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Abstract

Considerable efforts are spent in the diagnostic research on finding biomarker panels that have
a high potential to accurately identify a complex disease at an early stage.
This thesis addresses the realisability of specific requirements which a diagnostic rule should
comply with in order to be accepted and useful within diagnostic workflows. Major aims in the
process of rule building for diagnostic purposes are beside the high accuracy also the simplicity
and interpretability of diagnostic rules. They have to provide accurate and reproducible results
in order to be reliable. They have to be simple for an easy assessment in the diagnostic practice
and good interpretable for a high acceptance by medical practitioners.
A simultaneous accomplishment of these quality standards is difficult due to the trade-off be-
tween accuracy and model complexity.
For instance Logic Regression might be a suitable method for diagnostic classification problems
as it provides very simple and interpretable discriminant rules. These are defined as and-or com-
binations of binary predictors. However a performance loss is expected due to the necessity to
dichotomize continuous predictors.
Advantages and disadvantages of simple and easy interpretable classification models (e.g. Logic
Regression) when compared to established but more complex and powerful ones (e.g. Regular-
ized Discriminant Analysis, Random Forests) are highlighted and discussed.
Another major challenge is to ensure the fair comparison of classification algorithms and diag-
nostic rules in order to select the most promising candidates. Regarding a general diagnostic
task the algorithm should be selected that leads to the most stable and unbiased results. Regard-
ing some special diagnostic question the most accurate discriminant rule should be selected.
Adequate designs to evaluate and optimize classification algorithms and rules are presented.
This thesis deals also with the problem of an accurate estimation of rules and of their perfor-
mance in the context of a heterogeneous target population but non-representative training data.
Learning the diagnostic rule on some excerpt of the target population with different observed
subclass prevalences than the true ones might be a source of severe bias regarding both the se-
lected rule and its estimated accuracy.
Four weighting classification algorithms that account for the subclass prevalence structure of
the target population during the processes of rule building and rule validation are presented.
Their feasibility over various practical settings is assessed both empirically and theoretically.
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All investigated methods are applied on some real data sets of rheumatoid arthritis cases and
controls provided by Roche Diagnostics GmbH, Penzberg. Supplementary information is gained
with simulated data.
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Chapter 1

Overview

One of the major interests of the medical research in the field of early diagnosis is the discov-
ery of protein biomarkers and their assessment for clinical needs with novel chip technologies.
While medicine still relies on the knowledge and intuition of individual doctors, gradual ad-
vances in the biomarker research over the past decades have contributed to a broadening of the
diagnostic methodology. Using new genomic and proteomic tools scientists are engaged in an
unprecedented large-scale hunt for new biomarkers.
Several biomarkers are available nowadays but none of them is sensitive and specific enough
for the early diagnosis of a disease with complex biological profile. So, it is more likely that a
combination could increase the diagnostic accuracy in many settings.

The biomarker identification is supported in the statistical field through development, improve-
ment and assessment of multivariate classification algorithms. These are designed to filter out
from an initial biomarker pool a powerful combination able to spot the target condition at an
early stage. They should provide meaningful rules based on the selected biomarker panels for a
reliable identification of the disease.

The quality of the rules for the diagnostic practice is judged not only in terms of their accuracy
but also of their simplicity and interpretability. They should be highly accurate to guarantee a
low probability of erroneous assignments, thus a reliable diagnosis. They should be simple to
enable a fast and easy assessment of the disease status and interpretable to get a high acceptance
by the medical professionals.
However, there is usually a trade-off between performance and complexity of the classification
models. Therefore, some methods might provide more simple and interpretable rules than other
ones in change of some performance loss. An interesting question is here, how much accuracy
loss is tolerable for the sake of better handling and understandability of the diagnostic rules.

1
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Chapter 3 highlights dangers and benefits associated to the accomplishment of these quality
standards of diagnostic rules. They are exemplified on Logic Regression (LogicR) (Ruczinski
et al., 2003). This method seems to be suitable for diagnostic tasks since it provides very simple
and interpretable models, logic rules being and-or combinations of binary predictors.
However, most biomarkers are measured on a metric scale, thus they have to be dichotomized
first in order to be used with Logic Regression. This data transformation from a quantitative
to qualitative level affects the accuracy of the logic rules by loss of valuable information. The
method is known to suffer not only from its restriction to binary data, but also from its particu-
larly long run times.

In this thesis LogicR is applied to multivariate classification problems with continuous pre-
dictors. Keeping track on all the pro- and contra-arguments for LogicR, its performance is
compared with that of Regularized Discriminant Analysis (RDA) (Friedman, 1989), as a well
established procedure. Since LogicR belongs to the family of tree algorithms, its performance
is compared additionally to that of Random Forests (RF)(Breiman, 1997). The methods are ap-
plied on a real data set of rheumatoid arthritis cases and controls that comprises measurements
of four biomarkers. Supplementary information is gained with results from three simulation
designs.

The diagnostic potential of LogicR is shown to strongly depend on the underlying data struc-
ture. In the best case LogicR is as good as RF and RDA, in the worst case its misclassification
error rate is 14% while RF and RDA achieve about 9%. However, the real burden of LogicR is
the computational time, which impedes from the use of LogicR with settings that would have
the potential to enhance its performance and stability.

Another critical issue in the development of new diagnostic rules based on biomarker combina-
tions, which this thesis deals with, is the fair choice of the best performing algorithms and/or
rules. Examples of adequate designs to optimize and evaluate classification algorithms and clas-
sifiers (i.e. rules) are provided and discussed in Chapter 2. They find application several times
throughout this thesis.

From the field of machine learning comes the concept of benchmark study, which is a parallel
study of some competing algorithms or classifiers. It aims at a comparison of them with respect
to a certain performance measure. The taxonomy of statistical questions in machine learning
illustrated by Dietterich (1998) distinguishes between two types of targets: finding the best clas-
sifier and finding the best algorithm. The first target is related rather to a specific application,
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the second to a more general classification task.
An algorithm is better than its competitors if it provides superior classifiers over a relevant
fraction of experimental tasks. Here superior refers to the highest accuracy and a competing
consistency of the classification model, thus a similar performance on the training and test data
sets.

Given a particular classification task, a fair benchmark of algorithms should take into account
different sources of variability which affect the final rule choice. This is possible by embedding
all competing algorithms within a so-called Monte Carlo Cross-Validation design (Plutowsky,
1995). By the Monte Carlo procedure one takes into account the variability associated to a par-
ticular choice of the training and test data sets.The Cross-Validation (CV) procedure enables a
realistic estimation of the optimal rule parameters and features.

A generalization of results is possible by simulation studies. They provide a basis for the com-
parison of algorithms over a large variety of data situations. Several data conditions are gen-
erated and the benchmark is effectuated for every generated condition. In the end a balance is
drawn over all particular benchmark results.

For instance, in this thesis a benchmark of the algorithms LogicR, RDA and RF is performed.
Initially, a data set of rheumatoid arthritis cases and controls is used. The Monte Carlo Cross
Validation design for a realistic assessment of the performance of each algorithm is applied.
However, the results of this benchmark study are valid only in the context of this particular data
set. To assess the suitability of LogicR within diagnostic workflows in general, supplementary
information is needed. This is gained from three simulations designs.

If, additionally, a set of factors is suspected to affect the performance of the algorithms and
therefore also the outcome of the algorithm benchmark, a suitable design of experiments is
needed to extract the relevant factors. For each considered combination of factor levels ac-
cording to this design a simulation study is carried out and the benchmark of algorithms is
performed. Once the relevant factors are extracted and some useful model information is re-
tained, the design might be augmented to consolidate this information and guarantee a precise
estimation of the predicted performance.

Another critical issue in the process of developing diagnostic rules is the representativeness of
the data used for learning. This should mirror the true prevalence structure of the target popula-
tion which the diagnostic rules are actually designed for.
A considerable part of this thesis concerns the problem of a realistic estimation of classification
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errors in the context of non-representativeness of the data. In Chapter 4 this issue is studied
empirically. A theoretical investigation on this topic is shown in Chapter 5.
The target population is assumed to be heterogeneous with known subclass prevalences.
This situation is especially encountered in the screening practice: asymptomatic patients are re-
cruited in a prospective frame until some reasonable number of patients carrying the condition
of interest is accrued. The control collective of an ideal screening population consists of several
other diseases for which usually the true prevalences are known.

When diagnostic rules are used as screening tools, it is critical that their accuracy is measured
on the relevant clinical population. However, especially if the condition of interest has a low
prevalence in the clinical population, such a prospective study can require an enormous sample
of patients. Besides, the development of a new diagnostic rule demands the verification of the
true disease status (gold standard procedure) for all study patients. The resulting costs of such
studies might be prohibitive. Therefore, it is more practical to use only some small excerpt
of the screening population, which we call the data at hand. However, this is usually non-
representative, which means that the true (target population) and observed subclass prevalences
(data at hand) are very different. In this case, learning the diagnostic rule without taking into
account the true composition of the target population may cause not only a severe bias in the
performance estimates, but also the selection of an erroneous diagnostic rule.

In Chapter 4, four weighting algorithms are proposed which should help to overcome the dis-
advantages related to a suboptimal data at hand. They apply at least one of two modalities to
account for the true subclass prevalence structure:

(a) in the phase of rule validation by computation of weighted error estimates as sums of the
subclass errors with weights given by the true subclass prevalences;

(b) in the phase of rule building by computation of weighted class distribution parameters:
weighted class means and covariance matrices according to the true subclass prevalences.

First, the suitability of these weighting algorithms in the context of a heterogeneous control col-
lectives is surveyed over a large variety of configurations of the target population. The theory
of experimental designs is used to generate interesting target situations for the simulation study.
For each given configuration of the target population a Monte Carlo Cross Validation design is
applied to fairly establish the most adequate weighting procedure.
The algorithms which account for the true subclass prevalences both in the phase of rule build-
ing and validation are proved to be superior to algorithms which weight only in the validation
step. Weighted rules approach well the expected classification errors in the target population
especially when the data at hand is highly suboptimal. In the context of a pronounced non-
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representativeness of the data set at hand weighting seems to be the right alternative.

However, the question arises, if the benefits associated to a bias reduction by weighting are
not endangered by some simultaneous variance inflation. The variance of weighted estimates
might be enhanced by contribution of the up-weighted subclasses, thus, of those subclasses be-
ing under-represented in the data set at hand.

In Chapter 5 theoretical investigations are carried out in order to establish suitable and poten-
tially dangerous situations for the application of weighted estimates. These may especially help
users with less knowledge about the target population to make decisions about using weighted
or unweighted rules before the rule building process starts. In this theoretical survey the hetero-
geneous class is composed of two subclasses.

Evidence is provided for the superiority of weighted estimates especially in the context of
medium to high degrees of mismatch between the data at hand and the target population. Ex-
tremely high or extremely low degrees of mismatch have an increased danger potential. They
might result in counter-productive weighted rules.

Also, the size of the heterogeneous class and the difference between the true subclass error
probabilities influence considerably the benefit expected from weighted classification errors.
The larger they are, the higher the chances for an efficient weighting.

The size of the heterogeneous class and the distance between the true subclass means are of
great importance regarding the benefit expected by weighting class means, too. The larger
they are, the higher also the chances for more efficient weighted than unweighted class mean
estimates. Here, it should be noted also that a higher distance between the true subclass means
indicates a pronounced subclass structure in the target population.



Chapter 2

Adequate designs to optimize and evaluate
classification algorithms and rules

We highlighted in Chapter 1 that multivariate classification algorithms find a strong application
in the field of diagnostic classifications by means of biomarker panels. They should be able
to provide meaningful (interpretable and easily assessable) but also highly accurate diagnostic
rules (diagnostic tests).

Important issues in the process of developing new classification algorithms and rules for diag-
nostic purposes are the reliable assessment and comparison of their performance. In statistical
learning an empirical experiment with the aim of comparing algorithms or rules is called a
benchmark study (Hothorn et al., 2005). The taxonomy of inference problems in the special
case of supervised learning algorithms developed by Dietterich (1998) is helpful to distinguish
between finding best classifiers and finding best algorithms. The first target is related rather to
a specific classification problem, the second to a more general classification frame.

For instance, given a particular diagnostic task the primary goal is usually to find the best diag-
nostic rule and estimate its accuracy for future samples.
However, new diagnostic rules that are more accurate but also cheaper, simpler and more inter-
pretable are sought for diagnosis of many conditions. For this reason, the development of new
classification algorithms and the general assessment of their suitability for diagnostic questions
relatively to old ones is an active research area.
Also, for instance, an algorithm included in a medical device should analyze and update period-
ically the diagnostic test based on accumulated examples of diseased and non-diseased subjects.
In this case it is again critical to implement the most promising algorithm from a pool of candi-
dates.
Depending on the intended comparison, of algorithms or rules, an adequate design should be
used to assess a feasible measure of performance. This should take into account, as far as pos-
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sible, sources of variation associated to the way in which the learning was performed.

The first section introduces some formal preliminaries to the problem of comparing algorithms
and/or rules.

The second section illustrates adequate designs for the comparison of algorithms in the diag-
nostic context. They find several times application throughout this thesis: in Chapter 3, when
we assess the suitability of Logic Regression for diagnostic classifications with respect to estab-
lished classification algorithms like RDA and Random Forests; in Chapter 4, when we compare
four new weighting algorithms in the context of heterogeneous data on real and simulated data
sets. Also, these designs can be easily adapted to a comparison of diagnostic rules on a specific
diagnostic task.

The last section addresses the benchmark of algorithms from another perspective. Interesting
is here a comparison of algorithms over a range of different data sets. For instance, each data
set corresponds to some special distributional situation, like in our simulation study in Chapter
4. For the sake of clearness such a benchmark study with more than one data set was called
benchmark survey by Eugster et al. (2008).
Usually none of the algorithms is superior to the others over all data situations. Its final per-
formance depends on the distribution of the data generating process (Hothorn et al., 2005).
Therefore, a challenging aspect is to identify appropriate factors for describing the target distri-
butional context in which an algorithm outperforms the others.
A suitable way to proceed in this regard using the theory of experimental designs is presented.

2.1 Formal preliminaries

In supervised learning problems a learning data set L contains the empirical information about
the data generating process DGP (Hothorn et al., 2005). This data reflects our knowledge about
the world. It comprises N independent and identically distributed samples drawn from the DGP,
L = {z1, z2, . . . , zN}. The learning samples have the form of (p + 1)-tuples zi = (yi, x′i)

′, where
yi represents the true class (assessed by the best available reference method, the gold standard )
and xi is the vector of p observed features (characteristics) of sample i, i = 1, 2, . . . ,N.
The aim of the learning task is to construct rules (classifiers) which, based on a meaningful set
of object characteristics, map future objects to classes. The classification algorithm, also called
inducer, is the learning tool which builds a rule (classifier, test) from the available data.
For instance, an example of diagnostic task frequently addressed in this thesis is the identifica-
tion of rheumatoid arthritis using biomarker concentrations in serum. Elevated concentration
levels of some candidate biomarkers could be good indicators for the disease presence. Thus,
a diagnostic rule for predicting the true disease status is induced by means of some suitable
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algorithm from the biomarker measurements on the available study collective.

Throughout this chapter the availability of several candidate algorithms as potential problem
solvers is assumed. These competitors are denoted as ak, k = 1, 2, . . . ,K. Each of them rep-
resents a two-step procedure: in a first step, a rule is fitted on the learning sample L, yielding
a function ak(·,L); in a second step, this is used to make class predictions for new objects of
interest.

When searching for the best solution, candidates need to be compared with respect to some
problem specific performance measure p(ak,L). This depends on the algorithm used and on the
DGP. The right strategy, independently on the available amount of data, is to assess this measure
of performance on some test (validation) data set drawn independently from the same DGP as
the training data, which is used for learning the rule. Since L is a random learning sample also
p(ak,L) is a random variable whose variability is induced by the variability of the algorithms
and of the training and test samples which follow the same DGP as L.

This measure of performance is defined by some functional µ of the distribution of a loss
function L, which is usually the expected, quadratic, median or absolute loss, i.e. p(ak,L) =

µ
[
L(ak(x,L), y)

]
.

Throughout this thesis the expectation as functional and the absolute loss are used, leading to
the misclassification rate as empirical measure of performance. It is obvious that the absolute
and quadratic loss functions are essentially the same in the context of two class classification
problems with class labels 1 (disease) and 2 (controls) (or 1 and 0 respectively) like those ad-
dressed in this work.

In a similar way to Hothorn et al. (2005) we account for the variability associated to the per-
formance of each algorithm and for the variability of the rules produced by each algorithm
using the so-called Monte Carlo Cross-Validation design (Plutowsky, 1995) with inner cross-
validation loops for rule optimization. This design and its advantages are detailed in the next
section.

2.2 Designs for the comparison of algorithms

A good benchmark of algorithms and rules should take into account essentially four sources of
variation, which are listed by Dietterich (1998):

1. the selection of the test set: a classifier outperforms another on a randomly drawn test
data set, although they are asymptotically (i.e. on the whole population) equivalent;
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2. the selection of the training set: algorithms show usually an ”instability” behavior (Breiman
(1996)) as small changes in the training set can result in large modifications of the fitted
model;

3. internal randomness of the learning algorithm: the final model depends on a random
initialization of the outgoing state of the algorithm;

4. random classification error: if η% supervising errors are available in the test set, no al-
gorithm will achieve a better error rate than η% (gold standard problem); the presence
of supervising errors in practice is almost impossible to overcome, therefore a perfect
classification is usually a hardly achievable task.

A usual shortcoming of approaches which compare raw point estimates of the performance mea-
sure on a validation data set in finite sample situations, is that they ignore the various sources
of variability, leading to uncertain conclusions. Common binomial confidence intervals would
just control the variability due to the choice of the test data. Common statistical tests, like Mc-
Nemar’s test (see Dietterich (1998)) should be applied only if the variability due to the choice
of the training set or the internal randomness of the algorithm are believed to be negligible.

In the statistical literature various methods were proposed to control the different sources of
variability in the performance estimates.
Dietterich (1998) surveys some ways to account for the first two sources of variation while per-
forming statistical tests for the comparison of algorithms.
Bauer & Kohavi (1999) sample repeatedly from the training set, in order to improve the esti-
mates for the bias and the variance of the error rates on the test set. Consequently, they adjust
the test sample estimates for the intrinsic noise and compare the candidate algorithms in terms
of average relative error reduction.
Another way to address these problems is suggested by Hothorn et al. (2005). They introduce
a theoretical framework for the comparison of learning algorithms and propose some methods
of sampling from algorithm conditioned distributions of the performance measures, in an inde-
pendent way, in order to enable standard statistical tests.

In a similar way to Hothorn et al. (2005) we account for the first three sources of variability
associated to the performance of each competing algorithm by various outer training-test splits
of the whole learning data. In this way different random training and test samples are obtained
that should theoretically follow the same DGP as the original data.
The difference to Hothorn et al. (2005) is that we draw the training and test data sets from the
original data using a class stratified random sampling without replacement. This procedure is
called Monte Carlo (MC) cross-validation (Plutowsky, 1995).
The rule variability associated to its parameter estimates and features, corresponding to the sec-
ond source of variation, is controlled by a simple inner cross-validation (CV) design on each of
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the Monte Carlo training data sets.

In this thesis the short name L×M-MCCV refers to an iterative estimation-optimization design
based on L outer MC and M inner cross-validation (CV) loops. It is also referred in some ap-
plications as the double-loop cross-validation, since it combines two different cross-validation
strategies (Plutowsky, 1995): (1) L-fold outer Monte Carlo cross-validation and (2) M-fold in-
ner Disjoint Set Cross-Validation (the regular cross-validation method).

The workflow according to an L × M-MCCV design is illustrated in Figure 5.1.

Figure 2.1: Workflow of an L × M-MCCV design

Strategy (1) consists of L independent iterations of the following steps:

a1. The original learning data L is subdivided by random sampling without replacement into
a so-called MC training and an MC test data set according to a given proportion.

a2. On the MC training data set the best rule is fitted. This is defined in terms of minimal CV
error rate and its optimization succeeds by means of strategy (2) starting from the current
MC training data.

a3. The performance of the rule developed at step (a2) is evaluated by computation of its
misclassification rate on the MC test data.

The final misclassification error estimate is an average over the L misclassification rates on the
MC test subfractions computed in (a3).
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Strategy (2), representing the most common form of cross-validation, consists of the following
steps given some starting training data (e.g. an MC training data set):

b1. The data is split into M disjoint and approximately equally-sized subfractions, called also
CV test data sets. The split is based on random sampling without replacement.

b2. On each set of M − 1 subfractions a rule is constructed for a fixed combination of model
parameters and features.

b3. The misclassification rate of the rule constructed in (b2) is computed on the remained
subfraction.

b4. The CV estimate of the error rate is obtained as average over the misclassification rates
obtained on the CV test data sets.

Let the M test subfractions of some M-fold cross-validation strategy be generally denoted as
L(1),L(2), . . . ,L(M). The corresponding counterparts, i.e. L \ L(m), m = 1, . . . ,M, are used to
learn the rule. The CV estimates of the probability to misclassify class i as j by some rule δ
constructed on L are computed as:

ε̂(M−CV)
i =

1
M

M∑
m=1

ε̂(m)
i

=
1
M

M∑
m=1

1

N(m)
i

 ∑
(i,x′)′∈L(m)

I{δ
−L(m) (x)= j}


=

1
Ni

M∑
m=1

 ∑
(i,x′)′∈L(m)

I{δ
−L(m) (x)= j}

 , (i , j, i, j ∈ {1, 2}), (2.2.1)

and the overall CV error estimate is:

ε̂(CV)(δ) = π̂1ε̂
(M−CV)
1 + π̂2ε̂

(M−CV)
2 . (2.2.2)

Here Ni are the class sizes and N(m)
i , i = 1, 2, are the class sizes in the CV test subfraction L(m).

In the class stratified CV which we practice throughout this work, N(m)
i represent an 1

M -fraction
of the total class size Ni. Further, ε̂(m)

i is the common error estimate within class i on the CV test
subfraction L(m), δ−L(m) represents the rule fitted after L(m) is left out, and π̂i are the observed
class prevalences in the whole training data, i.e. π̂i = Ni

N , i = 1, 2. Iη stands for the indicator
function with:

Iη =

1 if η is true,

0 otherwise.
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Now, every MC or CV test data set is an example of validation data set. Given some validation
data set T with class sizes represented by N(ts)

i , i = 1, 2, and δ some rule developed on the
learning data L, the test-sample (TS) estimates of the probability to misclassify class i as j by
δ are computed as:

ε̂(ts)
i =

1

N(ts)
i

∑
(i,x′)′∈T

I{δ(x)= j}, (i , j, i, j ∈ {1, 2}), (2.2.3)

and the overall TS-error estimate is:

ε̂(ts)(δ) = π̂1ε̂
(ts)
1 + π̂2ε̂

(ts)
2 . (2.2.4)

For instance, in the inner M-fold CV let the TS-error estimate on the m-th CV test data set be
denoted as ε̂(ts,CV)

m , m = 1, 2, . . . ,M. In the L-fold outer MC cross-validation let the TS-error
estimate on the l-th MC test data set be denoted as ε̂(ts,MC)

l , l = 1, 2, . . . , L. Then the final CV
error estimate corresponds to:

ε̂(CV)(δ) =
1
M

M∑
m=1

ε̂(ts,CV)
m ,

and the final error estimate obtained by MC cross-validation to:

ε̂(MC)(δ) =
1
L

L∑
l=1

ε̂(ts,MC)
l .

Throughout this thesis all splits into MC or CV training and test data sets are performed using
the class as stratification variable. This enables to keep track on the quotient between the two
classes in the original data. Stratification was proved to be the better scheme, both in terms of
bias and variance of the error estimates, when compared to regular cross-validation (Kohavi,
1995). A stratified 10-fold CV was for instance recommended for model selection (this would
correspond to a 10-fold inner CV in our case).

Note that the Monte Carlo cross-validation, thus strategy (1), was proven to be asymptotically
consistent regarding the model selection. This means that it finds the best prediction model with
probability one (Xu et al., 2004) given infinite sample sizes.
Another advantage of the Monte Carlo cross-validation is that it offers also a feasible approxi-
mation of the exhaustive cross-validation using much less splits. Given a size nV of the test data
sets, the latter method considers all different training-test splits of the original data with test
sets of this size. Though it performs the most complete assessment of the first three sources of
variation and is asymptotically consistent, the exhaustive cross-validation is hardly practicable
since its computational complexity grows exponentially with respect to nV . By Monte Carlo



2.3. Simulation designs 13

cross-validation the computational complexity of the exhaustive CV is reduced substantially.
Theoretically, the more samples are used for learning the less MC loops are needed.
For these reasons, an even better design than ours would be one based both on outer and inner
Monte Carlo cross-validation loops. However, this alternative was not considered since it is
computationally expensive and time-consuming. The combination of outer MC and inner 10-
fold cross-validation loops that we always apply given enough samples is more feasible from a
time and complexity point of view. Over simulations it also provides mostly satisfying results
in terms of model consistency and final error estimation.

2.3 Simulation designs

Usually none of the algorithms in a benchmark outperforms the others over all data situations.
Its performance depends on the strategy used and on the DGP. Therefore, sometimes it is inter-
esting to perform the benchmark of algorithms over multiple domains (data sets from different
DGPs) in order to identify the reunion of conditions that favors the application of an algorithm
or another. For this, simulations over different data configurations are needed. Especially in the
context of time-consuming algorithms, an adequate simulation design helps to gain information
from a feasible number of runs.

Ideally, the data simulation for the comparison of algorithms over multiple domains is a sequen-
tial process. This enables to take advantage on the information gained from a previous small
set of runs in a next well-grounded simulation study. Some possible steps of such a sequential
design are:

Step 1 : Identification of a set of factors that describe the multiple domains and potentially impact
on the algorithms performance;

Step 2 : Generation of a screening design to separate a subset of factors with significant influence
on the performance of all algorithms from the rest;

Step 3 : Augmentation of the original design to enable a reliable prediction of the algorithms
performance by means of a quadratic model in the selected factors.

The first step towards the generation of an adequate design is a conceptual one: various and
relevant data distributions for the regarded diagnostic question are meaningfully described. A
set of factors, which enable the specification of the distributional configuration of the data and
are assumed to impact on the diagnostic accuracy of the algorithms, is assessed.

For instance, in Chapter 4 the problem of classification when the target population has a sub-
class structure with known true subclass prevalences is addressed. Four weighting algorithms
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that account for the true subclass prevalence structure in different phases of the rule develop-
ment process are compared in order to assess the best way to proceed in this diagnostic situation.
However, the position of class and subclasses to each other as well as the degree of mismatch
between the study and the target population with respect to the subclass prevalence structure
are expected to impact on the outcome of this benchmark. Therefore, in the context of one
homogenous and one heterogeneous class the following factors are considered to describe the
distributional configuration of the target population: the euclidian distances from the subclass
centers to the center of the homogeneous class, the angle between the subclass centers with
vertex in the center of the homogenous class and the absolute difference of the true subclass
prevalences.

Assume that an initial pool of design factors is available. A second step in the development
of an adequate simulation design is to rule out eventual noise, thus to perform some reduction
of the factor space. This can be done by simulating the data within the frame of a screening
design. Each run corresponds to a selected combination of the factor levels for the experimental
purpose. Screening designs are useful as a prelude of further experiments. They are also a
cheap and efficient way to begin an improvement process since they reduce the number of runs
by restricting continuous and multi-levels factors to two (or three) levels and use only a fraction
of a full factorial design.

In screening for informative factors a linear model including only the main factor effects is
assumed to underlie the data before the design is produced. The columns of the final design
matrix, each corresponding to the generated levels of one factor, are empirically uncorrelated
(orthogonal design). Besides, each column has the mean 0, thus the design contains an equal
number of runs on the high and on the low levels of each factor.
Some center points, i.e. runs in the mid-range of each factor, might be used to check if the
assumed model is adequate. They also provide with information about the variance of the pre-
diction error in the center of the factor region.

After the design was generated, the simulation data sets are drawn from each DGP described by
the given factors and the algorithms are run on each data set. In the end, performance estimates
of each algorithm for each run are provided as responses in the model equation. For decoding
of continuous encoded factor models, data analysis, factor selection tools as well as estimation
procedure of the main factor effects in the screening case the interested reader is referred to
Weihs & Jessenberger (1999).

Assume that the relevant factors are now selected. In a third step the existing design can be
augmented adding new runs and starting from a model that involves besides main effects also
interaction and quadratic effects. Thus, this design is more suitable for prediction. Treating the
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simulation from multiple data domains as an iterative process, one can master the temptation to
assume that one successful screening experiment has optimized his process. One can also avoid
disappointment if a screening experiment leaves behind some ambiguities.
Also, design augmentation is powerful for sequential analysis because the objectives of a re-
sponse surface methodology can be achieved changing one linear model into a full quadratic
one and adding the necessary number of runs. Besides, the information gained from previous
runs can be valued and empowered by new ones.

The performance estimates of the algorithms are then computed for every new run. In the end,
the results obtained with the whole design are submitted to analysis targeting the selection of a
global (i.e. suitable for all algorithms), meaningful (i.e. interpretable) and competitive (i.e. as
accurate as possible) model for prediction. This can be used to describe the DGPs under which
one algorithm proves superiority upon the others.

The generation of adequate simulation designs can be carried out in a comfortable manner using
the Custom Designer provided with the JMP Software (SAS-Institute, 2005), which is a general
purpose design environment. As such, it provides also screening designs. The Custom Designer
presents some advantages upon classical ones:

• It offers an easily manageable interface to any type of classical design.

• It has more flexibility accommodating any number of factors of any type.

• It requires less experience and expertise than previous tools supporting the statistical de-
sign of experiments.

These qualities make the Custom Designer to the recommended way to create a design which
is tailored for one’s specific situation.
The Custom Designer generates designs using a mathematical optimality criterion. This can be
of two types:

• in a so-called D-optimal design the optimality criterion focuses on precise estimates of
the coefficients;

• in a so-called I-optimal design the optimality criterion focuses on the minimization of
the average prediction variance inside the region of the factors.

D-optimal designs are the most efficient for designing experiments where the primary goal is
the inference, like in case of screening for relevant factors. They are also the default design
type in the Custom Designer of the JMP Software. A D-optimal design suits in particular the
screening step in the process of generating a sequential simulation design.
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I-optimal designs are useful for prediction, therefore they suit in particular the augmentation
step in the process of generating a sequential simulation design. They tend to place fewer runs
at the extremes of the factor space than do D-optimal designs. Consequently, D-optimal designs
often predict better at the extreme values of the factors.

The augmentation step with changeover from a D-optimal to an I-optimal design and involve-
ment of quadratic model terms can be comfortably performed using the Augment Designer pro-
vided with the JMP Software (SAS-Institute, 2005). In this phase for instance, if the response
variance at the center points during screening was large, one might supply some replicates per
design point to get a better estimation of the algorithm performance. In this way, it can be
accounted for some possible instability behavior of the algorithms.



Chapter 3

Interpretability of diagnostic rules

The early identification of diseases with a complex profile by means of minimally invasive, cost-
effective and highly accurate diagnostic tests is one of the big challenges of modern medicine. A
promising diagnostic approach is the combination of easily accessible biomarkers to achieve the
desired accuracy where individual biomarkers failed. However, the final diagnostic rule based
on a biomarker combination has not only to powerfully discriminate between the diseased and
non-diseased status but also to be simple and interpretable. The rule has to be simple in order
to be easy to assess and interpretable in order to get high acceptance by medical practitioners.

Effective statistical algorithms are needed to provide cheap and meaningful classification rules
in the context of diagnostic problems with many markers. They should comply both with the
request of high discriminatory power and that of simplicity, interpretability and efficient imple-
mentation.
However, such ideal rules are not easy to design. There is usually a trade-off between perfor-
mance and complexity of the classification models. Therefore, some rules gain their parsimony
and understandability at the price of some performance loss.

This chapter is concerned with the suitability of simple and interpretable classification rules in
the diagnostic context. The marginal question is how much performance loss is actually tolera-
ble for sake of easier manageable and understandable rules.
These aspects are ascertained under consideration of Logic Regression (LogicR), a new tree-
based method designed both for regression and classification, introduced by Ruczinski et al.
(2003). This method is particularly interesting for the diagnostic research. It provides very sim-
ple and interpretable discriminant rules, defined as and-or combinations of binary predictors.
As many biomarkers measure concentration levels they are usually continuous. Consequently,
they should be first dichotomized in order to be used with LogicR. On one hand, the information
loss induced by this transformation from a high to a low measurement level will cause accuracy
loss. On the other hand, dichotomizing for instance by means of quantiles from the control col-
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lective, the resulting diagnostic rules are close to well-established diagnostic workflows. This
aspect would enhance their acceptance on the diagnostic market.

Two dichotomization approaches presented by Schmitt (2005) are considered for the successful
application of LogicR: the first one is based on a set of empirical quantiles (qLogicR) and the
second on an optimized (best) threshold for each feature (btLogicR).
The suitability of LogicR for diagnostic classifications is assessed through a comparison with
two other classification algorithms known to provide reliable results over many applications.
These are Regularized Discriminant Analysis (RDA) (Friedman, 1989) and Random Forests
(RF) (Breiman, 2001). RDA is considered as an established classification procedure. RF is con-
sidered as a powerful representant of the family of tree-based methods, which includes LogicR,
too.

Other reasons for selecting these methods are that:

• RDA proves good results in diagnostic settings over a variety of marker distributions,
though it relies on the assumption of multivariate class Gaussians; see Hand (1992) and
Vaid et al. (2001).

• RDA includes the well known quadratic (QDA) (McLachlan, 1992) and linear (LDA)
(Fisher, 1936) discriminant analysis methods as special cases.

• RF is supposed to improve the performance of Decision Trees (Breiman et al., 1984) at the
loss of their simplicity and interpretability. Therefore it suggests itself for the evaluation
of the simplicity/accuracy trade-off.

Section 3.1 comprises a short description of the methods with focus on LogicR. Section 3.2
introduces the real and simulated data sets. Section 3.3 illustrates the application of these tech-
niques on the available data. In Section 3.4 the final conclusions are drawn, highlighting both
benefits and drawbacks of LogicR in comparison with RDA and RF.

3.1 Methods

This section introduces briefly the theoretical background of the three benchmark algorithms,
LogicR, RDA and RF, in the context of two-class classification problems.
Data is given by N tuples of the form (y, x′)′, with y ∈ {0, 1} a binary encoded dichotomous
class variable and x = (x1, . . . , xp)′ the p-dimensional vector of observed object characteristics
(features). In diagnostic problems, 1 denotes typically the disease presence and 0 its absence.
Based on this data, a rule is searched to reliably predict the class membership of future objects.
This rule describes the functional connection between the class and some relevant features. The
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rule should optimize a preset objective function which compares fitted values with the response
and is defined in concordance with the classification scope. The objective function throughout
this chapter is the cross-validated error estimate.

Cross-validation (CV) (see Chapter 2) allows for a reliable estimation of the misclassification
rate and therefore, for a more adequate choice of parameters for the optimal rule. This is done
by randomly splitting the available data into disjoint test subfractions, using all but one for
building the rule and the remained one for evaluating the performance of the rule. Then the
average over the misclassification rates computed on the test subfractions represents the CV
error estimate.

3.1.1 Logic Regression (LogicR)

Logic Regression (LogicR) is an adaptive regression methodology developed for binary covari-
ates by Ruczinski et al. (2003). It also applies to classification problems with binary predictors
and response, i.e. 0 − 1 encoded variables.

3.1.1.1 Logic model and its size

A logic model for classification depends on the outcome of a Boolean expression L. It assigns
an object to class 1 if L is true and to class 0 otherwise. Given the observed feature vector of an
object x ∈ Rp, the predicted class is defined as:

ŷ(x) = I{L(x) is true},

where I denotes the indicator function.

The logic model can be viewed as a logic tree, which is structured as follows: Boolean oper-
ators and, or are placed in the root and the inner knots; operands, thus binary predictors, or
threshold conditions on the continuous predictors, or their logic complements, are placed in the
terminal knots, which are called also leaves. The number of leaves represents the model size
and quantifies the complexity of the logic model. A logic model is evaluated by visiting the
associated tree for a particular realization of the feature vector, x.

Example 1 (Logic rule I). In Schmitt (2005) eleven biomarkers encoded as M1, . . . , M11 are
given. For each biomarker Mi some optimal threshold ti is provided, i = 1, . . . , 11. The resulting
binary predictors are defined as Di = I{Mi≥ti}, i = 1, . . . , 11. Based on them, a logic model of size
6 is selected for the diagnosis of rheumatoid arthritis. This is given by the Boolean expression
L =

[
(D6 ∧ D2) ∨ D4

]
∨

[
(D5 ∧ D3) ∧ D1

]
. If L is true for a new individual, this is classified as

case. The tree-visualization of this logic model is illustrated in Figure 3.1.
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Figure 3.1: Graphical representation of a logic model.

3.1.1.2 Dichotomization

Since LogicR allows only for binary predictors, continuous predictors need to be first di-
chotomized in order to get the approach working. Within the range of each continuous predictor
Xi, i = 1, . . . , p, a set of convenient thresholds (i.e. meaningful and easy to assess) should be
ascertained. The difficulty to find meaningful thresholds, while exploiting as much information
from continuous predictive variables as possible is pointed out by Schmitt (2005).

Two dichotomization approaches proposed by Schmitt (2005) are used: the first one employs
empirical quantiles as thresholds (qLogicR); the second is based on the best threshold of a
feature (btLogicR) in terms of misclassification rate which is obtained by Logistic Regression
(Hosmer & Lemeshow, 2000).
Hence, the first approach guarantees a good interpretability of the logic model and the second
approach has the potential to achieve very simple classification rules.

1. Quantiles-based Logic Regression (qLogicR)

The quantiles-based Logic Regression, short qLogicR, employs a set of empirical quantiles for
dichotomization of continuous features, resulting in as many binary predictors (dummies) per
feature, as quantiles in the set.

Example 2 (Logic rule II). Given two biomarkers M1 and M2 and c, d the 0.95 quantiles of
their concentrations on the control population, a logic model for the diagnostic practice may be
defined by the Boolean expression L = (M1 > c)∧ (M2 > d). Thus, an individual is classified as
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case if the observed concentrations of both markers exceed the corresponding 0.95 quantiles.
Such a logic rule, that combines threshold conditions on two continuous features, is graphically
represented by a set of rectangles or a step function traversing their scatter plot.

If {q1, q2, . . . , qs} is the set of empirical quantiles, then a feature X is replaced by a set of s
binary predictors T X1,T X2, . . . ,T Xs for the use with LogicR. These are given by T Xi = I{X≥qi},
i = 1, . . . , s.

2. Best threshold Logic Regression (btLogicR)

The best threshold Logic Regression, short btLogicR, employs for dichotomization of each
continuous feature a single threshold, which is optimized with respect to the univariate classifi-
cation problem based on that feature.
Let Ω be the set of objects to classify. Given X : Ω → A ⊆ R a continuous predictive variable
and t ∈ A a possible value of X, the discriminant rule δt : A → {0, 1} based on the feature
threshold t is defined as:

δt(X) = I{X op t}, (3.1.1)

where op is an operator in {≤,≥}.

The best feature threshold t∗ ∈ A for btLogicR corresponds to the logistic discriminant rule δt∗

that results in the minimal misclassification rate.

In contrast to (3.1.1) a reformulation of the discriminant rule in terms of class posteriors has the
advantage of an explicit definition of op. With P(X) := P(Y = 1|X) the conditional probability
of class 1 given X, and p ∈ [0, 1] a probability threshold, the posterior rule δp(P(X)) is defined
as:

δp(P(X)) = I{P(X)≥p}. (3.1.2)

Hence, this rule assigns an object to class 1 if the probability of class 1 given the observed
feature x exceeds the threshold p.

Logistic discrimination allows for the switch between probability and feature thresholds by a
simple transformation. If (β̂0, β̂1) are the ML parameter estimates of the logistic model, then the
best feature threshold is obtained from the best probability threshold p∗ as:

t∗ =
ln p∗

1−p∗ − β̂0

β̂1
.

The value of op in (3.1.1) is also implicitly determined by the sign of β̂1.
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Feature X is replaced by a logic predictor T X, defined as the dichotomous outcome of the
discriminant rule (3.1.1), in which t∗ is used. Thus T X = δt∗(X).

3.1.1.3 Logic rule optimization

LogicR searches for good model candidates over the huge space of all Boolean expressions (so
called logic terms) built as and-or combinations of the binary predictors and/or their comple-
ments. The classification performance of a logic model is quantified by its score, which is here
the number of misclassified objects on the training data.

Using the tree-visualization of logic expressions, the best logic model is adaptively selected by
simulated annealing (van Laarhoven & Aarts, 1987), which is a probabilistic search algorithm.
At each step a possible operation on the current tree, like adding or removing a knot, is ran-
domly proposed. This operation is always accepted if the new tree results in a smaller score,
otherwise is accepted with a probability that depends on the difference between the scores of the
old and the new tree and on the stage of the algorithm, indicated by the so-called temperature
level. Run as a sequence of Markov chains with decreasing temperatures, the search is guided
towards optimal scoring trees, assuming a proper number of iterations in each chain (Ruczinski
et al., 2003).

Annealing parameters. The annealing parameters start, end and iter should be set first. They
represent the starting (highest) temperature, the finishing (lowest) temperature (both on the dec-
imal logarithmic scale) and the total number of iterations over all annealing chains, respectively.
In Kooperberg & Ruczinski (2006) it is recommended that the user should make some previous
runs of LogicR on the data in use with the same setting of the annealing parameters and check
if the best models have similar scores. If so, then the setting is used for the actual application,
otherwise an adjustment of the annealing parameters should be made, in order to increase the
stability of the results in the previous runs (see Kooperberg & Ruczinski (2006) for details).
On the one hand, a reasonable number of chains is needed in the so-called crunch time, where
the number of acceptances is moderate, on the other hand the low and high temperatures should
be adjusted to avoid spending time on accepting or rejecting almost every move. The setting is
strongly dependent on the data at hand.

Logic model selection. The learning task for some LogicR approach starting from continuous
predictors consists of:

(1) determination of the thresholds for feature dichotomizations with one of the methods
qLogicR and btLogicR;
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(2) determination of the tree structure given a fixed model size by simulated annealing, given
the set of binary predictors established at (1);

(3) choice of the right model size.

Choice of the model size. The quality of the logic model is reflected not only by its score but
also by its size. In general, the more leaves are allowed the better is the fit in terms of apparent
error rates. To avoid over-fitting, the algorithm selects the model size using an approach based
on cross-validation(CV).

Simulated annealing is used to determine the best logic model of a fixed size k on each of M
CV training data sets. This procedure is repeated for each k = 1, 2, . . . ,K.
On each CV test and training data set the misclassification rates of the best logic trees for all
model sizes are determined and then averaged over the CV loops. The model sizes leading to
best models with a CV average test estimate within the ±0.01 interval around the minimal CV
average test estimate over all models of different sizes are selected as candidates. Finally, the
model size corresponding to the minimal gap between the CV average test and training esti-
mates is selected as the right one out of the set of candidates.
The motivation for this rather complicated strategy is the following: the CV training error rates
drop as the model size increases, while the CV test error rates decrease quickly until some ade-
quate model size is reached; then they rise (with some perturbation) very slowly because of the
noise. Consequently, there might be more model sizes resulting in a CV average test estimate
very similar to the minimal one. Thus, a common CV optimization could lead to a model of
larger size than necessary.

Choice of the feature panel. No additional optimization strategy, like for instance CV, is
needed in LogicR for assessment of the best feature panel. The choice of the relevant binary
predictors and therefore, of the thresholds corresponding to the original continuous features, is
part of LogicR. Given a fixed model size, the feature selection occurs automatically by simu-
lated annealing which chooses the way of moving (growing, pruning, alternating leaves) through
the logic tree. The leaves of the final logic tree contain only threshold conditions on the relevant
continuous predictors.

3.1.2 Regularized Discriminant Analysis (RDA)

The method Regularized Discriminant Analysis (RDA) is proposed by Friedman (1989) to im-
prove the estimation of the misclassification risk in situations of singular or almost singular
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class covariance estimates. RDA is based on the assumption of multivariate normal class distri-
butions.

Regularizations in two directions can be subsequently combined, namely shrinking the class es-
timates towards: (1) the pooled covariance estimate or (2) a multiple of the identity matrix. The
degrees of shrinkage in these directions are controlled by the regularization parameters λ and γ,
respectively. A more precise description of the shrinkage strategies used in RDA is offered in
Chapter 4, Section 4.2.2.
The pair of regularization parameters (λ, γ) and the feature panel should be optimized with
respect to the misclassification rate in order to get the best discriminant rule. For a fixed com-
bination of features, the regularization parameters are found by minimizing the cross-validated
misclassification rate over a two-dimensional grid on the unity square.
The optimal feature combination is found by an iterative feature selection algorithm that works
in a forward manner. This is detailed also in Section 4.2.2.

3.1.3 Random Forests (RF)

In Random Forests (RF) (Breiman, 2001) successive independent trees are grown in a similar
way to CART (Breiman et al., 1984), but without pruning. Unlike CART, RF does not evaluate
all variables at each knot in order to select the best split but only a randomly chosen subset of
predictors. For RF there are two parameters to choose, the number of trees in the forest and
the number of predictors randomly sampled at each node. Each combination of this number of
predictors has the same probability to be chosen. These parameters are set once at the beginning
of the algorithm.

In order to derive a reliable estimate of the misclassification error the initial training data is
split for each tree randomly with replacement into a training set and the so-called Out-Of-Bag
(OOB) test data. Based on this training set the tree is built and the OOB-samples are used to
evaluate its performance in terms of misclassification rate. The OOB misclassification error of
RF is the average over the misclassification errors of all trees obtained on the corresponding
OOB-samples.

3.2 Data

The comparative study of the classification algorithms is performed on a real data set from the
diagnostic practice and on simulated data sets.
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3.2.1 Real data set

The real data set comprises rheumatoid arthritis (RA) cases and controls. The practical target is
to find an effective biomarker panel for the early identification of RA.
For this study 594 patients are available, among them 272 RA-positive and 322 RA-negative
(healthy or with disease conditions of similar symptomatic to RA). We have four markers, M1 to
M4, whose serum concentrations are transformed on the decimal logarithmic scale to approach
normality.

3.2.2 Simulated data sets

We simulate (1) a data structure favorable for the application of RDA but difficult for LogicR,
(2) a data structure, on which LogicR is supposed to work well, while RDA to have difficulties,
and (3) a data structure, which imitates the real data set, trying to approach its marker distribu-
tions. Following the example provided by the real data set, two informative {I1, I2} and two less
or non-informative features {N1,N2} are considered in each simulation scenario.
For every simulated data structure 10 training data sets with 1.000 observations per class are
generated. This is considered a reasonable sample size which allows each classification algo-
rithm to perform smoothly. Thus, our conclusions regarding the performance of the algorithms
is not influenced by the sample size.

3.2.2.1 RDA data structure

For the first data structure, 1.000 realizations of the feature vector X = (I1, I2,N1,N2)′ are ran-
domly sampled for each class i from a 4-dimensional normal distribution, N(µi,Σi), i = 0, 1.

The normal distributions are given by:

µ0 =


−2

0
0
0

 Σ0 =


0.1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 µ1 =


0
2
0
0

 Σ1 =


1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 1


The class means and unequal covariance matrices are chosen to differ only in the first two com-
ponents of the feature vectors, corresponding to I1 and I2.

Figure 3.2 shows in the leftmost plot the two-dimensional projection of the first data set sim-
ulated according to this data structure on the informative coordinates I1 and I2. RDA is rec-
ommended in this case as the elliptic hulls of the two classes are perpendicular and the class
means are well separated. This situation is obviously unfavorable for LogicR as the most nat-
ural separation would be done by a straight diagonal line rather than by a step function or a set
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of rectangular regions.
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Figure 3.2: Informative coordinates for all simulation designs. Green depicts the control class
and red the disease class; in the simulation after real data the censored observations are distin-
guished by gray.

3.2.2.2 LogicR data structure

A data situation is designed, on which LogicR is expected to work properly, while RDA to
encounter difficulties in separating the classes. Initially 2.000 random realizations x of the 4-
dimensional feature vector X = (I1, I2,N1,N2)′ are drawn from the mixture of normals 0.5N(µ0,Σ0)
+ 0.5N(µ1,Σ1), where N(µi,Σi), i = 0, 1 are defined like in (3.2.2.1). Subsequently, the class
membership y is assigned using the logic rule based on the theoretical medians of I1 and I2: if
L = (I1 > −1) ∧ (I2 > 1) is true, then the response is drawn from a Bernoulli(0.9)-distribution
and otherwise from a Bernoulli(0.1)-distribution. Here it should be noted that the true error rate
of the optimal Bayes rule (Hastie et al., 2001) given this data setting is 10%.

Figure 3.2 shows in the middle plot the two-dimensional projection of the first data set simulated
according to this data structure on the informative coordinates I1 and I2. Cases can be easily
separated from controls by means of the right upper rectangle described by a logic rule using
threshold conditions based on the medians of I1 and I2. This indicates that this distributional
setting is favorable for the classification with LogicR. RDA seems to have weaker chances in
this context, since the class means and the class elliptic hulls are strongly overlapped.

An interesting aspect for the comparative study is to check the classification potential of RDA
and RF on such a data structure that is specially created to fit LogicR.
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3.2.2.3 Real data structure

The data structure simulated at last is an attempt to recover a typical data structure for the diag-
nostic setting. The real data set for rheumatoid arthritis serves as model. The features I1 and I2

imitate the markers M4 and M2, while N1 and N2 are shaped after M3 and M1, respectively.

The multivariate distributions within the two classes in the real data set are approximated us-
ing the R package VGAM (Yee, 2007). The most plausible univariate distribution is selected
for each marker after fitting several univariate distributions (intercept models with marker as
response) and comparing their likelihood.
In the case of M4, M2, and M3 the most evidence is provided for a left censored normal distribu-
tion, while in case of M1 for the common normal distribution. The ML-estimates for the means
of these normal distributions are computed. M2, M3 and M4 present a lot of ties in the lower
range. These are first removed, and then the class covariance matrix estimates are computed in
order to prevent from an overestimation of the pairwise correlations of the markers.

Then 1.000 realizations of the feature vector X = (I1, I2,N1,N2)′, aliasing (M4,M2,M3,M1)′,
are randomly drawn per class from the multivariate normal distributions defined by these means
and covariance matrix estimates of the classes:

MVN (µ0,Σ0): µ0 =


2.4
2.8
2.7
3.9

 Σ0 =


0.16 0.16 -0.02 -0.01
0.16 0.43 -0.02 -0.01
-0.02 -0.02 0.12 0.01
-0.01 -0.01 0.01 0.30


MVN (µ1,Σ1): µ1 =


4.3
4.2
3.2
4.3

 Σ1 =


3.02 0.97 0.26 0.06
0.97 1.40 0.24 0.18
0.26 0.24 0.58 0.23
0.06 0.18 0.23 0.64


Figure 3.2 shows in the rightmost plot the two-dimensional projection of the first data set sim-
ulated according to this data structure on the coordinates I1 and I2. Finally, I1, I2, and N1 are
censored to the left by 2.32, 2.31 and 2.31, respectively. These are the tied values in the lower
range of M4, M2 and M3 within the real data set. The censored objects are displayed by gray
points in the scatter plot of I1 and I2, giving rise to the lower left rectangular corner of the data.

3.3 Comparative study design and results

For a fair comparative study of the classification algorithms the double-loop Monte Carlo cross-
validation (MCCV) technique, which we highlighted in Chapter 2, is used. In case of Random
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Forests, this technique needs an adjustment. The outer MC loops are combined with the OOB-
technique instead of the inner CV.
The exact description of the used comparative designs is provided in the following.

3.3.1 Comparative study design on real data

The original data set is embedded in an 50× 10-MCCV design for the comparative study of the
algorithms. The proportion of 3 : 1 is used to split the original data set into MC training and
test data sets.

qLogicR. The approach qLogicR is used with the set of quantiles {0.5, 0.75, 0.90, 0.95} com-
puted on the control population. The 0.90 and 0.95-quantiles are commonly used to define nor-
mal ranges of the biomarkers. The median and the upper quartile are chosen to allow for less
informative splits in the tree, if necessary. Thus, four binary predictors are built per biomarker
using this set of quantiles for dichotomizations.

Within every MC training data a 10-fold inner CV is used to estimate the right model size. On
each CV training set the quantiles are determined and used to dichotomize the biomarkers on
the CV training and test data sets.

Simulated annealing is applied to get the best logic trees of model sizes 1, 2, . . . , 8. The anneal-
ing parameters are determined in some previous runs of LogicR as it was explained in Section
3.1.1.3. They are start = 3, end = −2 and iter = 150.000, which means that the starting temper-
ature is 1.000, the end temperature is 0.01 and the number of iterations per unit of temperature
on the log10-scale is 25.000.

The best logic trees obtained for sizes 1, 2, . . . , 8 are applied on the CV training and test data
sets and the average misclassification rates over the 10 CV loops are computed. The right model
size between 1 and 8 corresponds to the minimal gap between the CV training and CV test av-
erage error rates, among those near the minimal CV test average.
Subsequently, the best logic tree of right size is grown after the same protocol (dichotomiza-
tions, simulated annealing, annealing parameters) on the MC training data.
Its performance is finally evaluated using the misclassification rate on the corresponding MC
test data.

btLogicR. The approach btLogicR is used with one threshold per feature. This is computed
in each CV loop on the CV training data set and in each MC loop on the MC training data set
by logistic discrimination. Subsequently, the optimal thresholds are used to dichotomize the
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continuous features on the training and on the corresponding test data set.
The best logic models of sizes 1, 2, . . . , 8 as well as the right model size are determined using
the same workflow as described in case of qLogicR. The annealing parameters are start = 3,
end = −2 and iter = 600.000.

Since the selection of the best feature panel is part of LogicR itself, we do not need any addi-
tional feature selection strategy for the qLogic and btLogicR approaches.

RDA. In RDA the regularization parameters (λ, γ) and the biomarker panel are optimized by a
10-fold CV on each MC training data set. The optimization grid for (λ, γ) is determined by 5
equidistant points over the interval [0, 1] on the x- and y-axis. The best biomarker combination
is selected in a forward manner like detailed in Section 3.1.2.

RF. A tree is grown on a random stratified subfraction representing 90% of each MC training
data set; two features out of the four available are sampled randomly at each knot. The terminal
knots, of size 15, are used to assign the class by majority voting. The remained 10% of the
samples build the OOB data set used to asses the performance of the forest.

This procedure is repeated 500 times for each MC training data set. The OOB estimate is used
to assess the end performance.
The discriminatory power of the features is evaluated by four standard importance measures
(Liaw & Wiener, 2002) available in R.

3.3.2 Comparative study design on simulated data

For each simulation scenario 10 data sets are generated: they are used both for training and
assessment of the performance of the algorithms after the MCCV workflow. The comparative
design consists of 20 outer MC and 5 inner CV loops for each simulated data set. Like in the
real data application, the proportion of MC training samples to MC test samples is set at 3 : 1.

The algorithm qLogicR is applied with the set of quantiles {0.50, 0.75, 0.90, 0.95} on the RDA
data structure and {0.10, 0.25, 0.50, 0.75, 0.90} on the other two data structures. The quantiles
are computed from the samples of class 0.
The simulation annealing parameters are start = 3.5, end = −2, and iter = 360.000 for the
RDA data structure, start = 3, end = −1, and iter = 600.000 for the LogicR data structure, and
start = 2.5, end = −1.5, and iter = 500.000 for the real data structure.
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For btLogicR the same setting of the annealing parameters, with start = 3, end = −2, and
iter = 600.000, is used for all data structures.
Except for these differences, all algorithms are carried out according to the same workflow as
described for the real data application.

3.3.3 Results

3.3.3.1 Real data results

On the real data, qLogicR and RF tend to outperform btLogicR (14.2% average misclassifi-
cation rate) and RDA (14.5% average misclassification rate). RF is even slightly better than
qLogicR (13.3% vs. 13.8% average misclassification rates).

The approach qLogicR provides in 28 out of 50 MC loops a one-leaf model. This assigns a pa-
tient to the disease class if the concentration of M4 exceeds the 0.90 quantile of M4 estimated on
the control population of the corresponding MC training data set. The final logic rule provided
by qLogicR with the whole training data is based on the 0.90 quantile of M4 too. This has the
value 2.39 on the log10-scale.

The approach btLogicR provides in 35 out of 50 MC loops a one-leaf model. This assigns a
patient to the disease class if the concentration of M4 exceeds the best threshold established by
logistic discrimination on the corresponding MC training data set. The global value of the best
threshold for M4, established on the original training data set for the final logic rule, is 2.34 on
the log10-scale.

Unlike the LogicR-approaches, RDA shows strong evidence for a combination of M4 and M2

over the 50 MC loops. The four standard importance measures of RF computed over the OOB
samples indicate also clearly that M4 and M2 have a much higher discrimination potential than
the other two markers.

Taking into account the simplicity of their rules and the average performance over the MC loops,
both LogicR-approaches seem to be competitive to RDA and RF with respect to this particular
diagnostic task.

3.3.3.2 Simulation results

Means, medians, standard deviations, and interquartile ranges for the misclassification rates are
computed over the 10 simulated data sets and 20 MC loops of each simulation scenario. They
are listed in Table 3.1 for each method and data structure.
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Table 3.1: Summary of simulation results

Simulation design Method Mean(MCR*) SD(MCR) Median(MCR) IQR(MCR)

RDA data structure qLogicR 0.039 0.012 0.036 0.021
btLogicR 0.045 0.006 0.046 0.007
RDA 0.025 0.007 0.024 0.010
RF 0.026 0.007 0.026 0.010

LogicR data structure qLogicR 0.115 0.014 0.114 0.018
btLogicR 0.104 0.007 0.103 0.011
RDA 0.108 0.015 0.106 0.022
RF 0.102 0.013 0.102 0.018

Real data structure qLogicR 0.144 0.014 0.145 0.020
btLogicR 0.132 0.015 0.135 0.023
RDA 0.091 0.014 0.090 0.018
RF 0.090 0.014 0.090 0.018

* MCR=misclassification rate.

On the RDA and real data structures both LogicR-methods lead to clearly poorer results than
RDA and RF. RDA performs best on the RDA typical data structure, as it was expected.

The method btLogicR approaches well the true rate of 10% on the LogicR data structure. Both
RDA and RF provide very good results for this data structure also, but btLogicR is still superior
since it shows a higher stability, too.

On the real data structure both qLogicR and btLogicR show a performance loss from 9% to
14.4% and 13.2%, respectively, and a similar poor stability in comparison to RDA and RF.

On all data structures the results achieved with RDA and RF look very similar and indicate that
both approaches are at least as good as LogicR with respect to the classification performance.
Under the RDA and LogicR data structures the method btLogicR outperforms all other methods
regarding the classification stability. In contrast, qLogicR shows a high variability over all data
structures.
The larger instability of qLogicR in comparison to btLogicR may be related to the size of the
threshold set. Intuitively, it seems plausible that the more splits per feature are available, the
more susceptible is LogicR to instability. However, a systematic verification of this hypothesis
is impeded by the high computational time of LogicR.
The method qLogicR shows also a stronger bias than btLogicR on the LogicR and on the real
data structures. It is possible to enhance the performance of qLogicR by the choice of a finer
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threshold set in change of longer run times and some additional instability.
However, the results obtained by our simulations indicate that btLogicR is the better method
with respect to the classification performance and stability as well.

The quantiles-based alternative gains its simple and interpretable rules at the price of maximally
5 percentage points performance loss (real data structure) but also of an increased instability in
comparison to RDA, RF and btLogicR.

3.4 Conclusions

In this chapter specific requirements for the relevance of classification rules in the diagnostic
context are addressed. The necessity of not only highly accurate but also simple and inter-
pretable rules for the diagnostic research is highlighted.
Quality standards like parsimony and understandability and their implications with respect to
the classification performance are exemplified by Logic Regression (LogicR). This is a new tree-
based classification method with a great theoretical potential to provide simple, interpretable
and therefore highly accepted rules in the medical practice.

The suitability of LogicR for the diagnostic context is investigated by a comparison with es-
tablished classification algorithms. Regularized Discriminant Analysis (RDA) and Random
Forests (RF) are used as reference methods as they are competitive algorithms for classification
with more complex models.
The former method is able to provide an explicit formula for discrimination rules. However,
this presumes computation of empirical class covariance, means and prior estimates. Also the
regularized discriminant rule is not easily translatable for the medical practitioners.
The latter method belongs to the same group of tree-based classification methods like LogicR,
but leads to a forest of simultaneous tree models. Thus, it is actually not suitable in practice,
although it can provide very good results.

The benchmark of algorithms is performed on a real data set from the diagnostic practice. Sup-
plementary information about the suitability of Logic Regression for diagnostic classifications
is obtained with simulated data sets over three different data structures.
Since LogicR works exclusively with binary predictors, continuous features are first dichotomized
in order to get the approach working. Two versions of LogicR are considered, based on differ-
ent dichotomization strategies. The quantiles-based approach, qLogicR, uses a set of empirical
quantiles computed on the control collective as splitting thresholds. The best threshold ap-
proach, btLogicR, uses an optimized splitting threshold per feature. For the latter dichotomiza-
tion approach the optimal threshold is provided by Logistic Regression.
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The method qLogicR leads to satisfactory results on the real data task. It is comparable in per-
formance with a 500-trees RF and outperforms RDA mainly by single one-leaf logic trees.
However, these results of qLogicR are not reproducible on the simulated data sets. The method
proves an overall poorer performance than RDA and RF. This happens not only in adversarial
situations like those represented by the RDA or the real data structures, but also when the true
model underlying the data is given by a simple logic rule except for 10% noise.

The theory of simulated annealing suggests that a high number of iterations within the crunch
time might prevent from local optima and improve the stability of the results on a particular
training data set. However, we make here a careful choice of the number of iterations in order
to compromise between the requests of stability and feasible run time at least within the sam-
pled CV training data sets.

The performance of LogicR may be influenced by the set of thresholds used for dichotomiza-
tions. Given a meaningful set of thresholds on a training data set, the achievement of an approx-
imately optimal scoring model depends on the number of iterations spent in the crunch time.
The approach qLogicR is outperformed on the LogicR data structure by btLogicR. The latter is
almost as good as RF on the data structure designed for LogicR. The true model underlying the
LogicR data structure is defined by a logic expression with two threshold conditions.
However, btLogicR has more difficulties than qLogicR on the more complicated RDA data
structure.
The method qLogicR covers by its set of thresholds a larger part of the feature range than does
btLogicR with its optimized threshold. Therefore, it has the potential to approximate better
more complex models (see here also the results on the real data set and on the real data simu-
lation structure). In spite of this advantage, the performance of qLogicR is limited by the fixed
and rough choice of the thresholds. A finer and more flexible grid over the feature range en-
hances its classification performance. However, this is related also to increased run times and
induces additional instability. Therefore, it is not investigated further.

The stability of LogicR may be influenced by the number of thresholds used for dichotomiza-
tions. Given a fixed number of thresholds on a training data set, the stability of the final model
choice depends further on the number of iterations spent in the crunch time.
It seems that the method btLogicR owes its better stability to its smaller set of thresholds. Al-
ready during the previous runs it can be clearly noticed that the same optimally scoring model
is reached very fast also for a smaller number of iterations than the finally chosen one. In
spite of this remark, the number of iterations is chosen large enough on one hand because the
time-saving number of thresholds allows to invest more time in optimization than in case of
qLogicR, and on the other hand to ensure a good model choice not only on the randomly se-
lected CV training data sets, but on all training data sets in use. A deeper investigation about
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how the size of the threshold set impacts on the stability of LogicR is left for future work due
to the long run times required by such an analysis.

The results obtained on the real and simulated data sets in this chapter suggest that btLogicR
is superior to qLogicR. It achieves a better stability and a similar or better performance. Its
thresholds are also explicitly determined and optimized with regard to the given classification
task.

Concerning the actual computation times, each RDA simulation design takes about 10 hours
in SAS V8.2 (SAS-Institute, 2000), each RF simulation design about 10 minutes with the R
package randomForest (Liaw & Wiener, 2002), and each LogicR simulation design about five
days with the R package LogicReg (Kooperberg & Ruczinski, 2006).

LogicR is by far the most time expensive method, in spite of the small threshold list which is
used for dichotomizations (of up to five quantiles in the case of qLogicR and of only one thresh-
old in the case of btLogicR). So, the real burden of LogicR is the computational time, which
impedes from the use of LogicR with annealing parameters and threshold sets that would have
had the potential to enhance its performance and stability.

Now it depends especially on the diagnostic application if the accuracy loss of up to 5 percentage
points in change of simpler and more understandable rules is still tolerable or not. We believe
that an upgrade of the R implementation of Logic Regression would enhance in future the
optimization possibilities and trigger a high acceptance of this method within the diagnostic
frame.



Chapter 4

Learning diagnostic rules in case-control
studies in the presence of known subclasses

The problem of non-representativeness or
how and when to adapt classification algorithms to data with
known subclass structure and known prevalences

In this chapter we address the problem of developing meaningful as well as reliable diagnostic
rules when the target population is heterogeneous and its subclass prevalence structure is known.

Section 4.1 introduces practical challenges of diagnostic classifications when the collected data
is subject to known sources of heterogeneity and the true subclass prevalences are known. Some
issues from the statistical literature on this topic are described.

Section 4.2 highlights some weighting methods which are expected to provide more realistic es-
timates for the parameters of the heterogeneous class distributions as well for the performance
of the diagnostic rule. Regularized Discriminant Analysis (RDA) (Friedman, 1989) is used to
exemplify how the weighted estimates are computed and applied to account for the prevalence
information while estimating parameters, feature panel and performance of a diagnostic rule.
A detailed description of the feature selection algorithm based on RDA is also offered in this
section.

Commonly a classification algorithm consists of three important phases: rule building, op-
timization and validation. Four different ways to alter a classification algorithm by using
weighted parameter and/or performance estimates at different phases of the algorithm are in-
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troduced in Section 4.3. Final applications of the four resulting weighting algorithms based on
the RDA feature selection algorithm are illustrated in Section 4.4. These are performed on real
and simulated data sets and the results are used in a comparative survey of their classification
performance.

Drawbacks and benefits of all weighting alternatives are summarized in Section 4.5.

4.1 Motivation

Any diagnostic rule is designed to predict the disease status of some certain population, which
is usually referred as target population. For instance, a new screening tool should be developed
in order to detect a complex disease (cancer, rheumatic disorders, Alzheimer) at an early stage,
where no symptoms are available. In this case the target population refers to an ideal screening
population that should comprise only asymptomatic patients.
However, the diagnostic rule is obtained on the study population, here also called data at hand.
This represents a rather small excerpt of the target population for which the disease status was
verified (e.g. by the gold-standard procedure). This comprises the whole information available
for learning the diagnostic rule. For instance, this data might have been provided by a case-
control study.

Characteristics of the target population are here referred as true while those of the study popu-
lation as observed ones. Usually a problem in diagnostic classifications is that the study popu-
lation is non-representative for the target population, which means that there is a large degree
of mismatch between some observed and true population characteristics. This might have se-
vere implications on the diagnostic rule conceived for the target population, regarding both its
validity as well as the reliability of its performance estimates.

A special form of non-representativeness of the study population is the mismatch between the
observed and true subclass prevalences. The discrepancy between study and target population
may sometimes be very pronounced in this regard. Adequate modalities to account for the
knowledge about the target subclass prevalences in the diagnostic rules are needed.

Throughout this work we assume that subclasses are explicitly known at the begin of the study
(e.g. age, gender or tumor stages, progression groups, heterogeneous composition of the control
panel, second diagnoses) and at least conjectured probabilities of their occurrence in the target
population are available.

Two aspects of this problem should be carefully considered: the validity of the rules and the va-
lidity of the accuracy estimates computed to evaluate their classification performance. Ignoring
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strong sources of data heterogeneity leads almost certainly to learning suboptimal diagnostic
rules. Now, assume that there is also some relevant discrepancy between the relative subclass
sizes in the data at hand and the true subclass prevalences. Then neglecting the available infor-
mation about the target subclass prevalence structure can lead both to invalid rules and invalid
performance estimates of the rules.

As described by Sukhatme & Beam (1994) three situations of a-priori subclassification of the
data may be distinguished:

(i) Both controls and cases are stratified by the same variable, e.g. gender;

(ii) Only cases are stratified having a particular disease condition, which might be of several
types e.g. size of the lesion, tumor stage, tumor size, time from disease detection etc.;

(iii) Controls are stratified, but cases not, e.g. in a breast cancer study healthy women may be
divided into two strata: women with no history of cancer or chronic diseases and women
with benign breast conditions.

A practical example of situation (i) is a real study for screening colorectal cancer (CRC) by
means of biomarker panels. The class of cases is further subdivided by the tumor stage; the
class of controls consists not only of a group of healthy individuals, but also of some bowel
and gastrointestinal disorders, available with known probabilities in the target population. The
expected prevalences in the screening context are known for the disease subtypes as well as for
disorders gathered by the group of controls.
It is likely that the multivariate distribution of the predictors (here the biomarkers) is subject to
heterogeneity due to this clinical configuration (e.g. different pathological patterns associated to
tumor stages, unequal fluctuations of marker concentrations in the context of different disorders
in the control group).

An example of data with heterogeneous profile like in (iii) is offered by a diagnostic study for
the early identification of rheumatoid arthritis (RA). This comprises 794 patients, which were
recruited in five European centers at general practitioners’ office (GP-data).
A reliable RA-screening rule based on biomarker measurements should be developed starting
from the GP-data.
However, the class of non-RA patients has four subclasses, C1 to C4, which correspond to dif-
ferent disease conditions (osteoarthritis, crystal-induced synovitis, fibromyalgia and low back
pain). They appear in an ideal GP-population of non-RA patients according to known preva-
lences. Table 4.1 lists the prevalences of these subclasses observed in the GP-data as well as the
corresponding true prevalences. The discrepancy between the observed and the true subclass
prevalences is negligible in case of the first two subclasses and pronounced in case of C3 and
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C4. In Section 4.3 this example is used to illustrate our strategies to account for the available
prevalence information in classification rules.

Table 4.1: GP-panel of RA-negatives: True and observed subclass prevalences (%)

Prevalence C1 C2 C3 C4

observed (π̂ik) 5.56 4.86 24.30 65.18
true(πik) 3.08 5.46 47.10 44.36

Adequate methods are needed to take into account the true subclass prevalence structure in or-
der to develop reliable diagnostic rules for heterogeneous populations.
From a statistical point of view, the best way to account for the known subclass prevalences in
the target population is to use an optimal stratification design in the phase of data collection.
Where possible, this reduces the variance of final estimates of accuracy (Obuchowski & Zhou,
2002). But an explicit stratification design is based on the strong assumption that, before the
study begins, one disposes of information that allows to stratify the clinical population accord-
ing to the subclass structure and to sample the subclasses according to their true prevalences.
However, sometimes it is impossible to design a study with stratified sampling, for the subclass
variable can be assessed only after evaluation of the disease status by the diagnostic test (e.g.
tumor size).

Also, this strategy is rather unfeasible in screening studies. The accuracy of the screening tests
should be measured on the relevant clinical population, which comprises only asymptomatic
subjects. Since any stratification may induce other unknown biases, the strategy of a non-
stratified prospective sampling is especially recommended in this case. Although a prospective
design would guarantee a good generalization of the diagnostic rule, logistic, economic and
ethical reasons usually impede its usage.
For instance, a prospective design for screening a rare disease can require an enormous sample
of patients to get even a small sample of cases. Thousands of true negatives may be part of the
final sample. They must undergo both the diagnostic test and the verification of the true dis-
ease status, the gold-standard procedure. This is often invasive, risky (radiography), unpleasant
(colonoscopy) or very expensive (mammography). Since true negatives are collected at most,
the verification of the disease status is related to unnecessary high costs and psychological dis-
tress.
Therefore, one often decides to use a smaller amount of data, provided by a retrospective case-
control study. This is a cheaper and faster alternative, since it is based on already available
data (cancer registries, hospitals). Beside costs and time savings, its strengths are the informa-
tiveness and applicability to rather uncommon diseases. However, the case-control design can
cause the final study population to have a sub-optimal clinical configuration, in which known
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disease subclasses appear in biased proportions or are completely missing.
The screening situation was used in the practical applications of this chapter as it is the most
obvious example of a case, in which there are many good reasons not to carry out a prospective
or a representative stratified data collection. Similar reasons can be found in the context of dif-
ferential diagnosis, with different importance among them depending on the setting.

Referring to such situations of retrospective data collection in the context of known heterogene-
ity, some publications highlight the benefits of post-stratification. For example the size of a
tumor (or the disease stage) can be used to stratify the collective of cases in a cancer study
about the prognostic ability of some marker. This information is known usually after the cases
have been selected, so a real stratified sampling is not possible.
Sukhatme & Beam (1994) propose to account for the variability of predictors between different
subclasses in a retrospective manner. The data, which was collected without stratification con-
cerns, is treated as if it were a stratified sample, using subclass-specific weights to improve the
accuracy estimates. However, the benefits of stratified sampling in the recruitment phase, like
smaller variance of the accuracy estimates, is also pointed out.

We propose some ways to use the available information about the true subclass prevalences
already in the phase of rule development. A practical challenge is to be able to design a re-
liable screening tool starting from a case-control population. Some weighting algorithms are
designed to perform not only a retrospective correction of the final accuracy estimates, but also
a correction of the diagnostic rule itself.

4.2 Learning RDA classifiers with misrepresented subclasses

In Section 4.1 we mentioned some approaches existent in the statistical literature for dealing
with the problem of building classification rules when the target population is heterogeneous
with known subclass prevalence structure. They use either the principle of stratified sampling
at the begin of the study or they account retrospectively for the true subclass prevalences by
weighting error estimates in the phase of rule validation (post-weighting).

In this section we introduce some methods to account for the known true subclass prevalences
already in the phase of designing the diagnostic rule.

4.2.1 Definitions and notations

First, the more general context of a diagnostic classification problem with two heterogeneous
classes is regarded. The classes are encoded as 1 and 2, with the usual interpretation in the
diagnostic practice as disease and control class, respectively. The terminology and common
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ways to tackle general two-class classification problems are shortly reminded to enable the un-
derstanding of the weighting approaches.

Two assumptions are made about the structure of the data used for building classification rules:

(1) each class is a mixture of Ki different subclasses; if just one class is subject to heterogene-
ity, then the number of subclasses in the other class is set at 1;

(2) the true subclass prevalences (probabilities to occur) within the corresponding class are
available; they are generally denoted as (πik)k=1,Ki

and sum up to one, i.e.
∑Ki

k=1 πik = 1, i =

1, 2.

N objects should be assigned to one of two given classes by means of the information provided
with the data set at hand. This information consists of N observations of form zn = (yn, x′n)′, n =

1, . . . ,N. The vector of p observed object characteristics, also called feature vector, is denoted
as xn = (xn1, . . . , xnp)′ ∈ Rp. The true class of the n’th object is yn. The set of i-labeled objects
is denoted as Ci and its size as Ni.
The predictive data lies in a p-dimensional subspace Ω of Rp which is also called feature space.
A discriminant rule defines a partition of Ω into two regions and assigns every new object to a
class according to which region of the partition its observed feature vector x0 belongs to.
The regions determined by a discriminant rule should accurately approximate an ideal partition
of Ω which corresponds to some optimal Bayes rule and provides the best separation of the
classes in the feature space.
A common discriminant rule is that of the maximal posteriors. This assigns an object with
observed feature vector x0 to the class i, whose probability of occurrence given x0, i.e. P(i|x0),
is maximal. If the class density functions are known, then this rule can be reformulated by a
simple application of the Bayes theorem in the context of a {1, 2}-valued class outcome as:
”Classify the object with observed characteristics x0 into class 1 if

f1(x0)π1

f2(x0)π2
≥ 1 (4.2.1)

and to class 2 otherwise”,
whereby f1 and f2 stand for the known class densities, π1 and π2 for the class priors.
Given Ki subclasses within class i, Cik stands for the set of objects belonging to subclass
k, k = 1, 2, . . . ,Ki and Nik for its size.
The position of these subclasses to each other and to the opposite class as well as the degree
of mismatch between true and observed subclass prevalences decide about the complexity of
the classification problem and also about its limitations (in terms of unavoidable misclassifica-
tions). They define the target subclass structure.
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Our idea is to weight classification algorithms according to the true subclass prevalences not
only in the phase of rule validation, but in the phases of rule building and optimization as well.
The aim is to adapt the diagnostic feature panel, the parameter estimates and the discrimination
cutoff of the final model, as well as to correct the estimates of diagnostic accuracy with respect
to the target population, starting from the suboptimal data at hand.

A training data set L for rule construction and optimization and an independent validation
data set T for evaluation of the rule performance are assumed to be available. On L a cross-
validation substructure is used to optimize the rule parameters and feature panel. We consider
only subclass stratified cross-validation (see Chapter 2, Section 2.2).

Three weighting alternatives are presented which address different levels of a feature selection
algorithm. The true subclass prevalences can be applied as weights on

(1) CV training data sets, thus in the process of rule building, for correction of the estimates
of class distribution parameters;

(2) CV test data sets, thus in the process of rule optimization, for correction of the perfor-
mance estimate of a rule with fixed regularization parameters and features;

(3) Validation data set, for correction of the performance estimate of the final rule which was
constructed in (1) and optimized in (2).

An established feature selection algorithm based on Regularized Discriminant Analysis (RDA)
(Friedman, 1989) is used to exemplify these weighting alternatives.

4.2.2 RDA classifiers in general

The weighting methods used to account for the known subclass prevalence information in the
target population are exemplified by means of RDA-rules, which are derived from the rule of
maximal posteriors under the assumption of multivariate class Gaussians.

Theoretically, our weighting strategies can be applied to any classification algorithm. However,
they were exemplified only on the forward feature selection algorithm based on Regularized
Discriminant Analysis (RDA). This was shortly introduced in Chapter 3, Section 3.1.2. In this
section a deeper insight into the functionality of RDA is offered to ease understanding of the
weighting procedures.

Since RDA generalizes established discriminant analysis methods like Linear Discriminant
Analysis (LDA) (Fisher, 1936) and Quadratic Discriminant Analysis (QDA) (McLachlan, 1992),
the same weighting procedures apply also to feature selection algorithms based on the latter two
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methods. We opted for RDA in order to cover a larger family of shapes of the decision bound-
aries, suspecting that for heterogeneous populations a better separability could be reached with
regularized rather than with linear or quadratic surfaces.

The RDA rule is obtained from the rule of maximal posteriors (4.2.1) replacing f1(x) and f2(x)
with multivariate normal density functions. Subsequently, a transformation on the natural loga-
rithmic scale, enables the transcription of this rule in terms of so-called discriminant scores:

di(x0) = ∆(x0;µi,Σi) + ln |Σi| − 2 ln πi, i = 1, 2. (4.2.2)

Here ∆(.;µi,Σi), i = 1, 2 stand for the Mahalonobis-distances from the observed feature vector
x0 to the class means µi, and Σi for the class covariance matrices, i = 1, 2. The discriminant rule
based on maximal posteriors (4.2.1) is reformulated as:
”Classify the object with observed characteristics x0 into class 1 if

d1(x0) ≤ d2(x0)

and to class 2 otherwise”.
Thus, it requires the assignment of an object to the class with the minimal discriminant score,
given its observed vector of characteristics.

Regularization techniques (Friedman, 1989) were developed to handle special situations like
weak collinearity (almost linearly dependent features), ill- or poorly-posed classification prob-
lems (number of parameters to estimate exceeds or is comparable to the number of samples).
These result often into singular or almost singular covariance estimates. Almost singularity
gives rise to very small, negatively biased, eigenvalues. Only a negligible variance of them can
cause an explosion in the variance of the inverted covariance matrix and result in a high insta-
bility of classification. The severeness of this problem is additionally enhanced using plug-in
estimates of the eigenvalues. These are usually negatively biased for small eigenvalues and
positively biased for large eigenvalues.
Regularization attempts a reduction in the variability of discriminant scores induced by the
plug-in estimates of the class covariance matrices. Different techniques can be used to manipu-
late the class covariance estimates for this target.

RDA combines two regularization steps, based on the parameters λ, γ ∈ [0, 1]:

(1)

Σ̂i(λ) =
(1 − λ)(Ni − 1)Σ̂i + λ(N − 2)Σ̂pooled

(1 − λ)(Ni − 1) + λ(N − 2)
, (4.2.3)
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(2)

Σ̂i(λ, γ) = (1 − γ)Σ̂i(λ) + γ
tr(Σ̂i(λ))

p
Ip. (4.2.4)

where Ni, i = 1, 2, are the class sizes and N the total sample size. Also, Σ̂pooled stands for the
pooled covariance matrix, a linear combination of the class covariance estimates and tr(Σ̂i) for
the trace (sum of diagonal elements) of the covariance estimate Σ̂i.
The first equation corresponds to a shrinkage of the class covariance estimates towards the
pooled covariance matrix and the second to a shrinkage of the λ-regularized class covariance
estimates against a multiple of the identity matrix. The degrees of shrinkage in these two direc-
tions are tuned by the regularization parameters λ and γ.

The first regularization step provides more stable class covariance estimates at the price of a
small bias injection. It can be easily shown that QDA and LDA are special cases of this regu-
larization, as they can be obtained for λ = 0, γ = 0 and λ = 1, γ = 0, respectively.

The second regularization step attempts to counteract the inherent bias coupled to the plug-in
estimation of the eigenvalues of the class covariance matrices by shifting them towards their
mean values, tr(Σ̂i)

p .

The pair of regularization parameters (λ, γ) and the feature panel should be optimized with re-
spect to the misclassification error rate in order to get the best discriminant rule. For a fixed com-
bination of features the regularization parameters are found by minimizing the cross-validated
misclassification error rate over a two-dimensional grid on the unity square.
The best feature combination is herein obtained by an iterative feature selection algorithm that
works in a forward manner (Schmitt, 2005).
Consider that the current model is given by the feature combination I, while the set of not yet
selected features is O. Then, at one step of the algorithm, I is extended by a feature F from
O. Conditioned on the combination I

⋃
{F} the regularization parameters are optimized by the

grid method. This is repeated for each feature in O. The cross-validated misclassification error
rates of the optimal discriminant rules determined with RDA for the extensions of the current
model with each of the features from O are compared. The not yet selected feature resulting in
the minimal CV estimate is added to the model.
This algorithm ends when no relevant improvement of the misclassification error rate relatively
to the current model can be achieved with any extension based on one of the remained features.

4.2.3 Weighting of parameter estimates for rule building

The first weighting alternative applies to the CV training data sets. Thus, it accounts for the
target subclass prevalence structure in the phase of rule building.
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Discriminant scores are based on plug-in estimates of class means, covariance matrices and
class priors. The known true subclass prevalences are used to adapt class mean and covariance
estimates to the target situation. Thus, this weighting approach aims at a correction of the esti-
mates of class distribution parameters for the bias induced when the known subclass structure
and true subclass proportions within each class are neglected.

Two ways are proposed for weighting on the CV training data sets:

(1) Corrected CV Training: Weighted mean and covariance estimates of the distribution pa-
rameters in the heterogeneous class are computed as weighted sums of their subclass
analogs. The true subclass prevalences are used as weights.

(2) Inflated CV Training: In order to resemble the target population subclasses are sampled
at random from each CV training data set according to their true prevalence - if enough
items of a subclass are available sampling is done without replacement, otherwise with
replacement.

4.2.3.1 Corrected CV Training

The common plug-in estimates of the class means are the empirical class means:

µ̂i = x̄i :=
1
Ni

∑
ν∈Ci

xν, (4.2.5)

with xν the observed characteristics of object ν and Ni the size of class i in L. These are already
weighted sums of the subclass means. However, they use the relative subclass sizes in the data
set at hand as weights. Thus:

µ̂i =
1
Ni

Ki∑
k=1

∑
ν∈Cik

xν =

Ki∑
k=1

Nik

Ni
x̄ik

=

Ki∑
k=1

π̂ikµ̂ik (4.2.6)

where Nik is the size of subclass k within class i, π̂ik stands for the observed prevalence of sub-
class k within class i, and µ̂ik, k = 1, 2, . . . ,Ki, are the common plug-in estimates of the subclass
means in L.

The ML-estimates of the class covariance matrices can be also rewritten as a sum between
some weighted sum of the ML-estimates of the subclass covariance matrices and an additional
quadratic term. See terms T1 and T2 in (4.2.7), respectively. Again, the natural weights used in
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these typical class covariance estimates are the subclass proportions π̂ik within the correspond-
ing classes of the training dataL. Denoting the ML-estimates of class and respectively subclass
covariance matrices as Σ̂i,ML and Σ̂ik,ML, it holds:

Σ̂i,ML =
1
Ni

∑
ν∈Ci

(xν − µ̂i)(xν − µ̂i)
′

=
1
Ni

Ki∑
k=1

∑
ν∈Cik

[
(xν − µ̂ik) + (µ̂ik − µ̂i)

] [
(xν − µ̂ik) + (µ̂ik − µ̂i)

]′
=

1
Ni

Ki∑
k=1

[
∑
ν∈Cik

(xν − µ̂ik)(xν − µ̂ik)
′ +

∑
ν∈Cik

(xν − µ̂ik)(µ̂ik − µ̂i)
′

︸                       ︷︷                       ︸
=0

+

+
∑
ν∈Cik

(µ̂ik − µ̂i)(xν − µ̂i)
′

︸                      ︷︷                      ︸
=0

+
∑
ν∈Cik

(µ̂ik − µ̂i)(µ̂ik − µ̂i)
′]

=
1
Ni

 Ki∑
k=1

NikΣ̂ik,ML +

Ki∑
k=1

Nik(µ̂ik − µ̂i)(µ̂ik − µ̂i)
′


=

Ki∑
k=1

Nik

Ni
Σ̂ik,ML +

Ki∑
k=1

Nik

Ni

µ̂ik −

∑Ki
l=1 Nilµ̂il∑Ki

l=1 Nil

 µ̂ik −

∑Ki
l′=1 Nil′µ̂il′∑Ki

l′=1 Nil′

′

=

Ki∑
k=1

Nik

Ni
Σ̂ik,ML +

Ki∑
k=1

Nik

Ni


∑Ki

l=1
l,k

Nil(µ̂ik − µ̂il)

Ni



∑Ki

l′=1
l′,k

Nil′(µ̂ik − µ̂il′)

Ni


′

=

Ki∑
k=1

π̂ikΣ̂ik,ML +

Ki∑
k=1

π̂ik

{ 
Ki∑
l=1
l,k

π̂il(µ̂ik − µ̂il)

 ·


Ki∑
l′=1
l′,k

π̂il′(µ̂ik − µ̂il′)
′


}

=

Ki∑
k=1

π̂ikΣ̂ik,ML +

Ki∑
k=1

π̂ik

{[
(1, 1, . . . , 1)

⊗
µ̂ik − (µ̂i1, µ̂i2, . . . , µ̂iKi

)
]

(π̂i1, π̂i2, . . . , π̂iKi)
′
}

{[
(1, 1, . . . , 1)

⊗
µ̂ik − (µ̂i1, µ̂i2, . . . , µ̂iKi

)
]

(π̂i1, π̂i2, . . . , π̂iKi)
′
}′

=

Ki∑
k=1

π̂ikΣ̂ik,ML︸        ︷︷        ︸
:=T1

+

Ki∑
k=1

π̂ik(Aik − Mi)Π̂1,...,KiΠ̂
′
1,...,Ki

(Aik − Mi)′︸                                               ︷︷                                               ︸
:=T2

. (4.2.7)
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The following notations are used:

Mi := (µ̂i1, µ̂i2, . . . , µ̂iKi
) ∈ Rp×Ki

Aik := (µ̂ik, µ̂ik, . . . , µ̂ik) ∈ R
p×Ki

Π̂1,...,Ki := (π̂i1, π̂i2, . . . , π̂iKi)
′ ∈ RKi .

Mi is the matrix with the subclass mean vectors within class i as columns, Aik is the matrix
obtained from Mi by replacement of each subclass mean with the mean of some particular sub-
class k of class i and Π̂1,...,Ki is the vector of observed subclass prevalences within class i.

The so-called weighted class means and covariance estimates are obtained from (4.2.6) and
(4.2.7), respectively, using the true instead of the observed subclass prevalences.
Thus, they are defined as:

µ̂i,w =

Ki∑
k=1

πikµ̂ik. (4.2.8)

and

Σ̂i,w =

Ki∑
k=1

πikΣ̂ik +

Ki∑
k=1

πik(Aik − Mi)Π1,...,KiΠ
′
1,...,Ki

(Aik − Mi)′. (4.2.9)

Here Π1,...,Ki is the vector of true subclass prevalences within class i, thus Π1,...,Ki = (πi1, πi2, . . . , πiKi)
′

for i = 1, 2.

Since the discriminant scores of RDA are computed by the most software packages with un-
biased rather than ML covariance estimates, the weighted covariance estimates Σ̂i,w are first
transformed into their unbiased analogs by multiplication with the factor Ni

Ni−1 and then used in
(4.2.2).

4.2.3.2 Inflated CV Training

With inflated CV training weighting of class covariance and mean estimates is done in an im-
plicit way. The observed subclass proportions within classes are adapted by a random and
subclass stratified sampling to approach the subclass prevalence structure in the target popula-
tion. This procedure is repeated for each CV training data set.

Expected subclass sizes are computed starting from the observed class size and using the true
subclass prevalences (ENik = πikNi). Sampling is performed with replacement (subclass in-
flation) when the expected subclass size exceeds the observed subclass size, i.e. ENik > Nik.
Otherwise sampling succeeds without replacement (subclass deflation). In this artificial way,
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a poorly represented subclass may be expanded, while a highly represented one may be com-
pressed to its expected size. Since we usually deal with small observed subclass sizes, both
sampling types are here referred in a generic way as data inflation.
The weighted class and covariance estimates are those obtained as natural plug-in estimates on
the inflated data sets.

The CV training data sets in the frame of an M-fold CV are inflated in the following way: the M
CV test data sets are inflated first and each reunion of M−1 inflated CV test data sets represents
the inflated training counterpart of the remained CV test data set.
Each CV training data set preserves its definition as reunion of M − 1 disjoint CV test data
sets also after inflation. All M possible reunions of inflated CV training and inflated CV test
counterparts lead to the same inflated version of the original training data, which is used in the
end to get the final rule.

Some pitfalls of this weighting-by-inflation procedure should be, however, noted:

• If a subclass is over-represented in the data at hand, then deflation causes information
loss.

• If a subclass has a high known prevalence in the target population, but is under-represented
within the data at hand, then inflation causes ties; they can have negative (numerical) ef-
fects in the estimation of parameters.

• Ties enhance the feature correlations within the subclass under consideration; then one
might overweight a very biased subclass covariance estimate in the computation of the
corresponding class covariance estimate.

Also, our inflation strategy is performed basically on the CV test data sets, which are usually
small. It should be checked in advance if the expected subclass sizes are adequate for a reliable
estimation of the subclass distribution parameters.
If this is not the case, then the size of the CV test data sets can be augmented by a factor f
to ensure the minimal necessary expected size of each subclass. Using the previous notations
- N(m)

1 ,N(m)
2 class sizes, N(m)

ik , i = 1, 2, k = 1, . . . ,Ki, subclass sizes in the CV test data, m =

1, . . . ,M - this means that an integer factor f > 1 is needed such that the expected subclass
sizes within the CV test data sets, i.e. EN(m)

ik = πik( f N(m)
i ), are adequate.

The CV test data sets are inflated according to the recalculated expected sizes. Then, each
combination of M − 1 inflated CV test data sets provides an inflated CV training data set. This
is consequently augmented by the same factor.
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4.2.4 Weighting of performance estimates for optimization and validation

Empirical estimates of statistical measures like misclassification error, sensitivity, specificity,
AUC, pAUC etc. (Pepe, 2003) are used to judge the classification performance, thus the ability
of a classification rule to identify the right class. They support in this way the process of rule
validation.
Used within a feature selection algorithm, they help also to compare rule candidates in order to
decide upon the most suitable rule configuration in terms of rule parameters and features. Thus,
they support the process of rule optimization, too.
True subclass structure and prevalences can be used to appropriately adjust these estimates to
the target situation. This is expected to increase the reliability of optimal rules and of the asso-
ciated estimates of classification performance.

Most statistical or machine learning algorithms base their rule optimization on the misclassi-
fication rate as measure of algorithm’s performance. For this reason, and also for the sake of
simplicity, our weighting alternatives are exemplified using the misclassification rate. Other
performance measures like sensitivity, specificity, AUC, etc. are not reviewed in this work, but
the general weighting principles presented here apply to their estimates in a similar way, too.

The first weighting alternative introduced in Section 4.2.3 uses the true subclass prevalences
to weight the class mean and covariance estimates in the computation of discriminant scores.
The next two weighting alternatives replace the natural weights, thus the observed subclass
prevalences, by the true subclass prevalences in the computation of the error estimates.
From now on, all error estimates which are naturally weighted by means of the observed sub-
class prevalences are called unweighted. Under weighted error estimates we understand all error
estimates in which the true subclass prevalences have replaced the observed ones.

The second weighting alternative uses the true subclass prevalences on the CV test data sets,
to weight the cross-validation (CV) error estimates. Thus, it accounts for the known target
subclass prevalence structure in the process of rule optimization.
Two ways are proposed to weight on the CV test data sets:

(1) Corrected CV Test : In each CV test data set the misclassification error estimate is com-
puted as a weighted sum of the subclass misclassification rates using true subclass preva-
lences as weights.

(2) Inflated CV Test : In each CV test data set subclasses are sampled at random with or
without replacement according to their true prevalence.

The third weighting alternative uses the true subclass prevalences to weight the test-sample
(TS) error estimates. Thus, the available prevalence information is exploited in the phase of rule
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validation.
The final weighted error estimate is a sum of its subclass analogs with coefficients given by the
true subclass prevalences. This strategy is called Corrected Test.

Considering Inflated CV Test as self-explanatory, only the weighting strategies Corrected CV
Test and Corrected Test are formally described in the following.
The principles of common CV and TS estimation of the misclassification error were presented
in more detail in Section 2.2, in (2.2.1) and (2.2.3), respectively. Further, the same notations are
used.

4.2.4.1 Corrected CV Test

Starting from (2.2.1) it results that in the context of class heterogeneity the common CV esti-
mates can be expressed as:

ε̂(M−CV)
i =

1
M

M∑
m=1

1

N(m)
i

Ki∑
k=1

 ∑
(i,x′)′∈L(m) ⋂Cik

I{δ
−L(m) (x)= j}


=

1
M

M∑
m=1

Ki∑
k=1

N(m)
ik

N(m)
i

1

N(m)
ik

 ∑
(i,x′)′∈L(m) ⋂Cik

I{δ
−L(m) (x)= j}


=

1
M

M∑
m=1

Ki∑
k=1

π̂(m)
ik ε̂

(m)
ik . (4.2.10)

Here an M-fold cross-validation is considered. For every m = 1, . . . ,M, N(m)
i is the size of class

i, N(m)
ik the size of subclass k within class i, and ε̂(m)

ik the misclassification rate in subclass k of
class i in the CV test subfraction L(m). The weight π̂(m)

ik is the observed prevalence of subclass k
within class i in the CV test subfraction L(m). This is approximately the same in every CV test
subfraction, as long as the cross-validation procedure is stratified by subclass.

The weighted CV error estimate of class i is obtained by replacing each natural subclass weight
π̂(m)

ik with the true weight πik:

ε̂(M−CV),w
i =

1
M

M∑
m=1

Ki∑
k=1

πikε̂
(m)
ik , i ∈ {1, 2}. (4.2.11)

The theoretical principle of weighting was here introduced in a general frame with Ki known
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subclasses within class i, i = 1, 2. However, the theoretical and practical investigations in
this work are carried out for the simplified version of a two-class classification problem with
a heterogeneous control (labeled as C or 2) and a homogeneous disease class (D or 1). An-
other simplification is achieved by assuming that the heterogeneous class possesses just two
subclasses, C1 and C2. Thus K1 is 1 and K2 is 2.

In this particular case, the weighted CV error estimate of the heterogeneous class C is:

ε̂(M−CV),w
2 =

1
M

M∑
m=1

[π21ε̂
(m)
21 + π22ε̂

(m)
22 ] (4.2.12)

For the homogeneous class D the unweighted CV error estimate ε̂1 is used further.
The final weighted CV error estimate is:

ε̂(M−CV),w = π̂1ε̂
(M−CV)
1 + π̂2ε̂

(M−CV),w
2 .

This error estimate is used instead of the unweighted one to optimize the rule in some of the
weighting algorithms introduced in this chapter. Weighting the CV error estimates, on which
the rule optimization (i.e. the choice of the optimal rule parameters and feature panel) is based,
the feature selection algorithm is potentially focused towards a feature panel that fits better the
classification task when a subclass structure is given.

4.2.4.2 Corrected Test

Starting from (2.2.3) it can be easily shown that the TS-estimates are naturally weighted by
means of the observed subclass prevalences within the test data T , i.e. π̂(ts)

ik , k = 1, 2, . . . ,Ki:

ε̂(ts)
i =

1

N(ts)
i

Ki∑
k=1

∑
(i,x′)′∈Cik

I{δ(x)= j}

=

Ki∑
k=1

N(ts)
ik

N(ts)
i

ε̂(ts)
ik

=

Ki∑
k=1

π̂(ts)
ik ε̂

(ts)
ik . (4.2.13)

Here N(ts)
i is the size of class i, N(ts)

ik is the size of subclass k within class i, and ε̂(ts)
ik is the mis-

classification rate in subclass k of class i in the validation data T .

The weighted TS-estimate is:
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ε̂(ts),w
i =

Ki∑
k=1

πikε̂
(ts)
ik , i ∈ {1, 2}. (4.2.14)

Now, consider the particular situation with class D homogenous and class C heterogeneous with
two subclasses. In this particular situation, the common TS error estimate in the heterogeneous
class C, ε̂(ts)

2 , is given by:
ε̂(ts)

2 = π̂21ε̂
(ts)
21 + π̂22ε̂

(ts)
22 . (4.2.15)

Therefore, the weighted TS error estimate of the heterogeneous class C is obtained as:

ε̂(ts),w
2 = π21ε̂

(ts)
21 + π22ε̂

(ts)
22 . (4.2.16)

The final weighted TS error estimate is:

ε̂(ts),w = π̂1ε̂
(ts)
1 + π̂2ε̂

(ts),w
2 .

Weighting the TS error estimates, on which the final assessment of the rule performance is
based, one attempts to correct them for the situation in the target population.

4.3 Benchmark of algorithms on simulated data

In the last two sections we proposed three weighting alternatives: (1) on the CV training data
sets, (2) on the CV test data sets and (3) on the validation data. In the first weighting alternative
the true subclass prevalences are used to weight the estimates of the distribution parameters in
the heterogeneous class. In the second weighting alternative the CV estimates of misclassifica-
tion error are weighted by the true subclass prevalences. In the third weighting alternative the
final error estimate is weighted by the true subclass prevalences.
These weighting alternatives are combined starting from the RDA feature selection algorithm
(Schmitt, 2005). They lead to four weighting algorithms of interest. Their classification perfor-
mance is investigated and compared by means of a simulation study.

4.3.1 Selected weighting algorithms

We consider also the situation in which no weighting is performed on the CV training and/or on
the CV test data sets. This results in two other strategies, which we call As-It-Is CV Training and
As-It-Is CV Test, respectively. They enable a comparison between weighted and unweighted
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algorithm versions.
Recalling the strategies which were proposed for the realization of the three weighting alterna-
tives, we have the possibilities:

• CV training data

(a1) Corrected CV Training

(a2) Inflated CV Training

(a3) As-It-Is CV Training

• CV test data

(b1) Corrected CV Test

(b2) Inflated CV Test

(b3) As-It-Is CV Test

• Validation Data

(c) Corrected Test

There are only six meaningful possibilities to define a weighting algorithm using a combination
of these strategies. Only four are considered for further investigation. They are listed with an
explanation of their acronyms in Table 4.2 and are interpreted below.

Table 4.2: Selected weighting algorithms

Design CV Training Data CV Test Data Validation Data

AAC* As-it-is As-it-is Corrected

I I C Inflated Inflated Corrected

ACC As-it-is Corrected Corrected

CCC Corrected Corrected Corrected

* reference method.

The combination AAC corresponds to the usual unweighted approach, which builds the classi-
fication rule without keeping track of any potentially existent data structures. It performs only
a post-weighting (see Section 4.1) of the final classification rule in the validation phase.
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The combination ACC involves unweighted estimates of class distribution parameters in the
phase of rule building. However, a post-weighting is performed in this case both for the un-
weighted rules obtained on CV training data sets and for the final unweighted rule obtained on
the whole training data L.

The combination IIC uses unweighted estimates from inflated CV training and test data sets
in the phase of rule building and optimization, respectively. The final rule is constructed on
the inflated version of the original training data L, too. Consequently, this algorithm weights
implicitly the class distribution parameters and the CV estimates of performance, enforcing the
true subclass prevalence structure by random and subclass stratified sampling.
The combination CCC applies the true subclass prevalence explicitly in the computation of
class distribution parameters and CV estimates of performance.
Finally both IIC and CCC weight explicitly on the independent validation data set to get reliable
estimates of the rule performance under the targeted conditions (post-weighting).

The other two other possible ways to combine the weighting strategies on CV training, CV
test and validation data, III and ICC, are not considered, since they essentially resemble IIC.
Consequently, they are expected to provide very similar results to IIC.
Besides, IIC is sufficient as example from this group of inflation-based methods. The data
inflation procedure is actually not desirable in practice because of the earlier mentioned pitfalls.
Although the method ICC applies the data inflation only on the CV training data sets, IIC is still
preferred providing inflated CV training and test data sets which are perfectly concordant with
the classical cross-validation principle.

4.3.2 Simulation design

Four weighting algorithms to account for the true subclass prevalence structure while develop-
ing classification rules are considered for further investigation. Using the acronyms defined in
Table 4.2 these were AAC, ACC, IIC and CCC. A simulation study is conducted to establish the
individual performance of each weighting algorithm and to perform a comparison of algorithms
in terms of their classification ability. This should also help to understand how four interesting
factors affect the performance of the weighting algorithms and enable a comparison of algo-
rithms over various factor settings.

The simplified scenario with a heterogeneous control class (labeled as C or 2) and a homoge-
nous disease class (labeled as D or 1) is considered. The heterogeneous control class is assumed
to consist of only two subclasses, C1 and C2. These are expected to come up with certain prob-
abilities π21 and π22, respectively, within the control class of the target population.
Regarding the notations, subclass distribution parameters or subclass prevalences are indexed
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either by the numerical (21, 22) or by the character labels (C1,C2) of the corresponding sub-
classes. These alternative notations are equivalent.
The relative subclass sizes in the data at hand are assumed to be equal (π̂21 = π̂22), this case
being often encountered in the diagnostic practice. Consequently, a measure of discrepancy
between the true subclass prevalences quantifies the mismatch between target and study popu-
lation with respect to the subclass prevalence structure, too.

Four continuous features, M1 to M4, are available for classification. The first two features are
assumed to be informative, while the last two features to be non informative for the class and
subclass discrimination.

Some factors describing the subclass structure in the target population are suspected to impact
on the classification performance. Situations in which one weighting algorithm outperforms the
others may depend on the particular setting of some of these factors.

Our simulation design (see Section 2.3) targets the simultaneous analysis of the relationship
between the continuous response of each weighting algorithm, here some relative measure of
performance, and the following four factors:

(1) ΠC1,C2 = |πC1 −πC2 | ∈ [0, 0.8] - the absolute difference between the true prevalences of the
control subclasses C1 and C2;

(2) dist.DC1 = ||µC1 −µD||2 ∈ [1, 4] - the euclidian distance between the centers of the disease
class and the first control subclass, ||.||2 denotes the euclidian norm L2;

(3) dist.DC2 = ||µC2 −µD||2 ∈ [1, 4] - the euclidian distance between the centers of the disease
class and the second control subclass;

(4) Ĉ1DC2 = ^(DC1,DC2) ∈ [00, 1800] - the angle described by the subclass centers with
vertex in the center of the disease class.

These continuous factors are encoded such that their lowest/highest values corresponds to −1/+

1. This is helpful for generating an appropriate simulation design with JMP (SAS-Institute,
2005).
The first three factors are regarded as categorical two-level factors while the fourth one is ana-
lyzed on three levels.
An overview of the actual values behind the final low and high factor levels is given in Table 4.3.

The lowest value of the first factor is 0, being achieved when both subclasses appear equally
often in the control target population, thus when πC1 = πC2 = 0.5. The highest value is set to 0.8,
when one subclass is rather rare (πC1 = 0.1) and the other represents the majority (πC2 = 0.9).
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The lowest value for the euclidian distances between the center of the disease class and the
centers of the control subclasses is set to 1 while the highest value to 4.
The fourth factor, being an angle, is explored not only at the extremities {00, 1800}, when means
are collinear, but also in the middle, when subclass centers form with the center of the disease
class a right angle.

Table 4.3: Overview of the factor levels

Factor Level ΠC1,C2 (π21, π22) dist.DC1 dist.DC2 Ĉ1DC2

Low (−1) 0 (0.5, 0.5) 1 1 0

Center (0) 0.4 (0.3, 0.7) 2.5 2.5 π
2

High (1) 0.8 (0.1, 0.9) 4 4 π

It should be clearly distinguished between the meaning of the considered design factors. The
angle factor and the euclidian distances describe the position of class and subclasses relatively
to each other within the feature space. They enable a meaningful description of the degree of
heterogeneity in the data. The prevalence factor only provides information about the true di-
mensions of the heterogeneous class components.
The goal of our weighting algorithms is to adjust classification rules for the effect of data non-
representativeness with respect to the true subclass prevalences. Thus, a successful weighting
should primarily lead to results that do not anymore depend on the subclass prevalences in the
target population.

The first target of this simulation is to check which of the four design factors impact on the
bias of the weighted misclassification rates and adjust the design by excluding some eventually
non-relevant factors.
The second target is to survey under which design configurations the use of a particular weight-
ing approach provides a real benefit in comparison to the others. On one hand, this is done by a
direct comparison of the relative bias of the algorithms at each design point. On the other hand,
an interesting aspect is to investigate the expected changes in predicted values due to individual
and overall factor variations. A good model for prediction of the relative bias of each algorithm
by means of the selected factors is necessary in order to be able to reliably extend the explo-
rative benchmark over other factor settings.
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Therefore, a sequential two-step-design is used.

In the first step the target conditions with a relevant impact on the performance of the algo-
rithms are searched. For this purpose a D-optimal screening design (see Section 2.3), denoted
as DOE1, is generated with the Custom Designer in the JMP Software (Version 7.0) (SAS-
Institute, 2005).

DOE1 comprises 16 common points and 4 center points. The latter are used to assess the lack
of fit of the final model and establish if replicates are needed for further experiments.
The combinations of factor levels for the 20 experimentation points of DOE1 are presented in
Table 4.4. It can be noticed that this design contains the center points 1, 6, 7 and 16 and some
other ties, namely two pairs of replicates (9, 13) and (12, 17).

Table 4.4: DOE1: Screening design (D-optimal)

Row Design Point ΠC1,C2 dist.DC1 dist.DC2 Ĉ1DC2 true error(εB)**

1 1, 6, 7, 16* 0 0 0 0 0.1334

2 2 1 −1 1 −1 0.0707

3 3 −1 1 −1 −1 0.2029

4 4 −1 1 1 1 0.0341

5 5 1 1 1 1 0.0254

6 8 1 1 −1 0 0.2925

7 9, 13 −1 −1 1 0 0.2115

8 10 1 1 −1 1 0.3014

9 11 1 1 1 0 0.0281

10 12, 17 −1 −1 −1 1 0.3959

11 14 −1 1 −1 0 0.2129

12 15 1 −1 −1 −1 0.3104

13 18 1 −1 −1 0 0.3263

14 19 1 −1 1 1 0.0718

15 20 −1 1 1 −1 0.0231

* center points.
** true error rate (computation details in Section 4.3.4).

The last column of the table specifies the true error rate corresponding to some optimal Bayes
rule on the target population associated to each design point (Hastie et al., 2001). The true
error rate is needed to calculate the bias of the misclassification error estimate obtained with
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each weighting algorithm. Details on its computation are given in Section 4.3.4. The error rates
presented at rows 1, 7 and 10 of Table 4.4 represent averages over the true error rates obtained
for the replicates.

The second step targets a reliable model for the prediction of each weighting algorithm’s per-
formance. Here main, quadratic and two-factor interaction effects of the factors selected in the
first step are regarded. Therefore, DOE1 has been augmented to an I-optimal design with 16
further experimental points in which all initial factors have been preserved. This was also done
with the JMP Software (Version 7.0) using the Augment Designer tool.

The combinations of factor levels corresponding to the additional design points are listed in
Table 4.5. No other center points have been added since the response variability obtained at the
center points in DOE1 was moderate.

Table 4.5: DOE2: Design augmentation (→ I-optimal)

Row Design Point ΠC1,C2 dist.DC1 dist.DC2 Ĉ1DC2 true error(εB)*

1 21 −1 1 0 1 0.0899

2 22 0 −1 0 0 0.2040

3 23 0 −1 0 1 0.2238

4 24 0 1 0 0 0.0986

5 25 0 −1 −1 −1 0.3029

6 26 1 0 0 1 0.1253

7 27 0 0 1 0 0.0741

8 28 −1 0 1 1 0.0883

9 29 −1 −1 0 −1 0.2238

10 30 1 1 0 −1 0.0975

11 31 0 0 1 −1 0.0556

12 32 −1 0 0 −1 0.1046

13 33 1 0 0 −1 0.1064

14 34 0 0 −1 1 0.3083

15 35 −1 0 −1 0 0.2532

16 36 0 1 −1 −1 0.2532

* true error rate (computation details in Section 4.3.4).

The data generation workflow for both the screening and the augmented design is described in
the following section.
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4.3.3 Simulated data

The necessary data for this simulation study is generated at each design point in two steps:

(1) A large data set mimicking the target population is randomly drawn from the distributions
assumed at each design point according to the true subclass prevalences.

(2) A data set mimicking some eventually non-representative excerpt of the target population
is afterwards randomly drawn without replacement from the target population simulated
at (1); equal subclass prevalences in the control class are assumed.

The subclass membership is used as stratification variable in both steps.

In simulation step (1) for each of the 36 points in the augmented design (DOE1
⋃

DOE2)
10.000 four-dimensional feature vectors are generated per class in order to approach well the
target population.
The distribution of class D at point s of the simulation design is assumed to be multivariate nor-
mal MVN(µs,D,Σs,D). The distribution of class C at point s is a mixture of the multivariate nor-
mal distributions of subclasses C1 and C2, denoted as MVN(µs,C1

,Σs,C1) and MVN(µs,C2
,Σs,C2),

respectively. The mixing proportions are given by the subclass prevalences (πs,21, πs,22) associ-
ated to the actual level of the prevalence factor ΠC1,C2 at design point s.

Based on the 10.000 observations per class the true error rate is estimated. This is used to judge
the ability of the weighting algorithms to provide reliable rules and performance estimates.

In the target population classes C and D are set equally prevalent πs,1 = πs,2 = 0.5, while
subclasses C1 and C2 show up with the probabilities πs,2k

2 , k = 1, 2, for all design points s =

1, 2, . . . , 36. Therefore, the original subclass sizes are πs,21 ·10.000 and respectively πs,22 ·10.000.
The simple case of identical spherical class and subclass covariance matrices is considered.
They are given by the identity matrices Σs,D = Σs,C1 = Σs,C2 = I4, s = 1, . . . , 36.
Starting from the factor settings at each design point s, i.e. the euclidian distances between the
center of class D (µs,D) and the subclass centers of C1 and C2 (µs,C1

, µs,C2
) as well as the angle

Ĉ1DC2 between DC1 and DC2, the class and subclass centers µs,D, µs,C1
and µs,C2

, are straight-
forward computed. However, they are not unique.
In order to restrict the set of solutions for the class and subclass centers given a certain factor
setting the assumption is made that µs,D = (0, 0, 0, 0)′. Thus, the center of the disease class is
set at the origin.

Only the first two features are informative for class and subclass discrimination. Thus, every
subclass center differs from the center of the opposite class at most in the first two coordinates,
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e.g. µs,C1
= (x, ε, 0, 0)′ and µs,C2

= (ε′, y, 0, 0)′.

The first two components of the mean vectors are determined by solving the equation system:

√
x2 + ε2 = dist.DC1√
ε′2 + y2 = dist.DC2

< (x, ε), (ε′, y) > = cos(Ĉ1DC2) · dist.DC1 · dist.DC2

Finally, the restrictions ε = 0 and x > 0 lead to a unique solution at each design point:

x = dist.DC1

y = dist.DC2 · sin(Ĉ1DC2)

ε′ = dist.DC2 · cos(Ĉ1DC2)

In step (2), from the 10.000 samples in each class of the target population obtained in step
(1) at some design point s, 1.000 observations are drawn at random without replacement. The
subclass membership is used to stratify sampling and C1, C2 are drawn in equal proportions,
receiving 500 samples each.

The 2.000 samples drawn in step (2) build the actual data set used for classification at the design
point s.

In general, classification algorithms use proportional priors of the subclasses (i.e. estimated
from the data) although these may be incompatible with the reality. The subclass sizes are cho-
sen equal within each data set generated in step (2) as if no information about the real subclass
proportions in the target population were available. The degree of suboptimality of the data at
hand is tuned by means of different settings of the target subclass prevalences.

In this simulation the main focus is not a comparison of rules with respect to a particular di-
agnostic task, but a comparison of the weighting algorithms with respect to their classification
performance. Therefore the computation of a final misclassification error estimate on an inde-
pendent validation data is not needed and all samples generated at step (2) are used for training.

4.3.4 Comparative design on simulated data

On the S = 36 learning data sets created in simulation step (2) the four weighting algorithms
known as AAC, IIC, ACC and CCC are applied and their classification performances are eval-



4.3. Benchmark of algorithms on simulated data 60

uated and compared.
Obviously, at design points characterized by equal true subclass prevalences or by completely
overlapped subclasses (µs,C1

= µs,C2
) the methods AAC, ACC and CCC are identical. Theoreti-

cally, the method IIC should be in this context also identical to the other methods, since at these
design points no sampling from subclasses is actually necessary. Yet IIC is still performed by
sampling with or without replacement according to the level of the prevalence factor in order
to check for peculiar aspects in its application. If available, such aspects are easier to detect in
cases where all weighting methods must perform identically.

On every of the 36 data sets of the augmented design, comprising 2.000 samples each, the com-
peting algorithms AAC, IIC, ACC and CCC are run within an estimation-optimization MCCV
design with 50 outer MC and 10 inner CV loops. Each data set is split 50 times by subclass
stratified random sampling without replacement into an MC training and an MC test data set in
a proportion of 3 : 1.

The MC training data sets are used to fit repeatedly the optimal discrimination rule with every
algorithm. On each MC training data set a 10-fold CV is applied to find the optimal RDA rule
in terms of minimal misclassification rate, thus to get the optimal regularization parameters and
feature panel. The weighted misclassification rates for every algorithm are computed as aver-
age over the weighted misclassification rates obtained on the 50 MC test data sets. Figure 4.1
presents the MCCV analysis flowchart used at each design point.

The MC training data sets are denoted as L(l) and the MC test data sets as T (l), l = 1, 2, . . . , 50.
At each design point s = 1, 2, . . . , 36 and for every weighting algorithm, weighted test sample
estimates are obtained on the 50 MC test data setsT (l). They are denoted as (ε̂W

T (l), algo
(s))l=1,2,...,50,

where algo stands for one of the algorithms AAC, ACC, IIC or CCC.
The final weighted test estimates of misclassification error at each design point for each weight-
ing algorithm are obtained as averages over the 50 weighted MC test results:

ε̂W
algo(s) =

1
50

50∑
l=1

ε̂W
T (l), algo(s) (4.3.1)
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Figure 4.1: MCCV design for the comparison of weighting algorithms on the simulated data.

Based on these final weighted test estimates a response is defined to compare the ability of the
weighting algorithms to find classification rules and to provide estimates of their performance
that approach well reality. The response is given at each design point s by the relative bias (RB)
of the final weighted test estimates of misclassification error with respect to the true error εB(s).

ε̂W
RB, algo(s) =

ε̂W
algo(s) − εB(s)

εB(s)
, ∀s ∈ {1, . . . , 36}. (4.3.2)

The absolute bias of the weighted misclassification error estimate |ε̂W
algo(s) − εB(s)| provides a

good measure to judge the importance of the benefit achieved with one weighting algorithm,
therefore it represents a response alternative that is worth considering.

The true error rate εB(s) is computed from the target population simulated in step (1) at point
s. The Bayes’Theorem is used to derive it using the distributions of D, C1 and C2 in the target
population, which are all assumed to be multivariate Gaussians. At iteration point s the density
functions in C1, C2 and D given an observation vector x from the target population is:

f (x|µs,ik,Σs,ik) =
1

(2π)p/2
√

det Σs,ik

exp
(
−

1
2

(x − µs,ik)
′Σ−1

s,ik(x − µs,ik)
)

(4.3.3)

where i ∈ {1, 2} represents the class, k = 1, 2, . . . ,Ki the subclass and Ki = i.
According to the Bayes’Theorem the a-posteriori class probabilities given an observed vector
of object characteristics x are assessed using the relationship:
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P(i|x) =
πi fi(x)

π1 f1(x) + π2 f2(x)
, i = 1, 2, (4.3.4)

where f1 and f2 represent the class densities and π1 and π2 the class priors.
Since equal class priors are chosen at all design points both in the target and in the study pop-
ulation (π1 = π2 = 0.5), the a-posteriori class probabilities depend only on the class densities.
Replacing in (4.3.4) the class density functions with their expressions as mixtures of subclass
density functions we get:

P(i|x, s) =

∑Ki
k=1 f (x|µs,ik,Σs,ik)πs,ik∑2

j=1
∑K j

l=1 f (x|µs, jl,Σs, jl)πs, jl

, i = 1, 2. (4.3.5)

The class posteriors are estimated using the subclass multivariate normal densities from (4.3.3)
in (4.3.5).
At each design point s, the optimal Bayes rule used to determine the true error rate on the target
population is given by the condition:

δ
opt
Bayes(x, s) =

1 if P(1|x, s) ≥ 0.5,

2 otherwise.
(4.3.6)

A comparison between the true and the class labels assigned by this rule over the 20.000 samples
of the target population yields an estimate of the true error rate.
A location near to zero and a small variation of the relative bias ε̂W

RB,algo over the design points
provides evidence for a generally suitable weighting method. At each design point s, the winner
among the weighting algorithms is established. It is defined as the algorithm that results into
the smallest absolute value of the relative bias ε̂W

RB,algo(s).

4.3.5 Application and results

For the distributional configuration associated to each design point the true error is calculated
according to (4.3.6) using the 20.000 observations in the corresponding target population. The
true error rates corresponding to the 20 points of DOE1 and to the 16 points of DOE2 are listed
in the last columns of Tables 4.4 and 4.5, respectively.

Then the actual response, i.e. the relative bias of the average weighted misclassification rate
with respect to the true error rate, is assessed at each design point. The absolute bias is used to
compare the importance of the benefits achieved with these different methods.
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4.3.5.1 Graphical approach DOE1

The response values obtained with all algorithms for all design points of DOE1 are listed in
Table 4.6 together with the winner method. This method results into the minimal absolute
relative bias among all methods.

Table 4.6: DOE1: Relative bias per design point (average over
50 MC loops). Blue stands for similar results of AAC and ACC,
red for similar results of CCC and IIC.

Design Point(s) ε̂W
RB,AAC(s) ε̂W

RB,ACC(s) ε̂W
RB,CCC(s) ε̂W

RB,IIC(s) Winner

1∗ = (1, 6, 7, 16) 0.053 0.051 0.035 0.041 CCC

2 0.102 0.089 −0.113 −0.112 ACC

3 0.032 0.031 0.040 0.041 ACC

4 0.564 0.564 0.539 0.480 IIC

5 0.447 0.448 0.451 0.436 IIC

8 0.156 0.069 −0.010 0.004 IIC**

9*= (9, 13) 0.093 0.093 0.086 0.090 CCC

10 0.461 0.469 0.065 0.079 CCC**

11 0.704 0.708 0.428 0.492 CCC**

12∗ = (12, 17) 0.008 0.008 0.008 0.019 all but IIC

14 0.035 0.036 0.036 0.034 IIC

15 0.012 0.012 0.017 0.022 ACC

18 0.102 −0.022 −0.039 −0.038 ACC**

19 0.336 0.172 0.043 0.044 CCC**

20 0.092 0.092 0.092 0.093 all

* design replicates, results have been averaged over replicates.
** relevant benefit with respect to the absolute bias.

The design replicates have been previously grouped and identified by 1∗, 9∗ and 12∗. In the
rows corresponding to the design replicates Table 4.6 shows the relative bias achieved with
each weighting method averaged over the replicates.

Although a single method wins the competition at most of the design points in terms of the
absolute relative bias, the advantage of the winner upon the other methods is sometimes rather
unimportant in terms of absolute bias. This is the case at the design points 1∗, 3, 4, 5, 9∗, 12∗,
14, 15 and 20.
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Table 4.6 reveals two pairs of algorithms that provide similar results over all data configura-
tions: AAC and ACC (blue pairs) as well as CCC and IIC (red pairs).

AAC and ACC work in a similar manner involving weights only on validation data sets. How-
ever, some small advantage of ACC upon AAC is also available, since this method influences
also the final combination of features by weighting additionally in the phase of rule optimiza-
tion. In Table 4.6 ACC provides the best results at three design points, namely 2, 3 and 18,
while AAC never succeeds in outperforming all other methods. Nevertheless, the advantage of
ACC over the methods that perform a thorough weighting during the learning process, CCC
and IIC, is rather small at the design points 3 and 18.

The algorithm pair CCC and IIC wins in most of the design situations. The importance of their
benefit upon the other pair of methods is confirmed also on the absolute bias scale at the design
points 8, 10, 11 and 19.

Figure 4.2 illustrates the relative bias of the final weighted estimates of the misclassification er-
ror for each of the weighting methods. This is computed at each design point using (4.3.2). Blue
lines are used for balanced target subclass structures, red lines for unbalanced subclass struc-
tures. At center points and design replicates the individual responses as well as their means over
the replicates are depicted.

In Figure 4.2 the shapes of the red lines have an obvious distinctive pattern when compared
to the blue lines. This suggests that, when the target population is highly unbalanced, which
corresponds to a high degree of mismatch between the target population and the data at hand,
both CCC and IIC outperform the other algorithms. Thus, the prevalence factor and therefore,
the degree of suboptimality of the data at hand, affects clearly the result of our benchmark.

Figure 4.3 offers a useful overview of all factor settings of DOE1, including the first results of
the benchmark of algorithms. This helps to understand also the relationship between the other
design factors and the results of our benchmark.
It illustrates the geometrical configurations of the class and subclass means as well as the 95%
contours of the class and subclass distributions projected on the first two feature coordinates.
The winner method is specified in each plot to enable a visual exploration of possible connec-
tions between the performance of an algorithm and the target subclass structure.

Design points 8, 10 and 19, at which a clear benefit is achieved by application of IIC and CCC,
are not only characterized by a high discrepancy between the subclass prevalences, but also
by well separated subclasses (angles of 900 or 1800 and at least a large distance factor). This
corresponds to a pronounced heterogeneity of class C in the target population.
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Besides, these design points illustrate a situation which is often encountered in the diagnostic
practice. Typically, the control collective comprises a bunch of diseases which are interesting
from a differential diagnosis-point of view. These diseases have a similar symptomatic with the
disease of interest. They should help to identify a highly sensitive marker combination for a
reliable diagnosis.
Some of these disease-subclasses of the control class may be easily distinguished from the dis-
ease of interest by means of a single marker while the rest of them may not. For instance, in
a study for the early diagnosis of rheumatoid arthritis (RA), the control collective comprises
beside a group of healthy controls also patients with osteoarthritis (OA). While the former can
be successfully distinguished from RA cases by means of a specific marker for rheumatic dis-
eases, the latter group is harder to separate, since both OA and RA are characterized by elevated
concentration levels of this marker.

All algorithms result in the same poor performance at the design points 4 and 5. Here, the class
and subclass centers are collinear and the subclass centers are positioned on different sides with
respect to the center of the opposite class at equal distance from it.
A similar practical case is when a specific inflammatory marker is used in the context of RA di-
agnosis while the control collective comprises healthy controls and some typical inflammatory
disease. Even if a highly unbalanced prevalence structure is given in the heterogeneous class,
weighting alone cannot help to a performance improvement. In such cases weighting strategies
applied to classification methods that account explicitly for the subclass distribution in the target
population, like Mixture Discriminant Analysis (Hastie & Tibshirani, 1996) or local classifiers
(Szepannek & Weihs, 2006), are expected to work better.

The set of design points related to similar results of all algorithms or to a slightly better perfor-
mance of ACC can be described using three not necessarily disjoint attributes, deduced from
Figure 4.3. These points are characterized either by equal subclass prevalences or by an angle
of 0◦ (see point 2) or by a big overlap between class and subclass distributions (20, 15, 12∗, 18).

4.3.5.2 Linear Model DOE1

A further goal is the adjustment of DOE1 for a more thorough investigation of the relationship
between the target data structure and the performance of the weighting algorithms.
Separate linear models including only main factor effects were fit to check for the linear impact
of the design factors on the performance of each weighting algorithm, which is expressed in
terms of relative bias. All factors had a significant effect on the performance of at least one al-
gorithm. Thus, none of them was dropped out before switching over to the design augmentation
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Figure 4.2: DOE1: Relative bias of the misclassification error rates over the weighting methods.
Above each graphic stand the no. of the design point and the corresponding Bayes rate. Blue
lines stand for ΠC1,C2 = (0.5, 0.5), red lines for ΠC1,C2 = (0.1, 0.9), black lines for ΠC1,C2 =

(0.3, 0.7). Design points have been placed by row in ascending order of the true error rates. The
dashed black line stands for no bias.
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Figure 4.3: Geometrical illustration of the distributional configuration at each design point in
DOE1. Above each graphic the factor settings are specified as no. design point: dist.DC1,
dist.DC2, Ĉ1 DC2, ΠC1,C2 . Circles represent the 95% contours for the class and subclass distri-
butions in the target populations, projected on the first two coordinates; C1 = dark green, C2 =

light green, D = red. Design points are listed by row in ascending order of the true error rates.
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step.

Also, the adjusted R-square measures of the four final models indicated a rather poor linear fit,
the maximal values being achieved for the models associated to AAC and ACC (0.67 and 0.58
respectively).

Consequently, DOE1 is augmented in JMP7.0 to an appropriate design for prediction which
includes the quadratic and two-factor interaction effects. This extension of the original model
is expected to reduce the amount of unexplained response variation and enhance understanding
of the model connections.

4.3.5.3 Graphical approach DOE2

The response values obtained with all algorithms for all design points of DOE2 are listed in
Table 4.7 together with the winner method.

The same plots are used to explore the results of DOE2 as those used for the analysis of DOE1.
Figures 4.4 and 4.5 enable a multidimensional overview of the results and of the factor settings.

Out of the 16 additional design configurations, 8 are characterized by a medium discrepancy
between the subclass prevalences in the target population. Only 3 design points correspond to
an unbalanced subclass structure and the rest of 5 design points are characterized by a balanced
subclass structure in the target population (see Table 4.5).

Like in case of the design points 15 and 20 of DOE1, also at the design points 25, 32 and 33
of DOE2, the algorithms perform identically. All these points are characterized by completely
overlapped subclasses. Thus, the problem reduces to a simple classification in the context of no
heterogeneity in the data. Only IIC presents some negligible variations due to the practiced data
resampling. These confirm however, the potential of IIC to provide reliable results over various
data configurations.

The balanced situations, illustrated by the blue lines, are again characterized by no or only
negligible variations in the performance of the algorithms.
The red lines, corresponding to a highly unbalanced subclass prevalence structure in the target
population, exhibit the same pattern as in Figure 4.2, provided that subclasses do not overlap
entirely. This means that both AAC and ACC are clearly outperformed by CCC and IIC.
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Table 4.7: DOE2: Relative bias per design point (average over
50 MC loops). Blue stands for similar results AAC and ACC,
red for similar results of CCC and IIC.

Design Point(s) ε̂W
RB,AAC(s) ε̂W

RB,ACC(s) ε̂W
RB,CCC(s) ε̂W

RB,IIC(s) Winner

21 0.170 0.170 0.170 0.159 IIC

22 0.068 0.091 0.105 0.098 AAC

23 0.048 0.047 0.071 0.071 ACC

24 0.069 0.069 0.041 0.064 CCC

25 −0.003 −0.003 −0.003 <0.001 IIC

26 0.204 0.204 0.028 0.038 CCC**

27 0.222 0.209 0.240 0.250 ACC

28 0.102 0.102 0.102 0.126 all but IIC

29 > −10e−4 > −10e−3 > −10e−3 −0.002 AAC

30 0.077 0.057 0.004 0.003 IIC

31 0.027 0.025 0.044 0.046 ACC

32 −0.099 −0.098 −0.098 −0.102 all

33 −0.165 −0.164 −0.165 −0.161 all

34 0.109 0.109 0.047 0.057 CCC**

35 <0.001 >−0.001 >−0.001 <0.001 AAC, IIC

36 −0.010 −0.008 −0.026 −0.027 ACC

** relevant benefit with respect to the absolute bias.

4.3.5.4 CART model DOE1
⋃

DOE2

Design points are divided into three categories:

(1) design points at which the pair CCC and IIC provides a visible advantage upon the other
pair of algorithms in terms of relative bias (1∗, 8, 10, 11, 19, 24, 26, 30 and 34);

(2) design points at which the pair of algorithms CCC and IIC is visibly outperformed by the
pair of algorithms AAC and ACC in terms of relative bias (2, 18, 22, 23, 27, 31 and 36);

(3) design points at which all algorithms perform very similarly (3, 4, 5, 9∗, 12∗, 14, 15, 20,
21, 25, 28, 29, 32, 33 and 35).

Appropriate characteristics of the data are searched that enable a good discrimination between
the previously defined categories. These data characteristics, so far they are known to the user
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Figure 4.4: DOE2: Relative bias of the misclassification error rates over the weighting methods.
Above each graphic stand the no. of the design point and the corresponding Bayes rate. Blue
lines stand for ΠC1,C2 = (0.5, 0.5), red lines for ΠC1,C2 = (0.1, 0.9), black lines for ΠC1,C2 =

(0.3, 0.7). Design points have been sorted by row in ascending order of the true error rates. The
dashed black line stands for no bias.
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Figure 4.5: Geometrical illustration of the distributional configuration at each additional de-
sign point in DOE2. Above each graphic the factor settings are specified as no. design point:
dist.DC1, dist.DC2, Ĉ1 DC2, ΠC1,C2 . Circles represent the 95% contours for the class and sub-
class distributions in the target populations, projected on the first two coordinates; C1 =dark
green, C2 =light green, D =red. Design points are listed by row in ascending order of the true
error rates.
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or at least inferable by some simulations, can be used to predict which algorithm would suit
best given a certain distributional configuration of the target population.
After a visual inspection of Figures 4.3 and 4.5, the following features seem to provide a mean-
ingful description of the first category when compared to the rest:

(a) the level of discrepancy between the true subclass prevalences, here also interpretable as
the degree of suboptimality of the data at hand;

(b) the angle formed by the subclass centers (µC1 , µC2) with the center of the opposite class
(µD);

(c) the discrepancy between the subclass degrees of overlap with the opposite class (large for
a low-high or high-low setting of the euclidian distances).

A simple CART model is used to assess the category of each design point by means of and-or
combinations of conditions on the features described at (a)-(c).

The CART rule claims that, given a high discrepancy between the true subclass prevalences,
moderately to highly discrepant degrees of overlap between subclasses (C1 and C2) and the op-
posite class (D), an application of IIC or CCC is appropriate. This rule applies correctly to
80% of the cases which met these criteria.
Also, given a medium to high discrepancy between the true subclass prevalences, similar de-
grees of overlap between subclasses (C1 and C2) and the opposite class (D), but an angle of 90

◦

or 180
◦

, the pair of algorithms IIC or CCC is selected by the CART method leading to 60%
correct assignments.

However, if a medium discrepancy between the true subclass prevalences and moderately to
highly discrepant subclass overlaps are given, then the rule decides correctly in 71% of the
cases for an application of AAC or ACC.

The third category of design points can easily be distinguished from the other categories. It is
clearly defined either through a balanced subclass structure in the target population or perfectly
overlapped subclasses (i.e. equal overlaps of the subclasses with the opposite class and an angle
of 0

◦

).

Only five design points are misclassified by means of the CART rule. Out of them, two are from
the first category (design points 24 and 34), two from the second (design points 2 and 18) and
one from the third category (design point 5).
The misclassification of design point 18 is easy to explain, since in this case AAC is outper-
formed by all other weighting methods, inclusively by ACC.
At design point 2, the difference between methods is actually irrelevant in terms of absolute
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relative bias. AAC and ACC are still preferred since, in contrast to IIC and CCC, they are not
negatively (i.e. optimistically) biased.
At point 5, due to the pronounced subclass structure with subclasses being separated by the
opposite class, none of the methods is able to perform better than the others.
Also, the misclassifications of design points 24 and 34 are plausible, since at the former point
CCC singly outperforms all other methods and at the latter point no relevant difference is avail-
able in terms of absolute bias.
Thus, all these misclassifications are caused because of the existence of more than three cate-
gories among our design points.

4.3.5.5 Quadratic model DOE1
⋃

DOE2

The augmented design DOE1
⋃

DOE2 included only 31 out of 81 possible combinations of the
low-medium-high factor levels, namely 15 from DOE1 and 16 from DOE2. A suitable quadratic
model is fitted to the results obtained with each weighting algorithm to predict its performance
given every possible factor setting.
In addition to the explorative investigation of the connections between design configuration and
results which was practiced so far, the quadratic models help to provide an information about
how does the performance of each algorithm vary by tuning single design factors or combina-
tions of them.

First, each model included all main, quadratic as well as two-factor interaction effects. All fac-
tor effects that were significant in at least one of the four models were pooled to a model which
we further call the smallest common denominator (SCD)-model.
Our SCD-model has no intercept and includes nine parameters, which are the main factor
effects, the quadratic effects of the distance factors and the two-factor interactions distance-
distance and distance-angle.
The classical and adjusted R-square measures indicate a good linear fit in the selected parame-
ters which explain around 80% of the response variability in all SCD-models. These measures
amount to 0.86 and 0.81 for the model associated with AAC, to 0.83 and 0.77 for the ACC
model, to 0.86 and 0.80 for the CCC model and to 0.85 and 0.79 for the IIC model, respec-
tively.
Coefficients and p-values corresponding to all effects in the SCD-model are listed in Table 4.8
for each weighting algorithm. All significance tests are carried out at level 0.05.

The SCD-models are used for an extended comparison of the algorithms. Based on them, pre-
dictions are obtained for all 81 different factor settings. For each combination, representing a
new observation in the space of all target data configurations, an individual prediction is com-
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puted per algorithm starting from the estimated model coefficients.

The model corresponding to AAC includes the prevalence factor with a significantly non-zero
coefficient (p-value 0.01).
Although in the model associated to ACC the prevalence factor is not statistically significant,
the p-value of 0.079, based on the rather small amount of experimental data, indicates that the
impact of this factor on the performance estimate is not completely abstracted by the weighting
strategy practiced by this method.
Both AAC and ACC perform a kind of post-weighting, which does not seem to suffice for
discarding the effect of a sub-optimal subclass representation in the data at hand.

Table 4.8: DOE1
⋃

DOE2: Comparative view of coefficients and significance of pre-
dictors for the relative bias.

Factors β̂AAC p-valueAAC β̂ACC p-valueACC β̂CCC p-valueCCC β̂IIC p-valueIIC

ΠC1,C2 0.061 0.010∗ 0.042 0.079 −0.014 0.388 −0.008 0.654

dist.DC1 0.078 0.002* 0.090 0.001∗ 0.068 0.000∗ 0.069 0.000∗

dist.DC2 0.084 0.001∗ 0.082 0.002∗ 0.077 0.000∗ 0.076 0.000∗

Ĉ1DC2 0.103 0.000∗ 0.095 0.001∗ 0.070 0.000∗ 0.068 0.001∗

dist.DC2
1 0.094 0.008∗ 0.087 0.019∗ 0.053 0.041∗ 0.051 0.054

dist.DC2
2 0.094 0.009∗ 0.079 0.034∗ 0.048 0.063 0.055 0.040∗

dist.DC1 : dist.DC2 0.029 0.266 0.038 0.186 0.072 0.001∗ 0.072 0.002∗

dist.DC1 : Ĉ1DC2 0.044 0.112 0.060 0.045∗ 0.032 0.122 0.027 0.210

dist.DC2 : Ĉ1DC2 0.004 0.873 −0.006 0.837 0.042 0.053 0.036 0.097

* significant at level α = 0.05.

Besides, the prevalence effects estimated in the models of AAC and ACC indicate that, enlarg-
ing the difference in the subclass prevalences from the low (0) to the high level (0.8) causes an
increase of the relative bias by about 12.2 percentage points in AAC and 8.4 percentage points
in ACC. Consequently, the higher the true error rate, the stronger the bias associated to AAC
and ACC due to the suboptimality of the data at hand.

The models of CCC and IIC show a negligible prevalence effect (p-values 0.39 and 0.65 respec-
tively). This result is plausible, since both methods fully exhaust the influence of true subclass
prevalences using them both in the phase of rule building and optimization. Therefore, IIC and
CCC are almost unsensitive regarding the tuning operation from low to high discrepancy in the
true subclass prevalences. They are expected to provide a real advantage upon the other two
methods in the context of a highly suboptimal data at hand.
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The interaction between the distance factors (dist.DC1 : dist.DC2) has a significant impact on
the relative performance of IIC and CCC. AAC and ACC remain rather unaffected with respect
to this model term. Consequently, a greater benefit by application of IIC and CCC can be espe-
cially expected given a low-high relationship between the distance factors. This means, equiva-
lently, a high discrepancy between the subclass degrees of overlap with the opposite class. For
instance, given an angle of 90

◦

, a simultaneous tuning of the distance factors from a low-high
to a high-high relationship would increase the predicted relative bias of IIC and CCC by about
28.0 percentage points.

Most of the findings based on the absolute predicted values confirm the rule developed by CART
which used conclusions drawn from Figures 4.2, 4.3, 4.4 and 4.5.

4.3.5.6 Negative bias discussion

We note some optimistic tendency of the intensively weighting methods ACC, CCC and IIC.
They provide under some design configurations negatively biased estimates of the misclassifi-
cation rate. This is for example the case at design points 2, 8, 18 and 35.

At design point 2 only IIC and CCC result in a negative relative bias. However, this is rather
negligible in terms of absolute bias.

At design point 8, only CCC provides a negatively biased result, while the positive, but similar
and nearly zero value obtained with IIC can be traced back on the inflation procedure. The
absolute bias of both methods is however negligible, indicating a very good performance.

At the design points 18 and 35 AAC provides a positive result. The rather small negative bias
achieved by ACC, CCC and IIC (IIC only at design point 18) at the same design points can be
traced back on the common property of them to weight during the rule optimization (i.e. on the
CV test data sets). This property is common to all algorithms, but AAC. Normally, IIC is also
expected to return a negative result at design point 35. However, it results in a positive bias due
to its inflation procedure.

The negatively biased results of all methods at the design points 25 (except for IIC), 26, 29, 32,
33 and 36 are explainable by the particular choice of the data sets.

4.3.5.7 Summary

Two pairs of similarly performing algorithms were identified: (1) AAC and ACC and (2) IIC
and CCC.
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Given a medium or high prevalence factor (i.e. a medium or large gap between the true and ob-
served subclass prevalences), the methods IIC and CCC provide almost always the best results.
A higher benefit is achieved especially if the angle factor is at least 90

◦

and an euclidian distance
is large while the other one is small. In all these cases the study population is non-representative
with respect to the subclass prevalence structure and the target population is characterized by
well separated subclasses, thus, a rather pronounced heterogeneous profile.

A similar performance of all algorithms or a slightly better performance of AAC and ACC is
associated either with a balanced target subclass structure or with highly overlapped class and
subclasses or with an angle of 0

◦

. In such situations just a small benefit, if any, can be expected
from IIC and CCC.
However, it is unclear in which situation the application of AAC or ACC should be preferred.
So far, it can just be recommended to proceed with care if the subclass centers are positioned
collinearly on the same side with respect to the center of the other class. AAC is rather unrec-
ommended, since it results with very few exceptions if not in a similar then in a poorer predicted
performance than ACC.

A comparison of the absolute predicted values of the relative bias over the algorithms confirmed
essentially the pair of algorithms CCC and IIC as winner over almost all possible combinations
of factor levels. We recommend the use of IIC and CCC over all target situations, in order to be
always on the safe side. These algorithms provide constantly reliable results. Also when they
provide no improvement, they still cause no harm.

The negligible impact of the true subclass prevalences on the final results of IIC and CCC
confirmed essentially that these two methods proceed in the right way. By their weighting
strategies they eliminate exactly the bias introduced by the mismatch between the true and the
observed subclass prevalences.

4.4 Benchmark of weighting algorithms on real data

4.4.1 Data description

The weighting algorithms introduced in Section 4.3.1 are applied to a real data example pro-
vided by Roche Diagnostics GmbH. Within a diagnostic study for the early identification of
rheumatoid arthritis (RA) 794 patients were recruited in five European centers at general prac-
titioners’s office (GP-data).
The GP-data is suitable for a practical illustration of the application of weighting algorithms,
since prevalences are available for the disease conditions which appear in an ideal GP-collective
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of non-RA patients. Besides, the population obtained from the general practitioner’s office is
likely to comply with the request of asymptomatic subjects for the screening purpose.

One of the targets is to provide a panel of screening markers and a rule based on it, for the iden-
tification of rheumatoid arthritis (RA) at an early stage, when the treatment is more effective
and enables the prevention from the irreversible destruction of the joints.

Concentrations of 6 biomarkers, measured in serum samples, are available for building the di-
agnostic rule. The biomarkers are encoded as M2, M4, M5, M9, M11 and M12. Their values
are previously transformed on the decimal logarithmic scale to approach normality, which is
desirable in RDA.
The true disease status is provided by the ACR criteria (Arnett et al., 1988). These represent
the established gold standard for RA.

Among the GP-data, 364 subjects are diagnosed as RA-positive. The collective formed by the
remaining 430 comprises patients with some other critical disease conditions of similar symp-
tomatic with RA. These are grouped into four subclasses, further denoted as C1 to C4, for which
the prevalences in an ideal GP-population is known. This data offers an example of the stratifi-
cation model (iii) described by Sukhatme & Beam (1994) and mentioned in Section 4.1.

Now, RA itself is supposed to be detected in about 10% of the samples from an ideal screen-
ing population. However, high costs in terms of study budget as well as logistic and temporal
limitations hampered the collection of a representative GP-population for screening. Available
cases and controls were matched from different GP offices and centers in order to achieve rea-
sonable sample sizes as well as the known configuration of the GP panel. The data collection
ended up in an improper population, which does not mirror the true prevalences of different
disease groups likely to be encountered by a general practitioner. The proportions of subclasses
C3 and C4 in the control class do not resemble the proportions that would be theoretically found
within the target GP population. In Table 4.9 the observed and respectively true proportions of
these subclasses within the control class are given.

For both classes, RA and controls, shortly denoted as D and C, respectively, equal priors are
assumed instead of their observed proportions in the data. This assumption is made to justify
the use of the misclassification rate as objective function throughout this work. Under restric-
tions like equal class sizes and equal costs for misclassification of diseased and non-diseased
patients, the RDA rule does not depend on the class priors and costs. Thus, it is equivalent to the
rule based on the likelihood ratio function LR(x) =

P(x|y=1)
P(x|y=0) when the cutoff point is 1. This rule

has the best possible ROC curve among all possible functions of x that minimize the misclassi-
fication rate (Pepe, 2003). Consequently, under this assumption, the minimal misclassification
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rate is associated to an RDA rule with maximal AUC.

Table 4.9: GP-panel of RA-negatives: True and observed subclass prevalences (%)

Prevalence C1 C2 C3 C4

observed (π̂ik) 5.56 4.86 24.30 65.18

true(πik) 3.08 5.46 47.10 44.36

4.4.2 Comparative study on real data

The four weighting algorithms proposed in Table 4.2, are run on the GP-data. An MCCV de-
sign with 50 outer MC and 5 inner CV loops is used for the benchmark of algorithms. The
two-steps-procedure of finding the optimal rule on the MC training data set and evaluating its
performance on the corresponding MC test data set was repeated 50 times with different MC
training : test splits of the original data in a proportion of 2 : 1.
Parallel boxplots of the misclassification rates obtained with the different algorithms on the 50
MC test data sets are shown in Figure 4.6. On this particular task, all weighting algorithms
perform similarly, providing median misclassification rates between 12% and 13%. The rather
negligible gap between the median CV estimates of the misclassification rate and the median
test estimates obtained over the 50 MC loops (right from Figure 4.6) confirm a realistic rule
choice by all methods (AAC 12.0% vs. 12.8%, ACC 12.3% vs. 13.1%, IIC 11.7% vs. 12.7%,
CCC 12.0% vs. 12.3%). However, it is noticeable that the minimal gap is achieved by CCC,
which indicates the greater reliability of this method.

The differences between algorithms regarding the variability of their results should be remarked,
since they can be attributed more to the working principle of an algorithm than to some distri-
butional particularities of the data at hand. In spite of its smaller average misclassification rate,
AAC provides more unstable results in comparison to the other algorithms, like the greater vari-
ability of its MC misclassification rates indicates (see also the IQR-estimates in Figure 4.6).

The best algorithm on this task, if regarded both from the perspective of its median test perfor-
mance as well as of its stability is CCC.
Although IIC works in a very similar manner to CCC, its performance is here slightly inferior.
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IIC is presumably a bit affected in its optimization process by the very small sample sizes of
subclasses C1 and C2 in the CV test data sets (two and respectively three observations). The
problem of redundant information in these very small subclasses might be also related to the
performance loss of IIC.
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Figure 4.6: Rheumatoid arthritis data: Boxplots of the misclassification error rates over 50 MC
loops. The dashed line corresponds to the mean of AAC, here taken as reference; right from the
plot medians and inter-quartile-ranges have been specified.

The regularization parameters obtained for each weighting method over the 50 MC loops as
well as the composition of the optimal marker panels are monitored. Means and medians of λ
and γ estimates as well as their variability in terms of standard deviation and interquartile range
are listed in Table 4.10.
For all weighting algorithms, the median regularization parameters are 0. This corresponds to
the quadratic discriminant analysis (QDA). While AAC tends to perform no regularization, the
larger γ estimates and interquartile ranges obtained for ACC, IIC and CCC, show that these
methods do not always agree upon the use of a QDA rule given the target data distribution. In
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Table 4.10: Average results on the GP-Data

Method Mean Median StdDev IQR

λ γ λ γ λ γ λ γ

AAC 0 0.12 0 0 0 0.29 0 0

IIC 0 0.37 0 0 0 0.45 0 1

ACC 0 0.32 0 0 0 0.44 0 1

CCC 0 0.28 0 0 0 0.42 0 0.5

contrast to AAC, these methods take into account the subclass prevalence structure at least in
the phase of the rule optimization. Thus, they adapt also the rule parameters and features with
respect to the target subclass configuration.

Figure 4.7 illustrates the selected biomarker combinations and their absolute frequencies in 50
MC loops for each weighting algorithm.
The combination rule based on M9 and M11 obtained the majority of votes with all algorithms.
This is selected in 58% of the MC iterations with AAC, in 50% with CCC, in 36% with ACC
and in 32% with IIC. However, the methods ACC, CCC and IIC decide much more often than
AAC for the single marker model based on M9. Thus, they signalize that a single marker model
may suffice for a reliable diagnosis of RA on the target population.

Three-marker combinations are more rarely picked up by the IIC method when compared to the
similarly working procedure CCC. This suggests that the extra bias in the parameter estimates
expected in the context of rare subclasses (insufficient data coupled with redundant information)
may lead to biased feature combinations.
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Figure 4.7: Rheumatoid arthritis data: Multiplicity plots-absolute frequencies of the optimal
biomarker combinations selected in 50 MC loops per weighting algorithm.

4.5 Conclusions

Throughout this chapter the problem of building diagnostic rules when the target population
is subject to heterogeneity is addressed. It is assumed that the subclass structure and the true
subclass prevalences in the target population are known.
Usually, the data set used for learning the classification rule, called study population or data at
hand, is just a small excerpt from the target population. Based on it, valid and generalizable
diagnostic rules should be provided. However, depending on the way in which the data are
collected, this data set might offer a suboptimal picture of the subclass structure in the target
population. This is the case, for instance, when the observed subclass prevalences in the data at
hand do not resemble the true subclass prevalences in the target population.

A good practical example for this non-representativeness problem is given by the screening
situation. Since a prospective study design, which is recommended in this case, is not always
financially and logistically feasible, the data may be collected in the frame of a retrospective
case-control study. Therefore, in the resulting study population subclass proportions can be
strongly biased.
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Using the suboptimal data set for learning can affect the diagnostic rules in two different ways,
especially if the gap between the observed and true prevalences is large for some subclasses:
(1) the rule might not be valid, resulting in a suboptimal panel of features and/or suboptimal pa-
rameter estimates (2) the rule might not be generalizable, thus its estimated performance might
be strongly biased.

In this context, the statistical literature up to date proposes some approaches based on a post-
weighting of the classification rules. The interested reader is referred to (Sukhatme & Beam,
1994) and (Obuchowski & Zhou, 2002). They take the true subclass prevalences first in the
phase of rule validation into account, when they adjust the estimates of classification perfor-
mance for this information.

We propose another way to tackle the problem of non-representativeness of the data at hand.
The idea is to account for the true subclass prevalence information not only in the phase of
rule validation, but already in the phase of rule construction and optimization. Four weighting
algorithms, AAC, IIC, ACC and CCC, which embed the true subclass prevalences as weighs at
different stages of a feature selection algorithm are proposed. They are tailored for the use with
RDA (Regularized Discriminant Analysis), but their weighting principles are adaptable also to
other discriminant analysis approaches.

The algorithm AAC performs a post-weighting of the misclassification rate by means of the
true subclass prevalences, thus it weights the estimates of misclassification error only on the
validation data set. This method corresponds to the classical post-weighting procedure.
The algorithm ACC takes into account the target subclass prevalence structure already in the
process of rule optimization, performing a post-weighting on the cross-validation test data sets.

Algorithms IIC and CCC account for the true subclass prevalences both in the process of rule
optimization as well as in the process of rule building by different weighting strategies.
The algorithm CCC applies the true subclass prevalences to compute weighted estimates of the
class distribution parameters on the CV training data sets and of the misclassification rates on
the CV test data sets.
IIC enforces on the CV training and test data sets the expected subclass sizes according to the
true subclass prevalences by randomized and stratified sampling with or without replacement
from the existent subclass collectives.

The procedure of post-weighting on the validation data set is common to all algorithms.
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Since their theoretical description does not allow for a direct comparison with respect to the
classification performance, the benchmark of the four selected weighting algorithms is based
on a simulation design.
The first class D (e.g. disease class) is assumed to be homogenous, while the second class C
(e.g. control class) is assumed to be heterogeneous with two subclasses, C1 and C2. Four fea-
tures are available, two informative and the other two non-informative regarding both the class
and the subclass discrimination.
The subclass prevalences in the data at hand are assumed to be equal. Thus, the mismatch be-
tween the study and the target population depends on the discrepancy between the true subclass
prevalences.

Four factors are suspected to affect the performance of the weighting algorithms. These are the
absolute difference between the true subclass prevalences, the euclidian distances from subclass
centers to the center of the opposite class D and the angle formed by subclass centers with the
center of the opposite class.
The question of interest is if and how the design factors impact on the benefit of weighting with
one of the proposed methods. The design factors are used to describe beneficial conditions for
the application of each pair of algorithms as well as situations where no particular algorithm
results in a superior performance.
Therefore, these factors are taken into account in the comparison of algorithms. The simulation
design is generated as a design of experiments, in which each point corresponds to a combina-
tion of the factor levels.

Two pairs of algorithms with similar impact of their weighting strategies on the relative bias of
the error estimates are identified: {AAC, ACC} and {IIC,CCC}. The latter pair outperforms the
former one in terms of absolute relative bias over the majority of design points. In the few cases,
in which ACC or AAC outperform the other algorithms, their advantage is rather unimportant.

The explorative search after connections between the benefit of weighting and the design con-
figuration by graphical means or by a simple CART rule lead to similar conclusions.
A performance gain of IIC or CCC is associated to a high or medium discrepancy between
the true subclass prevalences in the target population. This is the case of a high or moderate
non-representativeness of the data at hand with respect to the true subclass prevalence structure,
since the observed subclass prevalences are here assumed to be equal. However, the prevalence
condition is necessary, but not sufficient for a relevant performance improvement. A stronger
benefit by IIC and CCC is traced back on an angle of at least 90

◦

and highly discrepant overlaps
between subclasses C1 and C2 and the homogeneous class D.
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The design points which result in similar performances of all algorithms are associated either
with a balanced true subclass prevalence structure, thus the representativeness of the data at
hand, or with perfectly overlapped subclasses. The latter situation corresponds to an angle of 0

◦

and equal degrees of overlap between subclasses and the opposite class.

By graphical means, it is additionally remarked that if, given a non-balanced target subclass
structure, the algorithm pair {AAC, ACC} is at least as good as {IIC, CCC}, this may be caused
by hardly separable distributions of C1, C2 and D.

Linear models are used to assess the importance of the design factors with respect to the weight-
ing benefit. They are useful also to understand how the factors impact on the performance of
the algorithms by tuning single or combinations of design factors.
The performance of the algorithms AAC and ACC is strongly influenced by the prevalence fac-
tor and therefore, by the non-representativeness of the data at hand. The effect of this factor is
completely neutralized by the weighting strategies of IIC and CCC. Therefore, the prevalence
information represents already a good criterion for selecting the proper weighting algorithm. A
high discrepancy between the true and observed subclass prevalences gives a strong indication
for the application of CCC or IIC. This is a comfortable remark, since the prevalence is usually
the only information available about the target population.

The distance and angle factors, which offer a meaningful description of the heterogeneous struc-
ture in the target population, have a relevant effect on the performance of all weighting algo-
rithms. However, in case of IIC and CCC this is still smaller than in case of AAC and ACC,
since the former two algorithms target not only a recovery of the original prevalence structure,
but also of the original class distributions. Also from this point of view, they are preferred to
the latter two algorithms.
The interaction between the distance factors is clearly relevant in the models associated to IIC
and CCC. Given a high level of the prevalence factor, thus a large mismatch between the true
and observed subclass prevalences, a considerable reduction of the relative bias of these two
methods may be achieved especially when one subclass has a small and the other subclass a
high overlap with the homogeneous class (a distance factor is on the high and the other one is
on the low level, respectively).

An analysis of the distance-angle interaction effects indicates another three cases in which IIC
and CCC are expected to perform better than AAC and ACC:

(1) when the angle is 0
◦

and there is a small overlap between the preponderant target subclass
and the homogeneous class and a large overlap between the less prevalent subclass and
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the homogenous class (i.e. dist.DC2 is on the high and dist.DC1 is on the low level,
respectively);

(2) when the angle is 90
◦

and one of the subclasses is much more overlapped with the ho-
mogenous class than the other one (distance factors are on different low-high levels);

(3) when the angle is 180
◦

and there is a large overlap between the preponderant target sub-
class and the homogeneous class (equivalently dist.DC2 is on the low level).

These characteristics of the distributions in the target population are not available. But, if the
class and subclass sizes in the data at hand, assuming this was carefully collected, are reason-
able, then the necessitated distance and angle values can be well and easily estimated and used
to give a hint about the expected amount of benefit if weighting by means of IIC and CCC.

The performance of IIC or CCC observed by graphical methods or predicted for a level combi-
nation of the design factors is, if not better, then at least comparable to the observed or predicted
performance of AAC or ACC. In many cases, especially under highly unbalanced true subclass
prevalences, or equivalently, a large mismatch between the true and observed subclass preva-
lences, the application of these algorithms provides a real benefit.
Between CCC and IIC no relevant differences can be established. However, IIC has an addi-
tional uncontrollable variability due to its inflation procedure. Therefore, CCC with its straight-
forward computational workflow is recommended in all situations in which the study population
is suboptimal. Its application guarantees, if not always a high benefit, then at least safe results
in case of data non-representativeness.

The algorithms are verified also on the real data from a rheumatoid arthritis screening study.
They perform on this task rather similar, however a careful analysis of the MC results reveals
some potentially important differences.
The worst performance in terms of the average MC test estimate of the misclassification error
is achieved with ACC. The best performance in terms of median MC test estimates of the mis-
classification error as well as regarding the stability of the results can be attributed to CCC. The
method AAC achieves in this context by far the highest instability, which makes it undesirable
in spite of its median performance which is comparable with that obtained by CCC.

Both IIC and CCC show on the real data a greater stability in the classification results than the
other pair of algorithms and are so far clearly confirmed also by the practical results.



Chapter 5

Validating diagnostic rules in case-control
studies

The problem of non-representativeness or
when becomes prevalence weighting of classification errors
too dangerous?

The diagnostic rule is usually learned on a small excerpt of the target population which rep-
resents the study population or the data at hand. The observed subclass prevalences may be
very different from the true subclass prevalences. Not taking into account the true subclass
prevalence structure can cause strongly biased estimates of the misclassification error on the
one hand, and lead to wrong diagnostic rules on the other hand.

The simulation study performed in Chapter 4 proves that weighting by means of the true sub-
class prevalences can help to reduce the bias in the misclassification rates. Methods which use
weighted distribution parameters and error estimates of the heterogeneous class already in the
rule building and optimization process provide over the simulations at least as good results as
those which accounted for the true subclass prevalence structure only in the validation phase.

In this chapter we focus on the theoretical survey of the statistical properties, like bias and vari-
ance of weighted estimates, aiming to get a sustained insight into their domain of applicability.
This theoretical research is also motivated by the implacable bias-variance trade-off. By esti-
mating the error rate in a heterogeneous class as weighted sum of the subclass error rates, the
variance may increase due to the contribution of up-weighted subclasses.

86
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In Section 5.1 some definitions and notations are introduced to help understanding the coming
theoretical discussion. In Section 5.2 the benefit of weighted error estimates with respect to the
unweighted ones is assessed by a comparison between their mean squared errors. In Section 5.3
the impact of weighting on estimates of the distribution parameters is investigated. Section 5.4
presents a discussion of the theoretical results and filters out the most advantageous situations
for the use of weighted estimates.

5.1 Background and notations

The case of a homogeneous disease class and of a heterogeneous control class with two sub-
classes is considered. This simple situation enables a first insight into the theoretical properties
of weighted estimates which may explain some findings of the simulation studies performed in
Chapter 4. Classes are identified again by 1(=disease) and 2(=control) or labeled as D and C,
respectively, while the control subclasses are named C1 and C2.

Like in Chapter 4, class and subclass means in the target population are denoted by (µi)i=1,2, and
(µ2,k)k=1,2, while Σi, i = 1, 2, and Σ2,k, k = 1, 2, stand for target class and subclass covariance
matrices, respectively. The corresponding estimates are distinguished using the hat-sign.
The true subclass prevalences, thus the subclass probabilities in the target control population,
and the observed subclass prevalences, thus the subclass proportions within the data at hand,
are π2,k, k = 1, 2, and π̂2,k, respectively.
Ni, i = 1, 2, and N2,k, k = 1, 2, stand for class and subclass sizes, either in the training or in the
validation data depending on the context. The relationship between class and subclass sample
sizes is approximately the same in training, validation, CV training and CV test data sets due to
stratified random sampling.

Table 5.1 offers an easily manageable summary of new notations for important quantities which
appear in the coming discussion around the existence of a weighting benefit.

The quotients of the subclass prevalences in the target population and in the data at hand are
denoted as ft and fd, respectively. They measure the degree of unbalance in the target and data
at hand, respectively.
The absolute relative discrepancy between these two quotients is |ρ∗|, which is used to quantify
the degree of mismatch between the true and observed subclass structures.
The difference uπ of the true subclass prevalences represents the prevalence factor used in the
simulation study from Chapter 4. Given a balanced subclass prevalence structure in the study
population, i.e. fd = 1, a high value of ft > 1 is equivalent to a high value of uπ and corresponds
to a high value of |ρ∗|, which is then close to 1.
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Notation Domain Definition
π2k

[a] (0, 1) true prevalence of subclass Ck, k = 1, 2 within class C
π̂2k (0, 1) observed prevalence of subclass Ck, k = 1, 2 within class

C
uπ [0, 1) absolute difference between the subclass prevalences

within class C
ft [1,∞) quotient of the true subclass prevalences
fd (0, ft) quotient of the observed subclass prevalences
ρ∗ (−1, 0) relative difference between fd and ft with respect to ft
p2k

[b] [0, 1] error probability in subclass Ck

p2 [0, 1] error probability in class C
up [0, 1] absolute difference between the subclass error probabilities
r R+(rp21 = p22 ≤ 1) quotient between the subclass error probabilities of the

subclasses C2 and C1

σk [0, 0.25] variance of the indicator variable for the misclassification
event in subclass Ck, k = 1, 2

vk [0, (4N2k)−1] variance of the misclassification rate within subclass Ck

s R+ quotient of σ2 and σ1

a =known subclass prevalences
b =unknown subclass error probabilities (to be estimated)

Table 5.1: Notations for important theoretical factors and associated interpretations.

According to Table 5.1:

ft =
π22

π21
fd =

π̂22

π̂21
ρ∗ =

fd − ft

ft
> −1

uπ = |π22 − π21| < 1 r =
p22

p21
σk = p2k(1 − p2k).

(5.1.1)

In order to simplify the analysis without loss of generality, the convention π22 ≥ π21 is made.
Thus, the attention is focused on situations where ft ≥ 1. By this convention, C2 represents
always the preponderant subclass in the target population when the target subclass structure is
unbalanced.
The second convention is that ρ∗ < 0. In this situation fd < ft which is equivalent to π̂22 < π22.
Thus, the preponderant subclass C2 of the target population is always under-sampled (or under-
represented) in the data at hand.

The case ρ∗ > 0 (π̂22 > π22) is not investigated here. This situation is less likely to be encoun-
tered in the diagnostic practice than the previous one.
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The true and observed subclass prevalences and some helpful relationships between ft and fd as
well as between ft and uπ can be easily derived from equations (5.1.1):

π21 =
1

1 + ft
π22 =

ft

1 + ft

π̂21 =
1

1 + fd
π̂22 =

fd

1 + fd

fd = (1 + ρ∗) ft ft =
1 + uπ
1 − uπ

.

(5.1.2)

Remark 5.1.1.

(i) Given the classification task for a particular target population, the quotient of true subclass
prevalences ft is known, while the quotient of observed subclass prevalences fd is variable
(depending on the data at hand). So, their relative difference ρ∗ helps to keep track on how fd

varies relatively to ft;

(ii) Given the general classification task, the quotient ft is variable (depending on the target pop-
ulation); it is a strictly monotonically increasing function of the difference between the true
subclass prevalences uπ.

The question of interest is how the weighting procedure impacts on the estimates of misclassifi-
cation error or of class distribution parameters in the case that a suboptimal prevalence structure
in the data is used for learning the classification rule.
The following particular subcases of the general case ρ∗ < 0 are considered in more detail:

• Subcase 1 : unbalanced true subclasses, balanced observed subclasses, thus ft > 1 and
fd = 1;

• Subcase 2 : unbalanced true subclasses, at least diametrically opposite unbalanced ob-
served subclasses, thus ft > 1 and fd = 1

b ft
with b ∈ [1,∞).

Especially Subcase 1 is relevant for our theoretical survey, not only because it corresponds to
the simulation designs from the precedent chapter, but it also resembles a situation which is
commonly encountered in the differential diagnosis practice.

When b = 1, Subcase 2 addresses the case, in which the observed subclass prevalences are
interchanged with respect to the true ones. Thus, π̂22 = π21 and correspondingly, π̂21 = π22,
which gives rise to a highly suboptimal situation. When b > 1, the mismatch between the true
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and observed subclass prevalences is even more pronounced, since π̂22 < π21.

Table 5.2 offers an example of the target and observed subclass prevalences for each of these
three particular situations.

Table 5.2: Illustration of the relevant subcases

Quotient of subclass
prevalences

General case ρ∗ < 0

Subcase 1 Subcase 2
(b = 1)

Subcase 2
(b > 1)

ft =
π22
π21

9 9 9
fd =

π̂22
π̂21

1 1
9

1
99

5.2 Weighted versus unweighted misclassification error esti-
mates

In Chapter 4 some approaches were proposed to apply weighted misclassification rates not only
in the phase of rule validation (4.2.16), but of rule optimization (4.2.12), too. Both optimization
and validation are critical steps in designing a rule for practical classification tasks. Therefore,
a careful analysis of the statistical behavior of weighted estimates should be carried out in ad-
vance to a final recommendation for practical problems. This chapter investigates the impact of
weighting on estimates of the misclassification error addressing simultaneously the context of
optimization and validation.

Under certain circumstances the bias reduction achieved by weighting may be countered by a
considerable increase in the variability of the weighted estimates. This would discourage from
using them. Therefore, the effect of weighting misclassification rates is studied in two steps. In
the first step the difference between the means of weighted and unweighted estimates is evalu-
ated. In the second step the global effect of weighting is assessed by a simultaneous comparison
of mean squared errors of weighted and unweighted estimates. This is equivalent to a simulta-
neous comparison of their means and variances.

For the next investigations, the reader is reminded of the two important conventions made at the
begin of this section. According to the first convention, subclass C2 is at least equally prevalent
to subclass C1 in the target population, thus ft ≥ 1. According to the second convention,
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subclass C2 is the under-represented subclass in the data at hand, i.e. ρ∗ < 0, which is equivalent
to π̂22 < π22.

5.2.1 Impact of weighting on the means of the misclassification error es-
timates

Like established in Chapter 4, unweighted estimates use the natural weights, thus the available
subclass proportions in the data at hand. In weighted estimates the true subclass prevalences
are applied as weights.

The density function of the heterogeneous class C is a mixture of the subclass density functions.
The mixing proportions are the true subclass prevalences π21 and π22. Given some classification
rule δ, the following relationship holds:

P(δ = 1|C)︸       ︷︷       ︸
=p2

= π21 P(δ = 1|C1)︸        ︷︷        ︸
=p21

+π22 P(δ = 1|C2)︸        ︷︷        ︸
=p22

, (5.2.1)

since subclasses C1 and C2 are disjoint.
Note that, using the jargon from Chapter 4, the true subclass misclassification probabilities p21

and p22 inform actually about the subclass degrees of overlap with the opposite class in the
target population, given some rule δ.

The misclassification rates ε̂2k, k = 1, 2, in the subclasses C1 and C2 determined by δ on an
independent test data set, are unbiased estimates of the subclass error probabilities p21 and
p22 (i.e. E(ε̂2k) = p2k). Linear combinations of them with coefficients given by the observed
and true subclass prevalences yield the unweighted ε̂unw and the weighted ε̂w estimates of the
misclassification probability p2 (compare to (4.2.15) and (4.2.16)), respectively:

ε̂unw = π̂21ε̂21 + π̂22ε̂22

ε̂w = π21ε̂21 + π22ε̂22. (5.2.2)

Using the representation (5.2.2) and the decomposition formula (5.2.1), the weighted estimate
is clearly unbiased, too. Thus, E(ε̂w) = p2. This represents the first advantage of weighted upon
unweighted estimates.
It holds:
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ε̂w − ε̂unw =(π21 − π̂21)ε̂21 + (π22 − π̂22)ε̂22

=
fd − ft

(1 + fd)(1 + ft)
(ε̂21 − ε̂22)

=
ρ∗ ft

[1 + (1 + ρ∗) ft](1 + ft)
(ε̂21 − ε̂22). (5.2.3)

Hence, the difference between the theoretical means of the weighted and unweighted error
estimates is:

E(ε̂w) − E(ε̂unw) =
ρ∗ ft

[1 + (1 + ρ∗) ft](1 + ft)
(p21 − p22), (5.2.4)

and their absolute difference is given by:

| E(ε̂w) − E(ε̂unw)︸             ︷︷             ︸
=−Bias(ε̂unw)

| =
−ρ∗ ft

[1 + (1 + ρ∗) ft](1 + ft)︸                       ︷︷                       ︸
:=h( ft;ρ∗)

|p21 − p22|︸      ︷︷      ︸
=up

.

This difference depends on a function h( ft; ρ∗) and the absolute difference between the estimates
of the subclass error probabilities. The function h( ft; ρ∗) : [1,∞) × (−1, 0) −→ (0,∞) is strictly
monotonically decreasing in ρ∗ for every ft ≥ 1. This affirmation is sustained by the sign of its
first derivative with respect to ρ∗:

∂h( ft; ρ∗)
∂ρ∗

=
− ft

[1 + (1 + ρ∗) ft]2 < 0.

This result provides evidence for the fact that the larger the difference between the quotients fd

and ft of the observed and true subclass prevalences, the bigger the absolute difference between
weighted and unweighted misclassification error estimates.
In other words, the discrepancy between the observed and true subclass structures ρ∗ is deciding
for the evaluation of the weighting benefit.

Besides, it holds:

up

2
= lim

ρ∗→−1
ft→1

|Bias(ε̂unw)| ≤ lim
ρ∗→−1

|Bias(ε̂unw)| ≤ lim
ρ∗→−1
ft→∞

|Bias(ε̂unw)| = up.

Hence, in the context of a large mismatch between the observed and true subclass structures, i.e.
when ρ∗ close to −1, the absolute bias reduction by means of a weighted estimate is bounded.
The more unbalanced the target subclass structure, the greater the bias reduction within the
specified bounds. The larger the discrepancy up between the true subclass error probabilities,
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the higher the minimal bias reduction which can be expected by weighting (up

2 ).

5.2.2 Impact of weighting on the mean squared error of the misclassifica-
tion error estimates

In Section 5.2.1 it is proved that a greater bias reduction through weighted estimates can be
especially expected given a large mismatch between the observed and the true subclass preva-
lences and a large difference between the true subclass error probabilities.

However, the improvement in the bias of the misclassification error estimates by weighting may
be counter-productive, which means that it is likely to be obtained at the price of a substantial
variance enhancement. In view of this bias-variance trade-off, meaningful conditions are needed
to describe the target situations in which weighted estimates are superior to the unweighted ones
with respect to the mean squared error (MSE). This comprises simultaneous information on the
bias and the variance of the estimates.

Using the notations from Table 5.1 and the relationships from (5.1.1) and (5.1.2) between ρ∗, fd,
and ft, the difference between the variances of the weighted and unweighted misclassification
error estimates is given by:

Var(ε̂w) − Var(ε̂unw) =Var(π21ε̂21 + π22ε̂22) − Var(π̂21ε̂21 + π̂22ε̂22)

=(π2
21 − π̂

2
21)Var(ε̂21) + (π2

22 − π̂
2
22)Var(ε̂22) + 2(π21π22 − π̂21π̂22) Cov(ε̂21, ε̂22)︸         ︷︷         ︸

=0

=
( fd − ft)(2 + fd + ft)

(1 + fd)2(1 + ft)2 Var(ε̂21) +
( ft − fd)[2 fd ft + fd + ft]

(1 + fd)2(1 + ft)2 Var(ε̂22)

=
ρ∗ ft[2 + (2 + ρ∗) ft]

[1 + (1 + ρ∗) ft]2(1 + ft)2 Var(ε̂21) −
ρ∗ ft[2(1 + ρ∗) f 2

t + (2 + ρ∗) ft]
[1 + (1 + ρ∗) ft]2(1 + ft)2 Var(ε̂22)

=

[
ρ∗ ft

[1 + (1 + ρ∗) ft]2(1 + ft)2

]
·
{
[2 + (2 + ρ∗) ft] Var(ε̂21)︸   ︷︷   ︸

:=v1

− [2(1 + ρ∗) f 2
t + (2 + ρ∗) ft] Var(ε̂22)︸   ︷︷   ︸

:=v2

}
.

(5.2.5)

The subclass misclassification error estimates ε̂21 and ε̂22 are based on disjoint sets of obser-
vations in the validation data set, which correspond to the distinct subclass labels C1 and C2.
Note that they are computed on the validation data set which is independent from the training
data set. Therefore, an erroneous assignment of an observation from subclass C1 is indepen-
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dent from an erroneous assignment of an independently sampled observation from subclass C2,
given a particular rule developed on the training data set. Thus, it is plausible that the covariance
Cov(ε̂21, ε̂22) of the subclass misclassification error estimates assessed on the validation data is 0.

Starting from the well-known computational formula of the MSE as a sum between the variance
and the squared bias, the difference between the MSEs of weighted and unweighted misclassi-
fication error estimates corresponds to:

MS E(ε̂w) − MS E(ε̂unw) =
[
Var(ε̂w) − Var(ε̂unw) + Bias(ε̂w)2︸     ︷︷     ︸

=0

−Bias(ε̂unw)2
]

=
{
Var(ε̂w) − Var(ε̂unw) − [E(ε̂unw) − E(ε̂w)]2

}
.

(5.2.6)

Replacing (5.2.4) and (5.2.5) into (5.2.6) yields:

MS E(ε̂w) − MS E(ε̂unw) =
[ ρ∗ ft

[1 + (1 + ρ∗) ft]2(1 + ft)2︸                          ︷︷                          ︸
:=g(ρ∗, ft)

]
·
{
[2 + (2 + ρ∗) ft]v1

− [2(1 + ρ∗) ft + 2 + ρ∗] ftv2 − ρ
∗ ftu2

p

}
.

(5.2.7)

Generally, weighting provides a benefit if the following inequality holds:

MS E(ε̂w) < MS E(ε̂unw),

or equivalently:

[2 + (2 + ρ∗) ft]v1 − [2(1 + ρ∗) ft + 2 + ρ∗] ftv2 > ρ
∗ ftu2

p, (5.2.8)

since ρ∗ < 0.

The theoretical variances vk, k = 1, 2 of the subclass misclassification error rates depend on the
subclass error probabilities and sizes. Since the number of misclassifications in each subclass is
a binomially distributed variable (i.e. N2kε̂2k ∼ Bin(p2k,N2k), k = 1, 2), the theoretical variances
vk of the subclass misclassification rates are defined as:

vk =
σk

N2k
=

p2k(1 − p2k)
N2k

, k = 1, 2. (5.2.9)
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The subclass sizes can be derived from the size of the heterogeneous class N2, using the quotient
ft of the true subclass prevalences and the relative suboptimality ρ∗ of the data at hand:

N21 =
N2

[1 + (1 + ρ∗) ft]
N22 =

N2(1 + ρ∗) ft

[1 + (1 + ρ∗) ft]
. (5.2.10)

Remark 5.2.1. If the special subcases are considered, these expressions simplify to:

(1) Subcase 1: N21 = N22 = N2
2 ;

(2) Subcase 2 (b ≥ 1): N21 =
N2b ft
1+b ft

and N22 = N2
1+b ft

.

Using the quotient s = σ2
σ1

between the variances of the misclassification events in subclass C2

and C1 (see Table 5.1), the necessary condition for the existence of a weighting benefit (5.2.8)
can be reformulated as:[

1 + (1 + ρ∗) ft

ρ∗ ft

] {
[2 + (2 + ρ∗) ft] −

[2(1 + ρ∗) ft + 2 + ρ∗]
1 + ρ∗

s
}

︸                                                                          ︷︷                                                                          ︸
:=G̃(s,ρ∗, ft)

<
N2u2

p

σ1
. (5.2.11)

The theoretical variances vk, k = 1, 2, are replaced by their formula in terms of ρ∗, ft and the
size of the heterogeneous class N2. Also σ1 > 0 is assumed, which is equivalent to the fact that
p21 is different from 0 or 1.

Given some true and observed subclass structures, the existence of a weighting benefit depends
on how large the right hand side term of condition (5.2.11) is. Thus, the chances for an ad-
vantageous weighting are greater when the class sample size N2 is large, when subclass error
probabilities are highly discrepant (i.e. |up| is large) and the error probability p21 in the less
prevalent subclass is either close to 0 or close to 1 (i.e. σ1 is small). For small values of s < 1,
the chances of a weighting benefit increase additionally. This means that a particularly favor-
able situation for weighting is given when p21 is small and p22 > 1 − p21 or p21 is large and
p22 < 1 − p21.

Figures 5.1 (a) and (b) show the interpretation of s in terms of the subclass error probabilities
for values below and above 1.
Given some fixed p21 < 0.5, if s < 1, then p22 is an element of [0, p21)

⋃
(1− p21, 1]. Very small

values of s < 1 are associated to values of p22 which are close to 0 (perfect separation between
C2 and D) or 1 (complete overlap between C2 and D).
Given some fixed p21 < 0.5, if s > 1, then s is upper bounded by 0.25σ−1

1 and p22 is an element
of (p21, 1 − p21). Thus, values of s > 1 close to its upper bound correspond to values of p22
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which are close to 0.5.

Thus, given a fixed value of p21, the larger s > 1 when p21 and p22 are on the same side of 0.5,
or the smaller s < 1, the larger the discrepancy between the subclass error error probabilities
and therefore, up.

(a) p=subclass misclassif. prob.

σσ
==

p((
1

−−
p))

0.0 0.2 0.5 0.8 1.0

0.
00

0.
16

0.
25

p22 << p21 p22 >> 1 −− p21

Case:

s << 1
p21 == 0.2

(b) p=subclass misclassif. prob.

σσ
==

p((
1

−−
p))

0.0 0.2 0.5 0.8 1.0
0.

00
0.

16
0.

25

p22 ∈∈ c((p21,,  1 −− p21))

Case:

s >> 1
p21 == 0.2

Figure 5.1: Interpretation of s =
p22(1−p22)
p21(1−p21) , the quotient of the subclass variances of the misclas-

sification event. Fig. (a) when s < 1 and p21 < 0.5, the error probability p22 in C2 belongs to
[0, p21)

⋃
(1 − p21, 1]. Fig. (b) when s > 1 and p21 < 0.5, p22 belongs to (p21, 1 − p21).

Two alternative descriptions of condition (5.2.11) may be used for investigating the existence
of a benefit from weighting:

(1. alternative)

G̃ <
N2u2

p

σ1
(σ1 , 0) (5.2.12)

(2. alternative)

G =:
G̃σ1

u2
p
< N2 (up , 0). (5.2.13)

Note that condition (5.2.11), or equivalently, the sign of one of the differences G̃ −
N2u2

p

σ1
and

G−N2, is useful only to verify whether the weighting benefit exists, or not. The particular value
of these differences gives no hint about the amount of benefit since:

MS E(ε̂w) − MS E(ε̂unw) =
ρ∗ ftσ1

N2
· g(ρ∗, ft) ·

G̃ − N2u2
p

σ1


or in terms of G, equivalently:
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MS E(ε̂w) − MS E(ε̂unw) =
ρ∗ ftu2

p

N2
· g(ρ∗, ft) · [G − N2] .

Thus, the amount of benefit associated to a particular configuration of the target population and
of the data set at hand can be only assessed by considering the entire difference between the
mean squared errors. However, our interest is focussed here just on the existence of a weighting
benefit.

N2 is detached on the right hand side of the inequations (5.2.13) and (5.2.12) since it depends
on the particular study. A low value of N2 can be used as worst case-reference to check the
existence of a weighting benefit in the context of a small sample size.

With the notations from Table 5.1 the pro and contra arguments for the two alternative condi-
tions are resumed in Table 5.3. Both formulations of the benefit condition, (5.2.13) and (5.2.12),
are more or less afflicted with difficulties regarding the analysis of their domain of validity. For
instance, the parameters s, σ1 and up are connected to each other. They are all defined in terms
of p21 and p22. This shows that in the first alternative formulation (5.2.12) of condition (5.2.11)
the right and left hand side terms are not independent, which is the greatest disadvantage of the
G̃-formulation.
In spite of this drawback, the definition of a worst case-reference for the right hand side term
enables in this case a reduction of the problem to only three arguments: s, ρ∗ and ft. With this
simplification the inequation based on G̃ can be handled much easier than its counterpart based
on G, which allows for no reductions in its quadruple of arguments.

In the G-formulation of the benefit condition all parameters of interest are included in G. There
is no spurious dependence between the left and the right hand side terms. Anyway, a shortcom-
ing is that the number of four arguments on the left hand side cannot be reduced further. This
also hinders a precise and at the same time easy to understand mathematical description of the
validity domain of this condition.

The G-alternative is suitable for a general investigation of the existence of the weighting benefit.
For the special subcases we prefer however, the G̃-alternative. A simplified analysis is possible
by defining a worst case reference for the right hand side term and taking advantage on the
reduced parameter set in the left hand side term. But, one has to take care in the interpretation
of the results, since a worst-case reference is used.
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G̃-alternative (5.2.12) G-alternative (5.2.13)

Condition G̃ <
N2u2

p
σ1

G < N2

pro’s • simplified functional form of G̃ • independent left and right terms

• a worst case-reference for the • compressed form of the left term

right term allows a problem reduction • worst case-reference only for N2

to 3 arguments (s, ρ∗ and ft)

Attention! The reference depends on s =
σ2
σ1

!

contra’s • dependence between left and right terms • complicated left term

at least 4 parameters necessary

Table 5.3: Overview of the G and G̃-conditions: Pro and contra arguments. A negative sign of
G̃ −

N2u2
p

σ1
or of G − N2 indicates a win and a positive sign a loss in the efficiency of the weighted

estimates with respect to the unweighted ones.

Generally, G can be expressed as a function that, beside the invariable arguments ft and ρ∗,
involves the error probability in the less prevalent target subclass p21 and the quotient of the
true subclass error probabilities r:

G(p21, r, ρ∗, ft) =

[
1 + (1 + ρ∗) ft

ρ∗ ft

]
·

[
1 − p21

(r − 1)2 p21

]
·

·

{
[2 + (2 + ρ∗) ft] −

[2(1 + ρ∗) ft + 2 + ρ∗]
1 + ρ∗

[
r(1 − rp21)

1 − p21

]}
, (5.2.14)

with the restrictions r , 1 and p21 ≤ r−1.

When all arguments have known values, function G is easy to evaluate. Then the minimally
requested size of the heterogeneous class to ensure a weighting benefit is Nmin

2 = [G] + 1. If
in the practical application the actual size of the heterogeneous class is smaller than Nmin

2 , N2

might be appropriately enhanced keeping ρ∗ (thus, actually fd) unchanged.

Normally, at least the values of ft and ρ∗ are available. If another argument is unknown, then the
evaluation of the G-condition becomes complicated. A description of the domain of an argu-
ment which is associated to the weighting benefit is not possible without involving some other
arguments due to the complexity of G.
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Tables 5.4 and 5.5 offer potentially useful criteria to decide upon using weighting or preferably
avoiding it, when r ≤ 0.5 and r ≥ 2, respectively. Domains of the four arguments of G are
presented, for which the function has a negative value. Therefore, these domains are associated
to a sure weighting benefit.
However, both tables are designed just for orientating purposes. They address a user with a
rather vague idea of the real values of the function arguments.
Values of r within (0.5, 2) are not considered in these tables. Given such r-values, one should
proceed with caution, since function G is positive on some interval around 1, like it is shown in
Table A.1.

Table 5.4: Discussion around the weighting benefit based on the G-alternative
when r ≤ 0.5. Domains of p21, ρ∗, ft, and r ≤ 0.5 associated to a negative sign
of G(p21, r, ρ∗, ft), i.e with a sure weighting benefit.

Row p21 ρ∗ ft =
π22
π21

r
1 (0, 0.5][1] [−0.5, 0)[2] [1, 2)[4] (0, 0.45]
2 (0, 0.4] [−0.7,−0.5)[3] [1, 2) (0, 0.37]
3 (0, 0.5] [−0.5, 0) [2, 99)[5] (0, 0.47]
4 (0, 0.4] [−0.7,−0.5) [2, 99) (0, 0.39]
5 (0, 0.5] [−0.5, 0) [99,∞)[6] (0, 0.50]
6 (0, 0.5] [−0.7,−0.5) [99,∞) (0, 0.40]
7 (0.5, 0.6] [−0.25, 0) [1, 2) (0, 0.49]
8 (0.5, 0.6] [−0.6,−0.5) [1, 2) (0, 0.30]
9 (0.5, 0.6] [−0.25, 0) [2, 99) (0, 0.49]
10 (0.5, 0.55] [−0.7,−0.5) [2, 99) (0, 0.30]
11 (0.5, 0.6] [−0.5, 0) [99,∞) (0, 0.39]
12 (0.5, 0.6] [−0.7,−0.5) [99,∞) (0, 0.32]

1 small to moderate error probability of the less prevalent target subclass, C1.
2 small to moderate absolute degree of suboptimality |ρ∗|.
3 moderate to large absolute degree of suboptimality |ρ∗|.
4 the target subclass structure is balanced or moderately unbalanced.
5 the target subclass structure is highly unbalanced.
6 the target subclass structure is extremely unbalanced.

Mathematical proofs for the statements provided in Tables 5.4 and 5.5 are available in Ap-
pendix A.1. Here only the proofs for two particular cases of interest are considered: (1) r = 1
(2) σ1 = 0.
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Table 5.5: Discussion around the weighting benefit based on the G-alternative when r ≥ 2.
Domains of p22, ρ∗, ft, and r ≥ 2 associated to a negative sign of G(p22r−1, r, ρ∗, ft), i.e with a
sure weighting benefit.

Row r ρ∗ ft =
π22
π21

p22

1 [2, 5] [−0.2, 0) [1, 2) [0.85, 1]
2 [2, 4.5] [−0.7,−0.5) [1, 2) [0.91, 1]
3 [2, 5] [−0.2, 0) [2, 99) [0.85, 1]
4 [2, 4.5] [−0.7,−0.5) [2, 99) [0.91, 1]
5 [2, 5] [−0.2, 0) [99,∞) [0.85, 1]
6 [2, 5] [−0.8,−0.5) [99,∞) [0.90, 1]

When r = 1, thus the subclass error probabilities are equal, weighted error estimates should be
strictly avoided, like it is stated by Proposition 5.2.1.

Proposition 5.2.1. Given equal subclass error probabilities, no benefit is achievable by weight-
ing.

Proof. The true subclass error probabilities are equal (i.e. p21 = p22). Equivalently, r and s
are 1, up is 0 (see their definition in Table 5.1).
Condition (5.2.11) resumes to:

[(ρ∗ + 2) ft + 2] −
[2(ρ∗ + 1) ft + ρ∗ + 2]

ρ∗ + 1
> 0.

This inequality allows a further simplification to a condition which is never accomplished:

ft < −
1

1 + ρ∗
.

When σ1 = 0, thus the error probability p21 of the less prevalent target subclass is either 0 or
1, a general advice is to avoid weighting when the absolute degree of suboptimality of the data
at hand |ρ∗| is rather small. According to Proposition 5.2.2 values of |ρ∗| below 0.7 may lead to
suboptimal weighted estimates.
If p21 is 0, then the chances for a beneficial weighting increase when p22 approaches 1 and if
p21 is 1, the chances increase for p22 approaching 0.

Proposition 5.2.2. Let the error probability p21 in the less prevalent target subclass be 0 or 1.
Then, maximal chances for a weighting benefit are available for ρ∗ within some small interval
around ρ∗0 = −

√
2(1+ ft)

1+
√

2(1+ ft)
. In particular, weighting may be dangerous for an absolute degree of

suboptimality |ρ∗| up to 0.7.
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Proof. The condition (5.2.8) for the existence of a benefit by weighting becomes:(
1 − p22

p22

)±1 [
−1

ρ∗(1 + ρ∗) ft

]
[2(1 + ρ∗) ft + 2 + ρ∗][1 + (1 + ρ∗) ft]︸                                                                              ︷︷                                                                              ︸
:=H(p22,ρ∗, ft)

< N2, (5.2.15)

where the ±-power of the first component in the left hand side term depends on whether p21 is 0
or 1.
Let ft and p22 be constant. Thus, the subclass prevalence structure in the target population is
fixed. The derivative of the left hand side term of the inequation (5.2.15) with respect to the
relative degree of suboptimality of the data set at hand ρ∗ is:

∂H
∂ρ∗

=

(
1 − p22

p22

)±1 [
1

ftρ∗2(1 + ρ∗)2

] [
2(1 + ft)2 + 4(1 + ft)2ρ∗ + (1 + 4 ft + 2 f 2

t )ρ∗2
]
.

The zeros of the quadratic expression in brackets are:

ρ∗0,1( ft) =
−2(1 + ft)2 ±

√
2(1 + ft)

(1 + 4 ft + 2 f 2
t )

=
−
√

2(1 + ft)[
√

2(1 + ft) ∓ 1]

[
√

2(1 + ft) − 1][
√

2(1 + ft) + 1]

=
−
√

2(1 + ft)

[
√

2(1 + ft) ± 1]
.

(5.2.16)

Only ρ∗0( ft) = −
√

2(1+ ft)
1+
√

2(1+ ft)
is an element of (−1, 0), while ρ∗1( ft) < −1. Consequently, this deriva-

tive is negative on the left hand side of ρ∗0 and positive on its right hand side. This indicates that
H achieves its minimum at ρ∗0( ft). The chance for an accomplishment of the benefit condition
increases around this point. On both sides of it, the chances for a benefit by weighting decrease.
Besides, it holds:

lim
ft→1

ρ∗0( ft) =
−2
√

2

2
√

2 + 1
≈ −0.73,

and
lim
ft→∞

ρ∗0( ft) = −1,

and ρ∗0 is monotonically decreasing with respect to ft. Therefore, the smaller the absolute degree
of suboptimality |ρ∗| in comparison to 0.7, the more dangerous the weighted estimates.
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5.2.3 Preliminary discussion of subcases

Function G, which is used to prove the existence of a benefit by weighting the error estimates,
has a complex mathematical structure in its four arguments. We focus on the special subcases
which are exemplified in Table 5.2.

Function G̃ depends on only three parameters. Therefore, the G̃-alternative formulation of the
benefit condition (5.2.12) is used in the further theoretical discussion to take even more advan-
tage on the already simplified form of the particular subcases.

In the following, we assume that a fixed combination of s and σ1 is given.
Each of the subclass error probabilities p2k, k = 1, 2, satisfies:

p2k(1 − p2k) = σk.

Thus, p21 and p22 are solutions of the equations:

x2 − x + σ1 = 0

and
x2 − x + sσ1 = 0, 4sσ1 ≤ 1,

respectively.

We define the worst case-reference for the right hand side term of condition (5.2.12) using the
minimal gap up between the subclass error probabilities. This is achieved when p22 lies on the
same side of 0.5 like p21. Formally, this means that

(p21 − 0.5)(p22 − 0.5) > 0.

Thus, the worst case reference is:

N2u2
p

σ1
= N2 ·

( √
1 − 4σ1s −

√
1 − 4σ1

2
√
σ1

)2

︸                             ︷︷                             ︸
:=qmin

. (5.2.17)

Now, assume p22 lies on the other side of 0.5 than p21. Formally, this means that

(p21 − 0.5)(p22 − 0.5) < 0.

The right hand side term becomes:
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N2u2
p

σ1
= N2 ·

( √
1 − 4σ1s +

√
1 − 4σ1

2
√
σ1

)2

︸                             ︷︷                             ︸
:=qmax

. (5.2.18)

This term mirrors the best scenario given fixed values of N2, s and σ1, and is further distin-
guished from the former reference by calling it best case reference.

Notation. Given s and σ1, q is generally defined as the quotient between the squared difference
of the true subclass error probabilities, u2

p, and the variance of the misclassification event in the
over-represented subclass, σ1:

q :=
u2

p

σ1
.

The notations qmin and qmax are used to make the difference between the situations in which q
appears in the worst and the best case reference, respectively. Thus,

qmin,max =:
( √

1 − 4σ1s ∓
√

1 − 4σ1

2
√
σ1

)2

. (5.2.19)

Remark 5.2.2 (Worst case reference).

(i) The function qmin and therefore, the worst case reference, is strictly monotonically decreasing
on (0, 1] and strictly monotonically increasing on [1,∞) in the argument s, the quotient of the
probabilities for an error event in the predominant and in the less prevalent target subclasses.

(ii) For all s, the function qmin and therefore, the worst case reference, is strictly monotonically
increasing with respect to σ1, the variance of the misclassification event in the small target sub-
class.

Remark 5.2.3 (Best case reference).

The function qmax and therefore, the best case reference, is strictly monotonically decreasing
both in s and σ1.
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The monotonicity of the worst and best case references with respect to s and σ1 stated by Re-
marks 5.2.2 and 5.2.3 is proved in Appendix A.2.

Note 1 (Generalization starting from the worst case reference). If the benefit condition is ac-
complished with respect to the worst case reference (i.e. for the minimal value of up given s
and σ1), then it is accomplished with respect to the best case reference (i.e. for the maximal
value of up given s and σ1), too. This is clear since qmin(s, σ1) < qmax(s, σ1).
Proposition 5.2.3 enables a generalization of these observations when σ1 is variable. It helps to
draw more general conclusions from the next graphical investigations, although they are based
on a constant value of σ1.

Proposition 5.2.3. Assume s < 1 and the variance of the error event in subclass C1, σ1 ∈

(0, 0.25], are constant.

(i) If the weighting benefit is sure relatively to the worst case reference given σ1 = σconst, then
it is sure relatively to this reference for every σ′1 ∈ [σconst, 0.25];

(ii) If the weighting benefit is sure relatively to the best case reference given σ1 = σconst, then it
is sure relatively to this reference for every σ′1 ∈ (0, σconst].

(iii) If the weighting benefit is sure relatively to the worst case reference given σ1 = σconst, then
it is sure relatively to the best case reference for every σ′1 ∈ (0, 0.25].

Proof. (i) The weighting benefit is sure with respect to the worst case reference, given s < 1
and some constant value of σ1, iff:

G̃ < N2qmin(s, σconst). (∗)

Using the monotonic behavior of qmin with respect to σ1, stated in Remark 5.2.2, it holds:

G̃ < N2qmin(s, σconst) ≤ N2qmin(s, σ′1), (∗∗)

for any σ′1 ∈ [σconst, 0.25].

(ii) Due to the strictly decreasing monotonicity of qmax with respect to σ1 established by Remark
5.2.3 it results:

G̃ < N2qmax(s, σconst) ≤ N2qmax(s, σ′1),
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for every σ′1 ≤ σconst.

(iii) Starting from (∗) and using the monotonic behavior of qmax with respect to σ1, stated in
Remark 5.2.3, it holds:

G̃ < N2qmin(s, σconst) < N2qmax(s, σconst) < N2qmax(s, σ′′1 ),

for any σ′′1 ∈ (0, σconst). Starting from (∗∗), it results:

G̃ < N2qmin(s, σconst) ≤ N2qmin(s, σ′1) < N2qmax(s, σ′1),

for any σ′1 ∈ [σconst, 0.25].
Thus, if the benefit condition is accomplished with respect to the worst case reference at least
for one value of σ1, then it is accomplished also with respect to the best case reference for any
σ1 ∈ (0, 0.25], provided that s remains constant.

Corollary 5.2.4.

(i) The results (i)-(iii) apply given any s > 1 and any constant value of σ1, σconst ∈ (0, 0.25s−1),
too.

(ii) Assume p0
21 is the subclass error probability associated to σconst from Proposition 5.2.3.

Then, keeping s constant:

(a) The benefit in Proposition 5.2.3 (i) is sure given any p21 between p0
21 and 1 − p0

21.

(b) The benefit in Proposition 5.2.3 (ii) is sure given any p21 ≤ p0
21 < 0.5 or p21 ≥ p0

21 > 0.5.

(c) The benefit in Proposition 5.2.3 (iii) is sure given any p21 when s < 1, and given any p21

for which σ1 ≤ 0.25s−1 when s > 1.

Proof. If s > 1, the request that σ1 = σconst < 0.25s−1 guarantees that the term
√

1 − 4σ1s
from the definition of the worst and best case references is well defined.

(i) The monotonicity of qmin and qmax with respect to σ1 does not depend on s. Thus, the proofs
for cases (i)-(iii) in Proposition 5.2.3, where s < 1, apply also here.

(iia) Here it should be reminded that σconst = p0
21(1 − p0

21) and σ′1 = p21(1 − p21). According to
Proposition 5.2.3 (i), if the benefit is sure relatively to the worst case reference when σ1 = σconst,
then it is sure for every σ1 = σ′1 ≥ σconst. Since the function f (x) = x(1 − x) is symmetrical
around 0.5 and monotonically increasing on (0, 0.5) and decreasing on (0.5, 1), the benefit is
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sure for any p21 between p0
21 and 1 − p0

21.

(iib) Again the properties of function f are used, starting from σ′1 ≤ σconst.

(iic) This result is clear starting from Proposition 5.2.3 (iii) and using (iia) and (iib).

Note 2 (General graphical settings). In the next graphical investigations to the subcases, the
worst and best case references are computed for N2 = 100. The variance σ1 of the misclassifi-
cation event in the less prevalent target subclass C1 is set on some feasible value, in each of the
cases s > 1 and s < 1. Without restricting the generality of this investigation we assume that
the corresponding error probability p21 is smaller than 0.5.
When s > 1, σ1 = 0.05 is used to compute both references. Correspondingly, the misclassifica-
tion error probability in C1 is p21 ≈ 0.05.
When s < 1, σ1 is set on a medium level, i.e. σ1 = 0.125. Correspondingly, the misclassifica-
tion error probability in C1 is p21 ≈ 0.15.

5.2.4 Subcase 1

In this case the target population is unbalanced while the data set at hand is balanced with
respect to the subclass prevalence structure, which is equivalent to ft > 1 and fd = 1. This
situation is usually encountered in the diagnostic practice.

The relative difference between the true and observed subclass prevalence structures ρ∗ is now
expressed just in terms of the quotient of the true subclass prevalences, ft:

ρ∗ =
1 − ft

ft
.

We replace ρ∗ in the G̃-condition (5.2.12) by its representation in terms of ft. The weighting
benefit is available if the condition:

2[(3 ft + 1)s − (3 + ft)]
ft − 1︸                        ︷︷                        ︸

=G̃(s, 1− ft
ft
, ft)

<
N2u2

p

σ1
(5.2.20)

is accomplished.
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5.2.4.1 Graphical investigation

Given a fixed value of s, the quotient of the true subclass prevalences ft is tuned over the range
[1 + 10−4, 20] in steps of 10−4. The worst and best case references are based on N2 = 100 and a
σ1 which is specified like in Note 2, depending on whether s > 1 or s < 1.

Figures 5.2 and 5.3 show G̃ (solid lines) with respect to the worst case reference (dotted lines)
when s ≥ 1 and s ≤ 1, respectively. The same plots with respect to the best case reference for
the same s-values can be viewed in Appendix B, in Figures B.1 and B.2, respectively.
Tables 5.6 and 5.7 present the low and upper bounds of the ft-intervals associated to a weighting
benefit when s ≥ 1 and s ≤ 1, respectively. These describe the domains on which G̃ lies below
the worst and best case references in Figures 5.2-5.3 and B.1-B.2, respectively.

Let s ≥ 1. With the settings from Note 2, this means that p21 ≈ 0.05 and p22 ∈ [0.05, 0.5] or
p22 ∈ [0.5, 0.95], depending on whether the worst or the best case reference is considered.

It is important to notice that, given a constant value of σ1, then every value s ≥ 1 is associated
to a discrepancy of:

100up = 100(p22 − p21) = 100
( √

1 − 4σ1 −
√

1 − 4σ1s
2

)
(5.2.21)

percentage points between the subclass error probabilities, if they are situated on the same side
of 0.5 (worst case reference). This increases obviously with increasing values of s.
If the subclass error probabilities are situated on different sides of 0.5 (best case reference), then
the discrepancy between them is of:

100up = 100(p22 − p21) = 100
( √

1 − 4σ1 +
√

1 − 4σ1s
2

)
percentage points, given s. This increases obviously with decreasing values of s.

In this way, from left to right, the p22 values which correspond to the first row of Table 5.6
(worst case) are tuned between 0.05(≈ p21) and 0.5. At 0.5 the discrepancy up between the
subclass error probabilities is maximal.
Similarly, but from right to left, the p22 values which correspond to the second row of Table 5.6
(best case) are tuned between 0.5 and 0.95(≈ 1 − p21), where up is maximal.
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Figure 5.2: Subcase 1: Relation between G̃(s, 1− ft
ft
, ft) and the worst case reference when s ≥ 1,

σ1 = 0.05 and N2 = 100. Given s ≥ 2.5, weighting is beneficial for a quotient of the true
subclass prevalences within [ f l

t (s),∞); the larger s, the smaller f l
t .

Table 5.6: Subcase 1: Lower limits for the intervals ( f l
t (s),∞), on which weighting is bene-

ficial according to Figure 5.2, given s ≥ 1, σ1 = 0.05, N2 = 100.

s-values 1 1.5 2 2.5 3 3.5 4 4.5 5
f l
t (s)(1) − − − 3.64 1.87 1.49 1.31 1.20 1.09

f l
t (s)(2) 1.0001 1.0001 1.01 1.01 1.01 1.02 1.03 1.04 1.09
(1) The worst case reference is used (5.2.17).
(2) the best case reference is used (5.2.18).

Remark 5.2.4 (Case s ≥ 1, i.e. the error probability of the preponderant target subclass
lies between the true error and the hit probability of the less prevalent target subclass.
Formally, p22 ∈ [0.05, 0.95]).

(i) According to Figure 5.2, a minimal degree of unbalance f l
t of the target subclass structure is

necessary in order to achieve a benefit by means of weighted error estimates (for its value see
Table 5.6). This means that a minimal degree of mismatch between the target population and
the data at hand is required.

(ii) Table 5.6 indicates that the larger the discrepancy up between the subclass error probabilities,
the lower f l

t and therefore, the larger the ft-interval which is associated to the existence of a
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weighting benefit (first row from the left to the right, second row from the right to the left).

(iii) When p22 ≈ 1 − p21 the weighted estimates provide some benefit also when the mismatch
between the true and observed subclass prevalences is rather negligible (in Table 5.6, ft =

1 + 10−4 for s = 1, 1.5).

(iv) Assume s ≥ 3 in the first row of Table 5.6. According to (5.2.21), this corresponds
to a minimal discrepancy of 13 percentage points between the subclass error probabilities
(p22 ≥ 0.13 + p21). Then weighted estimates provide a benefit given any unbalanced target
subclass structure with π22 ≥ 2π21 ( f l

t ≤ 1.87).

Let s ≤ 1. With the settings from Note 2, this means that p21 ≈ 0.15 and p22 ∈ [0, 0.15] or
p22 ∈ [0.85, 1], depending on whether the worst or the best case reference is considered.

Given a constant value of σ1, then every value s < 1 is associated to a discrepancy of:

100up = 100(p21 − p22) = 100
( √

1 − 4σ1s −
√

1 − 4σ1

2

)
(5.2.22)

percentage points between the subclass error probabilities, if they are situated on the same side
of 0.5 (worst case reference). This increases obviously with decreasing values of s.
If the subclass error probabilities are situated on different sides of 0.5 (best case reference), then
the discrepancy between them is, exactly like in case s ≥ 1, of:

100up = 100(p22 − p21) = 100
( √

1 − 4σ1s +
√

1 − 4σ1

2

)
percentage points. This increases obviously with decreasing values of s.

From right to left, the p22 values which correspond to the first row of Table 5.7 (worst case)
are tuned between 0.15(≈ p21) and 0. At 0 the discrepancy up between the subclass error
probabilities achieves its maximum.
Similarly, also from right to left, the p22 values which correspond to the second row of Table
5.7 (best case) are tuned between 0.85(≈ 1 − p21) and 1, where up achieves its maximum.
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Figure 5.3: Subcase 1: Relation between G̃(s, 1− ft
ft
, ft) and the worst case reference when s ≤ 1,

σ1 = 0.125 and N2 = 100 and ft ≤ 20. Given s ≤ 0.7, weighting is beneficial for every quotient
of the true subclass prevalences up to 11.

Table 5.7: Subcase 1: Upper limits for the intervals (1, f h
t (s)) on which weighting is beneficial

given s ≤ 1, σ1 = 0.125, N2 = 100, and ft ≤ 20.

s-values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f h
t (s)(1) > 20 > 20 > 20 > 20 > 20 > 20 11.21 1.85 1.25 −

f h
t (s)(2) > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20
(1) The worst case reference is used (5.2.17).
(2) The best case reference is used (5.2.18).

Remark 5.2.5 (Case s ≤ 1, i.e. p22 ∈ [0, 0.15]
⋃

[0.85, 1]).

(i) According to Figure 5.3, the weighting benefit is possible up to a certain degree of unbalance
f h
t of the target subclass structure, or equivalently, up to a certain degree of mismatch between

the target population and the data at hand.

(ii) The larger the discrepancy up between the subclass error probabilities, the higher the maxi-
mally allowed degree of unbalance f h

t (see Table 5.7 from right to left).

(iii) Assume s ≤ 0.6 and p22 ∈ [0, 0.15] (first row of Table 5.7). Using (5.2.22), there is a
minimal discrepancy up of 6.5 percentage points between the subclass error probabilities. Then,
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weighted estimates provide a benefit at least for any degree of unbalance ft up to 20.

(iv) Assume p22 ∈ [0.85, 1] (second row in Table 5.7). Since p21 ≈ 0.15, this is equivalent to
a minimal discrepancy of 70 percentage points between the subclass error probabilities. Then,
weighted estimates provide a benefit at least for any degree of unbalance ft up to 20.

5.2.4.2 Theoretical investigation

First, recall that q was used to denote the quotient
u2

p

σ1
from the right hand side term of the G̃-

condition for the existence of the weighting benefit.
Further, q−1 is used to denote the reciprocal or multiplicative inverse of q, thus:

q−1 =
1
q
.

The inverse function for G̃ : A → B is denoted by G̃inv : B → A. Thus:

G̃ ◦ G̃inv = 1B

and
G̃inv ◦ G̃ = 1A,

where operator ’◦’ stands for the composition of functions, and 1A and 1B are the identity func-
tions onA and B, respectively.

Let s > 1. Hence, the error probability p22 of the preponderant target subclass lies between the
error and the hit probability of the less prevalent target subclass. Formally, p22 ∈ (min(p21, 1 −
p21), max(p21, 1 − p21)).

Proposition 5.2.5 (Case s > 1).

(i) If weighting is beneficial, then the size of the heterogeneous class satisfies N2 > (6s − 2)q−1.

(ii) If N2 > (6s − 2)q−1, then weighting provides a benefit beginning with a certain degree of
unbalance of the target subclass structure, thus on an interval ( f l

t ,∞):

f l
t (s,N2) =

N2q + 2s − 6
N2q − 6s + 2

.
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(iii) The larger N2, the larger the interval associated to a beneficial weighting. The larger s, the
larger the interval associated to a beneficial weighting with respect to the worst case reference.
The lower s, the larger the interval associated to a beneficial weighting with respect to the best
case reference.

Proof.

(i) The necessary condition for weighting to be beneficial is provided by (5.2.12), which requests
that:

G̃ < N2q.

The first derivative of G̃ with respect to ft is:

∂G̃
∂ ft

=
8(1 − s)
( ft − 1)2 . (5.2.23)

Hence, when s > 1, G̃ is strictly monotonically decreasing with respect to ft. It falls from:

lim
ft→1

G̃ = ∞

down to
lim
ft→∞

G̃ = 6s − 2 (> 4).

Thus, when N2q ≤ 6s − 2, weighting yields no benefit no matter of the degree of unbalance of
the target subclass structure ft.

(ii) When N2 > (6s − 2)q−1, due to the monotonicity of G̃, weighting is clearly beneficial on
an interval of the form ( f l

t (s,N2),∞). The lower bound f l
t (s,N2) is obtained by solving the

equation:
G̃ = N2q

with respect to ft.
Equivalently:

f l
t (s,N2) = G̃inv(N2q), (5.2.24)

where G̃inv is the inverse function for G̃ with respect to the argument ft.

(iii) We use the equation (5.2.24). Since G̃ is monotonically decreasing with respect to ft, also
G̃inv is monotonically decreasing with respect to the image of ft by G̃.
Besides, ỹ := N2q is strictly monotonically increasing with respect to N2. Therefore, it holds:

∂ f l
t (s,N2)
∂N2

=
∂G̃inv

∂ỹ︸︷︷︸
<0

∂ỹ
∂N2︸︷︷︸
>0

< 0, (5.2.25)
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which means that f l
t becomes smaller for increasing values of N2.

Now, when the worst case reference is considered, q refers actually to qmin (see notation (5.2.19)).
Using Remark 5.2.2, it follows that, ỹ := N2qmin is strictly monotonically increasing with respect
to s on (1,∞).
This yields:

∂ f l
t (s,N2)
∂s

=
∂G̃inv

∂ỹ︸︷︷︸
<0

∂ỹ
∂s︸︷︷︸
>0

< 0, (5.2.26)

which indicates that f l
t (s,N2) is monotonically decreasing with respect to s in the context of the

worst case reference.

When the best case reference is considered, q refers to qmax (see notation (5.2.19)). Using
Remark 5.2.3, ỹ := N2qmax is strictly monotonically decreasing with respect to s. Hence:

∂ f l
t (s,N2)
∂s

=
∂G̃inv

∂ỹ︸︷︷︸
<0

∂ỹ
∂s︸︷︷︸
<0

> 0, (5.2.27)

which indicates that f l
t (s,N2) becomes smaller for decreasing values of s in the context of the

best case reference.

Let s < 1. Hence, the error probability of the less prevalent target subclass lies between the
error and the hit probability in the preponderant target subclass. Formally, p21 ∈ (min(p22, 1 −
p22), max(p22, 1 − p22)).

Proposition 5.2.6 (Case s < 1).

(i) A sufficient condition for a beneficial weighting given any degree of unbalance ft of the target
subclass structure is that:

s ≤ 0.333.

(ii) If N2 > 4q−1, then the weighting benefit is sure for all ft > 1.

(iii) If N2 > (6s − 2)q−1, then the weighting benefit is sure up to a certain discrepancy between
the true subclass prevalences:

f h
t (s,N2) =

N2q + 2s − 6
N2q − 6s + 2

.

The smaller s and the larger N2, the larger f h
t (s,N2).
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Proof.

(i) The derivative of G̃ with respect to ft from (5.2.23) indicates that, when s < 1, G̃ is strictly
monotonically increasing with respect to ft between:

lim
ft→1

G̃ = −∞, (5.2.28)

and
lim
ft→∞

G̃ = 6s − 2. (5.2.29)

If s ≤ 0.333, then 6s − 2 belongs to (−2, 0]. Thus G̃ < 0 all-over and therefore, the weighting
benefit is sure independently of ft and N2.

(ii) If s > 0.333, the weighting benefit is still sure for all ft > 1, if N2 > (6s − 2)q−1, where the
latter inequation term is maximally equal to 4q−1.

(iii) According to Remarks 5.2.2 and 5.2.3, both the worst and the best case references are
strictly monotonically decreasing with respect to s < 1. Using the ascending monotonicity of
G̃inv and the descending monotonicity of ỹ = N2q with respect to s, it holds:

∂ f h
t (s,N2)
∂s

=
∂G̃inv

∂ỹ︸︷︷︸
>0

∂ỹ
∂s︸︷︷︸
<0

< 0,

which means that f h
t is monotonically decreasing with respect to s. Its monotonicity with respect

to N2 is proved like in Proposition 5.2.5.

Corollary 5.2.7 (Case s < 1).

(i) Assume N2 ≥ 24 observations in the heterogeneous class and the error probability of the less
prevalent target subclass, p21, lies outside of the range of medium values (0.4, 0.6). Then the
weighting benefit is sure for every pair of subclass error probabilities (p21, p22) separated by
0.5.

(ii) Assume N2 ≥ 100 observations in the heterogeneous class. Then the weighting benefit is
sure for all pairs of subclass error probabilities which differ by at least 10 percentage points,
thus for |up| = |p22 − p21| > 0.1.

Proof.

(i) From (5.2.28) and (5.2.29) it results that the weighting benefit is sure for all ft > 1 if:

(6s − 2)q−1 < N2. (∗)
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When the subclass error probabilities lie on different sides of 0.5, q refers to the best case
reference, and therefore q = qmax.
The condition p21 < (0.4, 0.6) indicates that the variance σ1 = p21(1− p21) of the error event in
the less prevalent target subclass is at most 0.24.
Using the monotonicity of qmax with respect to σ1 stated in Remark 5.2.3, it follows that:

q−1
max(σ1, s) ≤ q−1

max(0.24, 1) = 6, (∗∗)

for every σ1 up to 0.24.
Besides, for s < 1, it holds:

6s − 2 < 4. (∗ ∗ ∗)

From (∗) - (∗ ∗ ∗) it results:
(6s − 2)q−1

max < 24.

This indicates that in this context the weighting benefit is sure for every size N2 ≥ 24 of the
heterogeneous class.

(ii) If |p22 − p21| > 0.1, then it holds:

q−1 =
σ1

|p22 − p21|
2 ≤

0.25
0.01

= 25.

Thus, using point (ii) from Proposition 5.2.6 the benefit is sure for every N2 ≥ 100 since:

(6s − 2)q−1 < 4q−1 ≤ 100.

Proposition 5.2.8 (Case s = 1).

(i) G̃ is constant and equal to 4.

(ii) No benefit is achievable by weighting when the subclass error probabilities lie on the same
side of 0.5, i.e. with respect to the worst case reference.

(iii) When the subclass error probabilities are situated on different sides of 0.5, i.e. when the
best case reference is considered, weighting provides a benefit if and only if:

N2 >
4σ1

1 − 4σ1
.

In this case, if p21 < (0.4, 0.6), then the weighting benefit is sure starting already from N2 = 25
observations per class.

Proof.

(i) It results easily replacing s = 1 in (5.2.20).
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(ii) The necessary condition for the existence of a benefit by weighting (5.2.12) becomes:

N2q > 4.

When the worst case reference is considered, q refers to qmin, which is zero under s = 1. There-
fore, the benefit condition is never accomplished.

(iii) When the best case reference is considered, q refers to qmax. Replacing s = 1 in (5.2.18)
yields:

qmax =
1 − 4σ1

σ1
.

If p21 < (0.4, 0.6), thenσ1 ≤ 0.24 and the minimally necessary N2 is straightforward to compute.

5.2.4.3 Summary

The situation when π̂21 = π̂22 = 0.5 is regarded. This subcase is first graphically investigated
starting from a fixed value of σ1 (i.e. from a fixed p21), and tuning s below or above 1 (i.e. vary-
ing p22). Then a general theoretical investigation is used to justify and generalize the graphical
approach. Without loss of generality, the error probability p21 in the less prevalent target sub-
class is assumed to be less than 0.5.

The reader is advised of the possibility to extend the results from Tables 5.6 and 5.7 also to
other values of p21, using Proposition 5.2.3 and Corollary 5.2.4.

In general, both graphical and theoretical investigations indicate that:

• The larger the discrepancy |p21 − p22| between the subclass error probabilities is, the
larger is also the range of the degree of mismatch between the target population and the
data at hand for which weighting provides a benefit (i.e. the ft-interval associated to the
weighting benefit).

• If p22 ∈ (p21, 1− p21), then a minimal degree of unbalance in the target population should
be available for a beneficial weighting. Too low degrees of unbalance in the target popu-
lation (e.g. ft < 2) may be dangerous especially when p21 < p22 � 0.5.

• If p22 ∈ [0, p21), then starting from a certain degree of unbalance of the target subclass
structure weighted estimates are inefficient in comparison to the unweighted ones. How-
ever, a highly unbalanced target subclass structure (e.g. ft ≥ 2) is dangerous only when
the subclass error probabilities are pretty similar.

Proposition 5.2.5 supports theoretically Remark 5.2.4 when s > 1, i.e. when p22 ∈ (p21, 1− p21).
For instance, the statement from point (ii) confirms Remark 5.2.4 (i), according to which a min-
imal degree of unbalance of the target subclass structure is required for a beneficial weighting;
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the statement from point (iii) confirms Remark 5.2.4 (ii), since if s > 1, the discrepancy between
the subclass error probabilities becomes larger for increasing values of s given the worst case
reference, and for decreasing values of s, given the best case reference.

Proposition 5.2.6 supports theoretically Remark 5.2.5 when s < 1, i.e. when p22 is either an
element of [0, p21) or of (1 − p21, 1]. The statement from point (iii) matches Remark 5.2.5(i)
according to which weighting is beneficial up to a maximal degree of unbalance of the target
subclass structure; it also matches Remark 5.2.5(ii), since if s < 1, the discrepancy between the
subclass error probabilities increases for decreasing values of s.

The strongest result is provided by Corollary 5.2.7 to Proposition 5.2.6, when s < 1.
First, this states that, if p21 ≤ 0.4 and p22 > 1 − p21, the weighting benefit is sure already for a
size N2 = 24 of the heterogeneous class.
Second, when N2 ≥ 100, weighting is beneficial given any pair of subclass error probabilities
p21 and p22 which differ by at least 10 percentage points. This result is practically confirms the
practical findings from Remark 5.2.5(iii) and (iv).

Also, weighted estimates are always superior to unweighted ones given s ≤ 0.333. This up-
per bound corresponds to a certain minimal discrepancy between the subclass misclassification
probabilities, which can be easily computed for any particular value of p21 by the formula
(5.2.22).

The larger the class sample size N2, the larger the ft-intervals associated to a weighting benefit.

5.2.5 Subcase 2

The data at hand is in this case highly suboptimal with respect to the target subclass prevalence
structure. The quotient of the observed subclass prevalences is fd = 1

b ft
, with b ∈ [1,∞). For

instance, while in the target population one subclass (here, C2) represents 90% of the hetero-
geneous class, the same subclass appears at most in 10% of the samples of the heterogeneous
class in the data set at hand.

The relative difference between the true and observed subclass prevalence structures ρ∗ has the
expression:

ρ∗ =
1 − b f 2

t

b f 2
t

,

in terms of the quotient of the true subclass prevalences, ft and the degree of diametral opposi-
tion, b.
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We replace ρ∗ in the G̃-condition (5.2.12) by its representation in terms of b and ft. The weight-
ing benefit is available if the condition:(

1 + b ft

−1 + b f 2
t

) [
(1 + 2 ft + b f 2

t )s −
1 + 2b ft + b f 2

t

b ft

]
︸                                                         ︷︷                                                         ︸

=G̃(s,
1−b f 2

t
b f 2

t
, ft)

<
N2u2

p

σ1
, (5.2.30)

is accomplished.

5.2.5.1 Graphical investigation

For a fixed value of s, b is varied between 1 (diametrally opposite observed subclass preva-
lences with respect to the true ones) and 9 (the preponderant target subclass is extremely under-
sampled). The quotient of the true subclass prevalences ft is tuned over [1.1, 20] in steps of
0.01. Again, N2 and σ1 are chosen like established in Note 2.

Figures 5.4 and 5.5 illustrate G̃ (solid line) with respect to the worst case reference (dotted line
of same color) when s ≥ 1 and s ≤ 1, respectively. The same plots with respect to the best case
reference can be viewed in Appendix B, in Figures B.3 and B.4.
Table 5.8 (s ≥ 1) presents the upper and lower limits of the ft-intervals associated to a weighting
benefit with respect to the worst case reference in Figure 5.4 when b = 1 and b = 9 (rows 1, 2
and 5, 6, respectively). It presents also the upper and lower limits of the ft-intervals associated
to a weighting benefit in Figure B.3 where the best case reference is used (rows 3, 4 and 7, 8,
respectively).
Table 5.9 (s ≤ 1) presents the upper limits of the ft-intervals associated to a weighting benefit
with respect to the worst case (Figure 5.5) and the best case reference (Figure B.4) when b = 1
and b = 9.

Let s ≥ 1. With the settings from Note 2, this means that p21 ≈ 0.05 and p22 ∈ [0.05, 0.5] or
p22 ∈ [0.5, 0.95], depending on whether the worst or the best case reference is considered.
Recall the interpretation of the s-values from Table 5.6. This applies also to Table 5.8. The
discrepancy up between the subclass error probabilities increases from left to the right in Table
5.8, thus for increasing values of s, when the worst case reference is considered. However,
when the best case reference is considered, up increases from right to the left in Table 5.8, thus
for decreasing values of s.

Remark 5.2.6 (Case s ≥ 1, i.e. the error probability of the preponderant target subclass
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lies between the true error and the hit probability of the less prevalent target subclass.
Formally, p22 ∈ [0.05, 0.95]).

(i) Figure 5.4 indicates that a benefit by weighted error estimates is possible only for a degree
of target unbalance within some certain range ( f l

t , f h
t ). This means that a too low or too high

degree of unbalance in the target population may be dangerous in this context.

(ii) According to Table 5.8, the larger the degree of diametral opposition b between the true and
observed subclass prevalences, the shorter the range of the degree of target unbalance which is
favorable for weighting ( f h

t gets smaller).

(iii) The larger the discrepancy up between the subclass error probabilities, the lower f l
t and the

higher f h
t , thus the larger the ft-interval which is associated to the existence of a weighting

benefit.

(iv) When p22 ∈ [0.5, 0.95], thus p22 lies on the other side of 0.5 with respect to p21, weighting
is beneficial for any degree of diametral opposition b ≤ 9 at least up to a degree of unbalance
ft = 8.55 (see last row in Table 5.8).
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Figure 5.4: Subcase 2: Relation between G̃ and the worst case reference when s ≥ 1, σ1 = 0.05,
N2 = 100, and ft ≤ 20. The larger b, or the larger ft, or the smaller s, the less chances for a
weighting benefit; when b = 1, the benefit is sure for s ≥ 3 and ft within ( f l

t (s), f h
t (s)); this

interval gets larger for increasing values of s.
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Table 5.8: Subcase 2: Limits of the ft intervals associated to a weighting benefit when s ≥ 1.
Weighting provides a benefit at least for a degree of target unbalance ft within some certain
interval ( f l

t (s), f h
t (s)).

s-values 1 1.5 2 2.5 3 3.5 4 4.5 5
f l
t (s)(1) − − − 2.16 1.38 1.22 1.15 1.1 1.1

b = 1 f h
t (s)(1) − − − 3.20 8.36 14.22 > 20 > 20 > 20

f l
t (s)(2) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

f h
t (s)(2) > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20

f l
t (s)(1) − − − − − 1.1 1.1 1.1 1.1

b = 9 f h
t (s)(1) − − − − − 1.45 2.38 3.76 8.55

f l
t (s)(2) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

f h
t (s)(2) > 20 > 20 > 20 > 20 > 20 > 20 > 20 17.77 8.55

(1) The worst case reference is used (5.2.17).
(2) The best case reference is used (5.2.18).
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Figure 5.5: Subcase 2: Relation between G̃ and the worst case reference when s ≤ 1, σ1 =

0.125, N2 = 100, and ft ≤ 20. The larger b, or the larger ft, or the larger s, the less chances for
a weighting benefit; a benefit, if any, is obtained on some interval of the form (1, f h

t (s)).
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Table 5.9: Subcase 2: Upper limits of the ft-intervals associated to a beneficial weighting when
s ≤ 1. Weighting provides a benefit given a degree of target unbalance ft within some interval
(1, f h

t (s)).

s-values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b = 1 f h

t (s)(1) > 20 > 20 > 20 17.26 9.36 4.63 2.10 1.34 1.11 −

f h
t (s)(2) > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20

b = 9 f h
t (s)(1) 16.81 6.84 3.61 2.07 1.24 − − − − −

f h
t (s)(2) > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20 > 20

(1) The worst case reference is used (5.2.17).
(2) the best case reference is used (5.2.18).

Let s ≤ 1. With the settings from Note 2, this means that p21 ≈ 0.15 and p22 ∈ [0, 0.15] or
p22 ∈ [0.85, 1], depending on whether the worst or the best case reference is considered.
Recall the interpretation of the s-values from Table 5.7. This applies also to Table 5.9. The
discrepancy up between the subclass error probabilities increases with decreasing values of s,
both when the worst and the best case reference is considered.

Remark 5.2.7 (Case s ≤ 1, i.e. p22 ∈ [0, 0.15]
⋃

[0.85, 1]).

(i) Figure 5.5 indicates that the weighting benefit is possible up to a certain degree of unbalance
f h
t of the target subclass structure. When p22 ∈ [0, 0.15], a high degree of target unbalance may

be dangerous.

(ii) According to Table 5.9, the larger the degree of diametral opposition b between the true and
observed subclass prevalences, the larger the minimal discrepancy up between the subclass error
probabilities which is necessary for the existence of a weighting benefit.

(iii) The larger b and the smaller up, the smaller the maximal degree of target unbalance f h
t up

to which weighting provides a benefit.

5.2.5.2 Theoretical investigation

Proposition 5.2.9 (Case s > 1 and b = 1).

(i) A necessary condition for a beneficial weighting is that N2 > G̃( f 0
t )q−1; for s ≥ 1.5, f 0

t is
some number within (2, 3) depending on s.

(ii) If condition (i) is accomplished, then the weighting benefit is sure for ft ∈ ( f l
t , f h

t ) ⊂ (1,∞).
The larger N2, the larger the ft-interval associated to a beneficial weighting.

(iii) When the worst case reference is considered, the larger s > 1 (i.e. the larger the gap between
the subclass error probabilities), the larger the ft-interval associated to a sure weighting benefit.
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When the best case reference is considered, the smaller s > 1 (i.e. the larger the gap between
the subclass error probabilities), the larger the interval associated to a sure weighting benefit.

Proof.

(i) Using the expression of G̃ in (5.2.30) it is clear that given s > 1, b = 1, and ft > 1 this
function takes only positive values (G̃ > 0).
The first derivative of G̃ with respect to ft is:

∂G̃
∂ ft

=
1

f 2
t (−1 + ft)2

·

−1 + 2 ft + 3(1 − s) f 2
t − 2s f 3

t + s f 4
t︸                                        ︷︷                                        ︸

:=P(s, ft)

 .
If s > 1, then P(s, ft) has just one zero within (1,∞), f 0

t (s). This can be easily proved using
the sign and monotonicity of the first and second derivatives of P with respect to its second
argument.
Moreover P and therefore also the derivative of G̃ with respect to ft has a negative sign to the left
and a positive sign to the right of f 0

t (s). This indicates that G̃ has a minimum at G̃(s, 1, f 0
t (s)) >

0, while it is strictly monotonically decreasing to the left and strictly monotonically increasing
to the right of it. It holds:

lim
ft→1

G̃(s, 1, ft) = ∞

and
lim
ft→∞

G̃(s, 1, ft) = ∞.

Hence, using (5.2.12), a necessary condition for the weighting benefit to exist even on a small
neighborhood around f 0

t is that:

N2 > G̃(s, 1, f 0
t (s))q−1.

By solving P(s, f 0
t (s)) = 0 with respect to f 0

t , it results:

f 0
t (1.5) = 2.24 > 2

and
lim
s→∞

f 0
t (s) = 3.027 (≈ 3).

(ii) When the condition in (i) is accomplished, the weighting benefit is restricted to values of ft

within some interval ( f l
t (s,N2), f h

t (s,N2)) around f 0
t , whose lower and upper limits are obtained

by solving the equation:

G̃(s, 1, ft) = N2q
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with respect to ft.

We denote by G̃inv|(1, f 0
t ) the restriction of the inverse function for G̃ on (1, f 0

t ) and by G̃inv|( f 0
t ,∞) its

restriction on ( f 0
t ,∞). Then f l

t and f h
t are given by:

f l
t = G̃inv|(1, f 0

t ) ◦ (N2q)

and
f h
t = G̃inv|( f 0

t ,∞) ◦ (N2q).

Now, due the monotonicity of G̃ below and above f 0
t , which is proved at point (i), G̃inv|(1, f 0

t ) is a
strictly monotonically decreasing, while G̃inv|( f 0

t ,∞) a strictly monotonically increasing function.
Besides, N2q is monotonically increasing with respect to N2. This indicates, in a similar way to
(5.2.25), that f l

t is monotonically decreasing, while f h
t is monotonically increasing with respect

to N2. Thus, the larger N2, the larger the ft-interval associated to a beneficial weighting.

(iii) When the worst case reference is considered, q refers to qmin (see Notation 5.2.19). Then,
N2qmin is strictly monotonically increasing with respect to s > 1. Similarly to (5.2.26) it results
that ∂ ft l

∂s < 0 and ∂ fth

∂s > 0, thus the lower limit of the beneficial ft-interval is strictly monotoni-
cally decreasing, while the upper limit is strictly monotonically increasing with respect to s > 1.

When the best case reference is considered, q refers to qmax (see Notation 5.2.19). Then, N2qmax

is strictly monotonically decreasing with respect to s > 1. Similarly to (5.2.27) it results that
∂ ft l

∂s > 0 and ∂ fth

∂s < 0, thus the beneficial ft-interval becomes larger for decreasing values of
s > 1, when the best case reference is considered.

Proposition 5.2.10 (Case s < 1).

(i) A sufficient condition for a beneficial weighting is:

s ≤ s0(b, ft) :=
1

b ft
·

(
1 + 2b ft + b f 2

t

1 + 2 ft + b f 2
t

)
(< 1),

which means also that a minimal discrepancy between the subclass error probabilities is re-
quired.

(ii) Given a fixed value of s < 1, the weighting benefit is sure for every b within some interval
[1, b+(s)) up to a certain degree of unbalance of the target subclass structure, thus for any ft
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within (1, f h
t (s, b)], where:

b+(s) =
3(1 − s) +

√
9(1 − s)2 + 4s

2s
. (5.2.31)

For every b ∈ [1, b+(s)), the maximal degree of unbalance of the target subclass structure for
which the weighting benefit still exists is the only solution of the equation:

sb2 f 3
t + (2s − 1)b f 2

t + (s − 2)b ft − 1 = 0 (5.2.32)

which is greater than 1.

(iii) The lower s < 1, or equivalently, the larger the gap between the subclass error probabilities,
the larger also the intervals [1, b+(s)) and (1, f h

t (s, b)] associated to a sure weighting benefit.

Proof.

(i) The weighting benefit is sure when the difference in brackets in condition (5.2.30) is negative.
This is equivalent to the request that s is smaller than s0(b, ft), which lies below 1, ∀b ≥ 1,
∀ ft > 1. When s < 1, the upper limit s0 imposed on s means also that a minimal discrepancy
between the subclass error probabilities is required for a beneficial weighting.

(ii) Condition (i) is equivalent to:

P(s, b, ft) =: sb2 f 3
t + (2s − 1)b f 2

t + (s − 2)b ft − 1 ≤ 0.

The first derivative in terms of ft:

∂P(s, b, ft)
∂ ft

= 3sb2 f 2
t + 2(2s − 1)b ft + (s − 2)b

has always two zeros:

f −,+t (s, b) =
1 − 2s ∓

√
(1 + s)2 + 3s(2 − s)(b − 1)

3sb
,

where f −t < 0 and f +
t > 0.

When f +
t ≤ 1, P(s, b, ft) is strictly monotonically increasing with respect to ft over (1,∞).

Otherwise, P(s, b, ft) is strictly monotonically decreasing on (1, f +
t ] and strictly monotonically

increasing on ( f +
t ,∞).

It holds
lim
ft→∞

P(s, b, ft) = ∞. (∗)
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When ft → 1,
P(s, b, ft)→ sb2 + 3(s − 1)b − 1

which has two zeros at

b−,+(s) =
3(1 − s) ∓

√
9(1 − s)2 + 4s

2s
.

When s < 1, it holds b−(s) < 0 and b+(s) > 1.

Since b+(s) > 1, it holds ∀b ∈ [1, b+(s)):

P(s, b, 1) < 0. (∗∗)

Using (∗) and (∗∗), and the monotonicity of P, it results that P(s, b, ft) has one zero f h
t (s, b) on

(1,∞), ∀b ∈ [1, b+(s)). This means that P(s, b, ft) ≤ 0 ∀ ft ∈ (1, f h
t (s, b)].

(iii) Obviously, P(s, b, ft) is monotonically increasing in s. We split the analysis into two cases.

(1. Case) f +
t ≤ 1

For every arbitrary b ∈ [1, b+(s)), P is monotonically increasing with respect to s and ft.
Assume that for s < s′ it would hold f h

t (s, b) < f h
t (s′, b). This would lead to:

0 = P(s, b, f h
t (s, b)) < P(s′, b, f h

t (s, b)) < P(s′, b, f h
t (s′, b)) = 0,

which is a contradiction. Thus, f h
t should be monotonically decreasing with respect to s.

(2. Case) f +
t > 1

For every arbitrary b ∈ [1, b+(s)),

P(s, b, f +
t (s, b)) < P(s, b, 1) < 0.

Thus, f h
t (s, b) ∈ ( f +

t (s, b),∞), on which P is strictly monotonically increasing. From here ap-
plies the rationale of the first case.

Besides, it holds:

b+(s) = y(s) +

√
y(s)2 +

1
s

and
y(s) =

3(1 − s)
2s

.
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Since y and 1
s are strictly monotonically decreasing functions in s, and y > 0 for s < 1, it results

easily that b+ is also strictly monotonically decreasing with respect to s < 1. Thus, the smaller
s < 1, the larger also the interval [1, b+(s)), for which the weighting benefit is sure up to some
degree of unbalance of the target subclass structure f h

t (s, b).

Corollary 5.2.11 (Case s < 1).

(i) In particular, when b = 1, the weighting benefit is sure if the condition:

s ≤
1
ft

is accomplished. Equivalently, the weighting benefit is sure for every degree ft of unbalance of
the target subclass structure within an interval (1, 1

s ].

(ii) Very small values of s, e.g. s ≤ 0.2, are especially favorable for the existence of a weighting
benefit.

Proof.

(i) Clear from (i) in Proposition 5.2.10.

(ii) It holds:
lim
s→0

b+(s) = ∞

and
lim
s→1

b+(s) = 1.

For instance, if s = 0.2, then b+ ≈ 12.4; if s = 0.5, then b+ ≈ 3.56; if s = 0.9, then b+ ≈ 1.23.

Proposition 5.2.12 (Case s < 1 and b = 1). The weighting benefit is sure up to some certain
degree of unbalance of the target subclass structure, which depends on s and on the size N2 of
the heterogeneous class, i.e. for ft ∈ (1, f h

t (s,N2)). The lower s (i.e. the larger the gap between
the subclass error probabilities) and the larger N2, the larger f h

t and, therefore, the larger the
interval associated to a sure weighting benefit.

Proof. Using (5.2.12), the weighting benefit is generally provided if

G̃ < N2q.
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G̃ is continuous and strictly monotonically increasing with respect to ft on (1,∞) between

lim
ft→1

G̃(s, 1, ft) = −∞

and
lim
ft→∞

G̃(s, 1, ft) = ∞.

Hence, G̃ has exactly one zero f 0
t (s) within (1,∞) as well as a negative sign to the left and

a positive sign to the right of it, respectively. This indicates that, when b = 1, the weighting
benefit is sure given some fixed s < 1 at least for every ft ∈ (1, f 0

t (s)].

Actually, for a given size N2 of the heterogeneous class, the weighting benefit is provided on a
larger interval (1, f h

t (s,N2)), where f h
t (s,N2) > f 0

t (s) is the solution of

G̃(s, 1, ft) = N2q.

Therefore,
f h
t (s,N2) = G̃inv(N2q).

When s < 1 is fixed, since G̃ is strictly monotonically increasing with respect to ft, G̃inv is
strictly monotonically increasing, too. Thus, the larger N2, the larger N2q and therefore the
larger G̃inv(N2q) = f h

t (s,N2), too.
Also, according to Remarks (5.2.2) and (5.2.3), q is strictly monotonically decreasing with
respect to s < 1. Thus, N2q is monotonically decreasing with respect to s and therefore,
G̃inv(N2q) = f h

t (s,N2) is strictly monotonically decreasing with respect to s. Thus, the smaller
s < 1, the larger f h

t (s,N2) and therefore, the larger the ft-interval associated to a weighting
benefit.

5.2.5.3 Summary

The situation when π̂22 ≤ π21 is regarded. This subcase is first graphically investigated starting
from a fixed value of σ1 (i.e. from a fixed p21), and tuning s below or above 1 (i.e. varying
p22). Then a general theoretical investigation is used to justify and generalize the graphical ap-
proach. Without loss of generality, the error probability p21 in the less prevalent target subclass
is assumed to be less than 0.5.

Also here, the results from Tables 5.8 and 5.9 can be extended to other values of p21, using
Proposition 5.2.3 and Corollary 5.2.4.

In general, both graphical and theoretical investigations indicate that:
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• A necessary condition for a beneficial weighting is a minimal discrepancy |p21 − p22|

between the subclass misclassification probabilities; the larger the degree of diametral
opposition b between the true and observed subclass structures, the larger also the mini-
mally required discrepancy between p21 and p22.

• Given some certain discrepancy between the subclass error probabilities, the smaller π̂22

in comparison with π21, the smaller the favorable ft-range and therefore, the less chances
for a weighting benefit.

• Given a fixed degree of diametral opposition b, the larger the discrepancy up between the
subclass error probabilities, the larger the range of the degree of target unbalance ft for
which weighted estimates are better than unweighted ones.

• If p22 ∈ (p21, 1 − p21), then a benefit by weighted error estimates is possible only for a
degree of target unbalance within some certain interval. Too low and too high values of
ft may be dangerous especially when p21 < p22 � 0.5 and π̂22 � π21.

• If p22 ∈ [0, p21), then some weighting benefit is possible only up to a certain degree of
target unbalance. A high unbalance of the target subclass structure ( ft ≥ 2) may be dan-
gerous especially when π̂22 � π21.

Proposition 5.2.9 supports theoretically Remark 5.2.6 when s > 1, i.e. when p22 ∈ (p21, 1− p21).
The statement from point (ii) confirms Remark 5.2.6(i), according to which weighting is ben-
eficial only when the degree of unbalance of the target subclass structure belongs to a certain
range ( f l

t , f h
t ); the statement from point (iii) confirms Remark 5.2.6 (iii), which observes that

this range becomes larger when the difference between the subclass error probabilities increases.
Too low or too high degrees of target unbalance are obviously unrecommended.

Proposition 5.2.12 supports theoretically Remark 5.2.7 (i) in the context of diametrally opposite
observed unbalanced subclasses (b = 1, i.e. π̂22 = π21), when s < 1. In this case p22 is either
an element of [0, p21) or of (1 − p21, 1]. Accordingly, the weighting benefit is possible up to
some certain degree of unbalance of the target subclass structure. This gets lower for increasing
values of s, i.e. for decreasing values of the distance |p22− p21| between the subclass error prob-
abilities. Consequently, weighting may be dangerous given a highly unbalanced target subclass
structure and almost equal subclass error probabilities.

Proposition 5.2.10(i) confirms theoretically Remark 5.2.7(ii), according to which, a minimal
gap between the subclass error probabilities is required for a beneficial weighting; this gets
larger for increasing values of the degree of diametral opposition b between the true and ob-
served subclass structures. Proposition 5.2.10(ii) provides a computation scheme for the b
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(5.2.31) and ft (5.2.32)-domains associated to a sure weighting benefit starting from an esti-
mation of s.

Like the Table 5.9 indicates, the most profitable situations for weighting when s < 1 are
those characterized by a small error probability p21 (e.g. p21 ≤ 0.15) and an error probabil-
ity p22 ≥ 1 − p21. Given at least 100 observations per class, the benefit is sure in this case up
to a degree of unbalance of the target subclass structure of ft = 20 and a degree of diametral
opposition between the true and observed subclass structures of b = 9.

Corollary 5.2.11 shows that, when s < 1, weighted estimates are always superior to the un-
weighted ones in the context of diametrally opposite observed unbalanced subclasses (b = 1)
given a relation of at least inverse proportionality between s and ft, i.e. s ≤ 1

ft
. Besides, values

of s ≤ 0.2 are especially favorable, since a weighting benefit is possible in this case up to a
degree of diametral opposition b ≈ 12.

The larger the class sample size N2, the larger the b- and ft-intervals associated to a weighting
benefit.

5.3 Weighted versus unweighted class means

The simulation studies from Chapter 4 show the superiority of weighting methods which ac-
count for the true subclass prevalences not only in the process of rule validation and optimiza-
tion, but of rule building as well. In the case of a non-representative data at hand, when observed
and true subclass prevalences are clearly different, such methods (IIC and CCC) achieve less
biased performance estimates than methods which weight only on validation data sets (AAC
and ACC). They compute weighted parameter estimates for the heterogeneous class distribu-
tions starting from the plug-in estimates of these parameters in the subclasses and using the true
subclass prevalences as weights.

The weighted mean estimate of the heterogeneous class aims at a correction of the unweighted
estimate for the target data situation. In this section we focus on the impact of weighting on the
univariate mean estimate of the heterogeneous class. By univariate we refer to some candidate
feature X for the classification task.

The reader is reminded of the conventions adopted in Section 5.1. Accordingly, the quotient of
the true subclass prevalences ft is larger than 1, which is equivalent to π22 > π21. Therefore,
the target subclass structure is unbalanced and subclass C2 is always the preponderant target
subclass. Also, the degree of suboptimality of the data set at hand ρ∗ is assumed to be negative.
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This means that π̂22 < π22, or equivalently, the preponderant target subclass C2 is always under-
represented in the data set at hand.

In the following, some additional notations are introduced. Like in Section 5.2, the weighted
and unweighted mean estimates of the heterogeneous class C are denoted as µ̂w and µ̂unw, re-
spectively. The subclass mean estimates and respectively the true subclass means are µ̂2k and
µ2k, k = 1, 2, respectively. The absolute difference between the true subclass means is denoted
as u = |µ21 −µ22|. The subclass variances of the candidate feature are σµ

k , k = 1, 2. The quotient
between the feature variance in the preponderant target subclass, C2, and the feature variance in
the less prevalent target subclass, C1, is sµ =

σ
µ
2

σ
µ
1
.

The weighted mean estimate of the candidate feature in the heterogeneous class is computed as
a linear combination of the empirical subclass means with weights given by the true subclass
prevalences:

µ̂w = π21µ̂21 + π22µ̂22.

The empirical subclass means are unbiased. Using the true subclass prevalences as weights, the
weighted mean estimate is unbiased with respect to the true mean of the heterogeneous class,
too.

The unweighted mean estimate is naturally weighted by means of the observed subclass preva-
lences:

µ̂unw = π̂21µ̂21 + π̂22µ̂22.

The weighted mean estimates µ̂w reduce the bias caused by not taking into account the true
subclass prevalences. However, their efficiency depends on their variance, too. Hence, a com-
parison between the mean squared errors of the weighted and unweighted mean estimates is
more suitable than just one of their expectations.

Since computations of the subclass mean estimates are based on disjoint pools of observations,
it is plausible that the estimated subclass means are uncorrelated. Thus, Cov(µ̂21, µ̂22) = 0 and
therefore the benefit condition (5.2.11) from Section 5.2 applies also in the context of weighted
class means.
Adapting condition (5.2.11) to the context of weighted means, weighted mean estimates are
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more efficient than the unweighted ones if:[
1 + (1 + ρ∗) ft

ρ∗ ft

] {
[2 + (2 + ρ∗) ft] −

[2(1 + ρ∗) ft + 2 + ρ∗]
1 + ρ∗

sµ

}
︸                                                                           ︷︷                                                                           ︸

=G̃(sµ,ρ∗, ft)

<
N2u2

σ
µ
1

. (5.3.1)

The theoretical discussion regarding the weighted error estimates in Section 5.2 applies here in
a similar way. However, assuming σµ

1 to be constant, the weighting benefit is assessed indepen-
dently of it when sµ is varied below and above 1. Therefore, the left and right hand side terms
of this inequation are now independent. This is a consistent reduction in the complexity of the
problem.
Another simplification is that sµ, the quotient between the variances of the candidate feature in
the subclasses, has now a unique interpretation (compare to Figure 5.1).

Now, if the user knows the target subclass distributions, then he can easily compute the value
of the left and right hand side terms in (5.3.1) and compare them. Thus, the assessment of the
weighting benefit is rather uncomplicated in this case.

If the user has no a-priori information about the target subclass distributions, he can compute
means and variance estimates of the subclass means by resampling techniques based on the
observations in the data set at hand.

Our mathematical investigations of the benefit condition (5.3.1) should enable a user with only
some vague idea about the target distributions to make an adequate decision about the further
analysis workflow.

It holds:

lim
ft→∞

G̃(sµ, ρ∗, ft) = ∞, (ρ∗ = const., sµ = const.) (5.3.2)

lim
ρ∗→−1

G̃(sµ, ρ∗, ft) = ∞ ( ft = const., sµ = const.) (5.3.3)

lim
ρ∗→0

G̃(sµ, ρ∗, ft) =

∞ if sµ > 1

−∞ if sµ < 1.
( ft = const.) (5.3.4)

The following remarks should help to decide on whether weighted mean estimates suit a partic-
ular diagnostic situation, or not. Remember that σµ

1 is constant throughout this section.



5.3. Weighted versus unweighted class means 132

Remark 5.3.1.

(i) From (5.3.2) it is clear that in the context of particularly high values of ft, thus of highly
unbalanced target subclass structures, the danger of inefficient weighted estimates increases.

(ii) The relation (5.3.3) indicates that a large degree of mismatch between the true and observed
subclass prevalences, i.e. a high |ρ∗|, can result in inefficient weighted estimates, too.

(iii) In general, the smaller the true variance of the candidate feature in the preponderant tar-
get subclass than in the less prevalent target subclass, the higher the chances for a beneficial
weighting.

(iv) In general, the larger u, the gap between the target subclass means, the more chances for a
beneficial weighting.

(v) From (iii) and (iv) it results that weighted mean estimates are especially efficient under a
pronounced target subclass structure.

(vi) The larger the size N2 of the heterogeneous class, the lower the minimal quotient between u

and
√
σ
µ
1 which is required for a beneficial weighting; thus, the larger the maximally allowed

degree of overlap between the subclasses (subclass structure becomes less important).

Using the benefit condition (5.3.1), µ22 should lie outside of an interval (µ21−η
√
σ
µ
1, µ21+η

√
σ
µ
1)

with η =

√
G̃(sµ,ρ∗, ft)

N2
, given G̃ > 0; in the context of approximately normally distributed sub-

classes, a large u has also the interpretation that the mean of the under-represented subclass is
rather unspecific for the distribution of the over-represented subclass.

5.3.1 Subcase 1

We address again the special case when the target subclass structure is unbalanced ( ft > 1),
while the observed subclass structure is balanced ( fd = 1).
We remind also that the condition (5.3.1) is derived using the unbiasedness property of the plug-
in means. This means that N2 is automatically considered to have a reasonable size in order to
provide reliable mean estimates.

Assume that the heterogeneous class has at least N2 = 50 samples, the variance in the pre-
ponderant target subclass is at most 5 times larger than the variance in the less prevalent target

subclass (i.e. sµ ≤ 5), and µ22 < (µ21 −

√
σ
µ
1, µ21 +

√
σ
µ
1). Table 5.10 indicates the minimal

values of the quotient of the true subclass prevalences ft which are necessary for a beneficial
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weighting under these settings (see the upper plot in Figure 5.6). Obviously, the same table

applies when N2 = 100 and µ22 < (µ21 −

√
0.5σµ

1, µ21 +

√
0.5σµ

1) (see Remark 5.3.1(vi)).

Table 5.10: Subcase 1: Lower limits of the ft-intervals associated to a weighting benefit when
sµ ≥ 1 and N2

u2

σ
µ
1
≥ 50. For a beneficial weighting a minimal degree of unbalance in the target

subclass structure f l
t (sµ) is required.

sµ-values 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
f l

t (sµ) 1.1 1.1 1.2 1.33 1.48 1.65 1.86 2.13 2.46

Remark 5.3.2 (Case sµ > 1, or equivalently, the variance of the candidate feature is higher
in the preponderant than in the less prevalent target subclass (see upper plot in Figure 5.6
and the corresponding Table 5.10)).

(i) Like noticed from the upper plot in Figure 5.6 and specified in Table 5.10, a minimal degree
of unbalance f l

t of the target subclass structure is required for a beneficial weighting; this is
equivalent to the request of a minimal degree of suboptimality of the data at hand, since fd = 1.

(ii) The larger sµ, thus the larger the variance of the preponderant target subclass with respect
to the variance of the less prevalent target subclass, the larger the minimally required degree of
unbalance of the target subclass structure, too (i.e. also the larger the minimally required degree
of mismatch between the study and the target population).

Remark 5.3.3 (Case sµ = 1, or equivalently, the candidate feature has equal variances in
the target subclasses).

In this case G̃ = 4 as stated by Proposition 5.2.8(i). Thus, the benefit is sure for every degree
of unbalance ft of the target subclass structure if the degree of overlap between the two target
subclasses u√

σ
µ
1

is higher than 2
√

N2
.

The previous remark claims that given a heterogeneous class with at least 50 observations, the
relative gap between the subclass means u√

σ
µ
1

should just exceed 0.28.

Assume a normal distribution in the small target subclass. Then the former condition requires
that the mean of the preponderant target subclass does not belong to the 22% of the most spe-



5.3. Weighted versus unweighted class means 134

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

0
10

0
30

0
50

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

N2 == 50
σσ2

µµ == sµµσσ1
µµ

●

sµµ ≥≥ 1

1
1.5
2
2.5
3
3.5
4
4.5
5

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

5 10 15 20

−
50

−
30

−
10

0

ft

G~
((s

,,  1
−−

f t
f t

,,  f
t))

N2 == 50
σσ2

µµ == sµµσσ1
µµ

●

sµµ << 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 5.6: Subcase 1: Weighted means - behavior of G̃(s, 1− ft
ft
, ft) when ft ≤ 20. Upper plot:

The gray dotted line corresponds to N2 = 50 and u√
σ
µ
1

= 1. When sµ ∈ [1, 5] the weighting ben-

efit is sure for any ft ≥ 2.5. Lower Plot: The gray dotted line corresponds to 0. Independently
of the target subclass distribution structure, when sµ < 1, the weighting benefit is sure up to
s = 0.5 for any ft ≤ 5.
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cific observations for this distribution; equivalently, µ22 < (µ21 − 0.28
√
σ
µ
1, µ21 + 0.28

√
σ
µ
1).

Table 5.11: Subcase 1: Upper limits of the ft-intervals associated to a weighting benefit when
sµ < 1 and N2

u2

σ
µ
1
≥ 0. Weighting is beneficial up to a certain degree of unbalance in the target

subclass structure f h
t (sµ).

sµ-values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f h

t (sµ) >20 >20 >20 12.99 4.99 2.99 2.09 1.57 1.23

Remark 5.3.4 (Case sµ < 1, or equivalently, the variance of the candidate feature is lower
in the preponderant subclass than in the less prevalent target subclass (see the lower plot
in Figure 5.6 and the corresponding Table 5.11)).

(i) Like noticed from the lower plot in Figure 5.6 and specified in Table 5.11, weighted estimates
are inefficient compared to unweighted ones starting from a certain degree of unbalance f h

t of
the target subclass structure.

(ii) The smaller the variance of the large target subclass compared to the variance of the small
target subclass (i.e. the smaller sµ), the higher the minimal degree of target unbalance f h

t at
which weighting becomes dangerous.

Assume that sµ ≤ 0.5 which means that the variance in the preponderant target subclass rep-
resents at most 50% of the variance in the less prevalent target subclass. Then weighting is
beneficial at least up to a five times higher prevalence of the preponderant target subclass (i.e.
for every ft ≤ 5, or equivalently, π22 ≤ 5 · π21). See Table 5.11 and the lower plot in Figure 5.6.

5.3.2 Subcase 2

According to this special case, both the observed and the target subclass prevalence structures
are unbalanced and π̂22 ≤ π21. Tables 5.12 and 5.13 present the ranges of the degree of unbalance
ft for which weighting is beneficial under the settings from Figures 5.7 and 5.8, respectively.
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Figure 5.7: Subcase 2: Weighted means - behavior of G̃(s, 1−b f 2
t

b f 2
t
, ft) when sµ ≥ 1 and ft ≤ 20.

The gray dotted line corresponds to N2 = 50 and u√
σ
µ
1

= 1. When b = 1 and sµ ≤ 2, thus

the variance in the preponderant target subclass is at most two times larger than the variance in
the less prevalent target subclass, weighting is beneficial for any degree of unbalance ft ≤ 20.
When b = 9, with the same setting, weighting is sure up to ft = 2.44.
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Table 5.12: Subcase 2: Limits of the ft-intervals associated to a weighting benefit when sµ ≥ 1,
N2

u2

σ
µ
1
≥ 50, and b ∈ {1, 9}. Weighting is beneficial for a degree of unbalance in the target

subclass structure within ( f l
t , f h

t ).

sµ-values 1 1.5 2 2.5 3 3.5 4 4.5 5

b = 1 f l
t (sµ) 1.1 1.1 1.1 1.16 1.22 1.29 1.37 1.47 1.59

f h
t (sµ) >20 >20 >20 17.22 13.76 11.26 9.36 7.85 6.59

b = 9 f l
t (sµ) 1.1 1.1 1.1 1.1 1.1 − − − −

f h
t (sµ) 5.33 3.41 2.44 1.83 1.41 − − − −

Remark 5.3.5 (Case sµ ≥ 1, or equivalently, the variance of the candidate feature is higher
in the preponderant than in the less prevalent target subclass (see Figure 5.7 and the cor-
responding Table 5.12)).

(i) Like noticed from Figure 5.7 and indicated by Table 5.12, weighting is especially feasible in
the case of a small to moderate degree of unbalance in the target population given just diame-
trally opposite subclass prevalences in the data at hand with respect to the target. This is the
case when b = 1.

(ii) Weighting is beneficial up to a degree f h
t of unbalance in the target population and a degree

b of diametral opposition between the quotients of true and observed subclass prevalences.

(iii) Weighting is especially dangerous for large values of sµ, thus for a much higher true variance
of the candidate feature in the preponderant than in the less prevalent target subclass. Another
disadvantageous condition is a large b, thus a high degree of more than inverse proportionality
between the target and observed subclass structures.
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Figure 5.8: Subcase 2: Weighted means - behavior of G̃(s, 1−b f 2
t

b f 2
t
, ft) when sµ < 1 and ft ≤ 20.

The gray dotted line corresponds to N2 = 50 and u√
σ
µ
1

= 1. When b = 1 weighting is beneficial

for any degree of unbalance ft ≤ 20. When b = 9 and s ≤ 0.9 weighting is beneficial for any
ft ≤ 5.96.
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Table 5.13: Subcase 2: Upper limits of the ft-intervals associated to a weighting benefit when
sµ < 1, N2

u2

σ
µ
1
≥ 50, and b ∈ {1, 9}. Weighting is beneficial up to a certain degree of unbalance in

the target subclass structure f h
t .

sµ-values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b = 1 f h
t (sµ) >20 >20 >20 >20 >20 >20 >20 >20 >20

b = 9 f h
t (sµ) >20 >20 18.58 13.85 11.02 9.12 7.77 6.75 5.96

Remark 5.3.6 (Case sµ < 1, or equivalently, the variance of the candidate feature is smaller
or equal in the preponderant subclass than in the less prevalent target subclass (see Figure
5.8 and the corresponding Table 5.13)).

The smaller the variance σµ
2 of the preponderant target subclass with respect to the variance σµ

1

of the less prevalent target subclass, the higher the chances for a weighting benefit.

5.4 Conclusions

The theoretical study of how non-representativeness in the data impacts on weighted estimates
of classification errors is the focus throughout this chapter. Our second interest is to check how
does the data non-representativeness impact on the weighted parameter estimates. Here only
the weighted mean estimates are considered.
The target population has two classes. One of them, labeled as D or 1, is homogeneous, while
the other one, C or 2, is heterogeneous with two subclasses, C1 and C2. The true subclass preva-
lences in the target population, π21 and π22, corresponding to C1 and respectively C2, are known.

The data at hand, also called study population, represents a small excerpt of the target popu-
lation collected during some study and used to build the classification rule. It has the same
class and subclass composition as the target population. But, like it is usually the case in the
diagnostic practice, subclasses appear in the study population according to different observed
prevalences than the true ones. These are π̂21 and π̂22.

The degree of mismatch between the target population and the data at hand is quantified by a
measure of comparison between the quotients of the true and observed subclass prevalences.
Given an unbalanced target subclass structure (π21 , π22), subclass C2 is by convention the
preponderant subclass, i.e. π22 > π21. Also by convention, C2 is the under-represented subclass
in the data at hand, i.e. π̂22 < π22. The situation of a large target subclass being under-sampled
in the data set at hand is considered as it is more likely to be relevant for the diagnostic practice.
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In Chapter 4 the dangers related to building classification rules based on strongly biased ob-
served subclass prevalences are highlighted. Two modalities to account for the true subclass
prevalence structure are presented:

(a) in the phase of rule validation/optimization by computation of weighted error estimates
as sums of the subclass analogs with the true subclass prevalences as weights;

(b) in the phase of rule building by computation of weighted class distribution parameters:
weighted class means and covariance matrices according to the true subclass prevalences.

Simulation studies provide evidence for the superior performance of rules which account in
both ways for the true subclass structure. They approach better the expected classification er-
rors in the target population especially when the degree of mismatch between the data at hand
and the target population is moderate to high. Therefore, in the context of a moderate to high
non-representativeness of the data set at hand, weighting seems to be the right solution.

However, the question of interest is if the benefits associated to a bias reduction are not en-
dangered by some simultaneous variance inflation. Variance of the weighted estimates might
be enhanced by the contribution of the up-weighted subclasses, thus, of those subclasses being
under-represented in the data set at hand. The theoretical research in this chapter aims at a de-
scription of suitable as well as potentially dangerous situations for the application of weighted
estimates. In this way a prime theoretical basis is obtained that might be of help in the decision-
making about weighting or not.

The most important quantities used to assess the weighting benefit are the degree of mismatch
between study and target population and the degree of unbalance in the target population. Given
the collected data and known true subclass prevalences, both quantities are known. The latter is
computed as quotient between the true prevalences of the preponderant (C2) and the less preva-
lent target subclass (C1) ( ft = π22

π21
). The former is computed as the relative difference between

the quotients of observed ( fd = π̂22
π̂21

) and true subclass prevalences ( ft) with respect to the target
population ( fd− ft

ft
).

Weighted classification errors. The weighted error estimate in the heterogeneous class is com-
puted as the weighted sum of the subclass misclassification rates with weights given by the true
subclass prevalences. Suppose the user knows the true subclass errors in the target population.
Then the inequality (5.2.12) can be easily evaluated and provides a concrete decision on whether
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to weight or not.

If a user has no idea about the true subclass errors, then the necessary information can be
obtained by adequate simulations.
Our theoretical research provides some orientating information for a user that has a rather vague
idea about the dimension of the subclass errors in the target. Tables 5.4 and 5.5 offer potentially
useful criteria to decide upon using weighting or preferably avoiding it.

The subclass error probabilities are denoted by p21 and p22. They are also referred as error
probabilities of the less prevalent and preponderant target subclass, respectively.

In general, weighted estimates have good chances to outperform the unweighted ones given a
reasonable size of the heterogeneous class, a high discrepancy between the subclass error prob-
abilities and a value of the error probability p21 in the less prevalent subclass which is close to
0 or 1.

Further it is assumed without loss of generality that p21 has some constant value below 0.5,
while p22 is variable.
When the distance between the true subclass error probabilities grows, also the range of the
degree of mismatch between data at hand and target population becomes larger, for which the
weighted estimates are superior to the unweighted ones. Extremely high or extremely low de-
grees of mismatch between the target population and the data at hand present under certain
situations an increased danger potential.

Given equal subclass error probabilities, i.e. p21 = p22, weighting provides no benefit. The
higher the gap between the subclass error probabilities, the higher the chances to achieve better
error estimates of the heterogeneous class by weighting.

The most suitable setting for a beneficial weighting is when p22 ≥ 1 − p21. In this case, given
a small value of p21 (e.g. p21 ≤ 0.15), the benefit is sure for almost all degrees of mismatch
between data at hand and the target population.

The most unfavorable setting for a beneficial weighting is when the subclass probabilities are
located on the same side of 0.5, thus when either p22 < p21 or p21 < p22 < 0.5. Obviously, the
best chances for a weighting benefit in the former situation are given when p22 approaches 0,
while in the latter situation when p22 approaches 0.5, thus when the dissimilarity between the
subclass error probabilities is maximized.

The improvement potential of weighted estimates is regarded in more detail on two special
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subcases. First is addressed as it has more application in the diagnostic practice; second is used
to investigate what happens in extreme cases:

• Subcase 1: unbalanced true subclasses (π21 < π22), balanced observed subclasses (π̂21 =

π̂22 = 0.5)

• Subcase 2: unbalanced true subclasses (π21 < π22), at least diametrally opposite unbal-
anced observed subclasses (π̂22 ≤ π21 and π̂21 ≥ π22). Equivalently, this subcase is char-
acterized by the relationship fd = 1

b ft
, with b ≥ 1 being the degree of diametral opposition

between the true and observed subclass prevalence structures.

Further, some theoretical findings regarding the weighting benefits in the special situations in-
troduced by these two subcases are presented.

Subcase 1 (π̂21 = π̂22 = 0.5).

• Assume that p21 ≤ 0.4 and p22 ∈ (1 − p21, 1]. Then according to Corollary 5.2.7(i)
weighted estimates are beneficial for any degree of unbalance of the target subclass struc-
ture starting already from 24 observations in the heterogeneous class.

• Starting from a size N2 = 100 of the heterogeneous class, the weighting benefit is sure
given any subclass error probabilities which differ by at least 10 percentage points, i.e.
|p21 − p22| > 0.1 as it is stated in Corollary 5.2.7(ii).

• Weighted error estimates are superior to the unweighted ones if the variance p21(1 − p21)
of the misclassification event in the less prevalent target subclass is at least three times
larger than the variance p22(1 − p22) of the misclassification event in the preponderant
target subclass. See Proposition 5.2.6(i).

Subcase 2 (π̂22 ≤ π21).

• The smaller the observed prevalence π̂22 of the large target subclass in comparison with
the true prevalence π21 of the small target subclass, the less beneficial the weighted esti-
mates in comparison to the unweighted ones. This is shown both by Tables 5.8 and 5.9
and Proposition 5.2.10(ii).

• If p21 ≤ 0.15 and p22 ≥ 1− p21, given at least 100 observations in the heterogeneous class,
the benefit is sure at least up to a degree of unbalance of the target subclass structure of
ft = 20 and a degree of diametral opposition between the true and observed subclass
structures of b = 9. See Table 5.9.
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Weighted estimates of class means. The weighted mean estimate of a candidate feature in the
heterogeneous class is computed as weighted sum of the empirical subclass means with weights
given by the true subclass prevalences.

Suppose a user knows the true subclass distributions. Then the inequality (5.3.1) can be easily
evaluated and provides a concrete decision on whether to weight or not.
If the user has no a-priori knowledge about the true subclass distributions, he can approximate
them by means of resampling techniques starting from the data set at hand.
Our investigations about the efficiency of weighted mean estimates are designated for a user
with a rather vague idea about the true subclass distributions.

The true means of the preponderant and less prevalent target subclasses are denoted as µ22 and
µ21, respectively.
The advantage of the weighted mean estimates upon the unweighted ones depends strongly on
the gap between the true subclass means |µ21 − µ22| and the relationship between the target sub-
class variances of the candidate feature. Generally, the higher the difference between the true
subclass means and the lower the variance of the preponderant target subclass in comparison to
the less prevalent target subclass, the higher the chances for a benefit by weighting.
A favorable setting for weighting is when the true mean µ22 of the preponderant target subclass
represents no typical observation for the distribution of the feature candidate in the less preva-
lent target subclass. This is the case when µ22 belongs rather to the tails of this distribution or
completely outside of its range.

In general, the weighting benefit is endangered by extreme values of the degree of mismatch
between data at hand and target population. Thus, given an extremely suboptimal or a well
proportioned data at hand with respect to the target the decision on weighting or not should be
processed with care. In our special subcases the degree of unbalance of the target subclass struc-
ture alone is already an indicator of the degree of suboptimality of the data at hand. Therefore,
in these cases, the weighting decision should be made with particular care if the target subclass
structure is highly unbalanced or nearly balanced.

If the subclass structure in the target population is pronounced, then the chances for a weighting
benefit increase rapidly. This happens if the relative distance between the true subclass means
with respect to the variance in the small target subclass is large and especially if the variance in
the large target subclass is small.



Chapter 6

Discussion

The early identification of complex diseases by means of biomarker combinations is a chal-
lenging field in the medical research of the last decades. Statistical methods provide support for
achieving meaningful and highly accurate diagnostic rules based on biomarker combinations.
However, diagnostic rules obtained by means of multivariate classification algorithms should
not only fulfill the goal of a reliable assessment of the disease status but also find a large accep-
tance in the medical practice.

We address the suitability of classification rules for the diagnostic practice regarding the accom-
plishment of important quality standards like simplicity, interpretability, high accuracy. Simple
and interpretable rules enable an easy assessment by medical professionals and a good compre-
hension of the connections between biomarker concentrations and the disease status. Accurate
rules guarantee a low probability of erroneous assignments, thus a reliable diagnosis on the
target population. However, due to the trade-off between the performance and the complexity
of the classification models, simple and interpretable rules may be obtained in change of some
performance loss.

Dangers and benefits associated to the accomplishment of these quality standards are high-
lighted using Logic Regression as example. This new tree-based classification method has a
great theoretical potential to provide simple, interpretable and therefore highly accepted rules
in the diagnostic practice.
However, a shortcoming of this method is that continuous predictors should be dichotomized
first, since this method works only with binary predictors. Two dichotomization alternatives
are used, one based on the empirical quantiles and one based on a best threshold which is opti-
mized by Logistic Regression with respect to the classification task. The performance of Logic
Regression is evaluated in comparison to that of established classification algorithms, like Reg-
ularized Discriminant Analysis and Random Forests, which are known to provide good rules in
terms of diagnostic accuracy.
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Simulations of various distributional conditions show that the potential of this method is strongly
dependent on the underlying data structure. Logic Regression provides the simplest and there-
fore also the most attractive rules for the diagnostic practice, while it loses up to 5 percentage
points diagnostic accuracy in comparison to the other methods. The dichotomization procedure
based on an optimized threshold is recommended for the diagnostic practice.
According to the simulations, the quantiles-based Logic Regression has a larger bias and insta-
bility in comparison to the other algorithms in many contexts. Despite of these findings, the
quantiles-based method provides the best results on the real data example from a study for the
early identification of rheumatoid arthritis.
The advantage of simple and interpretable models can be enhanced in future by a faster R-
implementation of this method as well as by the right choice of the dichotomization method,
triggering the high acceptance of this method within the diagnostic frame.

However, the main focus of this thesis is to find appropriate ways to adapt a classification rule
for the diagnosis in a heterogeneous target population, when the target subclass prevalences are
known. This problem is studied both empirically and theoretically in Chapters 4 and 5, respec-
tively.
As a diagnostic rule has to accurately predict the disease status on the target population, an issue
of great importance is to be able to design reliable diagnostic rules also when suboptimal data
is used for learning.
In the statistical literature the only available method to account for the known target subclass
prevalence structure is the so-called post-weighting. The final misclassification error estimate
is weighted by means of the true subclass prevalences first in the phase of rule validation, thus,
after building the rule on the suboptimal learning data. Our idea is to account for the true sub-
class prevalences already in the phases of rule building and optimization.

We propose four weighting algorithms for learning rules in the context of a heterogeneous target
population when the observed and the target subclass prevalences are different.
Three of them account for the target subclass prevalence structure not only in the validation
phase, when the final estimate of the rule performance is corrected with respect to the target
situation, but already in the phases of rule building and/or optimization.
They are based on weighted estimates of the misclassification error and of the distribution pa-
rameters of the heterogeneous class. These weighted estimates are computed by replacing the
observed with the target subclass prevalences in the computation formula of the common plug-
in estimates. Their statistical properties are investigated both empirically and theoretically.
Throughout this survey a homogeneous disease class and a heterogeneous control class with
two subclasses are considered.
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A simulation study is carried out to compare the performance of the weighting algorithms over
several distribution configurations in the target population. This empirical survey is performed
with respect to four features. Two of them are assumed to be informative and the other two to be
non-informative for the class and subclass discrimination. Also, the investigations are restricted
to a situation of interest for the diagnostic practice, which arises especially in the context of
case-control studies: the subclass structure is balanced in the data used for learning.
The algorithms which account for the target subclass prevalence structure both in the phase
of rule building, optimization and validation are proved to be superior in terms of accuracy
and stability of their results in comparison to algorithms which weight only in the optimiza-
tion and/or validation phase. According to our simulations, weighted rules approach well the
expected classification errors in the target population especially when the discrepancy between
the observed and the target subclass prevalences is high. Also, simulations show that a large
discrepancy between the subclass degrees of overlap with the homogenous class as well as a
pronounced subclass structure in the target population may be favorable conditions for a bene-
ficial weighting.
The algorithms are verified with the rheumatoid arthritis real data. Based on the simulation and
real data results, the algorithms which weight in all phases of the rule development process are
strongly recommended given any suboptimal learning data. Their application guarantees, if not
always a high benefit, then at least safe results in case of data non-representativeness.

According to the empirical survey, weighted rules approach better than unweighted ones the
true classification errors in the context of data non-representativeness. From this point of view,
the use of weighted estimates for the misclassification error and for the distribution parame-
ters of the heterogeneous class seems to be beneficial. However, the benefits associated to a
bias reduction by weighting can be endangered by a simultaneous variance inflation due to up-
weighting of the under-represented subclasses in the data used for learning. Suitable as well
as potentially dangerous situations for the application of weighted estimates are ascertained by
means of theoretical investigations.

In general, weighted error estimates have good chances to outperform the unweighted ones
given a reasonable class size, a high discrepancy between the subclass error probabilities and a
medium to high discrepancy between the true and observed subclass prevalences. Also, given
a small error probability in the less prevalent target subclass, the most suitable situation for
weighting is when the error probability in the preponderant target subclass is at least equal to
the hit probability in the less prevalent target subclass.
Weighted mean estimates have good chances to outperform the unweighted ones given a rea-
sonable class size, a relevant distance between the true subclass means and a lower variance of
the candidate feature in the preponderant than in the less prevalent target subclass. The latter
two aspects stand actually for a well contoured subclass structure in the heterogeneous class.
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One should notice that the subclass error probabilities are theoretical analogs for the degrees
of subclass overlaps with the homogenous class addressed in the empirical survey. Also, a
medium to high discrepancy between the true and observed subclass prevalences corresponds
to a medium to high degree of unbalance of the target subclass structure in the empirical survey,
which assumes a balanced observed subclass structure. Using these observations it becomes
clear that the theoretical results confirm essentially the conclusions drawn from the empirical
study.

However, the theoretical survey indicates also that the weighting benefit is endangered by ex-
treme values of mismatch between the data used for learning and the target population. Given
extremely different or very similar observed and target subclass prevalences, the decision on
whether to weight or not should be processed with particular care.

We compare theoretically only weighted and unweighted estimates of the misclassification er-
ror and of the class means in the context of one candidate feature. However, the weighting
strategies involve also weighted estimates of the covariance matrices. Therefore, a future task
is to evaluate their statistical efficiency in comparison to the unweighted covariance estimates,
too. Also, future investigations may be carried out in the context of many features.

Besides, this work addresses empirically and theoretically only the simplified case when only
one class is heterogenous and it has two subclasses. The envision of a proper way to generalize
both the empirical as well as the theoretical results for the case when both classes are heteroge-
neous and/or multiple subclasses are available is left for future work.

The weighting algorithms are tailored for the use with the Regularized Discriminant Analysis.
It should be however pointed out that the weighting ideas are general and they can be adapted
in future to other classification methods, too.
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TU-Dortmund Statistics Department, Dortmund.

Ruczinski, I. 2000. Logic Regression. Ph.D. thesis, University of Washington, Washington.

Ruczinski, I., Kooperberg, C., & LeBlanc, M. L. 2003. Logic Regression. Journal of Compu-
tational and Graphical Statistics, 12(3), 475–511.

SAS-Institute. 2000. SAS V8.2. Cary, NC, USA.

SAS-Institute. 2005. JMP Design of Experiments, Release 6. Cary, NC, USA. ISBN 1-59047-
816-9.

Schmitt, R.I. 2005. Master Thesis: Logic Regression in Diagnostic Classification Problems.
TU-Dortmund, Statistics Department, Dortmund, in Collaboration with Roche Diagnostics
GmbH, Penzberg.

Schwender, H., & Ickstadt, K. 2007. Identification of SNP interactions using logic regression.
Biostatistics. Epub ahead of print.

Sukhatme, S., & Beam, C.A. 1994. Stratification in Nonparametric ROC Studies. Biometrics,
50, 149–163.

Szepannek, G., & Luebke, K. 2004. Different Subspace Classification. Tech. rept. Department
of Statistics, University of Dortmund.

Szepannek, G., & Weihs, C. 2005. Variable Selection for Discrimination of More than Two
Classes Where Data are Sparse. Tech. rept. Department of Statistics, University of Dort-
mund.

Szepannek, G., & Weihs, C. 2006. Local Modelling in Classification on Different Feature
Subspaces. Tech. rept. Department of Statistics, University of Dortmund.

Team, R Development Core. 2007. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.



BIBLIOGRAPHY 151

Titterington, D. M., & Bowman, A. W. 1985. A Comparative Study of Smoothing Procedures
for Ordered Categorical Data. Journal of Statistical Computation and Simulation, 21, 291–
312.

Tutz, G., & Binder, H. 2005. Localized Classification. Statistics and Computing, 15, 155–166.

Vaid, T.P., Burl, M.C., & Cervis, N.S. 2001. Comparison of the Performance of Different
Discriminant Algorithms in Analyte Discrimination Tasks using an Array of Carbon Black-
Polymer Composite Vapor Detectors. Analytical Chemistry, 73(2), 321–331.

van Laarhoven, P.J., & Aarts, E.H. 1987. Simulated Annealing: Theory and Applications.
Kluwer Academic Publishers: Boston.

Weihs, C., & Jessenberger, J. 1999. Statistische Methoden zur Qualitätssicherung und -
optimierung in der Industrie. Wiley-VCH Verlag: Weinheim.

Wild, N., Karl, J., Grunert, V. P., Schmitt, R. I., Garczarek, U., Krause, F., Hasler, F., Van-
Riel, P. L. C. M., Bayer, P. M., Thun, M., Mattey, D. L., Sharif, M., & Zolg, W. 2008.
Diagnosis of rheumatoid arthritis: multivariate analysis of biomarkers. Biomarkers, 13(1),
88–105.

Wild, Norbert, Karl, J., & Grunert, V.P. 2003. Multivariate Analysis in Rheumatoid Arthritis
vs. Controls. Roche Diagnostics GmbH, New Technologies.

Xu, Q.-S., Liang, Y.-Z., & Du, Y.-P. 2004. Monte Carlo Cross-Validation for Selecting the
Model and Estimating the Prediction Error in Multivariate Calibration. Journal of Chemo-
metrics, 18, 112–120.

Yee, T. W. 2007. VGAM: Vector Generalized Linear and Additive Models. R package version
0.7-3.



Appendix A

Proofs

A.1 Proofs to Tables 5.4 and 5.5

First of all, the reader is reminded that by convention ft > 1 and fd < ft, or equivalently, ρ∗ < 0.
Before starting with individual proofs for the cases presented in Tables 5.4 and 5.5, we make
some helpful remarks on the behavior of function G.
An investigation of G with respect to r is easier than with respect to any other of its arguments.
Here r , 1, since the case when r = 1 is analyzed separately and according to Proposition 5.2.1
it leads to counterproductive weighted error estimates.
G can be expressed in a simplified way as:

G(p21, r, ρ∗, ft) =
ã

(r − 1)2 [b̃ − c̃r(1 − rp21)] (A.1.1)

with

ã(p21, ρ
∗, ft) =

(
1 − p21

p21

) [
1 + (1 + ρ∗) ft

ρ∗ ft

]
< 0

b̃(ρ∗, ft) =(2 + ρ∗) ft + 2 > 0

c̃(p21, ρ
∗, ft) =

(
1

1 − p21

) [
2(1 + ρ∗) ft + 2 + ρ∗

(1 + ρ∗)

]
> 0

and the constraint
p22 = rp21 ≤ 1.

Remark A.1.1.

(i) Function ã is always negative and strictly monotonically increasing with respect to p21 and
ft, while it is strictly monotonically decreasing with respect to ρ∗.
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(ii) Function b̃ is positive and strictly monotonically increasing with respect to both ρ∗ and ft.

(iii) Function c̃ is always positive, but has the same monotonicity behavior like function ã.

(iv) ∀p21 ∈ [0, 1], ∀ρ∗ < 0, ∀ ft > 1, it holds b̃ < (1 − p21)c̃.

The form of G from (A.1.1) given fixed values of p21 > 0, ρ∗ < 0, and ft > 1, shows actually
the restriction of G in the argument r:

G|p21,ρ∗, ft(r) =
ãc̃p21r2 − ãc̃r + ãb̃

(r − 1)2 .

This form of G is useful to investigate its behavior with respect to r. From Remark A.1.1 (iv) it
clearly results that:

4p21b̃ < 4p21(1 − p21)c̃ ≥ 4 · 0.25c̃ = c̃.

Consequently, G|p21,ρ∗, ft(r), has exactly two zeros, namely at:

r0(p21, ρ
∗, ft) =

1 −
√

1 − 4p21b̃c̃−1

2p21
< 1 r1(p21, ρ

∗, ft) =
1 +

√
1 − 4p21b̃c̃−1

2p21
> 1. (A.1.2)

Using again Remark A.1.1(iv), it is easy to prove that r0 ∈ (0, 1), while r1 > 1. E.g. it holds:

1 − 4p21b̃c̃−1 > 1 − 4p21(1 − p21)⇔ 1 − 4p21b̃c̃−1 > (1 − 2p21)2,

and therefore, if p21 < 0.5: √
1 − 4p21b̃c̃−1 > 1 − 2p21.

If p21 ≥ 0.5 this inequality holds anyway. Therefore,

r0 − 1 =
1 − 2p21 −

√
1 − 4p21b̃c̃−1

2p21
< 0⇔ r0 < 1,∀p21 ∈ (0, 1].

Remark A.1.2.

(i) Both r0 and r1 are strictly monotonically decreasing with respect to p21.

(ii) The quotient b̃c̃−1 is strictly monotonically increasing both in ρ∗ and ft; therefore, r0 is
monotonically increasing and r1 monotonically decreasing with respect to these two arguments.

(iii) Both r0 and r1 satisfy the constraint rp21 ≤ 1.

Proof.
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(i) We prove here only the monotonicity of r0. In a similar way results the monotonicity of r1, too.
We denote the part of c̃ which is independent of p21 by c̃′, thus c̃′ = c̃(1 − p21). From Remark
A.1.1 (iv) it is clear that b̃c̃′−1 < 1.
The first derivative of r0 with respect to p21 is:

∂r0

∂p21
= −

1
2p2

21

−
1

2
√

1
4p2

21
−

b̃c̃′−1(1−p21)
p21

(
−

2
4p3

21

+
b̃c̃′−1

p2
21

)

= −
1

2p2
21

1 − 1 − 2p21b̃c̃′−1√
1 − 4p21(1 − p21)b̃c̃′−1


(A.1.3)

We need to show that the term in brackets is positive, which is equivalent to proving that:

1 − 2p21b̃c̃′−1 <

√
1 − 4p21(1 − p21)b̃c̃′−1.

If 2p21b̃c̃′−1 > 1, then the inequality is obviously accomplished. Otherwise, the inequality is
equivalent to:

(1 − 2p21b̃c̃′−1)2 < 1 − 4p21(1 − p21)b̃c̃′−1 ⇔ b̃c̃′−1 > (b̃c̃′−1)2 ⇔ 0 < b̃c̃′−1 < 1

and the last double inequality is true.

(ii) It is enough to show that the function

b̃c̃′−1 =
(1 + ρ∗)[2 + (2 + ρ∗) ft]
[2(1 + ρ∗) ft + 2 + ρ∗]

is monotonically increasing both with respect to ρ∗ and ft.
Its first derivative with respect to ρ∗ is:

∂b̃c̃′−1

∂ρ∗
=

[−2(1 + ft)2 + ( ft + 2 f 2
t )ρ∗ + ( ft + 2 f 2

t )ρ∗2]
[2(1 + ρ∗) ft + 2 + ρ∗]2 ,

It is easy to prove that the quadratic term in the numerator is positive for every ft (∆ =

−4( ft + 2 f 2
t )(2 + 3 ft) < 0, ∀ ft > 1). Thus, this derivative is positive, from where the increasing

monotonicity of b̃c̃−1 with respect to ρ∗ follows.
The first derivative of b̃c̃′−1 with respect to ft is:

∂b̃c̃′−1

∂ ft
= (1 + ρ∗)

4ρ∗2

[2(1 + ρ∗) ft + 2 + ρ∗]2 > 0,
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which proves the increasing monotonicity of b̃c̃−1 with respect to ft, too.

(iii) Since r0 ∈ (0, r1), it is sufficient to prove that r1 p21 ≤ 1. This is equivalent to showing that
the inequality: √

1 − 4p21b̃c̃−1 < 1

holds, which is trivial.

Further, using Remark A.1.2(iii), the definition interval for r1 given some fixed value of p21 ≤ 1
is (1, p−1

21 ], like specified in Table A.1.
According to condition (5.2.13), the weighting benefit is achieved only if

G < N2, (A.1.4)

Obviously, when G is negative, the benefit of weighted error estimates upon the unweighted
ones is sure. Table A.1 indicates the sign of the first derivative of function G with respect to
r, which is useful to understand the monotonicity of G with respect to r and therefore, its sign,
too. Using the form of G from (A.1.1), its first derivative with respect to r is given by:

∂G
∂r

=

(
−

ã
(r − 1)3

) [
2b̃ − c̃ − r(1 − 2p21)c̃

]
, (A.1.5)

where the term in parentheses is negative for r < 1, and positive for r > 1, since ã < 0.

Consequently, like Table A.1 highlights, the sign of G is decided by the sign of the expression
in brackets, thus of 2b̃ − c̃ − r(1 − 2p21)c̃.
Now, the sign of this expression is clearly negative when p21 ≤ 0.5 and r > 1, or when p21 > 0.5
and r < 1.
When p21 ≤ 0.5 and r > 1, starting from Remark A.1.1(iv) this can be seen as it follows:

b̃ < (1− p21)c̃⇔ 2b̃− c̃− r(1−2p21)c̃ < 2(1− p21)c̃− c̃− r(1−2p21)c̃ = (1 − r)︸ ︷︷ ︸
<0

(1 − 2p21)︸      ︷︷      ︸
≥0

c̃ ≤ 0,

since c̃ > 0.

This means that the derivative of G with respect to r is negative for p21 ≤ 0.5 and r > 1, and
positive for p21 > 0.5 and r < 1, like it is specified in Table A.1 in the first two rows. This
indicates the decreasing monotonicity of G with respect to r when p21 ≤ 0.5 and r > 1, and its
increasing monotonicity when p21 > 0.5 and r < 1.

The restriction of G to fixed values of p21, ρ∗, and ft was denoted as G|p21,ρ∗, ft . The r-intervals on
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which G|p21,ρ∗, ft is positive or negative presented in the last row of Table A.1, are derived using its
monotonicity (see the sign of its derivative with respect to r in Table A.1) and the observations:

G|p21,ρ∗, ft(r = 0) = ãb̃ < 0,

lim
r→1

G|p21,ρ∗, ft(r) = ∞,

and

G|p21,ρ∗, ft(r = p−1
21 ) = ãb̃

(
p21

1 − p21

)2

< 0.

The last row in Table A.1 indicates that, given fixed values of p21, ρ∗, and ft, the weighting
benefit is sure for r values in [0, r0] and [r1, p−1

21 ), where G|p21,ρ∗, ft has a negative sign. On these
domains of r, the benefit condition (A.1.4) is accomplished independently of the size of the
heterogeneous class N2. Ideally, r0 and r1 would approach 1.
Only on an interval around 1, which depends on N2, the condition (A.1.4) is not accomplished.
The values of G|p21,ρ∗, ft explode if r approaches 1, which means that the more similar the subclass
error probabilities p21 and p22 become, the less probable is to obtain a benefit by weighting.

r [0 r0 1) (1 r1 p−1
21 ]

sgn(∂G
∂r ), if p21 ≤ 0.5 (−)·sgn[2b̃ − c̃ − r(1 − 2p21)c̃] − − − − −

sgn(∂G
∂r ), if p21 > 0.5 + + + + + (+)·sgn[2b̃ − c̃ − r(1 − 2p21)c̃]

sgn(G) ãb̃ − 0 + ∞ ∞ + 0 − ãb̃
(

p21
1−p21

)2

Table A.1: Sign of the first derivative and monotonicity behavior of G|p21,ρ∗, ft(r) with respect to
r.

The next theoretical result derives the monotonicity behavior of G with respect to r on the do-
mains on which this is not clarified by Table A.1. Thus, when p21 ≤ 0.5 and r < 1, and when
p21 > 0.5 and r > 1. This result enables us to prove that the larger the size N2 of the heteroge-
nous class, the smaller the r-interval around 1, on which weighting provides no benefit (i.e. on
which G ≥ N2).

Proposition A.1.1. Function G|p21,ρ∗, ft is always strictly monotonically increasing on its posi-
tivity domain below 1 (i.e. on [r0, 1)) and strictly monotonically decreasing on its positivity
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domain above 1 (i.e. on (1, r1]).

Proof. According to (A.1.5), the derivative of G with respect to r has a unique zero at r∗ =
2b̃c̃−1−1
1−2p21

. We regard separately two cases:

(1. Case) p21 > 0.5

In this case we need the position of r∗ with respect to r1 (see the second row in Table A.1).
Remark A.1.1(iv) yields:

b̃c̃−1 < 1 − p21 < 0.5.

Further, it holds:
r∗ > r1

since
<0︷     ︸︸     ︷

2b̃c̃−1 − 1
1 − 2p21︸   ︷︷   ︸

<0

>
1 +

√
1 − 4p21b̃c̃−1

2p21
⇔

4p21b̃c̃−1 − 2p21 < 1 − 2p21 + (1 − 2p21)
√

1 − 4p21b̃c̃−1 ⇔

√
1 − 4p21b̃c̃−1 > 2p21 − 1︸   ︷︷   ︸

>0

⇔

b̃c̃−1 < 1 − p21.

The last inequality is true as stated by Remark A.1.1(iv).
Since p21 > 0.5, the term in brackets from (A.1.5) is negative for every r < r∗. Using Table A.1,
it results that:

sgn(
∂G
∂r

) = (+)[−] = −,

for every r ∈ (1, r∗). When p21 ≤ 0.5, this derivative has the same sign on (1, r∗) as the first row
in Table A.1 shows. Thus, independently of p21, G|p21,ρ∗, ft is strictly monotonically decreasing
at least on (1, r1] ⊂ (1, r∗), which represents its positivity domain above 1 (see the last row in
Table A.1).

(2. Case) p21 ≤ 0.5

Recall that r∗ was 2b̃c̃−1−1
1−2p21

. In this case we need the position of r∗ with respect to r0 (see the first
row in Table A.1). Obviously, if b̃c̃−1 ≤ 0.5, then r∗ < 0, and therefore r∗ < r0, too.
If b̃c̃−1 > 0.5, then r∗ > 0 and it holds again:

r∗ < r0,
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since

2b̃c̃−1 − 1
1 − 2p21

<
1 −

√
1 − 4p21b̃c̃−1

2p21
⇔ 4p21b̃c̃−1 − 2p21 < 1 − 2p21 − (1 − 2p21)

√
1 − 4p21b̃c̃−1

⇔ 1 − 4p21b̃c̃−1 > (1 − 2p21)
√

1 − 4p21b̃c̃−1 ⇔

√
1 − 4p21b̃c̃−1 > 1 − 2p21︸   ︷︷   ︸

>0

⇔ b̃c̃−1 < 1 − p21,

and the last inequality is always accomplished as stated by Remark A.1.1(iv).
Therefore [r0, 1) ⊂ (r∗, 1) always in this case.
Since p21 ≤ 0.5, the term in brackets from (A.1.5) is negative for every r > r∗. Using Table A.1,
it results that:

sgn(
∂G
∂r

) = (−)[−] = +,

for every r ∈ (r∗, 1). When p21 > 0.5, this derivative has the same sign on (r∗, 1) as the second
row in Table A.1 shows. Thus, independently of p21, G|p21,ρ∗, ft is strictly monotonically increasing
at least on [r0, 1) ⊂ (r∗, 1), which represents its positivity domain below 1.

A precise description of the disadvantageous neighborhood of r is possible by solving the equa-
tion

G|p21,ρ∗, ft(r) = N2.

Since G|p21,ρ∗, ft is continuous to the left and right of 1 and using its limits when r → 1 shown in
the last row of Table A.1, this equation has exactly one solution within (r0, 1) and one solution
within (1, r1). Explicitly, these solutions are:

r−,+2 =
2N2 − ãc̃ ∓

√
∆

2N2 − (2p21)ãc̃
(A.1.6)

where
∆ = ã[ãc̃(c̃ − 4b̃p21) + 4N2(b̃ − c̃(1 − p21))],

and the superscripts −, + indicate the middle operator ∓.

Note 3. Due to the monotonicity behavior of G asserted by Proposition A.1.1, the larger the size
N2 of the heterogeneous class is, the smaller the interval (r−2 , r

+
2 ) gets, where weighting provides

no benefit.

These observations prove again, that the safest situation for weighting is when the subclass
misclassification probabilities are very different. However, the larger the sample size of the
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heterogenous class is, the less important this issue becomes.

Proof to Table 5.4

Proof. When r < 1, Table A.1 indicates that function G is negative on [0, r0]. Thus, given a fixed
combination of p21, ρ∗ and ft, the benefit condition (A.1.4) is accomplished, and the weighting
benefit is sure for every r below r0(p21, ρ

∗, ft).
If the arguments p21, ρ∗ and ft are varied over some range of values R, then let rmin

0 be the
minimal value of r0 over this range. It holds:

G|p21,ρ∗, ft(r) < 0, ∀r ≤ r0(p21, ρ
∗, ft), ∀(p21, ρ

∗, ft) ∈ R,

and therefore,
G|p21,ρ∗, ft(r) < 0, ∀r ≤ rmin

0 = min
R

r0(p21, ρ
∗, ft).

Using the properties of decreasing monotonicity of r0 with respect to p21, and of increasing
monotonicity with respect to ρ∗ and ft, stated by Remark A.1.2 (i)-(ii), the minimal r0-values
listed in Table A.2 are obtained, starting from different definition domains for (p21, ρ

∗, ft). E.g.,
at row 2, R = (0, 0.4] × [−0.7,−0.5) × [1, 2), and therefore:

rmin
0 = min

R
r0(p21, ρ

∗, ft) = r0(0.4,−0.7, 1) = 0.37.

This indicates that, given an error probability p21 between 0% and 40% in the less prevalent
target subclass, a medium to high degree of suboptimality of the data at hand ρ∗ ∈ [−0.7,−0.5),
and any degree of unbalance of the target subclass structure greater than 1, the weighting
benefit is sure up to an error probability p22 = 0.37p21 in the preponderant target subclass.
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Rows 1−12,
Table 5.4

p21 ρ∗ =
fd− ft

ft
ft =

π22
π21

minimal r0(p21, ρ
∗, ft)

1 (0, 0.5] [−0.5, 0) [1, 2) r0(0.5,−0.5, 1) = 0.45
2 (0, 0.4] [−0.7,−0.5) [1, 2) r0(0.4,−0.7, 1) = 0.37
3 (0, 0.5] [−0.5, 0) [2, 99) r0(0.5,−0.5, 2) = 0.47
4 (0, 0.4] [−0.7,−0.5) [2, 99) r0(0.4,−0.7, 2) = 0.39
5 (0, 0.5] [−0.5, 0) [99,∞) r0(0.5,−0.5, 99) = 0.50
6 (0, 0.5] [−0.7,−0.5) [99,∞) r0(0.5,−0.7, 99) = 0.40
7 (0.5, 0.6] [−0.25, 0) [1, 2) r0(0.6,−0.25, 1) = 0.49
8 (0.5, 0.6] [−0.6,−0.5) [1, 2) r0(0.6,−0.6, 1) = 0.30
9 (0.5, 0.6] [−0.25, 0) [2, 99) r0(0.6,−0.25, 2) = 0.49
10 (0.5, 0.55] [−0.7,−0.5) [2, 99) r0(0.55,−0.7, 2) = 0.30
11 (0.5, 0.6] [−0.5, 0) [99,∞) r0(0.6,−0.5, 99) = 0.39
12 (0.5, 0.6] [−0.7,−0.5) [99,∞) r0(0.6,−0.7, 99) = 0.32

Table A.2: Values of rmin
0 for specified domains of p21, ρ∗ and ft. rmin

0 is also the maximal value
of r < 1 for which G is negative; therefore, the benefit is sure under the given definition domain
of the arguments.

Proof to Table 5.5

Proof. Using the form (A.1.1) of the G-function with the notations:

a =:ã
p21

1 − p21

c =:c̃(1 − p21)

it results

G(p21, r, ρ∗, ft) =
a

(r − 1)2

(
1 − p21

p21

) [
b̃ − cr

(
1 − rp21

1 − p21

)]
. (A.1.7)

Here a, c are preferred to ã and c̃, respectively, since they are independent of p21. Further, one
should recall that p22 = rp21 and r ≥ 2, in this case.
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The weighting benefit is sure, if

b̃ − cr
(
1 − rp21

1 − p21

)
≥ 0⇔ b̃ − cr2

(
1 − p22

r − p22

)
≥ 0⇔

1 − p22

r − p22
≤

b̃
cr2

⇔ p22 ≥ p0
22(r, ρ∗, ft) =:

r
(

b̃
cr2

)
− 1

b̃
cr2 − 1

.

The last inequality holds, since:

[b̃ < (1 − p21)c̃ = c] ∧ (r > 1) =⇒
b̃

cr2 < 1.

Thus, for given values of r, ρ∗ and ft, weighting provides a sure benefit if p22 exceeds a certain
threshold p0

22(r, ρ∗, ft).
If the arguments r, ρ∗ and ft are varied over some range of values R′, then let pmax

22 be the
maximal value of p0

22 over R′. It holds:

G < 0, ∀p22 ≥ p0
22(r, ρ∗, ft), ∀(r, ρ∗, ft) ∈ R′,

and therefore:
G < 0, ∀p22 ≥ pmax

22 = max
R′

p0
22(r, ρ∗, ft).

Function p0
22 is obviously monotonically increasing with respect to r. Also, according to Remark

A.1.2(ii), b̃c̃−1 and therefore, also b̃
cr2 , is strictly monotonically increasing with respect to ρ∗ and

ft. Now:
p0

22 = f (y)

where
f (y) =

ry − 1
y − 1

is monotonically decreasing with respect to y, and

y =
b̃

cr2

is monotonically increasing with respect to ρ∗ and ft. Therefore, p0
22 is monotonically decreas-

ing with respect to ρ∗ and ft.

The maximal values of p0
22 listed in Table A.3 are computed using the monotonicity of p0

22 with
respect to its three arguments. E.g. in the last row, the definition range for its arguments is
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R′ = [2, 5] × [−0.8,−0.5) × [99,∞). Hence:

pmax
22 = max

R′
p0

22(r, ρ∗, ft) = p0
22(5,−0.8, 99) = 0.90.

This indicates that, given a quotient r between the subclass error probabilities p22 and p21

within [2, 5], a medium to high degree of suboptimality of the data at hand ρ∗ ∈ [−0.8,−0.5), and
an extremely high degree of unbalance of the target subclass structure ft ≥ 99, the weighting
benefit is sure starting from an error probability of 90% in the preponderant target subclass.

Rows 1 − 6,
Table 5.5

r ρ∗ =
fd− ft

ft
ft =

π22
π21

maximal p0
22

(r, ρ∗, ft)

1 [2, 5] [−0.2, 0) [1, 2) p0
22(5,−0.2, 1) = 0.85

2 [2, 4.5] [−0.7,−0.5) [1, 2) p0
22(4.5,−0.7, 1) = 0.91

3 [2, 5] [−0.2, 0) [2, 99) p0
22(5,−0.2, 2) = 0.85

4 [2, 4.5] [−0.7,−0.5) [2, 99) p0
22(4.5,−0.7, 2) = 0.91

5 [2, 5] [−0.2, 0) [99,∞) p0
22(5,−0.2, 99) = 0.85

6 [2, 5] [−0.8,−0.5) [99,∞) p0
22(5,−0.8, 99) = 0.90

Table A.3: Values of p0
22 for specified domains of r, ρ∗ and ft. pmax

22 is also the minimal value
of p22 > 0.5 for which G is negative; therefore, the benefit is sure under the given definition
domain of the arguments.

Case: r ≥ 2, |ρ∗| > 0.5, ft arbitrary, and p22 > 0.5 (see rows 2, 4 and 6 from Table 5.5).
Statement: The closer the true error probability of the preponderant target subclass, p22,
to 1, the more probable the weighting benefit, too.

Proof. Consider p22 → 1, or equivalently, p21 → r−1, which is easier to replace in the form of
G from (A.1.7). Then it holds:

lim
p22→1

G =
ab̃

r − 1
< 0.

Thus, when the misclassification probability of the under-represented subclass exceeds some
high threshold and is larger than the misclassification probability of the over-represented sub-
class (r > 1, or equivalently, p22 > p21), a benefit by weighting is guaranteed.
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A.2 Other proofs

Proof (Remark 5.2.2). It holds:

∂qmin

∂s
=
∂

∂s

( √
1 − 4σ1s −

√
1 − 4σ1

2
√
σ1

)2

=
1

4σ1
· 2(

√
1 − 4σ1s −

√
1 − 4σ1)

1
2
√

1 − 4σ1s
(−4σ1)

= −

√
1 − 4σ1s −

√
1 − 4σ1

√
1 − 4σ1s

= −

1 − √
1 − 4σ1

1 − 4σ1s

 .

When s < 1 it results that:

1 − 4σ1s > 1 − 4σ1 > 0 =⇒ 1 >

√
1 − 4σ1

1 − 4σ1s
=⇒

∂qmin

∂s
< 0.

When s > 1, but s < (4σ1)−1, it holds:

0 < 1 − 4σ1s < 1 − 4σ1 =⇒ 1 <

√
1 − 4σ1

1 − 4σ1s
=⇒

∂qmin

∂s
> 0.

This demonstrates the monotonicity behavior of qmin with respect to s stated by Remark 5.2.2.
Regarding σ1 it holds:

∂qmin

∂σ1
=

∂

∂σ1

√ 1
4σ1
− s −

√
1

4σ1
− 1

2

=2
√ 1

4σ1
− s −

√
1

4σ1
− 1

 · ∂

∂σ1

√ 1
4σ1
− s −

√
1

4σ1
− 1


= −

1
4σ2

1

√ 1
4σ1
− s −

√
1

4σ1
− 1

 ·
 1√

1
4σ1
− s
−

1√
1

4σ1
− 1
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= −
1

4σ2
1

√ 1
4σ1
− s −

√
1

4σ1
− 1



√

1
4σ1
− 1 −

√
1

4σ1
− s√

1
4σ1
− 1 ·

√
1

4σ1
− s


=

1

4σ2
1

√
1

4σ1
− 1 ·

√
1

4σ1
− s

√ 1
4σ1
− s −

√
1

4σ1
− 1

2

> 0.

This demonstrates that qmin is monotonically increasing with respect to σ1.

Proof (Remark 5.2.3). It holds:

∂qmax

∂s
=

1
4σ1

2(
√

1 − 4σ1s +
√

1 − 4σ1)
1

2
√

1 − 4σ1s
(−4σ1)

= − (1 +

√
1 − 4σ1

1 − 4σ1s
) < 0.

Thus, qmax is a monotonically decreasing function of s. Also with respect to σ1 it holds:

∂qmax

∂σ1
=2

√ 1
4σ1
− s +

√
1

4σ1
− 1

 · ∂

∂σ1

√ 1
4σ1
− s +

√
1

4σ1
− 1


= −

1

4σ2
1

√
1

4σ1
− s

√
1

4σ1
− 1

√ 1
4σ1
− s +

√
1

4σ1
− 1

2

< 0.

This proves that qmax is monotonically decreasing with respect to σ1, too.
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Figure B.1: Subcase 1: Weighted errors - relation between G̃(s, 1− ft
ft
, ft) and the best case

reference when s ≥ 1, σ1 = 0.05, N2 = 100, and ft ≤ 20.
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Figure B.2: Subcase 1: Weighted errors - relation between G̃(s, 1− ft
ft
, ft) and the best case

reference when s ≤ 1, σ1 = 0.125, N2 = 100, and ft ≤ 20.
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Figure B.3: Subcase 2: Weighted errors - relation between G̃(s, 1−b f 2
t

b f 2
t
, ft) and the best case

reference when s ≥ 1, σ1 = 0.05, N2 = 100, and ft ≤ 20. When the error probability p22 of
the preponderant target subclass is an element of (0.5, 95] the weighting benefit is sure for any
b ≥ 4 and ft ≥ 20.
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Figure B.4: Subcase 2: Weighted errors - relation between G̃(s, 1−b f 2
t

b f 2
t
, ft) and the best case

reference when s ≤ 1, σ1 = 0.125, N2 = 100, and ft ≤ 20. When the error probability p22 of
the preponderant target subclass is an element of [0.85, 1] the weighting benefit is sure for any
ft ≤ 20 and any b ≥ 9.
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