BLYP-D/TZ2P.

Finally, in the third step the behaviour of the total ditopic receptor is described. There are

two possible reaction pathways to reach the final step. The ditopic receptor can be formed by

two pathways: i) inclusion of Na+ and Cl– in the G4A4 stack and ii) the stack of the earlier

discussed fragments G4Na+ and A4Cl–. In the gas phase both pathways are possible in the

sense that these go along with stabilisation of –211 and –107 kcal/mol, in solution the

stabilisation energy of the two pathways amount to both –46 kcal/mol, respectively. The
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overall formaton of the ditopic receptor from four separate 9-methylguanines,

9-methyladenine and the ions Na+ and Cl– in water is –132 kcal/mol. Moreover, it is the most

stable reaction product because G4Cl–A4 and G4Na+A4 form with –203 and –278 kcal/mol,

respectively. All in all, it is likely that the ditopic receptor can exist.

With respect to the geometry there are other interesting features that are important to

note, and for this reason G4A4 and G4NaClA4 will be compared, thus geometrical changes due

to the inclusion of the ions pair NaCl are are given in Table 7.1

Table 7.1. Selected distances (in Å) of G4A4 and G4Na+Cl–A4 in both the gas phase as well as
solution. Distances refer in most cases to separations from plane, except for Na-Cl.

G4A4 G4Na+Cl–A4

Gas phase
O6-N1 2.79 2.81
N2-N7 2.88 2.86
N6-N7 2.88 2.98
G4-A4 3.08 3.14
G4(O6)-A4(N6) 2.84 3.16
G4-Na+ -- 1.08
G4(O6)-Na+ -- 0.71
A4-Cl– -- 0.70
A4(N6)-Cl– -- 0.31
Na-Cl -- 2.75

COSMO
O6-N1 2.82 2.82
N2-N7 2.88 2.86
N6-N7 2.90 3.01
G4-A4 3.09 3.20
G4(O6)-A4(N6) 2.85 3.33
G4-Na+ -- 0.84
G4(O6)-Na+ -- 0.70
A4-Cl– -- 0.45
A4(N6)-Cl– -- 0.16
Na-Cl -- 2.80

In both the gas phase as well as solution, the hydrogen bonds of G4 are less affected than

the ones of A4 due to the presence of either Na+ or Cl–, respectively. The latter goes along

with an elongation of about 0.1 Å. It can also be seen that the stack becomes larger in size,

based on the distance between the planes that are determined by (O6)4 of G4 and (N6)4 of A4,

an increase of up to 0.5 Å can be observed. The maximal distance of 3.3 Å is a distance that

is more often observed in both B-DNA as well as G-rich quadruplex DNA. As induced by the
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insertion of the NaCl, the empty G4A4 cage will be deformed in these deformations are 12.8

and 6.9 kcal/mol in the gas phase and water solution, respectively.

7.4 Conclusion
In summary the G4A4 stack is a stable complex and able to accept NaCl in both the gas

phase as well as aqueous solution. However it is questionable whether this feature will also

present in real oligonucleotides, which are negatively charged. It should however be

mentioned that anion binding to polyanionic DNA has indeed been found.[13] Consequently,

the binding of a chloride to an A4 quartet is very well conceivable. This process may even be

facilitated by the fact that the negative charges of the backbone are screened by cations, a

feature has been mentioned in chapter 1.
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Summary in English, Dutch and German

Summary
In this thesis, studies are presented of computations on metal-nucleobase complexes,

based on density functional theory (DFT).  This research field is very wide,[1] and that is why

a selection of research topics has been made. The following systems of nucleobases are

described. First, the Watson-Crick base pairs between adenine and thymine (AT) and

between guanine and cytosine (GC) without and with consideration of the crystal

environment. Second, complexes of platinum (PtII) and 1-methyluracil (1-MeUH) or

1-methylthymine (1-MeTH), in which the stabilisation of a rare tautomer is put central. In

addition, it is also investigated in which rare-tautomer form a guanine base is present, if PtII

coordinates to N1. Third, larger aggregates of nucleobases are described, in particular

quartets. For instance, the cation and anion binding properties of  adenine quartets (A4) are

demonstrated. Finally, a stack of one guanine (G4) and one A4 quartet is presented, which can

function as a receptor for sodium chloride (NaCl). Now a summary per chapter is given.

Chapter 1 and 2 are, respectively, an introducion to metal-nucleobase chemistry and

an overview of the theoretical methods that are used in this thesis.

In chapter 3 accurate ab initio reference data[2] on hydrogen bond lengths and their

binding energy of the Watson-Crick pairs AT and GC are compared with DFT results.

Amongst a series of seven popular density functionals (a.o. BLYP, B3LYP, BP86 and

PW91), BP86 gave the best agreement. This result is based on the gas phase in which no

crystal environment (water molecule, Na+-ion) is taken into account. If this is done, though,

structural changes that are induced hereby are mirrored by all used functionals. Promising

functionals are BP86 and PW91, which reproduce both the ab initio as well as experimental

values of the hydrogen bond lengths.[3] At contrast, B3LYP gives for AT in the gas phase

hydrogen bond lengths that match these of the experiment, but this is not true for GC. It is

however more important to notice in case of B3LYP, that when the crystal environment is

taken into account, the hydrogen bonds become too long with respect to the exprimental

data.[3] This shows that the widely used and popular functional B3LYP contains a deficiency.

Chapter 4 shows how rare tautomers of, among others, 1-MeUH or 1-MeTH can be

stabilised through coordination to PtII. This is visualised by calculating the reaction energy of

the exchange of the water ligand in the complex [PtII(A)(B)(C)(OH2)]q (A, B, C = NH3, Cl–)

by 1-MeUH or 1-MeTH. The reaction energy was calculated using the BP86 functional, with
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relativistic corrections. The gas phase results are governed by the net charge q, which is

determined by the composition of the ligands A, B and C. The used complexes had a net

charge varying between +2 and –1. In case the complex has a charge of +2 (A, B, C are all

NH3), all products have a negative reaction energy, which means all of these can be formed.

In the case q = +2, the reaction energy is also the most negative, meaning the products are the

best stabilised. Decreasing the charge will make as a consequence, the reaction energy more

positive, thus the products are less stabilised. In some cases, the reaction energy becomes

positive, which means the respective product can not be formed. Taking into account

solvation significantly affects the results as compared to the gas phase. The reaction energies

become less exothermic, in some cases even positive. However, the dependence on the

charge is less pronounced than in the gas phase. Moreover, solvation makes the exchange

reaction of the positively charged PtII complexes less favourable, but it promotes those of the

negatively charged complexes. In solution a rare tautomer of both 1-MeUH as well as

1-MeTH is stabilised via PtII binding at N3. This rare tautomer species is present in its

4-hydroxo-2-oxo form, which is also found experimentally.[4] The results on PtII bonding to

N1 of guanine show that a rare tautomer is stabilised, in which the proton binds to N7. This is

also experimentally observed.[5] Without such coordination, this rare tautomer would be

present in only very small amounts (KTaut ~ 10–5).[6] The term “metal-stabilised rare

nucleobase tautomer”, which has been proposed about two decades ago, is thus very

adequate.

Starting from chapter 5 larger aggregates of nucleobases are considered, in particular

quartets. In these cases, dispersion can play an important role and one has to use a functional

that is able to cope with dispersion. This is not possible with the usual GGA functionals but it

is with the so-called dispersion-corrected functionals such as BLYP-D, BP86-D and PBE-D.

The addition ‘-D’ indicates the dispersion correction. First, for a group of molecules in which

dispersion plays a big role, ab initio data[7] were compared to the DFT-D results, and BLYP-

D gave the best agreement. Moreover, the BLYP-D functional could to excellent agreement

reproduce ab initio binding energies of stacked and hydrogen bonded AT and GC.[2] Next, by

use of the BLYP-D functional, minima of several A4 quartets were localised. These quartets

differ in hydrogen bond patterns. They have a common donor, the N-H bond of the amino

group, but the acceptor site differs and can be N1 (A4-N1), N3 (A4-N1) or N7 (A4-N7). In this

chapter, it is clearly shown that a correct treatment of dispersion is decisive for finding the

correct minima. More drastically, the minima obtained with BLYP-D, are no minima for
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B3LYP. This illustrates the inability of B3LYP to treat dispersion. By choosing the wrong

functional, the order of stabilisation of different minima of one and the same A4 quartet is

predicted wrongly, which leads to chemically wrong conclusions.

Chapter 6 is an extension of chapter 5 in the sense that the ion binding properties of

the adenine quartets presented in the latter are investigated here. The minima of A4 associated

with an ion are in general non-planar structures. An important feature in this chapter is the

simulation of an A4 as were it in a stack of quartets. Therefore, the quartet was optimised in a

planar manner, but the amino groups were allowed to pyramidalise. Moreover, the distance of

the ion with respect to the central cavity was optimised as well. These simulations lead to an

interesting view and the quartets can be grouped into two classes. The ion binding pattern of

A4-N1 and A4-N7 resemble each other but A4-N3 shows a reversed behaviour. Essentially,

the orientation of the N-H bond that does not participate in hydrogen bonding with an

adjacent adenine base is decisive for what ion is bound and for how it is bound. In the case of

A4-N1 and A4-N7, this bond points into the center which makes a favourable interaction

possible with the anion. The N3 atoms of these quartets are at the outside of the quartets, and

can interact through their lone pairs with cations. In A4-N3 this N-H bond is exposed to the

outside which favours an interaction with an anion, its N1 atoms point to the center of the

quartets where it can interact with a cation through its lone pair. In summary, through the

orientation of the N-H bond that does particiapte in hydrogen bonding with an adjacent base,

anions prefer to bind at the outside and cations at the outside (A4-N1 and A4-N7) and vice

versa (A4-N3).

 In chapter 7, it is investigated whether a stack of G4 and A4-N7 quartets can be used as

a receptor for NaCl. Hereby, advantage has been taken of two preceding chapters. From

chapter 5 it is taken that the BLYP-D functional treats dispersion very well. This is also

needed here, because a number of stacks will be described. From chapter 6 it has been taken,

that an A4 quartet can accept an anion. G4 is known from experiment to be a cation acceptor.

Starting from four adenine and four guanine bases, and the ions Na+ and Cl–, it is shown that

such a receptor can be made, in both the gasphase and solution. The stack of a guanine and an

adenine quartet having Na+ and Cl– inside is quite stable with respect to the same stack with

only Na+ or only Cl–.
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Samenvatting
In dit proefschrift worden studies gepresenteerd van berekeningen op basis van

dichtheidsfunctionaaltheorie (DFT) aan metaal-nucleobase complexen. Dit onderzoeksveld is

zeer breed,[1] en om die reden is er een keuze gemaakt tussen diverse

onderzoeksonderwerpen. De volgende systemen van nucleobasen worden beschreven. Ten

eerste de Watson-Crick basenparen adenine-thymine (AT) en guanine-cytosine (GC) met en

zonder kristalomgeving. Ten tweede complexen van platina (PtII) en 1-methyluracil

(1-MeUH) en 1-methylthymine (1-MeTH), waarbij de stabilisering van zeldzame tautomeren

centraal staat. Als toevoeging word ook van guanine bepaald, welke tautomere vorm deze

base aanneemt, wanneer PtII aan N1 bindt. Ten derde worden grotere aggregaten van

nucleobasen beschreven. Er wordt gedemonsteerd dat adenine (A4) kwartten de mogelijkheid

bezitten anionen en cationen te binden. Tot stot wordt een stapel van een guanine (G4) en een

adenine kwartet gepresenteerd die kan functioneren als een receptor voor natriumchloride

(NaCl). Nu volgt een korte samenvating per hoofdstuk.

In hoofstuk 1 en 2 wordt een inleiding over metaal-nukleobase chemie respectievelijk een

overzicht van de in dit proefschrift gebruikte theoretische methoden gegeven.

In hoofdstuk 3 worden nauwkeurige ab initio literatuurwaarden,[2] van

waterstofbruglengten en hun bindingsenergie van de Watson-Crick basenparen AT en GC

vergeleken met DFT resultaten. In een serie van populaire funktionalen, o.a. BLYP, B3LYP,

BP86 en PW91, gaf BP86 de beste overeenkomst met de ab initio data. Dit resultaat is op

basis van de gasfase, waarbij de kristal omgeving (water moleculen en Na+-ion) niet zijn

meegenomen.  Als dit wel gedaan wordt, worden de geometrische veranderingen, die

hierdoor geïnduceerd worden, weerspiegeld door alle gebruikte functionalen. Veel belovende

fuctionalen zijn BP86 en PW91, die zowel de ab initio als de experimentele waarden voor de

waterstofbruglengten reproduceren.[3] Daarentegen geeft B3LYP in de gasfase voor het

basenpaar AT goede watersofbruglengten die vergelijkbaar zijn met het experiment, maar dat

geldt niet voor GC. Het is echter veel belangrijker te noemen dat wanneer voor B3LYP de

kristalomgeving wordt meegenomen, de waterstofbruglengten te lang zijn, met betrekking tot

de experimentele data.[3] Dit toont aan dat de veel gebruikte, populaire B3LYP functionaal

een deficiëntie heeft.

Hoofdstuk 4 laat zien hoe zeldzame tautomeren van 1-MeUH en 1-MeTH kunnen worden

gestabiliseerd door binding aan PtII. Dit wordt aanschouwelijk gemaakt door de

reaktie-energie te berekenen van de uitwisseling van het water ligand in het complex



Summary in English, Dutch and German

122

[PtII(A)(B)(C)(OH2)]q (A, B, C = NH3, Cl–) tegen 1-MeUH of 1-MeTH. Reaktie-energieën

werden berekend met de BP86 funktionaal, waarbij ook rekening is gehouden met

relativistische effekten. De gasfase resultaten worden overheerst door de netto lading q en

worden bepaald door de compositie van de liganden. De gebruikte complexen hadden een

lading variërend van +2 tot –1. In het geval dat de lading van het complex +2 is (A, B, C zijn

allen NH3), is de reactie energie negatief voor alle producten, wat inhoudt dat deze allen

gevormd kunnen worden. De reaktie energie is bij q = +2 het meest negatief. Dat betekent dat

de producten het beste worden gestabiliseerd. Het verlagen van de lading heeft tot gevolg, dat

de producten minder goed worden gestabiliseerd, dus dat de reaktie-energie hoger wordt. In

sommige gevallen wordt een positieve reaktie-energie waargenomen en kan het bijbehorende

product niet gevormd worden. Het meenemen van oplosmiddeleffecten (water) beïnvloedt de

resultaten in vergelijking met de gasfase, zeer. De reaktie-energie is veel minder exotherm,

en in sommige gevallen zelfs positief. Echter, de ladingsafhankelijkheid van de reactie-

energie is veel minder uitgesproken dan in de gasfase. Verder wordt door

oplosmiddeleffecten de uitwisselingsreaktie minder gunstig als het gaat om positief geladen

PtII-complexen, maar gunstiger als als het gaat om negatief geladen PtII-complexen. In

oplossing wordt een zeldzame tautomeer van zowel 1-MeUH als 1-MeTH gevormd, door PtII

binding aan N3. Deze zeldzame tautomeer komt voor in zijn 4-hydroxo-2-oxo vorm, welke

ook experimenteel waargenomen is.[4] De resultaten van PtII-binding aan N1 van guanine

laten zien, dat guanine in oplossing als een zeldzame tautomeer voorkomt, waabij het proton

aan N7 gebonden is. Dit is ook experimenteel geobserveerd.[5] Zonder deze platinacoördinatie

zouden deze zeldzame tautomeren slechts in zeer kleine hoeveelheden voorkomen

(KTaut ~ 10–5).[6] De term “metaal-gestabiliseerde zeldzame tautomeer”, die ongeveer twintig

jaar geleden werd geopperd, is dus zeer passend.

Vanaf hoofdstuk 5 worden grotere systemen van nucleobasen, in het bijzonder

kwartetten, beschreven. Hierbij kan dispersie een grote rol spelen, en het is dan ook nodig

een functionaal te kiezen die dispersie goed beschrijft. De gebruikelijke GGA-funktionalen

kunnen dit niet. Dit kan echter wel met zogenaamde dispersie-gecorrigeerde funktionalen

zoals BLYP-D, BP86-D en PBE-D. De toevoeging ‘-D’ geeft de dispersie correctie aan. Eerst

werden van een groep molekulen waar dispersie een grote rol speelt, ab initio data[7]

vergeleken met de DFT-D resultaten, waarbij BLYP-D de beste overeenkomst gaf. Tevens is

de BLYP-D funktionaal in staat om zeer nauwkeurig de ab initio bindingsenergieën te

reproduceren van de basenparen AT en GC in zowel gestapelde als waterstofbruggebonden
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vorm. Daarna worden met de BLYP-D funktionaal minima van A4 kwartetten bepaald. Deze

kwartetten hebben een gemeenschappellijke donor, namelijk de N-H binding van de

aminogroep maar de acceptor is verschillend en kan N1 (A4-N1), N3 (A4-N3) of N7 (A4-N7)

zijn. In dit hoofdstuk komt zeer duidelijk naar voren, dat het correct beschrijven van dispersie

doorslaggevend is voor het vinden van de juiste minima. Sterker, er wordt gevonden dat de

BLYP-D minima niet overeenkomen met B3LYP minima. Dit illustreert dat de B3LYP

funktionaal niet in staat is tot het juist beschrijven van dispersie. Door het verkeerd kiezen

van de funktionaal wordt de stabilisatievolgorde van diverse minima van één en hetzelfde

kwartet verkeerd voorspeld, wat leidt tot chemisch foutieve conclusies.

Hoofstuk 6 is een uitbreiding op hoofdstuk 5 omdat van de daar voorgestelde adenine

kwartten wordt onderzocht of zij anionen of cationen kunnen binden. Een belanrijk punt in

dit hoofdstuk is het bescrhijven van deze kwartetten als zaten zij in een oligonucleotide.

Hiertoe werd het kwartet in een vlakke geometrie geoptimaliseerd, met uitzondering van de

aminogroep, die mocht pyramidaliseren. Tevens werd de afstand van het ion tot het centrum

van het kwartet geoptimaliseerd. De resultaten van deze optimalisaties leidden tot een

interessant beeld waarbij de kwartetten in twee groepen kunnen worden verdeeld. De

ion-bindingspatronen van A4-N1 en A4-N7 lijken opelkaar, terwijl dat van A4-N3 een

tegengesteld gedrag vertoont. In essentie is het de orientatie van de N-H binding van de

aminogroep die niet deelneemt aan de waterstofbrug binding met aan aangrenzende adenine

base, die doorslaggevend is voor welk ion er wordt gebonden en ook voor de manier waarop

het ion gebonden wordt. In A4-N1 en A4-N7 wijst deze binding naar het centrum van het ion

en kan er een gunstige donor-acceptor-wisselwerking onstaan tussen kwartet en ion. Het N3

atoom van deze kwartetten ligt aan de buitenkant en kan interacteren via zijn vrije

elektronpaar met een cation. In kwartet A4-N3 wijst die N-H binding naar buiten, zodat het

kan interacteren met een anion. De N1 atomen liggen in het centrum en zorgen, door middel

van een vrij elektronpaar, voor een gunstige interactie met een cation. Kortom, door de

orientatie van de binding van de aminogroep die niet deelneemt aan een waterstofbrug met

een aangrenzende adenine base, binden anionen bij voorkeur aan de binnenkant en kationen

bij voorkeur aan de buitenkant van het kwartet (A4-N1 en A4-N7) en vice versa (A4-N3).

In hoofdstuk 7 wordt onderzocht of een systeem van een gestapel van een G4 en een

A4-N7 kwartet kan worden gebruikt als een receptor voor NaCl. Hierbij wordt gebruik

gemaakt van twee voorgaande hoofdstukken. Uit hoofdstuk 5 het resultaat, dat BLYP-D de

dispersie goed beschijft. Dit is ook hier noodzakelijk omdat er diverse stapels worden
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gepresenteerd. Uit hoofdstuk 6 het gevonden resultaat dat A4 anionen kan accepteren, van G4

is het experimenteel bekend dat dit kationen kan accepteren. Uitgaand van de bouwstenen, 4

adenine en 4 guanine basen, en de losse ionen Na+ en Cl– blijkt het inderdaad mogelijk een

receptor te construeren, in zowel de gasfase als oplossing. De stapel van een guanine en een

adenine kwartet met daarin Na+ en Cl– is in vergelijk met eenzelfde stapel met of alleen Na+

of alleen Cl–, bijzonder stabiel.

Zusammenfassung
In dieser Doktorarbeit werden Studien von Berechnungen auf Basis von

Dichtefunktionaltheorie (DFT) an Metall-Nukleobase-Komplexen vorgestellt. Dieser

Forschungsbereich ist sehr breit gefächert.[1] Daher wurden verschiedene Forschungsthemen

ausgewählt. Die folgenden Systeme von Nukleobasen werden beschrieben: (i) Watson-Crick-

Basenpaare Adenin-Thymin (AT) und Guanin-Cytosin (GC) mit und ohne Kristallumgebung;

(ii) Komplexe von Platin (PtII) mit 1-Methyluracil (1-MeUH) und 1-Methylthymine

(1-MeTH), wobei die Stabilisierung seltener Tautomere im Mittelpunkt steht. Außerdem wird

an Guanin untersucht, welches Tautomer dieser Base vorliegt, wenn PtII über N1 gebunden

ist; (iii) größere Anordnungen von Nukleobasen, insbesondere Quartette. Es wird unter

anderem gezeigt, dass A4-Quartette in der Lage sind, Anionen zu akzeptieren. Zum Schluss

wird ein Stapel bestehend aus einem Guanin- (G4) und einem A4-Quartett vorgestellt, der als

Rezeptor für Natriumchlorid (NaCl) dienen kann. Es folgt jetzt eine Kurzfassung der Kapitel,

in denen die Forschung besprochen wurde.

Bei Kapitel 1 und 2 handelt es sich um eine Einleitung in Metall-Nukleobasen-Chemie

und eine Übersicht der in dieser Doktorarbeit verwendeten theoretischen Methoden.

In Kapitel 3 werden genaue ab-initio-Daten[2] von Wasserstoffbrückenlängen und deren

Bindungsenergien in den Watson-Crick Basenpaaren AT und GC mit denen von

DFT-Berechnung verglichen. In einer Reihe bekannter Funktionale (u.a. BLYP, B3LYP,

BP86 and PW91) entsprachen die Ergebnisse von BP86 den ab-initio-Daten am besten.

Dieses Ergebnis gilt in der Gasphase, wobei die Kristallumgebung der Basenpaare nicht

berücksichtigt wurde. Im Fall der Berücksichtigung werden die geometrischen Änderungen,

die dadurch induziert werden, von allen gebrauchten Funktionalen wiedergespiegelt. Viel

versprechende Funktionale sind BP86 und PW91, da sie sowohl die ab-initio- als auch die

experimentellen Daten für die Wasserstoffbrückenlänge wiedergeben.[3] Dagegen ergibt

B3LYP für das Basenpaar AT in der Gasphase gute Werte für die Wasserstoffbrückenlängen,
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die vergleichbar sind mit experimentellen Daten, jedoch nicht für das Basenpaar GC. Ein

wichtigeres Ergebnis für B3LYP ist, dass mit der Berücksichtigung der Kristallumgebung,

die Wasserstoffbrücken bezogen auf experimentelle Daten[3] zu lang werden. Dieses zeigt,

dass das oft angewendete B3LYP Funktional eine Schwachstelle hat.

Kapitel 4 zeigt, wie seltene Tautomere von 1-MeUH und 1-MeTH durch

PtII-Koordinierung stabilisiert werden können. Dies wird durch die Berechnung der

Reaktionsenergie untersucht, wobei der Aqua-Ligand des Komplexes [PtII(A)(B)(C)(OH2)]q

(A, B, C = NH3, Cl–) durch 1-MeUH oder 1-MeTH ausgetauscht wird. Die Reaktionsenergie

wird mithilfe des BP86-Funktionals berechnet, wobei relativistische Effekte berücksichtigt

werden. Die Ergebnisse in der Gasphase zeigen, wie die Reaktionsenergie von der

Nettoladung q beherrscht wird, die durch die Identität der Liganden bestimmt wird. Die

verwendeten Komplexe haben eine zwischen +2 und –1 variierende Ladung. Falls q = +2 ist,

ist die Reaktionsenergie für alle Produkte am negativsten, was zeigt, dass diese Produkte am

besten stabilisiert werden. Durch Absenkung der Ladung wird die Reaktionsenergie positiver,

also sind die Produkte weniger stabilisiert. In manchen Fällen ist die Reaktionsenergie sogar

positiv, weshalb das entsprechende Produkt nicht gebildet werden kann. Die

Berücksichtigung von Lösungsmitteleffekten (Wasser) beeinflusst die Ergebnisse im

Vergleich zur Gasphase stark. Die Reaktionsenergien sind bedeutend weniger exotherm, und

in manchen Fällen sogar positiv. Allerdings ist die Ladungsabhängigkeit weniger ausgeprägt

als in der Gasphase. Darüber hinaus wird die Austauschreaktion durch Lösungsmitteleffekte

nicht begünstigt, wenn positiv geladene Komplexen involviert sind. Eine solche

Begünstigung tritt jedoch wohl auf, wenn es sich um negativ geladene Komplexe handelt. In

Lösung wird ein seltenes Tautomer sowohl von 1-MeUH als auch von 1-MeTH durch

PtII-Bindung an N3 stabilisiert. Dabei handelt es sich um die 4-Hydroxo-2-oxo-Form, die

auch experimentell beobachtet werden konnte.[4] Die Ergebnisse für über N1 am Pt

gebundenes 9-Methylguanin ergaben, dass ein seltenes Tautomer von Guanin in Lösung mit

N7-Protonierung vorliegt. Dieses seltene Tautomer wurde auch experimentell beobachtet.[5]

Ohne PtII-Koordinierung kommen diese seltenen Tautomere nur in geringen Mengen vor

(KTaut ~ 10–5).[6] Der Ausdruck “metallstabilisiertes seltenes Tautomer”, der vor etwa zwanzig

Jahren vorgeschlagen wurde, ist darum sehr passend.

Ab Kapitel 5 werden größere Anordnungen von Nukleobasen, insbesondere Quartette,

beschrieben. Hierbei kann Dispersion eine große Rolle spielen, deswegen ist es notwendig

ein Funktional anzuwenden, das in der Lage ist, Dispersion zu beschreiben; die üblichen
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GGA-Funktionale sind hierzu nicht in der Lage. Möglich wird eine solche Beschreibung

jedoch durch die Anwendung von dispersions-korrigierter Funktionalen wie BLYP-D, BP86-

D und PBE-D möglich. Der Zusatz ‘-D’ zeigt diese Dispersionskorrektur an. Zuerst werden

von einer Gruppe Moleküle, wobei Dispersion eine große Rolle spielt ab-initio-Daten[7]

verglichen mit DFT-D Daten, wobei BLYP-D die beste Übereinstimmung hatte. Weiterhin ist

BLYP-D in der Lage sehr genaue ab-initio-Daten der Bindungsenergie von AT und GC,

sowohl in gestapelter als auch in wasserstoffbrückengebundener Anordnung, wiederzugeben.

Anschließend wurde von einigen A4-Quartetten die Gleichgewichts-Struktur bestimmt. Die

Quartette unterscheiden sich zwar in ihrem Wasserstoffbrückenbindungsmuster, haben

jedoch miteinander einen gemeinschaftlichen Donor, eine der N-H-Bindungen der

Aminogruppe, wobei der Akzeptor variabel ist. Dabei handelt es sich um N1 (A4-N1), N3

(A4-N3) oder N7 (A4-N7). In diesem Kapitel ist eine Berücksichtigung von Dispersion

erforderlich, damit das korrekte Minimum gefunden werden kann. Die Gleichgewichts-

Struktur für BLYP-D entspricht nicht der von B3LYP. Damit ist noch eine weitere

Schwachstelle für B3LYP illustriert: es ist nicht in der Lage Dispersion zu beschreiben. Die

falsche Wahl eines Funktionals kann dazu führen, dass die energetische Folge der

Stabilisierung von mehreren Minima von ein und demselben A4-Quartet falsch vorhersagt

wird. Dieses kann zu chemisch falschen Schussfolgerungen führen.

Kapitel 6 ist eine Erweiterung von Kapitel 5, weil dort untersucht wird, ob die dort

vorgestellten Adenin-Quartette Anionen oder Kationen binden können. Ein wichtiger Punkt

dieses Kapitels ist die Simulation eines A4 als sei es in einem vierstrang-Oligonukleotid.

Daher wird eine planare A4-Struktur optimiert, wobei die Aminogruppe pyramidalisieren

darf. Auch wird der Abstand zwischen Ion und Zentrum des Quartetts optimiert. Die

Ergebnisse dieser Berechnungen zeigen ein interessantes Bild, wobei sich die Quartette in

zwei Gruppen aufteilen lassen. Die Ionenbindungsmuster von A4-N1 und A4-N7 sind

vergleichbar, das von A4-N3 verhält sich dagegen gegenteilig. Im Wesentlichen ist die

Orientierung der N-H Bindung der Aminogruppe, die nicht an Wasserstoffbrückenbindung

mit einer angrenzenden Adenin Base  beteiligt ist, ausschlaggebend dafür, ob und wie ein

Anion oder Kation gebunden wird.  In A4-N1 und A4-N7 ist diese Bindung nach innen

orientiert, was eine günstige Donor-Akzeptor-Interaktion mit einem Anion hervorruft. Das

N3-Atom liegt an der Außenseite und kann mittels eines freien Elektronenpaars mit einem

Kation interagieren. In A4-N3 ist diese Bindung nach außen orientiert, und kann entsprechend

mit einem Anion wechselwirken. Die N1 Atome liegen im Zentrum dieses Quartetts, und
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können mittels eines freien Elektronenpaars mit einem Kation interagieren. Somit werden

durch die Orientierung der N-H-Bindung der Aminogruppe, die nicht an

Wasserstoffbrückenbindung mit einer angrenzenden Adenin Base beteiligt ist, Anionen in der

Mitte von A4-N1 oder A4-N7 gebunden und Kationen an der Außenseite, oder umgekehrt

(A4-N3).

In Kapitel 7 wird gezeigt, dass ein Stapel von einem G4- und A4-N7 Quartett in der Lage

ist, als Wirt für Natriumchlorid zu dienen. Hierbei werden Ergebnissen aus vorherigen

Kapiteln benutzt: Erstens aus Kapitel 5 wird die Tatsache benutzt, dass BLYP-D in der Lage

ist, Dispersion am besten zu beschreiben. Das ist hier auch sehr wichtig, weil in diesem

Kapitel gestapelte Komplexe vorkommen. Aus Kapitel 6 wurde die Tatsache benutzt, dass

A4-Quartette in der Lage sind, Anionen zu binden. Aus Experimenten ist bekannt, dass G4-

Quartette Kationen akzeptieren können. Ausgehend von ihren Bausteinen: vier Guanin- und

vier Adenin-Basen und den Ionen Na+ und Cl– ist es in der Tat möglich, solch einen Rezeptor

sowohl in der Gasphase als in Lösung zu konstruieren. Der Stapel aus einem Guanin- und

Adeninquartett mit Na+ und Cl– im Innern, ist im Vergleich zu den gestapelten Quartetten mit

nur einem Ion (Na+ oder Cl–) besonders stabil.
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