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Abstract

The de�nition of software development methods encompasses the de�nition of syntax

and static semantics of speci�cation languages. These languages determine documents to

be produced during the application of a method. Developers demand language-based tools

that provide document production support, check syntax and static semantics of documents

and thus implement methods. A number of methods are used in the di�erent tasks of

software construction and a need arises for their integration. This method integration

must determine inter-document consistency constraints between documents produced in

the various tasks. The various tools that are used during the process must, therefore, be

integrated in a way that they implement the required method integration. Unfortunately,

the particular mix of methods that is used in one software process need not be appropriate

for another. Method integration must, therefore, become part of process modelling and

tool integration must be adjusted for each di�erent process. The focus of this paper is on

the speci�cation of integrated tools. We outline the main concepts of a dedicated, object-

oriented tool speci�cation language, namely GTSL. The language was de�ned, implemented

and evaluated in the GOODSTEP project. Part of the evaluation was the construction of a

set of integrated tools for C++ class library maintenance for British Airways, an industrial

project partner.

1 Introduction

A software process that develops and maintains a software system consists of a number of dif-
ferent tasks. Examples are requirements analysis tasks where requirements of future customers
of a software system are elicited or architectural design tasks where the di�erent components
of software systems and relationships among them are identi�ed. The suggestion of the Wa-
terfall model [Roy70] that these tasks be performed in mutual exclusion has been proved
infeasible [Boe88]. Instead the tasks are often carried out in an intertwined manner.

Tasks are performed using particular methods, like structured analysis [dM78] for requirements
analysis or object-oriented methods (for instance the Booch methodology [Boo91] or the Object
Modelling Technique [RBP+91]) for architectural design. Method de�nitions have to determine
formal graphical or textual languages. Examples are data 
ow diagrams or class hierarchies.

�This work has been partly funded by the CEC as part of ESPRIT-III project 6115 (GOODSTEP).
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These languages then determine document types and the purpose of each task of a software
process is to create, analyse and maintain documents of the types identi�ed. Hence, the
de�nition of a method encompasses the precise de�nition of document types. Document types
are de�ned in terms of syntax and static semantics of the underlying speci�cation languages.

A particular mix of methods that is appropriate in one process need not be appropriate for
another. A process developing a real-time application, for instance, should use a requirements
de�nition language that can express response time constraints, but such a language might
be unnecessarily complicated for customers of a banking application where response time
constraints need not be expressed. Likewise, the language used for module interface design
will have to be directed towards the programming language used in the implementation task.
This means that it is impossible to �nd the mix of methods that could be used in arbitrary
software processes. One of the main goals during software process modelling is, therefore, to
identify those methods and document types that are most appropriate for the tasks to be
carried out during the process being modelled.

Apart from static semantic constraints of the formal languages, there are also consistency
constraints between di�erent documents. These inter-document consistency constraints are not
con�ned to documents of the same type but frequently exist between documents of di�erent
types. A need for method integration arises whose aim is to de�ne the consistency constraints
that documents must obey. An important factor for the quality of a software system is then
whether these constraints have been de�ned properly and are respected by the documents
produced during the process. Due to the fact that a method mix is process-speci�c, method
integration must become part of process modelling and deserves appropriate attention.

Methods are implemented by tools that software developers can use to apply the method. To
implement method integration then requires tools to be integrated. The main contribution
of this paper is the presentation of the GOODSTEP1 tool speci�cation language (GTSL), an
object-oriented language dedicated to the speci�cation of integrated tools. A compiler for this
language has been implemented and enables tools to be constructed and to be adapted to
particular processes e�ciently. The rest of this paper will be structured as follows. In the
next section, we discuss the need for method and tool speci�cation in more detail. Section 3
suggests a representation for documents as a basis for the speci�cation of tools and document
types and relates it to the literature. In Section 4 we present the main concepts of GTSL.
Section 5 describes the main results of an evaluation that has used GTSL to construct tools
in order to implement methods for the development and maintenance of class libraries within
British Airways, an industrial partner of the GOODSTEP project. We conclude the paper in
Section 6 with work that remains to be done.

2 Method and Tool Customisation Required

As an illustrating example that we will use throughout this paper consider Figure 1. It
displays four di�erent documents of four di�erent types. Starting from the bottom left, there
are in clock-wise order an entity relationship diagram, an architectural de�nition that identi�es
di�erent types of modules as components of a software system2, a module interface speci�cation
that identi�es exported types and operations as well as an import interface, and a module

1The purpose of GOODSTEP is to enhance a general object database for software engineering processes.
2The detailed notion is of no concern here and we refer to [ES94].
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Figure 1: Inter-Document Consistency Constraints

implementation that implements the exported types and operations of a module in the C
programming language. The integration of the underlying methods requires a number of
inter-document consistency constraints to be de�ned between the respective document types.
Entities of the entity relationship diagram, for instance, must be re�ned in terms of abstract
data type modules in the architecture diagram. Modules in these diagrams, in turn, must be
re�ned by a module interface de�nition, that de�nes the export and import interface in detail.
Each arrow of the architecture diagram should appear as an entry in the import interface of
the module interface de�nition. Operations and types that have been identi�ed in the export
interface must be properly implemented in the C document. Therefore, parameter lists in the
interface design and C should match as well as the result types. Moreover, import interfaces are
re�ned by pre-processor #include statements. Vice versa, there should be no such statements
when the design does not include the respective entry in the import interface, otherwise there
would be dependencies among source code components that are not properly re
ected in the
design.

The need arises to assist software developers in the production of documents that meet inter-
document consistency constraints like the ones outlined above, and thus to implement the
methods and their integration. Users3, therefore, require a tool for each document type. Such
a tool should then support the methods and o�er commands to edit multiple documents of
that type. It should be supportive in achieving syntactic and static semantic correctness of

3The software developers that use tools are referred to as users hereafter.
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documents, browsing to semantically related documents and most important, it must check
for inter-document consistency. This requires that tools be aware of the syntactic structure
of documents. We refer to the syntactic units of documents as increments hereafter. The
example of Figure 1 displays the user interfaces of tools contained in the Groupie environment
[ES94]. They are used to edit, analyse and check documents of the types identi�ed above.

To implement method integration, tools have to check for inter-document consistency con-
straint violations. Di�erent strategies can be considered how a tool should react to a con-
straint violation. It might handle a violation in a lazy way and only visualise an inconsistency
to the user when it has been introduced. This visualisation might be achieved by the use of
colours or by underlining. In the example of Figure 1, a parameter list in the C implemen-
tation is underlined because it does not match the parameter list determined in the interface
design. Detailed error messages should be provided on demand in order not to overload the
document representation. A tool might also follow an eager approach and reject the execu-
tion of commands that would violate an inter-document consistency constraint. A tool might
even automatically correct erroneous increments. Upon a change of one increment, it can,
for instance, automatically modify related increments in other documents in such a way that
consistency is retained. We refer to these automatic modi�cations of related increments as
change propagations.

The implementation of method integration might depend on the process state. A constraint
violation that is tolerable in an early stage of a software process might become intolerable
when the process reaches a certain deadline where documents must become consistent. As
an example, consider again the above scenario. An import from a non-existent module in a
module interface de�nition is quite tolerable during the design. If the tool did not tolerate such
errors bottom-up design would be enforced, which is not always appropriate. The constraint
may, therefore, be violated temporarily. If implementation of the module has started, however,
the constraint should not be violated because the implementation of the module might depend
on a type that might never be implemented and if that is detected too late a signi�cant amount
of e�ort is wasted.

Most software processes are conducted by multiple rather than single developers. This implies
that we also have to consider the concurrent use of tools by multiple users. Di�erent versions
of documents must be managed to facilitate independent document development [SS95]. The
methods de�ned in terms of document types, therefore, also have to identify the granularity
for version management. Versions are then used to allow users to edit documents in isolation

for a certain period of time. However, due to inter-document consistency constraints, the de-
velopment cannot be performed in complete isolation. At some point in time, the documents
produced by one developer must become consistent with documents produced by other devel-
opers. Users must then share their document versions. Consider in the above example, that
a requirements engineer uses the entity relationship tool to de�ne the information model of a
software system, while a system architect is in charge of the architectural design of the system.
Their document versions should become consistent with each other before implementation be-
gins, otherwise signi�cant e�ort might be wasted during implementation if, for instance, wrong
names are used or it turns out that an implemented module is obsolete. They, therefore, have
to edit the same versions of the entity relationship and the architecture diagram concurrently.

To reach a state of consistency, users then want to see the impact of concurrent document up-
dates as soon as possible. Tight cooperation then requires updates to a document version to
be done in such a way that all tools concurrently displaying a document version are informed
of the update as soon as possible. They should then redisplay the document version in order
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to re
ect the update as well. In the above example of inconsistent parameter lists, a designer
might remove the inconsistency by deleting the additional parameter. If a programmer is con-
currently accessing the implementation document that corresponds to the interface, he or she
should see, as soon as possible, that the inconsistency has been resolved and requires no fur-
ther attention. The shared and cooperative updates of document versions must, therefore, not
be disabled by exclusive locking of complete documents by long transactions but transactions
must be short and locking must be done with a more �ne-grained granularity.

Di�erent methods and languages are used in a software process, depending on the process
model. Companies often do not use methods and languages as de�ned originally, but have
their own guidelines to use only a particular subset. Hence, there is a need for speci�cation
languages that are devoted to the de�nition and customisation of methods. As users require
tools to e�ectively apply methods, the speci�cation languages must de�ne tools in a way
that they implement the respective methods. Method integration depends on the process-
speci�c mix of methods. Therefore there is a need to de�ne, or at least to customise, method
integration for each di�erent process model. Since method integration must be implemented in
terms of tools that check inter-document consistency constraints, the speci�cation languages
must be capable of de�ning the required tool integration. Our concern is thus to ease this
tool construction and customisation as far as possible. We, therefore, focus on generating
integrated tools that implement methods and their integration from appropriate high-level
speci�cations.

3 Document Representation

Before we can identify concepts of a higher-level speci�cation language, we will have to un-
derstand how documents should be represented. During this discussion we compare our con-
siderations to related work. The common internal representation for documents manipulated
by tools is an abstract syntax tree of some form [RT81, DGKLM84, HN86]. Nodes in the
abstract syntax tree often have additional attributes whose values represent semantic informa-
tion such as references to a string table, symbol tables or type information. Operations, like
insertion of a new parameter list place holder can easily be implemented as operations on this
abstract syntax tree. It can be implemented as subtree replacement. After free textual input,
the abstract syntax tree can be established with parsing techniques well-known from compiler
construction [ASU86].

Static semantic checking of a document that is represented as an abstract syntax tree can be
done by attribute evaluations along parent/child paths in the document's attributed abstract
syntax tree [Knu68, RT84]. The evaluation paths are computed at tool construction time based
on attribute dependencies. If inter-document consistency checks between di�erent documents
are implemented by attribute evaluations, all inter-document consistency constraints must
be checked at an arti�cial root node, which has sub-trees for each document. With respect
to concurrent tool execution many concurrency control con
icts arise at these root nodes
and decrease e�ciency. Therefore, techniques based on the introduction of additional, non-
syntactic paths for more direct attribute propagation have been developed [JF82, Nag85,
Hoo87]. They generalise the concept of abstract syntax trees to abstract syntax graphs. Such
non-syntactic paths implement semantic relationships that connect syntactically disjoint parts
of possibly di�erent documents even of di�erent types. They can be used for consistency
checking, change-propagation when the document is changed and even for implementing static
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semantic analysis and browsing facilities. To handle these semantic relationships in a consistent
way, the obvious strategy is to view the set of documents making up a project as a single
project-wide abstract syntax graph.

We note that this generalisation to a single project-wide graph does not necessarily undermine
the concept of a document as a distinguishable representation component. If we distinguish
between aggregation edges in the graph, which implement syntactic relationships, and reference
edges, which arise from semantic relationships, then a document of the project is a subgraph
whose node-set is the closure of nodes reachable by aggregation edges from a document node
(i.e., a node not itself reachable in this way), together with all edges internal to the set4.
The edges not included in this subgraph are then necessarily the inter-document relationships
inherent in the project. Nodes that cannot have outgoing aggregation edges are called terminal

nodes, for their origin lies in terminal symbols of the underlying grammar. Those nodes that
may have outgoing aggregation edges shall be called non-terminal nodes accordingly.

As an example, consider Figure 2. It outlines how the di�erent abstract syntax trees repre-
senting documents of Figure 1 are integrated to a project-wide abstract syntax graph. The
re�nement of entities de�ned in the entity relationship diagram in terms of modules of the
architecture is re
ected by inter-document reference edges labelled ToArch. Likewise, the re-
�nement of modules of the architecture de�nition in terms of module interface documents
is stored by means of reference edges labelled with ToDesign. Intra-type reference edges la-
belled DefinedIn represent the use/declare relationship between type increments of a module
interface document. The parameter type of function CreateWindow with the attribute STRING,
for instance, has an outgoing reference edge to the node where it is declared, that is to the
TypeImport node with attribute STRING. This node represents an import that is itself con-
nected via an inter-document reference edge labelled ImpFrom to another node contained in the
subgraph of module BasicTypes where the type is exported.

Graph grammars have been suggested in [ELS87, Sch91, ELN+92] to specify the structure of
such abstract syntax graphs. Productions of the grammar can then be considered as available
operations to modify abstract syntax graphs. Graph grammars, however, do not appropri-
ately specify concurrency constraints, lexical syntax, external document representations and
dialogues between users and tools during command execution. Moreover, graph grammars
do not impose a particular structuring paradigm and speci�cations of graphs that occur in
practice tend to become so complex that they cannot be managed appropriately.

4 The Tool Speci�cation Language GTSL

On the basis of the above concepts, we can now focus on the question how document types and
tools are de�ned appropriately. We propose GTSL for that purpose. The language allows tool
builders to de�ne static and dynamic properties of syntax graphs as well as mappings between
syntax graphs and external document representations. The static properties that are to be
de�ned are the various node types, their attributes and the edges that may start at or lead
to nodes. Dynamic properties are, �rstly, the available tool commands and their de�nition on
the basis of syntax graph access and modi�cation operations and, secondly, the dependencies
between attribute values and reference edges that de�ne static semantics and inter-document

4What we call a subgraph here, is comparable to the notion of a composite entity in PACT VMCS
(c.f. [Tho89]).
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consistency constraints. The mappings to external document representations must de�ne the
appearance of abstract syntax graphs at the user interface of tools or in printed tool output.

For the de�nition of a project-wide abstract syntax graph, as many node types must be de-
�ned as there are productions in the underlying languages. The speci�cation of document
types and tools, therefore, becomes rather complex for methods and languages that occur in
software engineering practice. The speci�cation language must incorporate structuring facili-
ties to keep this complexity manageable. The overall speci�cation of a project-wide abstract
syntax graph should, therefore, be decomposed into the speci�cations of the various subgraphs
that represent di�erent document types and each of these subgraph speci�cations should be
decomposed into speci�cations for the node types that occur in the subgraph. GTSL supports
this decomposition in an object-oriented way. Tools are speci�ed in terms of con�gurations of
increment classes. Increment classes determine node types of the project-wide syntax graphs
and con�gurations determine the increment classes that belong to a tool.

The complexity of specifying a tool is signi�cantly reduced if tool builders can reuse already
existing tool speci�cation components. GTSL, therefore, allows the tool builder to identify sim-
ilarities among di�erent increment classes and to specify the common structure and behaviour
of increments in one class and reuse it in similar classes. The object-oriented paradigm is ex-
ploited and similarities are expressed by inheritance. De�nitions inherited from super classes
can be customised by rede�ning them. Reuse is then further supported since GTSL comes
with a library of prede�ned classes de�ning, for instance version management, common tool
commands, symbol tables or scoping rules.

Due to the heterogeneity of the di�erent static and behavioural concerns, it will hardly be
possible to �nd a unique formalism that will be appropriate for their speci�cation. Instead,
we will separate the di�erent concerns and o�er the most appropriate formalism for each of
them. Following the principle of information hiding [Par72], the de�nition of a class will be
divided into a public class interface and a private class speci�cation. The class interfaces and
speci�cations are, in turn, structured into di�erent sections that o�er di�erent paradigms to
specify the various concerns. We integrate these di�erent formalisms into a domain-speci�c
multi-paradigm language that uses rule-based, object-oriented and imperative concepts.

The node types in an abstract syntax graph de�nition play di�erent roles. If we ask a tool
builder to make these roles explicit, we will be able to de�ne a domain-speci�c type system
for GTSL that enables a number of speci�cation errors to be detected. Terminal classes,
which de�ne leave nodes of the abstract syntax tree, must not have commands to expand
child increments, whereas non-terminal classes, which de�ne inner syntax tree nodes, require
these commands. Non-terminal classes must also specify the unparsing scheme that de�nes
the external representation of their instances. Abstract classes de�ne common properties of
classes that are inherited by its subclasses. We call instances of non-terminal classes non-

terminal increments and instances of terminal classes terminal increments. We refer to them
as increments, if their position in the syntax tree is not important. Besides increment classes,
we additionally support non-syntactic classes that will be used for the declaration of non-atomic
attribute types, such as error lists or symbol tables. Instances of these classes are referred to
as attributes. If the distinction between attributes and increments is not important, we will
denote instances of classes as objects.
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4.1 Speci�cation of Static Properties

Abstract Syntax: Aggregation edges that start from nodes of a type are de�ned in the
increment class interfaces within an abstract syntax section. The abstract syntax section
is available for abstract and non-terminal increment classes. It is not de�ned for terminal
increment classes, because these must not have outgoing aggregation edges by de�nition. If a
child is de�ned in an abstract class it is inherited by all subclasses. Children are speci�ed in
the abstract syntax section with the name and a formal type that restricts child increments to
instances of the formal type or subtypes thereof. Multi-valued aggregation edges are de�ned
by the LIST type constructor. Below there are several examples of abstract syntax sections
that de�ne node types used in the graph in Figure 2.

ABSTRACT INCREMENT INTERFACE Module; ABSTRACT INCREMENT INTERFACE Commentable;

INHERIT DocumentVersion, ScopingBlock; INHERIT Increment;

... ...

ABSTRACT SYNTAX ABSTRACT SYNTAX

name:ModName; com:Comment;

END ABSTRACT SYNTAX; END ABSTRACT SYNTAX;

... ...

NONTERMINAL INCREMENT INTERFACE ADTModule; NONTERMINAL INCREMENT INTERFACE OperationList;

INHERIT Module, Commentable; INHERIT Increment

... ...

ABSTRACT SYNTAX ABSTRACT SYNTAX

type:TypeName; ol:LIST OF Operation;

opl:OperationList; END ABSTRACT SYNTAX;

imp:ImportInterface; ...

END ABSTRACT SYNTAX;

...

The distinction between di�erent types of classes enables us to exclude a number of potential
speci�cation errors. It does not make sense, for instance, to have a terminal increment class
that inherits from an abstract class, which, in turn, de�nes abstract syntax children. In that
case the terminal class would inherit these children and no longer be terminal. In addition, it is
unreasonable to have attributes or atomic types as syntax children. The type system of GTSL,
therefore, excludes these situations. Without the domain-speci�c distinction between di�erent
kinds of classes, such as if we used a conventional object-oriented programming language, we
would not have been able to detect these speci�cation errors.

Attributes: Node attributes are declared within the attribute section of increment classes.
An attribute de�nition declares a name and a type of an attribute. Non-syntactic classes can
also be used to impose a particular behaviour on attribute types. We do not address non-
syntactic classes any further here. They provide the expressive power of an object-oriented
language including multiple inheritance, construction of types and encapsulation with methods.
As an example, consider the following example from the Groupie interface editor de�nition.
It de�nes an attribute DefinedNames whose type is of class SymbolTable. It is used to maintain
associations between names and increments.

ABSTRACT INCREMENT INTERFACE ScopingBlock;

...

ATTRIBUTES

DefinedNames:SymbolTable;

END ATTRIBUTES;

...

9



Semantic Relationships: Reference edges are de�ned as pairs of unidirectional links in the
semantic relationship sections of the two increment classes that are connected by the edge5.
The explicit link denotes the direction from the source to the target increment class. The
implicit link denotes the reverse direction.

Relationships are created and deleted during static semantics and inter-document consistency
checks. Creation of a relationship is speci�ed by assigning an expression that denotes an in-
crement to an explicit link. Such an assignment �rst deletes the existing relationship, if any.
Then the increment denoted by the expression is assigned to the explicit link. Finally the
implicit link is established by including the source increment in the set that stores the implicit
link. A relationship is deleted by assigning the unde�ned value NIL to the explicit link of the
relationship. Thus creation and deletion of relationships is only controlled by the target incre-
ment class of a relationship or its subclasses. This further contributes to the enforcement of
structured speci�cations. As an example, consider the relationships DefinedIn/UsedBy between
UsingType and TypeDecl and ImpFrom/ExpTo between classes TypeImport and TypeName that are
taken from the Groupie interface editor speci�cation.

TERMINAL INCREMENT INTERFACE UsingType; ABSTRACT INCREMENT INTERFACE TypeDecl;

INHERIT UsingName; INHERIT DefiningName;

SEMANTIC RELATIONSHIPS SEMANTIC RELATIONSHIPS

DefinedIn: TypeDecl IMPLICIT UsedBy:SET OF UsingType.DefinedIn;

END SEMANTIC RELATIONSHIPS; END SEMANTIC RELATIONSHIPS;

... ...

TERMINAL INCREMENT INTERFACE TypeImport; TERMINAL INCREMENT INTERFACE TypeName;

INHERIT TypeDecl; INHERIT TypeDecl;

SEMANTIC RELATIONSHIPS SEMANTIC RELATIONSHIPS

ImpFrom:TypeName; IMPLICIT ExpTo: SET OF TypeImport.ImpFrom;

END SEMANTIC RELATIONSHIPS; END SEMANTIC RELATIONSHIPS;

... ...

Increment class UsingType de�nes an explicit link DefinedIn to an abstract increment TypeDecl.
Using that link, a UsingType increment can refer to the increment where its type is declared.
Due to polymorphism, this can be a type import or an exported type name. The relationship
is established by assigning an instance of classes TypeName or TypeImport, which are subclasses
of TypeDecl, to the link. After that, DefinedIn may be used to navigate to the corresponding
declaration increment. The implicit link UsedBy in class TypeDecl contains an implicit reference
to all the increments that refer to one particular type. That link is exploited for the de�nition of
change propagations or in a browsing command that visits all increments that use a particular
type. Similarly, the link pair ImpFrom/ExpTo models the import/export relationship between
imported and exported types.

4.2 Speci�cation of Dynamic Properties

Semantic Rules: Attributes and semantic relationships are concepts that can be used
for de�ning data structures for static semantics and inter-document consistency constraints.
Changes of attribute values and the creation or deletion of semantic relationships will be
de�ned in tool command de�nitions. These changes, however, usually require a number of
follow-on activities in order to check static semantic constraints for related increments.

5The terminology follows the concepts for relationships that have been introduced in the PCTE data
model [GMT87].
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If tool builders have to use imperative concepts to de�ne static semantics and inter-document
consistency constraints they would have to �nd valid execution orders to perform the required
follow-on actions for all potential attribute and semantic relationship changes. We strongly
consider this to be at the wrong level of abstraction. Tool builders require instead a declar-
ative concept for de�ning the correctness of the various static semantic and inter-document
consistency constraints. This concept should, in particular, relieve them from worrying about
the order in which evaluations are performed. The new concept should also support our struc-
turing paradigm and be de�ned in terms of increment classes. In addition, the concept must
enable the e�cient evaluation of static semantic constraints to be carried out as this has to
be done on-line, i.e. during the execution of user commands. We introduce semantic rules for
that purpose.

Each semantic rule consists of a list of statements called action that is bound to a condition.
The condition is speci�ed after the ON clause and the action is de�ned between ACTION and
END ACTION keywords. Temporal predicates may be used to specify conditions, namely CHANGED

and DELETED. A CHANGED predicate becomes TRUE if its argument has been created or changed
since the last execution of the semantic rule. The DELETED expression becomes TRUE if its
argument is about to be removed. Arguments of a CHANGED or DELETED expression may be
attributes or semantic relationships of any other increments. Path expressions are used to
determine attributes or semantic relationships of remote increments. A name of an attribute
may only occur as the last name in a path expression. Compound conditions can be built by
using the OR operator. An EXISTS operator is used in the usual sense of �rst-order logic to
specify that the rule has to be executed as soon as some other condition holds for an element
in a multi-valued syntax child or a multi-valued semantic relationship.

As an example we now consider a solution to a problem that occurs during static semantics
speci�cation, namely the name analysis problem [KW91]. We solve it with three abstract
classes, i.e. ScopingBlock, DefiningName and UsingName. The classes are independent of a
particular target language and can thus be reused to de�ne name analysis in multiple tools.
ScopingBlock serves as super class for increment classes that start a new block. DefiningName
serves as a super class for classes whose increments contribute to the declaration of new
names. Finally, UsingName serves as a super class for all applied occurrences of names. The
attribute DefinedNames in class ScopingBlock is used to maintain associations between names
and references to increments where the respective names are declared. We then have to de�ne
that an association is included for those and only those increments that declare names. Hence
associations are entered into the table when they are created, the table is updated when the
increment name is changed and associations are deleted when the declaration is deleted. This
is de�ned in the semantic rules in Figure 3.

To keep the solution language-independent, we de�ne an auxiliary semantic relationship
Block/IncludedNames that connects each declaring increment with its block. We exploit the
implicit link IncludedNames of this relationship in the semantic rules above. The �rst rule
�res whenever the lexical value attribute of a declaring name identi�er is changed. Then the
symbol table is updated to include an association between the new value and the increment
declaring the value.

As displayed in Figure 4, the explicit link Block is established by method myScope whenever a
new declaring increment is created. The scoping block is determined as the next increment on
the way to the root whose class inherits from class ScopingBlock. This may be rede�ned in a
language-speci�c subclass. The link is exploited in a semantic rule that checks for uniqueness
of declarations within their scope. Whenever the symbol table of the scoping block is changed,
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ABSTRACT INCREMENT INTERFACE ScopingBlock; INCREMENT SPECIFICATION ScopingBlock;

INHERIT Increment; INITIALIZATION

... DefinedNames := NEW DuplicateSymbolTable;

SEMANTIC RELATIONSHIPS END INITIALIZATION;

IncludedNames:IMPLICIT SET OF

DefiningName.Block SEMANTIC RULES

END SEMANTIC RELATIONSHIPS; ON EXISTS(name:DefiningName IN IncludedNames):

CHANGED(name.value)

ATTRIBUTES ACTION

DefinedNames:SymbolTable; SELF.DefinedNames.associate(name,name.value);

END ATTRIBUTES; END ACTION;

...

END INCREMENT INTERFACE ScopingBlock; ON EXISTS(name:DefiningName IN IncludedNames):

DELETED(name);

ACTION

SELF.DefinedNames.deassociate(name,name.value);

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION ScopingBlock.

Figure 3: Abstract Increment Class ScopingBlock

the semantic rule below �res and inserts or deletes an error descriptor into or from an error set.
This error set is consulted during the computation of the external representation in order to
visualise erroneous increments by underlining. The particular error descriptor to be inserted
upon detection of an error is language-speci�c and is determined by rede�nition of a deferred
method in the language-speci�c subclasses.

ABSTRACT INCREMENT INTERFACE DefiningName; INCREMENT SPECIFICATION DefiningName;

INHERIT Increment; INITIALIZATION

... Block := SELF.myScope();

SEMANTIC RELATIONSHIPS END INITIALIZATION;

Block:ScopingBlock;

UsedBy:IMPLICIT SET OF SEMANTIC RULES

UsingName.DefinedIn ON CHANGED(Block.DefinedNames)

END SEMANTIC RELATIONSHIPS; ACTION

IF(SELF.Block.DefinedNames.is_dupl(SELF)) THEN

METHODS SELF.Errors.append_error(SELF.ErrorId());

METHOD myScope():ScopingBlock; ELSE

DEFERRED METHOD ErrorId():ERROR; SELF.Errors.clear_error(SELF.ErrorId());

END METHODS; ENDIF

... END ACTION;

END INCREMENT INTERFACE DefiningName; END SEMANTIC RULES;

END INCREMENT SPECIFICATION DefiningName.

Figure 4: Abstract Increment Class DefiningName

In many languages that occur in software engineering practice, applied occurrences of names
must match a declaration. This property is de�ned by a semantic rule in class UsingName as
depicted in Figure 5. The pre-condition of the rule depends the symbol table of the scoping
block determined by link Block. The link is established in the same way as above, but this
is for reasons of brevity omitted. The rule also depends on the lexical value of the changed
name. Whenever any of these are changed, a symbol table lookup is performed in order to
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store a matching declaration in the local variable inc. If inc is not NIL, a match has been
found. We then have to obtain, whether the declaration is of the right type. In our interface
editor, for instance the use of operation names as parameter or result types is inhibited. This
is again language-speci�c and determined by the deferred method DeclClass that must be
rede�ned in all subclasses. If the increment is of the right class, the semantic relationship
DefinedIn/UsedBy is established and a language-speci�c error descriptor, determined by the
deferred method ErrorId, is deleted from the set of errors. In the other case the semantic
relationship is deleted and the error descriptor is inserted into the set.

ABSTRACT INCREMENT INTERFACE UsingName; INCREMENT SPECIFICATION UsingName;

INHERIT Increment; ...

... SEMANTIC RULES

ON CHANGED(Block.DefinedNames)

SEMANTIC RELATIONSHIPS OR CHANGED(value)

DefinedIn:DefiningName; VAR inc: Increment;

Block:ScopingBlock ACTION

END SEMANTIC RELATIONSHIPS; inc:=Block.DefinedNames.increment_at(value);

IF inc != NIL THEN

METHODS IF( inc.IS_KIND_OF(SELF.DeclClass())) THEN

DEFERRED METHOD DeclClass():STRING; DefinedIn := <DefiningName>inc;

DEFERRED METHOD ErrorId():ERROR; Errors.clear_error(SELF.ErrorId());

... ELSE

END METHODS; DefinedIn:=NIL;

END INCREMENT INTERFACE UsingName; Errors.append_error(SELF.ErrorId());

ENDIF;

ELSE

DefinedIn:=NIL;

Errors.append_error(SELF.ErrorId());

ENDIF;

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION UsingName.

Figure 5: Abstract Increment Class UsingName

These classes have been reused in various tools to specify name analysis. In the module
interface editor, Module is for instance a subclass of ScopingBlock and thus implements a new
scope. TypeName and TypeImport are classes that inherit from DefiningName, while UsingType

inherits the semantic rule from UsingName. In these subclasses only the deferred methods are
rede�ned in order to determine the language-speci�c properties.

Interactions: The steps of a software development method are implemented by the com-
mands that the tool o�ers. The command de�nition determines the names of commands,
pre-conditions for their applicability and the particular dialogues between tool and user, if
any. In GTSL commands are de�ned as interactions. The de�nition of an interaction encom-
passes an internal and an external name, a selection context, a precondition and an action.
The external name appears in context sensitive menus or is used to invoke a command from a
command-line. The internal name is used to determine the rede�nition of an inherited interac-
tion. The selection context de�nes which increment must be selected so that the interaction is
applicable. It is actually included in a context-sensitive menu if the precondition that follows
the ON clause evaluates to TRUE. The action is a list of GTSL statements that is executed as
soon as the user chooses the command from the menu.
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The interaction displayed in Figure 6 is considered to be o�ered if the selected increment is
a type name. It is actually o�ered if the type has already been expanded. If this is the case
and the user has requested a menu, the string Change Type will become a menu item. If the
user chooses this item, the action is executed and the user will be prompted to edit the type
identi�er in a line edit window. The default character string in this line edit window is the
value of the old type identi�er. If the dialogue is completed, the LINE EDITmethod returns TRUE
and the method scan is executed. The method implementation is generated from a regular
expression that is provided for terminal increment classes. It returns TRUE if the identi�er
is lexically correct, otherwise it returns FALSE. If the identi�er is correct the two semantic
relationships of a type name are exploited to propagate the change to dependent increments
such as parameter types or type imports in order to retain consistency. Then the new lexical
value is stored in attribute value. If the identi�er is wrong an appropriate error message is
displayed.

Multiple users cannot concurrently execute commands in a totally unrestricted way. This is
due to the lost update and inconsistent analysis problems, known from concurrency control in
database systems [Dat86]. As an example of the inconsistent analysis problem, consider the
following scenario. A designer uses the above interaction to change the name of an exported
type. A concurrently working designer creates an import statement referring to the old type.
During that, the included type name is searched in the symbol table DefinedNames of the
module where the type is being changed. An inconsistent analysis problem occurs if this search
is performed after the other tool has done the change propagation and before the association
was changed in the table. Then the import statement will not be displayed as inconsistent
although the imported type does not exist anymore. The construction of an example for lost
updates is straight-forward.

Now we have encountered the dilemma that we cannot lock document versions exclusively while
they are being edited without hampering cooperation. On the other hand, we must restrict
concurrency to avoid the lost update and inconsistent analysis problems. The dilemma is
solved by decreasing granularity with respect to both the subject that performs locking and
the objects that are being locked. This means that tool sessions are considered as sequences
of command executions, each of which is executed in isolation from concurrent commands.
Isolation is achieved by locking objects in a traditional way [Gra78]. Locking is inferred
from the use of objects and relationships and need not be speci�ed explicitly. An object is
locked in shared mode when the object is read and in exclusive mode when it is updated.
While shared locks are compatible to each other, any other combination reveals a concurrency
control con
ict. To decrease the probability of concurrency control con
icts, commands do not
lock the complete representation of a document version, but only those nodes that are being
accessed or updated during the execution of the command. In the examples that encounter
lost updates or inconsistent analysis problems, we would then obtain a concurrency control
con
ict. Tools react to these con
icts by delaying the execution of one command to await
completion of the con
icting command, that is until con
icting locks have been released. This
is appropriate because command execution requires only a few hundred milliseconds, which
users will hardly recognise as delays.

Apart from the isolation property sketched above, interactions have further transaction proper-
ties. They are atomic, i.e. they are either performed completely or not at all. Once completed,
the e�ect of an interaction is durable, i.e. all changes that were made during the interaction
persist even if the tool is stopped accidentally by a hardware or software failure. Due to
atomicity, tools then recover to the state of the last completed command execution.
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INCREMENT SPECIFICATION TypeName;

...

INTERACTIONS

INTERACTION ChangeType

NAME "Change Type"

SELECTED IS SELF

ON (SELF.expanded)

VAR t:TEXT;

err:TEXT_SET;

BEGIN // start a new transaction

t:=NEW TEXT(value); // read-lock SELF

IF (t.LINE_EDIT("Enter New Type!")) THEN

IF SELF.scan(t.CONTENTS()) THEN

FOREACH i:TypeImport IN ExpTo DO

i.react_to_change(t.CONTENTS())

ENDDO;

FOREACH i:UsingType IN UsedBy DO

i.react_to_change(t.CONTENTS())

ENDDO;

value:=t.CONTENTS() // write-lock SELF

ELSE

err:=NEW TEXT_SET(SELF.get_errors()); // read-lock SELF

err.DISPLAY;

ENDIF

ENDIF

END ChangeType; // release all locks, make changes persistent

Figure 6: Command De�nition to Change a Type

4.3 External Document Representation

The external document representation is determined in terms of unparsing schemes. Unpars-
ing schemes are de�ned for non-terminal increment classes only. They cannot be de�ned for
abstract increment classes. In that case abstract syntax children that might be added in sub-
classes would not be re
ected. Neither are unparsing schemes required for terminal increment
classes. For terminal increments the layout computation only needs to output the terminal
increment's lexical value. As an example for a textual document representation consider the
unparsing schemes of classes ADTModule and OperationList from the module interface editor
below. The external representation of graphical documents must also de�ne bitmaps or shapes
of lines for increment representation purpose.

NONTERMINAL INCREMENT INTERFACE ADTModule; NONTERMINAL INCREMENT INTERFACE OperationList

... ...

UNPARSING SCHEME UNPARSING SCHEME

"DATATYPE",WS,"MODULE",WS,name,";",(NL),(NL), ol DELIMITED BY (NL),(NL) END

(" "),com,(NL),(NL), END UNPARSING SCHEME;

(" "),"EXPORT",WS,"INTERFACE",(NL),(NL),

(" "),"TYPE",WS,typ,";",(NL),(NL),

(" "),op_list,(NL),

(" "),imp,(NL),(NL),

"END",WS,"MODULE",WS,name,".",(NL)

END UNPARSING SCHEME;

...
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5 Evaluation

A compiler for GTSL has been implemented within the GOODSTEP project. It generates
an object database schema for the O2 database system [BDK92], which is used for persistent
storage of abstract syntax graphs following the strategy discussed in [EKS93]. A detailed
discussion of the implementation is beyond the scope of this paper and we refer to [Emm95].
GTSL has been evaluated within GOODSTEP on the basis of requirements provided by British
Airways, an industrial GOODSTEP partner. British Airways does most of its software de-
velopment in-house, with an increasing number of projects using object-oriented techniques.
A department of the IT infrastructure division, with seven developers at present, is supposed
to design, implement and document class libraries for the purpose of corporate reuse. The
evaluation scenario, which we refer to as BA SEE in the following, is an environment that
supports this class library development and maintenance process.

Figure 7: Tools Contained in the BA SEE

Design documents of class libraries are de�ned in the Booch notation [Boo91]. A Booch
class diagram is structured into categories. A category may contain a number of classes
and nested categories. The most recent de�nition of the Booch notation is strongly tight
towards C++, which is the programming language used for any object-oriented development
at British Airways. Booch diagrams identify di�erent kinds of relationships between classes,
namely inheritance, has- and use-relationships. They have di�erent C++ speci�c adornments.
Inheritance may, for instance, be public, protected or private.
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The language used for class de�nitions at British Airways is, in fact, only a subset of the C++
programming language. The subset is determined by British Airways corporate programming
guidelines. The guidelines exclude C++ statements, such as ellipses, inlines and friends, whose
use would be contrary to accepted software engineering principles. The dependencies of a class
de�nition document to other class de�nitions are de�ned in terms of #include statements and
forward declarations.

An implementation has to be provided for each de�ned class. Therefore, a further document
type includes C++ method implementations. Each method that has been de�ned in a class
interface must be implemented in the respective class implementation document.

Since class libraries are developed for corporate reuse, they must be accompanied by docu-
mentation that allows customers to reuse classes from the library. Library customers require a
technical documentation of the functionality provided by the public and protected methods of
a class. This technical documentation is de�ned in the information processing facility (IPF)

language, a mark-up language for online-hypertexts de�ned by IBM. For each class of the
library an IPF document must be provided. Besides the signatures of public and protected
methods of the class, it also includes a description of each method and examples illustrating
how to use the methods. A hypertext, which can be compiled from an IPF document, is then
delivered to customers as an on-line help facility.

The method integration de�nes numerous inter-document consistency constraints between the
above documents. These are implemented by the tools contained in the environment. Each
class in the Booch diagrammust be re�ned in terms of a class de�nition, an implementation and
an IPF documentation. Upon creation of a class, the Booch editor creates these documents
as well. If a class name is changed, the Booch editor consistently changes the class names
in the corresponding documents. Moreover, the relationships that are de�ned in the Booch
diagram must be re
ected in the class de�nition and implementation documents. The Booch
editor creates, for instance, the corresponding C++ declarations for an inheritance relationship
between two classes in the Booch diagram. Similarly, the integration of the three textual tools
causes the insertion of the respective counterparts into the corresponding implementation and
IPF documents, upon creation of a method. Furthermore, the matching of method signatures
of the class de�nition and their corresponding de�nitions in the implementation and IPF
documents is ensured.

The number of classes required for a tool speci�cation is dominated by the number of produc-
tions in the grammar of the respective language. The C++ class de�nition grammar consists
of 87 productions. 13 abstract classes were added to the non-terminal and terminal classes
derived from the grammar to specify static semantics and inter-document consistency. The
average size of a class speci�cation depends largely on the number of tool-speci�c commands
that have to be de�ned. In the C++ class de�nition tool a number of interactions had to be
de�ned in order to meet the speci�c requirements of British Airways. The average size of a
GTSL class was 2,730 Bytes. The complete C++ class de�nition tool was de�ned in a GTSL
speci�cation with 9,800 lines or 273 KBytes.

Compared to tools that can be bought of the shelf the environment has a number of advantages.
Multiple users can access the same documents concurrently and immediately see each other's
updates. Versions and con�gurations are not only managed for the source code, but also
for Booch diagrams and IPF documentation. The tools enforce the corporate programming
guidelines. They check and even preserve the numerous inter-document consistency constraints
by change propagations.
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6 Summary and Further Work

We have discussed the need for method de�nition and integration. Method de�nitions have
to identify document types. Method integration must de�ne inter-document consistency con-
straints. The application of methods should be supported by tools whose integration imple-
ments the method integration. We then have discussed why documents should be consid-
ered represented as project-wide abstract syntax graphs. Then we have outlined GTSL as
a speci�cation language capable to de�ne these project-wide abstract syntax graphs as well
as commands that are o�ered by tools to modify these graphs. GTSL has been used for the
construction of an integrated development environment to support class library development
and maintenance and we have sketched the evaluation results.

A result of the evaluation was that there are often document types, like C++ class interfaces
and the corresponding IPF documents whose structure is so similar that the documents should
not be stored redundantly. To improve e�ciency and reduce the number of required change
propagations these documents should be considered as di�erent views of the same conceptual
syntax graph. An extension of GTSL with language concepts to de�ne di�erent views has been
done and it is now being implemented on the basis of a view mechanism for object-oriented
databases [SAD94].

Di�erent document versions can be managed on the basis of the version manager of the O2
database system [DM93]. The problem of con�guration management has not yet been su�-
ciently addressed. Semantic relationships with other document versions are established during
editing as determined by the semantic rules. They are, however, only created with those other
versions of documents that have either been selected explicitly or are the default version. In
that way a user accesses exactly one con�guration at a time. What is not yet supported is the
explicit construction of a con�guration. To facilitate this, tools would have to compute the
set of document versions that are consistent with each other. This obviously interferes with
evaluation of semantic rules and it is not clear to us when the required evaluations can best
be done.
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