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Abstract

This paper discusses the development of algorithms for parallel interpretation-tree
model matching for 3-D computer vision applications such as object recognition. The
algorithms are developed with a prototyping approach using ProSet-Linda. ProSet

is a procedural prototyping language based on the theory of �nite sets. The coordina-
tion language Linda provides a distributed shared memory model, called tuple space,
together with some atomic operations on this shared data space. The combination of
both languages, viz. ProSet-Linda, is designed for prototyping parallel algorithms.

The classical control algorithm for symbolic data/model matching in computer vision
is the Interpretation Tree search algorithm. This algorithm has a high computational
complexity when applied to matching problems with large numbers of features. This
paper examines parallel variations of this algorithm. Parallel execution can increase the
execution performance of model matching, but also make feasible entirely new ways of
solving matching problems. In the present paper, we emphasize the development of par-
allel algorithms with a prototyping approach, not the presentation of performance �gures
displaying increased performance through parallel execution. The expected improvements
attained by the parallel algorithmic variations for interpretation-tree search are analyzed.

The implementation of ProSet-Linda is briey discussed.
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1 Introduction

Three-dimensional computer vision is commonly divided into several levels. In the research
investigated at Edinburgh, low-level vision is concerned with processing range data acquired
by a laser range scanner to eliminate noise [9]. Medium-level vision is concerned with iden-
tifying geometric surfaces [29]. High-level vision tries, for example, to identify the shape and
position of data objects using matched given model features. In the high-level components,
�rst the model invocation process pairs likely model and data features for further conside-
ration [5]. Model matching then uses the candidate matches proposed by the invocation to
form consistent groups of matches.

The classical control algorithm for symbolic model matching in computer vision is the Inter-
pretation Tree search algorithm, as used by Grimson and Lozano-Perez [12]. The algorithm
searches a tree of potential model-to-data correspondences, such that each node in the tree
represents one correspondence and the path of nodes from the current node back to the root
of the tree is a set of simultaneous pairings. This model matching algorithm is a specialized
form of the general AI tree search technique, where branches are pruned according to a set
of consistency constraints according to some (geometric) criterion. The goal of the search
algorithm is to maximize the set of consistent model-to-data correspondences in an e�cient
manner. Finding these correspondences is a key problem in model-based vision, and is usually
a preliminary step to object recognition, pose estimation, or visual inspection.

Unfortunately, this algorithm has the potential for combinatorial explosion. To reduce the
complexity, techniques for pruning the trees have been developed, thus limiting the number
of candidate matches considered. The main technique commonly used is based on pruning
constraints [12] (which locally reject pairings that are inconsistent, and hence eliminate all of
the search that might further extend this inconsistent pairing) and early termination [11]. The
latter stops search when a given number of pairings (a threshold) is reached. However, even
with these e�ective forms of pruning, the algorithms still can have exponential complexity,
making it unsuitable for use in scenes with many features.

Parallel execution can increase the execution performance of model matching, but also inve-
stigate entirely new ways of solving matching problems. As has been observed [2], it is only
from new algorithms that orders of magnitude improvements in the complexity of a problem
can be achieved:

\An idea that changes an algorithm from n2 to n logn operations, where n is
proportionate to the number of input elements, is considerably more spectacular
than an improvement in machine organization, where only a constant factor of
run-time is achieved." [2, page 250]

Thus, rapid prototyping of parallel algorithms may serve as the basis for developing parallel,
high-performance applications. In this paper, we present a methodology for the

development of parallel high-level vision algorithms using a ProSet-Linda based

prototyping approach.

Parallelism in low- and medium-level computer vision is usually programmed in a data-parallel
way, for instance based on the computational model of cellular automata [14]. For high-level
symbolic computer vision, the data-parallel approach is not appropriate, as symbolic compu-
tations have an irregular control ow depending on the actual input data. The underlying
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model of the data-parallel approach uses synchronous communication. The programmer of-
ten has to think in simultaneities while constructing a program, because she or he often
has to focus on more than one process at a time. This complicates parallel programming
signi�cantly.

Data parallelism is opposed to control parallelism, which is achieved through multiple threads
of control, operating independently. The data-parallel approach lets programmers replace
iteration (repeated execution of the same set of instructions with di�erent data) with parallel
execution. It does not address a more general case, however: performing many interrelated
but di�erent operations at the same time. This ability is essential in developing algorithms
for high-level symbolic computer vision.

Developing parallel algorithms is in general considered an awkward undertaking. The goal of
the ProSet-Linda approach is to partially overcome this problem by providing a tool for pro-
totyping parallel algorithms [15]. To support prototyping parallel algorithms, a prototyping
language should provide simple and powerful facilities for dynamic creation and coordina-
tion of parallel processes. Process communication and synchronization in ProSet-Linda is
reduced to concurrent access to a shared data pool, thus relieving the programmer from the
burden of having to consider all process inter-relations explicitly. The parallel processes are
decoupled in time and space in a simple way: processes do not have to execute at the same
time and do not need to know each other's addresses (as it is necessary with message-passing
systems). The shared data pool in the Linda concept is called tuple space, because its access
unit is the tuple, similar to tuples in ProSet (see Section 2.1).

Section 2 gives a brief introduction to the tool for implementing the parallel variations of
the interpretation-tree tree search algorithm, viz. ProSet-Linda for prototyping parallel al-
gorithms. Section 3 describes the standard interpretation-tree algorithm. Section 4 takes
a general look at parallel interpretation-tree search. We do not parallelize the standard
interpretation-tree algorithm, but the non-wildcard and best-�rst alternatives in Sections 5
and 6, respectively. Section 7 briey discusses the implementation of ProSet-Linda. Secti-
on 8 draws some conclusions. The programs are programmed literately. Appendix A presents
a brief introduction to literate programming with noweb.

2 Prototyping Parallel Algorithms with ProSet-Linda

Before presenting the implementation of the parallel interpretation-tree model matching al-
gorithms, we have a look at ProSet-Linda as the language used for implementation. The
procedural, set-oriented language ProSet [4] is a successor to SETL [26]. ProSet is an
acronym for PROtotyping with SETs. The high-level structures that ProSet provides
qualify the language for prototyping. Refer to [3] for a full account of prototyping with set-
oriented languages. A case study for prototyping using SETL is documented in [20]. The use
of SETL for prototyping algorithms for parallelizing compilers is described in [23].

Section 2.1 introduces the basic concepts of ProSet and Section 2.2 gives a short description
of the features for parallel programming.

2.1 Basic Concepts

ProSet provides the data types atom, integer, real, string, Boolean, tuple, set, function,
module, and instance. Modules may be instantiated to obtain module instances. It is a
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higher-order language, because functions and modules have �rst-class rights. ProSet is
weakly typed, i.e., the type of an object is in general not known at compile time. Atoms
are unique with respect to one machine and across machines. They can only be created
and compared for equality. Tuples and sets are compound data structures, the components
of which may have di�erent types. Sets are unordered collections while tuples are ordered.
There is also the unde�ned value om which indicates unde�ned situations.

As an example consider the expression [123, "abc", true, f1.4, 1.5g] which creates a
tuple consisting of an integer, a string, a Boolean, and a set of two reals. This is an example
of what is called a tuple former. As another example consider the set forming expression
f2*x: x in [1..10] | x>5g which yields the set f12, 14, 16, 18, 20g. Sets consisting
only of tuples of length two are called maps. There is no genuine data type for maps , because
set theory suggests handling them this way.

The control structures have ALGOL as one of its ancestors. There are if, case, loop, while,
and until statements as usual, and the for and whilefound loops which are custom tailored
for iteration over compound data structures. The quanti�ers (9, 8) of predicate calculus are
provided.

2.2 Parallel Programming

In ProSet, the concept of process creation via Multilisp's futures [13] is adapted to set-
oriented programming and combined with the coordination language Linda [10] to obtain
the parallel programming language ProSet-Linda. Linda is a coordination language which
provides means for synchronization and communication through so-called tuple spaces . These
tuple spaces are virtual shared data spaces accessed by an associative addressing scheme.
Synchronization and communication in ProSet-Linda are carried out through several atomic
operations: addition, removal, reading, and updates of individual tuples in tuple space. Linda
and ProSet both provide tuples; thus, it is quite natural to combine both models to form a
tool for prototyping parallel algorithms.

The access unit in tuple space is the tuple. A tuple space may contain any number of copies
of the same tuple: it is a multiset, not a set. Process communication and synchronization in
Linda is called generative communication, because tuples are added to, removed from, and
read from tuple space concurrently. Synchronization is done implicitly. Reading access to
tuples in tuple space is associative and not based on physical addresses, but rather on their
expected content described in templates. This method is similar to the selection of entries
from a data base. Refer to [1] for a full account of programming with Linda. ProSet

supports multiple tuple spaces. Atoms are used to identify tuple spaces uniquely.

Multisets are a powerful data structure for parallel programming. Since a tuple space is a
multiset of tuples, it may contain multiple copies of a tuple, whereas in a set each element
exists exactly once. Because of concurrent access by cooperating processes to a tuple space,
it is necessary to have multisets and not sets for coordination. Multisets are, therefore, a
good basis for communication between cooperating processes, because the data ow is not
restricted unnecessarily. Furthermore, multisets are dynamic data structures that alleviate
the treatment of dynamically varying size problems. The bene�t of using multisets is the
possibility of describing compound data without any form of constraint or hierarchy between
its components. This is also the case for sets, but not for data structures such as ordered
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lists which impose an ordering on the elements. Consequently, multisets allow a high degree
of parallelism for cooperating processes.

Several ProSet-Linda library functions are provided for handling multiple tuple spaces dy-
namically. The function CreateTS(limit) creates a new tuple space and returns its identity
(an atom). Since one can have exclusive access to a fresh tuple-space identity, CreateTS
supports information hiding. As mentioned above, atoms are unique for one machine and
across machines. The integer parameter limit speci�es a limit on the expected or desired
size of the new tuple space. It provides an indication of the total number of passive and active
tuples which are allowed in a tuple space concurrently. CreateTS(om) would instead indicate
that the expected or desired size is not limited. The function ExistsTS(TS) yields true, if
TS is an atom that identi�es an existing tuple space, it is false otherwise. The function
ClearTS(TS) removes all tuples from the speci�ed tuple space. The function RemoveTS(TS)

calls ClearTS(TS) and removes TS from the list of existing tuple spaces.

ProSet provides three tuple-space operations. The deposit operation deposits a tuple into
a tuple space:

deposit [ "pi", 3.14 ] at TS end deposit;

TS is the tuple space at which the tuple [ "pi", 3.14 ] has to be deposited. The fetch
operation tries to fetch and remove a tuple from a tuple space:

fetch ( "pi", ? x ) at TS end fetch;

The template ( "pi", ? x ) only matches tuples with the string "pi" in the �rst and
anything in the second �eld. The templates are enclosed in parentheses and not in brackets
in order to set the templates apart from tuples. The optional l-values speci�ed in the formals
(the variable x in our example) are assigned the values of the corresponding tuple �elds,
provided matching succeeds. Formals are pre�xed by question marks. The selected tuple is
removed from tuple space. Another example for a fetch operation with a single template
follows:

fetch ( "name", ? x |(type $(2) = integer) ) at TS end fetch;

This template only matches tuples with the string "name" in the �rst �eld and integer values
in the second �eld. The symbol $ may be used like an expression as a placeholder for the
values of corresponding tuples in tuple space. The expression $(i) then selects the ith
element from these tuples. Indexing starts with 1. It is only allowed to use the symbol $
this way in expressions that are part of templates. As usual in ProSet, | means such that.
The Boolean expression after | may be used to customize matching by restricting the set
of possibly matching tuples. The selected tuple is removed from tuple space. If no else
statements are speci�ed as in the above example then the statement suspends until a match
occurs. If statements are speci�ed for the selected template, these statements are executed.
An example with multiple templates, associated statements, and an else statement follows:

fetch ( "name", ? x |(type $(2) = integer) ) => put("Integer fetched");

xor ( "name", ? x |(type $(2) = set) ) => put("Set fetched");

at TS

else put("Nothing fetched");

end fetch;

This statement fetches at most one tuple. The meet operation is the same as fetch, but the
tuple is not removed and may be changed:
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meet ( "pi", ? x ) at TS end meet;

Changing tuples is done by specifying expressions into which speci�c tuple �elds will be
changed. Consider

meet ( "pi", ? into (2.0 * $(2)) ) at TS end meet;

where the value of the second element of the met tuple is doubled. This statement changes
at most one tuple. Tuples which are met in tuple space may be regarded as shared data since
they remain in tuple space irrespective of changing them or not. For a detailed discussion of
prototyping parallel algorithms in set-oriented languages refer to [17].

3 The Standard Interpretation-Tree Algorithm

Consider a set f di g of D data features and a set f mi g of M model features. The root of
the interpretation tree has no pairings. The �rst level expands the root node to pair all of the
M model features with data feature d1. The second level in the tree expands each of these
nodes to pair all model features with data feature d2 (multiple use of a given mi is allowed),
and so on. The expansion continues for all D data features. At each node at level k in the
tree, therefore, there is a hypothesis with k features matched. Figure 1 displays an example.

(d1; m1)

(d2; m1) (d2; m2)

(d1; m2)

(d2; m1) (d2; m2)

Figure 1: An example for the standard interpretation tree with data features
fd1; d2g and model features fm1; m2g.

If this interpretation tree is explored completely, there are MD \leaf" nodes (complete inter-
pretations) at the bottom of the tree and

DX

i=0

M i =
MD+1 � 1

M � 1
:
= MD

nodes in the full tree. If either M or D are of any reasonable size (e.g. larger than 5 as is
usual in practical cases), then we can expect to have excessively large search trees.

An additional complication is that one usually wishes to include at each level of the tree
a \wildcard" feature that will match with any other feature. This is necessary because it
may not always be possible to �nd a model feature that matches a given data feature at
the current level of the tree (because of fragmentation, bad segmentation, noise, unrelated
features, occlusion, etc.). This increases the number of leaf nodes to (M + 1)D.
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One way to reduce the amount of searching is to `prune whole branches of the tree', by
showing that a given pairing or sequence of pairings is inconsistent. In consequence, all
descendents from that node in the tree will also be inconsistent and need not be explored.
The most common approach uses unary and binary pruning constraints. Unary constraints
eliminate model-to-data pairings when some shared property is inconsistent (see also Appen-
dix B). Binary constraints eliminate hypotheses when a relative property between a pair of
model features is inconsistent with the same property between the corresponding pair of data
features (see also Appendix C).

When wildcards are allowed, examination of the search process shows there are several sources
of wasted e�ort. The algorithm could then accept an exponential number of correctly mat-
chable features. One key term is 2C , arising from the power set of the C matchable features.
This complexity occurs because each matchable data feature can be either matched with the
correct model feature or the wildcard. Examination of a typical search tree shows that most
of the tree consists of paths containing either members of this power set or many wildcards.
Another source of wasted e�ort is the re-exploration of identical subtrees under each initial
set of matches. A number of matching algorithms which reduce this wasted exploration have
been developed [7].

4 Parallel Interpretation-Tree Search

Parallelism in a tree search algorithm can be obtained by searching the branches of the tree
in parallel. A simple approach would be to spawn a new process for each subtree to be
evaluated. This approach would not work well since the amount of parallelism is determined
by the input data and not by, for instance, the number of available processors.

The programs which will be presented in the following sections are master-worker applications
(also called task farming). In a master-worker application, the task to be solved is partitioned
into independent subtasks. These subtasks are placed into a tuple space, and each process
in a pool of identical workers then repeatedly retrieves a subtask description from the tuple
space, solves it, and puts the solutions into the tuple space. The master process then collects
the results. An advantage of this programming approach is easy load balancing because the
number of workers is variable and may be set to the number of available processors.

Similar to seqential tree search, it is in general not necessary to search the entire tree: bounding
rules avoid searching the entire tree. For interpretation-tree model matching, the bounding
rules are de�ned by geometric constraints (see Appendix C) and termination thresholds to
prune entire subtrees.

5 Parallel Non-wildcard Search Tree Algorithms

We will now discuss parallel variations of the sequential non-wildcard search tree algorithm,
which is introduced in Section 5.1. Section 5.2 presents a parallel non-wildcard complete
search tree algorithm which �nds all satisfactory matches. A match is satisfactory when the
termination number of matched features has been reached.

The sequential non-wildcard search tree algorithm stops when the �rst satisfactory match has
been found. It does not search for all solutions. Section 5.3 presents a parallel non-wildcard
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search tree algorithm which stops, when the �rst satisfactory match has been found. This
algorithm is quite similar to the sequential non-wildcard search tree algorithm, but the tree
is searched in a non-deterministic order and not depth-�rst following the leftmost branches
�rst.

5.1 The Sequential Non-wildcard Search Tree Algorithm

As many of the nodes in the standard interpretation tree algorithm arise because of the use
of wildcards, an alternative search algorithm explores the same search space, but it does
not use a wildcard model feature to match otherwise unmatchable data features [6]. The
tree in Figure 2 displays an example non-wildcard interpretation tree. With the sequential
algorithm, the tree is searched depth-�rst following the leftmost branches �rst (no pruning
is shown here to illustrate the shape of the tree).

(d1; m2)

(d2; m1)

(d4; m5)

(d2; m4)

(d4; m5)

(d4; m5)

(d2; m1)

(d4; m5)

(d2; m4)

(d4; m5)

(d4; m5)

Figure 2: An example for the non-wildcard interpretation tree for 
 =
[s1; s2; s3; s4] = [( d1; m2); (d2; m1); (d2; m4); (d4; m5)].

The essence of the di�erence between the standard interpretation-tree and the non-wildcard
interpretation-tree algorithm is that the search process skips over all data pairings that use
a wildcard, to consider the next true data-model feature pairing. This results in a attening
of the search tree. The algorithm has two phases:

1. The tuple 
 = [sk] = [( di(k); mj(k))]; k = 1 ::Nof all pairs of features satisfying the unary
pairing constraints is formed, such that if sr is before ss (i.e. r < s ), theni(r) � i(s),
and if i(r) = i(s), then j(r) < j(s).

With the non-wildcard interpretation-tree algorithm, the ordering is determined by the
index numbers of the data features. With the best-�rst interpretation-tree algorithm,
the ordering is determined by the plausibilities (see Section 6.1 and Appendix B).

2. The search tree is explored such that each extension of a branch is formed by appending
new entries from 
, subject to the constraints that (1) each data feature appears at
most once on a path through the tree and (2) the data features are used in order (with
gaps allowed).
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5.2 Parallel Complete Search Tree Algorithm

This section presents a parallel implementation of the non-wildcard complete search tree
algorithm given in Section 5.1 which provides all satisfactory matches.

The main program for the parallel non-wildcard complete search tree model matching is the
master process:

hNon-wildcard complete search tree main program 8ai�
program Complete;

hTuple space declarations 8bi
hHypotheses from the model invocation 8ci

begin -- The master (main program):
hGet the number of worker processes 8di
hGet the termination threshold 9ai
hSpawn the worker processes 9bi
hDeposit the initial task tuples 9ci
hInitialize the number of �nished workers 9di
hLet the worker processes start working 9ei
hWait for the workers to �nish 9fi
hFetch the results for complete search 10ai

-- The procedure declarations:
hWorker procedure for non-wildcard search 10bi
hProcedure for reading the hypotheses from the invocation 32i

end Complete;

In contrast to Pascal or Modula, in ProSet the main program precedes the procedure
declarations to support a top-down presentation.

This paper has been processed with the literate programming tool noweb to implement and
present the program code. Refer to Appendix A for a brief introduction to reading literate
programmed code which has been written with noweb. In summary, this approach allows
one to associate code and descriptive text in the same document, and then extract the code
portion to create executable text.

We use two tuple spaces. One for the work tasks and one for the results:

hTuple space declarations 8bi�
visible constant WORK := CreateTS(om), -- for the work tasks

RESULT := CreateTS(om); -- for the results

The hypotheses from the model invocation are read by the procedure GetHypos from standard
input (see Appendix B). These form the initial set 
.

hHypotheses from the model invocation 8ci�
visible constant hypos := GetHypos (); -- visible for the worker processes

Note that the plausibilities from the invocation are not considered with non-wildcard tree
search. For simplicity the procedure GetHypos is used for both the non-wildcard tree search
and the best-�rst tree search. The latter uses the plausibilities (see Section 6).

The number of worker processes is an argument to the main program. This could be, for
instance, the number of available processors:

hGet the number of worker processes 8di�
NumWorker := argv(2); -- This is a string. Convert it to an integer via C's atoi:
NumWorker := c_fct_call atoi (NumWorker : c_string) c_integer;
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The termination threshold for satisfactory matches is the next argument to the main program.
It has to be less than or equal to the number of data features:

hGet the termination threshold 9ai�
Threshold := argv(3); -- This is a string. Convert it to an integer via C's atoi:
Threshold := c_fct_call atoi (Threshold : c_string) c_integer;

if (Threshold < 2) _ (#fx(1): x 2 hyposg < Threshold) then

put("The termination threshold is not acceptable!");

stop;

end if;

The # operator returns the number of elements contained in a compound data structure.
Note, that in a set each contained element exists exactly once.

The master spawns NumWorker worker processes to do the work:

hSpawn the worker processes 9bi�
for i 2 [1..NumWorker] do

k closure Worker (i, Threshold); -- Spawn the worker processes
end for;

The jj operator spawns a new process. The closure operator assures that the spawned
procedure Worker has no side e�ects on global variables. See [17] for details.

The master puts the initial task tuples into tuple space WORK:

hDeposit the initial task tuples 9ci�
for Entry 2 hypos do

deposit [ fEntryg ] at WORK end deposit;

end for;

For the example tree of Figure 2, these initial task tuples are (the plausibilities from the
invocation are not displayed here):

[{[1,"m_2"]}], [{[2,"m_1"]}], [{[2,"m_4"]}], [{[4,"m_5"]}]

These initial tasks are the nodes at the �rst level of the interpretation-tree.

After depositing the initial task tuples, the master initializes a shared counter for the number
of �nished workers at tuple space RESULT:

hInitialize the number of �nished workers 9di�
deposit [ "Finished Workers", 0 ] at RESULT end deposit;

After initializing the tuple spaces, the workers are enabled to start their work:

hLet the worker processes start working 9ei�
deposit [ "start", "now" ] at WORK end deposit; -- Start the workers

Alternatively, we could omit the [ "start", "now" ] tuple entirely and spawn the workers
directly after depositing the initial tasks (and let them start working immediately). However,
for testing with small input data sets, it is useful to defer the workers.

After spawning the workers and initializing the tasks, the master waits until all workers have
done their work (by executing a blocking fetch until the number of �nished worker processes
equals NumWorker):

hWait for the workers to �nish 9fi�
fetch ( "Finished Workers", NumWorker ) at RESULT end fetch;
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Then the master fetches the possible matches from tuple space RESULT and writes the results
to standard output:

hFetch the results for complete search 10ai�
loop

fetch ( ? Match ) at RESULT

else quit; -- No more results: quit the loop
end fetch;

put("Match = ", Match);

end loop;

For the example tree of Figure 2 with Threshold equal to 3 the program prints out (the
plausibilities from the invocation are not displayed here):

Match = { [1,"m_2"],[2,"m_4"],[4,"m_5"] }

Match = { [1,"m_2"],[2,"m_1"],[4,"m_5"] }

This was the implementation of the master process (the main program). Now let us look at
the worker procedure. Each worker �rst waits to be enabled and then executes in an endless
loop:

hWorker procedure for non-wildcard search 10bi�
procedure Worker (i, Threshold);

begin

hWait to be enabled 10ci
loop

hFetch task 10di
hEvaluate task for non-wildcard search 11bi

end loop;

hProcedure for consistency check 36ai
hAuxiliary procedure inc2 11ai

end Worker;

To become enabled each worker waits to meet the tuple ["start", "now"]:

hWait to be enabled 10ci�
meet ( "start", "now" ) at WORK end meet;

Each worker �rst checks whether there are more task tuples in tuple space WORK, and termi-
nates when there is no more work to do:

hFetch task 10di�
fetch (? MyPath) at WORK

else -- increase the number of �nished workers:
meet ( "Finished Workers", ? into closure inc2($) ) at RESULT end meet;

return;

end fetch;

Before termination, the shared counter "Finished Workers" in tuple space RESULT is incre-
mented to indicate the termination to the master.

In principle it should be possible to write simply \into $(2)+1" within the above meet

operation. For a tuple T, the expression T(i) selects the ith element from T. Indexing starts
with 1. Unfortunately, the current version of the ProSet compiler only accepts simple
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functions calls of the form \closure inc2($)" after into and | in templates. Therefore, we
have to write the auxiliary function inc2:

hAuxiliary procedure inc2 11ai�
procedure inc2 (x); begin

return x(2)+1;
end inc2;

This syntactical restriction in the current version of the ProSet compiler should be removed
in the near future.

As explained in Section 5.1, each extension of a branch in the interpretation-tree is formed by
appending new entries from 
, subject to the constraints that (1) each data feature appears
at most once on a path through the tree and (2) the data features are used in order (with
gaps allowed). The condition in the following for loop ensures that these constraints are
satis�ed:

hEvaluate task for non-wildcard search 11bi�
hCheck for termination for non-wildcard search 11ci
for Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) do

if Consistent (MyPath, Entry) then

deposit [MyPath with Entry] at TargetTS end deposit;

end if;

end for;

ProSet's with operator adds an element to a set or to the end of a tuple.

Starting from a branch ending with pair s� (or nothing at the root of the tree), all pairs s�+1
: : : sN are possible extensions to the branch. Only extensions that satisfy the normal binary
constraints are accepted (see the de�nition of Consistent in Appendix C). Extension stops
when the termination threshold of matches is reached. The following code checks whether
we have enough matches:

hCheck for termination for non-wildcard search 11ci�
if #MyPath � Threshold-1 then

-- We have a satisfactory match except for one data feature:
TargetTS := RESULT;

else

-- Deposit a new task for the workers:
TargetTS := WORK;

end if;

TargetTS then indicates whether we have a new work task or a new result.

Figure 3 displays the coarse structure of the master-worker program. Arrows indicate access
to the tuple spaces. These access patterns are only shown for one of the identical worker
processes.

5.3 Parallel First-Stop Search Tree Algorithm

This section presents a parallel non-wildcard search tree algorithm which stops the program
when the �rst satisfactory match has been found. This algorithm is quite similar to the se-
quential non-wildcard search tree algorithm, but the tree is not searched depth-�rst following
the leftmost branches �rst.
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Figure 3: The coarse structure of the master-worker program.

The main program for the parallel non-wildcard �rst-stop search tree model matching follows:

hFirst-stop non-wildcard search tree main program 12ai�
program FirstStop;

hTuple space declarations 8bi
hHypotheses from the model invocation 8ci

begin -- The master (main program):
hGet the number of worker processes 8di
hGet the termination threshold 9ai
hSpawn the worker processes 9bi
hDeposit the initial task tuples 9ci
hInitialize the number of �nished workers 9di
hLet the worker processes start working 9ei
hFetch the �rst result 12bi

-- The procedure declarations:
hWorker procedure for non-wildcard search 10bi
hProcedure for reading the hypotheses from the invocation 32i

end FirstStop;

The program structure is quite similar to the complete search program (see the chunk indices).
The worker procedure is identical. Instead of fetching all satisfactory matches, the master
fetches the �rst satisfactory match from tuple space RESULT and writes the result to standard
output, provided that there exists at least one consistent match:

hFetch the �rst result 12bi�
fetch ( ? FirstMatch )

) put("First match = ", FirstMatch);

xor ( "Finished Workers", NumWorker )

) put("No consistent match found");

at RESULT

end fetch;

Note, that a parallel program terminates when all its sequential processes have terminated. In
ProSet, termination of the main program (here the master) terminates the entire application
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and thus all spawned worker processes.

Synchronization between the master and the workers is achieved when the �rst satisfactory
match has been found. Provided that there exist at least one consistent match, the master
need not wait until all tasks are evaluated as is the case with the parallel non-wildcard
complete search tree algorithm of Section 5.2.

5.4 Evaluation

The parallel non-wildcard complete search tree algorithm provides all satisfactory matches.
If we neglect pruning of inconsistent branches, the number of evaluated nodes is proportional
to HT with

H = Number of hypotheses from the model invocation
T = Termination threshold

The time to evaluate these nodes with the sequential algorithm is proportional toHT , whereas
the time to evaluate these nodes with the parallel algorithm is proportional to HT

W
with

W = Number of worker processes

because the worker processes evaluate the branches of the tree in parallel. However, the actual
amount of parallelism may be restricted by the branching factor of the tree and contention
caused by competing access to the tuple spaces. In principle, the situation for the above
calculation does not change when considering pruning of inconsistent branches

With the non-wildcard algorithm, the second and third levels of the search tree represent
matches that use several non-wildcard pairings. The binary constraints eliminate almost
all false pairings quickly [7]. The trade-o� is that the branching factor of the non-wildcard
tree is H instead of the number of data features as with the standard interpretation-tree
algorithm (see Section 3), but the depth of the tree for any false sets of matches is usually
very shallow. Therefore, the parallel non-wildcard complete search algorithm allows a high
amount of parallelism because of the large branching factor of the tree.

The parallel �rst-stop search algorithm is quite similar to the sequential non-wildcard search
tree algorithm. The tree is not searched depth-�rst following the leftmost branches �rst, but
in parallel in a non-deterministic order.

For the sequential algorithm, the time to �nd the �rst match is highly data dependent. If, for
instance, the left-most branch represents a satisfactory match, the sequential algorithm will
probably be faster than the parallel algorithm, because the parallel algorithm will probably
not follow the left-most branch �rst. However, consider the example interpretation tree with
two paths with satisfactory matches in Figure 4. The satisfactory branches are marked by
black circles. Here, the sequential algorithm �rst evaluates the unsatisfactory left branches
before �nding the left-most satisfactory match. The parallel algorithmmay �nd a satisfactory
match earlier, but this is not de�nite since the evaluation order is non-deterministic. Since
the non-wildcard algorithms do not consider any valuation for the data/model feature pairs,
nothing can guide the workers to follow the most promising branches.

It would be possible to extend the parallel �rst-stop search algorithm such that it searches
the tree depth-�rst rather than in an arbitrary order. This would improve the probability of
�nding satisfactory branches earlier, but still the sequential algorithm may be faster.
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Figure 4: A search tree. The black circles indicate satisfactory matches.

This raises the question whether it pays to parallelize the tree search when we are only
interested in obtaining any satisfactory match. The situation changes to some extent when
we are interested in obtaining a good satisfactory match (see the next section).

6 Parallel Best Search Tree Algorithms

Using the plausibilities for the model-to-data pairings of the model invocation (see Appen-
dix B), it is possible to de�ne best-search algorithms for interpretation-tree matching. Secti-
on 6.1 takes a short look at sequential best-�rst search tree algorithms. Section 6.2 presents
a parallel search tree algorithm which provides the optimal match where each data feature is
mapped to a model feature when considering plausibilities for the data/model feature pairs.
The sequential best-�rst search tree algorithm searches for the �rst plausible solution (usually
not the optimal solution). Section 6.3 presents a parallel best-�rst search tree algorithm.

6.1 The Sequential Best-�rst Search Tree Algorithm

The best-�rst search tree algorithm [7] assumes that it is possible to evaluate how well sets of
model features match sets of data features (these are the plausibilities from the invocation,
see Appendix B), and also to estimate the bene�t of adding additional feature matches to an
existing set of matches. This evaluation can then be used as the basis of a best-�rst matching
algorithm that investigates hypotheses in order of the best estimated evaluation. As any
real problem is likely to provide some useful heuristic ordering constraints, the potential for
speeding up the matching process is large.

In contrast to the non-wildcard algorithms (Section 5.1), with the best-�rst algorithms we
are interested in both the cost of a path to a solution (i.e. we wish to minimize the time to
�nding a solution) as well as the quality of the solution. Both algorithms use the same tree
structure (see Figure 2 on page 7), but the portion explored may be di�erent.

As with the sequential non-wildcard algorithm, exploration terminates whenever a su�ciently
large set of consistent matches is found (termination threshold), or whenever it is impossible
to extend the current set of matches to the required number. Refer to [7] for a detailed
discussion of sequential best-�rst search tree algorithms.
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6.2 Parallel Optimum Search Tree Algorithm

This section presents a parallel search tree algorithm which provides the optimal match
where a satisfactory number of data features is mapped to model features when considering
plausibilities for the data/model feature pairs. The main program follows:

hOptimum search tree main program 15ai�
program Optimum;

hTuple space declarations 8bi
hHypotheses from the model invocation 8ci

begin -- The master (main program):
hGet the number of worker processes 8di
hGet the termination threshold 9ai
hSpawn the worker processes 9bi
hDeposit the initial task tuples 9ci
hInitialize the result for optimum search 15bi
hInitialize the number of �nished workers 9di
hLet the worker processes start working 9ei
hWait for the workers to �nish 9fi
hFetch the result for optimum search 15ci

-- The procedure declarations:
hWorker procedure for optimum search 16ai
hProcedure for reading the hypotheses from the invocation 32i

end Optimum;

In addition to putting the initial task tuples into tuple space WORK, and initializing a shared
counter for the number of �nished workers at tuple space WORK, the master initializes an
empty result set with plausibility 0:0 at tuple space RESULT:

hInitialize the result for optimum search 15bi�
deposit [ "Optimum", fg, 0.0 ] at RESULT end deposit;

After spawning the workers, the master waits until all workers have done their work, and then
the master fetches the optimal match from tuple space RESULT and prints an appropriate
message to standard output:

hFetch the result for optimum search 15ci�
fetch ( "Optimum", ? Match, ? Plausibility ) at RESULT end fetch;

if Plausibility = 0.0 then

put("There exists no plausible match!");

else

put("Optimal match = ", Match);

put("Plausibility = ", Plausibility);

end if;

Again, each worker �rst waits to be enabled and checks whether there are more task tuples in
tuple space WORK, and terminates when there is no more work to do. Otherwise, the worker
again executes in an endless loop:
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hWorker procedure for optimum search 16ai�
procedure Worker (i, Threshold);

hVisibility de�nitions for auxiliary procedures for optimum search 17di
begin

hWait to be enabled 10ci
loop

hFetch task 10di
hCheck whether we can prune this subtree 16bi
hEvaluate task for optimum 16di

end loop;

hProcedure for consistency check 36ai
hAuxiliary procedure inc2 11ai
hAuxiliary procedure getMyPath 17bi
hAuxiliary procedure getMyPlausibility 17ci
hAuxiliary procedure greater 17ei
hAuxiliary procedure lower-equal 18ai

end Worker;

Each worker checks whether the plausibility of its current partial match (stored in MyPath) is
lower than the plausibility of an already known satisfactory match: if so, the worker discards
this partial match (according to the bounding rule) and continues to fetch another task
tuple. The algorithm assumes that the plausibility evaluation is monotonically decreasing
as the path length increases. First the worker computes the plausibility of its own path of
matches:

hCheck whether we can prune this subtree 16bi�
MyPlausibility := 1.0;

for x 2 MyPath do

MyPlausibility *:= x(3);

end for;

Then the worker reads the plausibility of an already known optimal satisfactory match (this
plausibility is initially equal to 0:0, when no satisfactory match has been found so far) and
compares it with the plausibility of its own (not satisfactory) match. If its own plausibility
is lower than the plausibility of an already known satisfactory match, the worker continues
to fetch another task tuple:

hCheck whether we can prune this subtree 16bi+�
meet ( "Optimum", ?, ? OptimumPlausibility ) at RESULT end meet;

if OptimumPlausibility � MyPlausibility then

continue; -- there exists already a better satisfactory match:
-- we prune this subtree

end if;

If the plausibility of the partial match exceeds that of an already known satisfactory match,
the worker checks whether the length of its partial match is already a satisfactory match but
one:

hEvaluate task for optimum 16di�
if #MyPath < Threshold-1

If the partial match is not a satisfactory match but one, the worker deposits new task tuples
into tuple space WORK extended by one pair:
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hEvaluate task for optimum 16di+�
then

for Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) do

-- Deposit a new task for the workers:
if Consistent (MyPath, Entry) then

deposit [MyPath with Entry] at WORK end deposit;

end if;

end for;

Again, only extensions that satisfy the normal binary constraints are accepted (see Appen-
dix C).

If the partial match is already a satisfactory match but one, the worker changes the optimal
match in tuple space RESULT with a changing meet operation to a satisfactory match based
on its own match, provided that these satisfactory matches still have the highest plausibility:

hEvaluate task for optimum 16di+�
else

-- We have a satisfactory path but one:
for Entry 2 hypos j (8 x 2 MyPath j (Entry(1) > x(1))) do

if Consistent (MyPath, Entry) then

-- Change the optimum to our path if it is still the best one:
NextEntry := Entry; -- To make it visible for the auxiliary procedures
meet ( "Optimum", ? into closure getMyPath($),

? into closure getMyPlausibility($)

j closure greater($) )

xor ( "Optimum", ?, ? j closure lower_equal($) )

at RESULT

end meet;

end if;

end for;

end if;

Again, we need some auxiliary procedures to compute the new values for the optimal match:

hAuxiliary procedure getMyPath 17bi�
procedure getMyPath (x); begin

return MyPath with NextEntry;

end getMyPath;

hAuxiliary procedure getMyPlausibility 17ci�
procedure getMyPlausibility (x); begin

return MyPlausibility � NextEntry(3);

end getMyPlausibility;

These procedures need access to the actual values of the variables MyPath, MyPlausibility
and NextEntry. Therefore, these variables are declared to be visible to the local procedures:

hVisibility de�nitions for auxiliary procedures for optimum search 17di�
visible MyPath, MyPlausibility, NextEntry;

Additionally, we need some auxiliary procedures to check the template conditions:

hAuxiliary procedure greater 17ei�
procedure greater (x); begin

return (MyPlausibility � NextEntry(3)) > x(3);

end greater;
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hAuxiliary procedure lower-equal 18ai�
procedure lower_equal (x); begin

return (MyPlausibility � NextEntry(3)) � x(3);

end lower_equal;

6.3 Parallel Best-First Search Tree Algorithm

This section presents a parallel best-�rst search tree algorithm, which terminates at the �rst
satisfactory match. The main program follows:

hBest-�rst search tree main program 18bi�
program BestFirst;

hTuple space declarations 8bi
hHypotheses from the model invocation 8ci
hDeclaration of the oat function 21ci

begin -- The master (main program):
hGet the number of worker processes 8di
hGet the termination threshold 9ai
hSpawn the worker processes 9bi
hDeposit the initial task tuples 9ci
hInitialize the priority queue 18ci
hInitialize the number of �nished workers 9di
hInitialize the number of visited nodes 23ai
hLet the worker processes start working 9ei
hFetch the result for best-�rst search 19ai
hPrint the number of visited nodes 23ci

-- The procedure declarations:
hWorker procedure for best-�rst search 19bi
hProcedure for reading the hypotheses from the invocation 32i

end BestFirst;

The number of visited nodes is printed for statistical purposes (see Section 6.4).

The central data structure is a distributed priority queue of entries of the following form,
sorted by the estimated evaluation of the next potential extension:

(Si = fpairi1; pairi2; : : :pairing; g(Si); m; f(Si [ f pairmg))

where Si is a set of n mutually compatible model-to-data pairs, g(Si) is the actual evaluation
of Si,m indicates that pairm is the next extension of Si to be considered, and f(Si[fpairmg)
is the estimated evaluation of that extension. The priority queue is sorted with larger f()
values at the top.

In addition to putting the initial task tuples into tuple space WORK, and initializing a shared
counter for the number of �nished workers, the master initializes the top of the priority queue
at tuple space WORK with entry (fg; 1:0; 1; A1):

hInitialize the priority queue 18ci�
deposit [ 1, 0, fg, 1.0, 1, hypos(1)(3) ] at WORK end deposit;

Each entry of the priority queue is stored as a tuple in WORK. The �rst component indicates
the pointer to the corresponding entry. The integer 1 indicates the top of the queue. The
second component points to the next entry. The integer 0 indicates the end of the queue.
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Figure 5 on page 22 illustrates the structure of this queue. We shall describe the queue
structure later in this section.

The expression hypos(1)(3) selects the plausibility for the highest rated hypothesis from the
model invocation (this is A1). The hypotheses are initially sorted by the model invocation.
See also Appendix B.

After spawning the workers, the master waits until the �rst worker delivers a match at tuple
space RESULT and prints an appropriate message to standard output, provided that there
exists at least one consistent match:

hFetch the result for best-�rst search 19ai�
fetch ( "Best", ? Match, ? Plausibility)

) put("Best-first match = ", Match);

put("Plausibility = ", Plausibility);

xor ( "Finished Workers", NumWorker )

) put("No consistent match found");

at RESULT

end fetch;

Again, each worker �rst waits to be enabled and then executes in an endless loop:

hWorker procedure for best-�rst search 19bi�
procedure Worker (i, Threshold);

hVisibility de�nitions for auxiliary procedures for best-�rst 20ci
hDeclaration of the oat function 21ci

begin

hWait to be enabled 10ci
loop

hPop priority queue top 19ci
hIncrement the number of visited nodes 23bi
hCheck for termination for best-�rst search 20di
hEvaluate task for best-�rst 20ei

end loop;

hProcedure for consistency check 36ai
hProcedure for insertion into the priority queue 37ai
hAuxiliary procedure inc2 11ai
hAuxiliary procedure First 20ai
hAuxiliary procedure IsSecond 20bi

end Worker;

Each worker then pops the top of the priority queue (Si; g(Si); m; f(Si [ f pairmg)) at tuple
space WORK:

hPop priority queue top 19ci�
fetch ( 1, ? second, ? S_i, ? gS_i, ? m, ? fS_iPair_m ) at WORK end fetch;

if second 6= 0 then

-- The second entry becomes the �rst one:
meet ( ? into closure First($), ?, ?, ?, ?, ? j closure IsSecond($) )

at WORK

end meet;

end if;

After popping the top of the priority queue, other worker processes can work in parallel on
the tail of the queue, provided that there exists a tail.
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Again, we need some auxiliary procedures to compute the integer value 1 and to �nd the
second entry in the queue (this shortcoming in the current version of the ProSet compiler
is annoying, but it is just a syntactic restriction):

hAuxiliary procedure First 20ai�
procedure First(x); begin

return 1;

end First;

hAuxiliary procedure IsSecond 20bi�
procedure IsSecond (x); begin

return x(1)=second;

end IsSecond;

Procedure IsSecond needs access to the actual value of the variable second. Therefore, this
variable is declared to be visible to local procedures:

hVisibility de�nitions for auxiliary procedures for best-�rst 20ci�
visible second;

Extension stops when the termination threshold of matches is reached:

hCheck for termination for best-�rst search 20di�
if #S_i � Threshold then

deposit [ "Best", S_i, gS_i ] at RESULT end deposit;

return;

end if;

or when there are no more hypotheses from the model invocation left:

hEvaluate task for best-�rst 20ei�
if m+1 > #hypos then

-- No more hypotheses from the model invocation left:
if second 6= 0 then

continue; -- Evaluate the rest of the priority queue
else

-- Nothing more to do:
meet ( "Finished Workers", ? into closure inc2($) ) at RESULT end meet;

return;

end if;

else

-- We have to evaluate the next hypothesis:

Only extensions that satisfy the normal binary constraints (see Appendix C) and the ordering
constraints (see Section 5.1) are accepted:

hEvaluate task for best-�rst 20ei+�
if Consistent(S_i, hypos(m)) ^ (8 x 2 S_i j (hypos(m)(1) > x(1))) then

hGenerate next descendent of successful extension 21ai
end if;

hGenerate the next descendent of the original popped node 22ai
end if;

If not rejected by consistency checks, early termination or non-existence of further hypotheses,
we generate the next descendent of the successful extension:

(Si [ f pairmg; g(Si [ f pairmg); m+ 1 ; f(Si [ f pairmg [ f pairm+1g))
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to be inserted into priority queue.

The algorithm needs two evaluation functions, f() for the estimated new state evaluation and
g() for the actual state evaluation. For the above new extension the g() function is set to:

g(Si [ f pairmg) = g(Si) �Am

This is one possible state evaluation function. With the sequential best-�rst algorithms, other
state evaluation functions have been investigated [7]. We compute the above state evaluation
function as follows:

hGenerate next descendent of successful extension 21ai�
g := gS_i � hypos(m)(3);

The f() evaluation function is:

f(Si [ f pairmg [ f pairm+1g) = ( size(Si [ f pairmg)� 1) + g(Si [ f pairmg) �Am+1

= size(Si) + g(Si [ f pairmg) �Am+1

We compute this as follows:

hGenerate next descendent of successful extension 21ai+�
f := float(#S_i) + g � hypos(m+1)(3);

The addition of the length of the branch so far gives longer branches higher evaluations to
direct the workers to search the tree depth-�rst. The g() function is monotonically decreasing
as the path length increases.

The standard ProSet function float converts an integer into a real number. It has to be
loaded from ProSet's standard library in the following way:

hDeclaration of the oat function 21ci�
persistent constant float : "StdLib";

The Insert function enters the new node into the appropriate priority position, provided
that the priority queue contained more than one entry:

hGenerate next descendent of successful extension 21ai+�
if second 6= 0 then

Insert (1, S_i with hypos(m), g, m+1, f);

else

next := newat(); -- A new 'distributed pointer'
deposit [ 1, next, S_i with hypos(m), g, m+1, f ] at WORK end deposit;

end if;

If the priority queue contained only the popped entry (the variable second indicates this), we
directly deposit the new entry as the top of the priority queue. The next entry then obtains
the atom next as its identity (see below). ProSet's built-in function newat returns a new
atom.

To update the old state we generate the next descendent of the original popped node:

(Si; g(Si); m+ 1 ; f(Si [ f pairm+1g))

For this new extension the f() evaluation function is:

f(Si [ f pairm+1g) = ( size(Si)� 1) + g(Si) �Am+1
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Figure 5: The distributed priority queue for parallel best-�rst search.
The integer values 1 and 0 are used to indicate the top and the end of the queue, re-
spectively. The intermediate entries are identi�ed by the contained atoms. We use black
circles to represent the atoms. A link between two atoms means that these two atoms are
equal. Note, that the atoms are not the addresses of the respective entries, but rather
the identi�cation of the entries (distributed pointers).

We compute this as follows:

hGenerate the next descendent of the original popped node 22ai�
f := float(#S_i - 1) + gS_i * hypos(m+1)(3);

and insert the new entry into the priority queue as before:

hGenerate the next descendent of the original popped node 22ai+�
if second 6= 0 then

Insert ( 1, S_i, gS_i, m+1, f );

else

if next = om then

-- There was no descendent of successful extension:
next := 1;

end if;

deposit [ next, 0, S_i, gS_i, m+1, f ] at WORK end deposit;

end if;

The priority queue is stored as a distributed data structure [18] in tuple space WORK. Distribu-
ted data structures may be examined and manipulated by multiple processes simultaneously.
The individual entries are linked together by means of ProSet's atoms. ProSet does not
support pointers as they are known in Modula, C or similar procedural languages. As mentio-
ned in Section 2.1, atoms are unique with respect to one machine and across machines (they
contain the host and process identi�cation, creation time, and an integer counter). Atoms
can only be created and compared for equality. We use them as distributed pointers which
are independent of the processor's memory addresses. The integer values 1 and 0 are used
to indicate the top and the end of the queue, respectively. Figure 5 illustrates the structure
of this queue. Note, that multiple processes can work independently on di�erent partitions
of the queue. The procedure Insert for insertion of new entries into the distributed priority
queue is presented in Appendix D. A variety of other data structures, such as distributed
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priority sorted heaps or distributed sorted trees, could be used to implement the priority
queue.

6.4 Evaluation

The optimum search algorithm is essentially a branch-and-bound algorithm [21]. The parallel
algorithm searches the same tree as a similar sequential branch-and-bound algorithm would
search, but the tree is searched in parallel. The bounding rules apply to parallel search in
the same way as they apply to sequential search. Therefore, the parallel optimum search
algorithm can be compared to a similar sequential branch-and-bound algorithm in much the
same way as the parallel non-wildcard complete search tree algorithm of Section 5.2 can be
compared to a sequential non-wildcard algorithm which provides all satisfactory matches.
Refer to Section 5.4 for details.

To evaluate the parallel best-�rst search algorithm, we apply our program to some real data
and count the number of visited nodes. The number of visited nodes is initialized by the
master:

hInitialize the number of visited nodes 23ai�
deposit [ "Visited Nodes", 0 ] at RESULT end deposit;

Each worker increments the shared counter "Visited Nodes" in tuple space RESULTwhenever
it evaluates a node:

hIncrement the number of visited nodes 23bi�
meet ( "Visited Nodes", ? into closure inc2($) ) at RESULT end meet;

After printing the result, the master prints the number of visited nodes to standard output:

hPrint the number of visited nodes 23ci�
fetch ( "Visited Nodes", ? NumNodes ) at RESULT end fetch;

put("Number of visited nodes = ", NumNodes);

put("Number of visited nodes per worker = ", float(NumNodes)/float(NumWorker));

For testing, the range image of the workpiece displayed in Figure 6 is used. This range image
has been processed by the low- and medium-level components of the IMAGINE2 system [8].
The corresponding output of the model invocation is displayed in Figure 7. The experimental
results for the parallel best-�rst search algorithm are displayed in Figures 8 and 9. Figure 8
shows the number of visited nodes in relation to the number of workers and Figure 9 shows
the number of visited nodes per worker in relation to the number of workers. T is the
termination threshold for satisfactory matches. The zigzag line is due to non-determinism, but
the tendency is obvious. The number of visited nodes per worker converges to approximately
T
2 as the number of workers increases. Therefore, the addition of worker processes increases
the search space.

The parallel best-�rst algorithm appears to be a good compromise between the parallel op-
timum search algorithm and the sequential best-�rst algorithm. It is not necessarily much
faster than the sequential best-�rst algorithm, but can produce better results within the same
or even a shorter time. The f() function for the estimated new state evaluations directs the
workers to search the tree depth-�rst, which increases the probability of �nding a satisfacto-
ry match earlier. The workers are guided by the plausibilities to follow the most promising
branches.
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The other main observation to make at this point is: because the sequential variations of
interpretation-tree model matching algorithm were presented in a set-oriented way [7], it
was quite straightforward to implement them and the alternative parallel implementations
in ProSet and then compare them, in only a few weeks.

7 Implementation of ProSet-Linda

This section briey discusses the evolving implementation of ProSet-Linda. We implement
ProSet-Linda in a somewhat unconventional way: the informal speci�cation is followed by
a formal speci�cation, which serves as the basis for a prototype implementation before the
production-level implementation is undertaken. Applying formal methods early in the design
stage of software systems can increase the designer's productivity by clarifying issues and
eliminating errors in the design. A formal development process is more expensive in terms
of time and education, but much cheaper in terms of maintenance. There may be bugs, but
they are less likely to be at the conceptual level.

The formal speci�cation of the semantics of ProSet-Linda has been presented by means
of the formal speci�cation language Object-Z and a prototype for a subset has been im-
plemented from the formal speci�cation with ProSet itself [16, 17]. The prototype allows
immediate validation of the speci�cation by execution. It is not possible to check the corre-
spondence between informal requirements and formal speci�cations formally by veri�cation.
The prototype enables us to avoid the large time lag between speci�cation of a system and
its validation in the traditional model of software production using the life cycle approach.

In the �rst C implementation of ProSet-Linda, the SunOSTM 4.1.3 Lightweight Processes
Library [27] is used to implement process creation and synchronization. This Lightweight
Processes Library only allows quasi-parallel execution on single processor workstations. The
C implementation is based on the ProSet prototype implementation (the ProSet compiler
translates ProSet into C). In many current operating systems the lightweight process or
thread has emerged as a useful representation of computational activity. Lightweight processes
represent multiple threads of control which share the address space of a single heavyweight
process. Lightweight processes usually cooperate closely and frequently with each other and
are typically used to implement parts of a program which are best executed concurrently. In
operating systems like Unix lightweight processes are provided to heavyweight processes by
a library which allows the user to execute functions as lightweight processes. Refer to [28,
Section 12.1] for an introduction to lightweight processes.

The next implementation was developed for the MeikoTM CS-2 Computing SurfaceTM at the
Edinburgh Parallel Computing Centre. This Computing Surface contains 22 SparcTM pro-
cessors connected by an high-speed multi-stage switch network. The CS-2 runs SolarisTM 2.3
(a synonym for SunOSTM 5.3). The re-implementation under SolarisTM 2.3 uses SUNTM's
Multi-thread Architecture [24]. This implementation also allows real parallel execution on
multi-processor SparcStationsTM. We use ProSet-Linda on a SparcStationTM 10/512 with
two processors. On these multi-processor SparcStationsTM the tuple spaces are stored in
shared memory.

The CS-2 does not support physically shared memory across processors. On distributed me-
mory architectures, a general problem for implementations of Linda is to provide a map from
the virtual shared memory model to physical distributed memory architectures. Therefore,
e�cient and reliable implementations of Linda on physical distributed memory architectures
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Figure 6: The range image of a workpiece used for testing.

Surfhyp plaus 0.824106 context 2 is bae_slope

Surfhyp plaus 0.819578 context 1 is bae_side

Surfhyp plaus 0.819311 context 1 is bae_top

Surfhyp plaus 0.798547 context 2 is bae_hole_side

Surfhyp plaus 0.555499 context 3 is bae_top

Surfhyp plaus 0.553070 context 5 is bae_rect_60x40

Surfhyp plaus 0.553070 context 5 is bae_2hole60x40

Surfhyp plaus 0.447979 context 3 is bae_side

Surfhyp plaus 0.421752 context 6 is bae_rect_10x60

Surfhyp plaus 0.388516 context 2 is bae_side

Surfhyp plaus 0.338191 context 2 is bae_top

Surfhyp plaus 0.309805 context 7 is bae_rect_60x20

Surfhyp plaus 0.305297 context 1 is bae_hole_side

Surfhyp plaus 0.191674 context 5 is bae_prow

Surfhyp plaus 0.134297 context 1 is bae_slope

Figure 7: The output of IMAGINE2's model invocation for the range image in
Figure 6. See Appendix B for a description of the notation used.
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are in general a great challenge for the implementor. Implementation techniques for physical
distributed memory architectures range from ones where the tuple space is replicated on each
node to those where each tuple resides on exactly one node. The implementation techniques
may be classi�ed as follows:

1. Central store with server process

2. Replication of the entire tuple space at each node

3. Distribution of the tuple space over the net with unique copies of each tuple

4. Mixture of these techniques

A central store may very quickly become both a computational and a communicational bott-
leneck. Therefore, our �rst implementation on the CS-2 replicates the tuple spaces on each
processor by means of the Elan widget library for the CS-2 [22]. This library supports virtual
shared memory on the operating system level. The virtual shared memory is consistently re-
plicated on each processor belonging to an application program. Updates are performed with
atomic broadcast operations. The CS-2 supports the single-program multiple-data (SPMD)
model for parallel application programs. For ProSet-Linda programs, each process is star-
ted in suspended mode except for the main process (executing the main program). Each
process contains a server thread to carry out the communication with other processes of the
application. New threads can then be created on other processors via appropriate requests
to the corresponding server threads (remote thread execution). Accordingly, requests for
tuple-space operations are accomplished via appropriate requests to the server threads.

However, a distribution of tuple spaces over the nodes in a parallel system in one form or
another is the most promising implementation technique on distributed memory architectures
for Linda's tuple spaces. This is due to several reasons. First, memory is saved and second,
the overhead for guaranteeing the consistency of the replicated tuple spaces is absent. Fur-
thermore, any Linda implementation that can scale to large machines must distribute tuple
space, so as to avoid node contention. This distributes the cost of handling tuple operati-
ons across all nodes in the system. The remaining problem is how to distribute the tuple
space. Multiple tuple spaces, as they are supported in ProSet, provide a direct approach
for distributing the tuple spaces on a distributed memory architecture. Additionally, the
representation of individual tuple spaces can be customized according to their contents and
usage. However, a replication of individual tuple spaces may also be useful. This would make
read operations cheap and write operations more expensive for replicated tuple spaces. Such
advanced implementations for ProSet-Linda are the subject for further research.

8 Conclusions

We discussed the development of algorithms for parallel interpretation-tree model matching
for 3-D computer vision applications with ProSet-Linda. Prototypes for the following algo-
rithms have been developed:

� The parallel complete search tree algorithm.

� The parallel �rst-stop search tree algorithm.
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� The parallel optimum search tree algorithm.

� The parallel best-�rst search tree algorithm.

The sequential algorithmic variations of interpretation-tree model matching are presented
in [7] in a somewhat set-oriented way. Therefore, it was quite straightforward to write the
computational parts of the parallel variations based on this speci�cation with the set-oriented
language ProSet. However, the four presented programs are complete executable prototypes
for the developed algorithms. They could be regarded as executable speci�cations .

The evaluation showed that not all algorithmic variations are good candidates for paralle-
lization. An application area for prototyping is to carry out feasibility studies . If we had
implemented the algorithms directly with a production language, for example C with exten-
sions for message passing, the implementation e�ort would have been somewhat higher. The
implementation of the four prototypes required just a few weeks.

This is what prototyping is about: experimenting with ideas for algorithms and evaluating
them. Purely theoretic evaluations are often not possible in practice.

The main contribution of this paper are the presented techniques for parallelization of
interpretation-tree model matching and the evaluation of these techniques. It is also a case
study for prototyping of parallel algorithms.
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A Literate Programming with noweb

This paper has been processed with the literate programming tool noweb [25] which is based
on Knuth's WEB [19]. Literate programmers interleave source code and descriptive text in a
single document. Knuth's WEB is a tool for writing literate Pascal programs. Ramsey's noweb
is independent of the target programming languages (for that reason it is pre�xed with no).
Here, we use it for two programming languages, viz. ProSet and C, within one document.

noweb is designed around one idea: writing named chunks of code in any order, with inter-
leaved documentation. Like WEB, and like all literate-programming tools, it can be used to
write a program in pieces and to present those pieces in an order that helps to explain the
program. A noweb �le is a sequence of chunks, which may appear in any order. A chunk may
contain code or documentation. Code chunks begin with

hChunk name 31ai�

on a line by itself. The index 31a is automatically inserted to indicate that this chunk is
the �rst chunk de�ned on page 31. Documentation chunks are anonymous. Chunks are
terminated by the beginning of another chunk, or by end of �le. Documentation chunks
contain text. If several code chunks have the same name, they are concatenated to produce
a single chunk. A code chunk is inserted into another chunk by omitting the � sign:

hChunk name 31ai

The program notangle then extracts the code from the document, and noweave outputs a
LATEX �le with source code and descriptive text. noweave allows one to customize the output
of keywords and special symbols within code chunks. ProSet's keyword forall, for instance,
is displayed within this document as 8. The operator >= is displayed as �. Keywords which
are not replaced by mathematical symbols are printed in bold face, comments in roman,
and the rest in typewriter font. notangle ignores these translations when extracting the
code for subsequent compilation. For an account of literate programming with noweb refer
to [25].

Program components which are not contained within code chunks are displayed in type

writer font. noweave does not customize the output of keywords and special symbols outside
code chunks.

An index to objects de�ned within the code chunks (procedures, variables etc.) can be found
at the end of this document. Unfortunately, noweb sorts lower case letters behind capital
letters.
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B Reading the Output from the Model Invocation

The model invocation uses model and data properties to pair likely model and data features
for further consideration. The model invocation process compares the expected and observed
properties of features and locally related pairs of features, and assigns a match score based
on the closeness of match [5]. It produces a sorted list of consistent model-to-data pairs:

pairi = ( modeli; datai; Ai)

where Ai is the compatibility measure (plausibility) of the features modeli and datai. The
pair list is initially sorted with larger Ai values at the top.

The corresponding output from the model invocation in the IMAGINE2 system [8] is a list
of lines of the form:

Surfhyp plaus 0.824106 context 2 is bae_slope

Surfhyp, plaus, context and is are keywords. The integer 2 is the data feature and the
string bae_slope is the model feature name. The real number 0.824106 de�nes the plausi-
bility for this data/model feature pair. The plausibility is a value between �1:0 and 1 :0, but
model invocation only selects pairs for further matching whose plausibility lies between 0:0
and 1:0. The procedure GetHypos reads this list from standard input:

hProcedure for reading the hypotheses from the invocation 32i�
@include "gethypos.h"

procedure GetHypos ();

begin

result := []; -- initialize the result tuple
while NOT_EOF do

GET_TOKEN; -- skip 'Surfhyp'
GET_TOKEN; -- skip 'plaus'
p := GET_PLAUSIBILITY;

GET_TOKEN; -- skip 'context'
d := GET_DATA;

GET_TOKEN; -- skip 'is'
m := GET_MODEL;

result with:= [d,m,p];

end while;

return result;

end GetHypos;

The header �le gethypos.h de�nes the GET_* and NOT_EOF macros (see below).

The above-mentioned input line is translated into the following ProSet tuple representation:

[ 2, "bae_slope", 0.824106 ]
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The output from the invocation is read in by C functions. They are called via ProSet's
interface to C:

hMacros for getting the hypos 33ai�
@define NOT_EOF (c_fct_call check_input() c_string) 6= "EOF"

@define GET_TOKEN c_fct_call get_token()

@define GET_DATA c_fct_call get_data() c_integer

@define GET_MODEL c_fct_call get_model() c_string

@define GET_PLAUSIBILITY c_fct_call get_plausibility() c_real

These @defines are similar to C's #defines. This chunk is tangled into �le gethypos.h.

The corresponding C pro�les:

hC headers for getting the hypos 33bi�
extern char *check_input();

extern void get_token();

extern int get_data();

extern char * get_model();

extern double get_plausibility();

This chunk is tangled into �le get.h.

The C functions:

hC functions for getting the hypos 33ci�
#include <stdio.h>

#include "get.h"

#define MAXBUF 128

static char buffer [MAXBUF];

hCheck for input 33di
hGet next token 34di
hGet data feature 34ai
hGet model feature 34bi
hGet plausibility 34ci

This chunk is tangled into �le get.c.

Check for end of �le:

hCheck for input 33di�
char *check_input()

{

char ch;

if ((ch = getc(stdin)) == EOF)

{

return "EOF";

}

else

{

ungetc (ch, stdin);

return "NOT_EOF";

}

}
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Get the index of the next data feature:

hGet data feature 34ai�
int get_data ()

{

get_token ();

return atoi (buffer);

}

Get the name of the next model feature:

hGet model feature 34bi�
char * get_model ()

{

get_token ();

return buffer;

}

Get the oat value of the next plausibility:

hGet plausibility 34ci�
double get_plausibility ()

{

double ret;

get_token ();

if (sscanf (buffer, "%lf", &ret) == 0)

{

fprintf (stderr, "get_plausibility: error from sscanf\n");

exit (1);

}

return ret;

}

Store the next token into the buffer:

hGet next token 34di�
void get_token ()

{

char ch;

register i;

hSkip white spaces 34ei
hRead token into bu�er 35i

}

hSkip white spaces 34ei�
do /* skip white spaces: */

{

if ((ch = getchar()) == EOF)

{

fprintf (stderr, "get_token: found unexpected EOF\n");

exit (1);

}

}

while (isspace(ch));
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hRead token into bu�er 35i�
for (i = 0; !isspace(ch); i++)

{

if (i >= MAXBUF)

{

fprintf (stderr, "get_token: buffer overflow\n");

exit (1);

}

buffer [i] = ch;

if ((ch = getchar()) == EOF)

{

fprintf (stderr, "get_token: found unexpected EOF\n");

exit (1);

}

}

buffer [i] = '\0'; /* terminate string */
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C Making Sets of Consistent Model-data Correspondences

The model invocation evaluates unary and binary geometric constraints for model/data fea-
ture pairs (see Appendix B). There exist additional binary constraints for combinations of
model/data pairs. For example, Grimson and Lozano-Perez [12] provide a set of binary cons-
traints useful for three-dimensional scene analysis, based on pairwise consistency constraints ,
that compare quantities such as relative distance, orientation and direction. Of particular
importance is the local nature of the consistency tests, based on the assumption that a few
simple, fast tests on partially generated hypotheses will eliminate large numbers of globally
inconsistent hypotheses. Position estimates can be used to identify features that are visible
from the given position, and to eliminate features unlikely to be observed. The model surface
patches and the estimated position can be used to determine whether the surface patch is
back-facing (not visible).

The procedure Consistent checks whether a given pair is consistent with each pair in the
path so far:

hProcedure for consistency check 36ai�
procedure Consistent (PathSoFar, Pair);

begin

for p 2 PathSoFar do

if : ConsistentPair (p, Pair) then

return false;

end if;

end for;

return true;

hProcedure for consistency check of two pairs 36bi
end Consistent;

The procedure ConsistentPair checks whether two given pairs are consistent with respect
to some geometric constraints (a probabilistic simulation):

hProcedure for consistency check of two pairs 36bi�
procedure ConsistentPair (p1, p2);

begin

return random(1.0) < 0.8 ;

end ConsistentPair;

For comparison of the di�erent algorithms, we just use a random value to determine the
consistency. The emphasis of the present paper is the parallel interpretation-tree search, and
not the evaluation of geometric constraints, whose description and implementation would
extend to a report by itself.
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D Insertion of New Entries into a Distributed Priority Queue

The procedure Insert inserts a new entry into the distributed priority queue of Section 6.3:

hProcedure for insertion into the priority queue 37ai�
procedure Insert (actual, newS_i, newg, newm, newf);

begin

hPop top of actual queue 37bi

if newf � fS_iPair_m then

if next 6= 0 then

hInsert before actual entry 37ci
else

hInsert at end of queue before actual entry 37di
end if;

else

if next 6= 0 then

hInsert behind actual entry 38ai
else

hInsert at end of queue behind actual entry 38bi
end if;

end if;

end Insert;

The workers call Insert always with the pointer to the top of the priority queue (indicated
by the integer 1). Insert may call itself recursively with pointers to tails of the queue. First,
the top of the actual queue is popped:

hPop top of actual queue 37bi�
fetch (actual, ? next, ? S_i, ? gS_i, ? m, ? fS_iPair_m )

at WORK

end fetch;

The top of the actual queue is fetched and not just met to guarantee the integrity of the dis-
tributed queue. Fetching and returning the entries is a somewhat ine�cient implementation
of locking. In a production level implementation with, for example, C/C++ with parallel
extensions (e.g. C-Linda or message passing) some semaphore mechanism might work more
e�ciently. In this paper we concentrate on the development of ideas for parallel algorithms,
not the development of the most e�cient implementation at �rst (this is prototyping).

If the evaluation of the new entry (newf) is higher than or equal to the evaluation of the
actual entry in the queue (fS_iPair_m) and the actual entry is not the last entry in the
queue (next not equal to 0), then the new entry is inserted in front of the actual entry:

hInsert before actual entry 37ci�
deposit [ actual, next, newS_i, newg, newm, newf ]

at WORK

end deposit;

Insert (next, S_i, gS_i, m, fS_iPair_m);

If the evaluation of the new entry (newf) is higher than or equal to the evaluation of the
actual entry in the queue (fS_iPair_m) and the actual entry is the last entry in the queue,
then the new entry is inserted in front of the actual entry at end of the queue:
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hInsert at end of queue before actual entry 37di�
next := newat(); -- We need a new pointer
deposit [ actual, next, newS_i, newg, newm, newf ]

at WORK

end deposit;

deposit [ next, 0, S_i, gS_i, m, fS_iPair_m ]

at WORK

end deposit;

If the evaluation of the new entry (newf) is lower than the evaluation of the actual entry in
the queue (fS_iPair_m) and the actual entry is not the last entry in the queue (next not
equal to 0), then the new entry is inserted into the tail behind the actual entry:

hInsert behind actual entry 38ai�
deposit [ actual, next, S_i, gS_i, m, fS_iPair_m ]

at WORK

end deposit;

Insert (next, newS_i, newg, newm, newf);

If the evaluation of the new entry (newf) is lower than the evaluation of the actual entry in
the queue (fS_iPair_m) and the actual entry is the last entry in the queue, then the new
entry is inserted at end of queue behind the actual entry:

hInsert at end of queue behind actual entry 38bi�
next := newat();

deposit [ actual, next, S_i, gS_i, m, fS_iPair_m ]

at WORK

end deposit;

deposit [ next, 0, newS_i, newg, newm, newf ]

at WORK

end deposit;
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