
Generating an Algebraic Speci�cation from an ER-Model

Ernst-Erich Doberkat

Chair for Software Technology

University of Dortmund

D-44221 Dortmund

Germany

September 19, 1995

CONTENTS 1

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Algebraic Speci�cations . 2

2.2 ER-Models . 4

3 The Graph 5

4 Constructing the Speci�cation 9

4.1 Basic Constructions . 9

4.2 Manipulating Entities . 9

4.3 Manipulating Relations . 11

4.3.1 The General Case . 11

4.3.2 Constraints . 12

4.4 Specifying Attributes . 15

4.4.1 The General Case . 15

4.4.2 Special Cases: Total Attributes . 15

4.4.3 Special Cases: Keys . 16

5 Application to Petri Nets 17

6 Implementation Issues 18

7 Related Work and Further Study 19

A Appendix 19

A.1 The Cartesian Product . 20

LIST OF FIGURES 2

List of Figures

1 Default axiom for s-sorted branch . 3

2 Axioms for sets . 4

3 ER-model for a simple graphical user interface . 6

4 Graph for the ER-model . 7

5 Directed subgraph for the ER-model . 8

6 Axioms for insertion operations for entities . 10

7 Axioms for deletion operations from an entity . 11

8 Axioms for the insertion operations for relations 11

9 Axioms for the deletion operations from relations 12

10 Axiom patterns for the deletion operations from relations (domain) 13

11 Axiom patterns for the deletion operations from relations (co-domain) 14

12 Manipulating attributes (general case) . 15

13 Modi�ed axioms for total attributes on entity E 16

14 Axioms for the Cartesian product . 20

15 Axioms for operations on partial maps . 21

Abstract

Entity-Relationship modelling is a rather intuitive technique for specifying the structure of complex
data. The technique is popular in part because the structure of an ER-model is easily grasped,
and it is usually supported by diagrams or other visualizing tools. This paper deals with a detailed
analysis of ER-modelling with the goal of deriving an algebraic speci�cation for a given ER-model.
This is motivated by considerations regarding program speci�cation for data intensive applications.
We indicate haw the technique demonstrated here may be combined with formal techniques for
specifying the functional behavior of a system.

1 INTRODUCTION 1

1 Introduction

Entity-Relationship modelling is a rather intuitive technique for specifying the structure of complex
data. The technique is popular in part because the structure of an ER-model is easily grasped,
and it is usually supported by diagrams or other visualizing tools.

This paper deals with a detailed analysis of ER-modelling with the goal of deriving an algeb-
raic speci�cation for a given ER-model. This is motivated by considerations regarding program
speci�cation for data intensive applications: when such a program system is speci�ed, then its
functionality should be described jointly with the data on which the program is to operate. De-
scribing the functionality formally with a Petri net results in a partial description of the system,
the semantics being provided by the semantics of Petri nets. Describing the data using an ER-
model results in another partial description, albeit one which does not have a formal semantics.
So linking these descriptions results in an unbalanced situation: the functional speci�cation is on
semantically �rm grounds, the speci�cation of the data is not. Providing an algebraic speci�cation
for the ER-model helps, since the machinery of algebraic speci�cations permits the formulation of
models through which the semantics of a speci�cation is obtained.

Similarly, the functionality of a program may be described with algebraic techniques (ASL [21],
SPECTRUM [2] or � [5, 4] come to mind). Here the data are either described using the framework
for the functional speci�cation, or the data are described informally. The former alternative is quite
unpractical when it comes to dealing with data the structure of which is complex, probably even
violating the accepted principle of separation of concerns, here applied to separating functions from
data. The latter alternative is unsatisfactory since it provides only a partially formal description,
leaving a gap in which mathematical arguments cannot be applied. Thus an algebraic speci�cation
of ER-models would close this gap.

In order to study this problem, we deal with a rather simple instance of ER-models which has
entities, binary relations, and attributes on entities as well as on relations. The only relation
we consider between entities is the IsA-relation, providing a mechanism for simple inheritance.
Relations may have some restrictions: among others, they may be total orN :1 relations; attributes
may also be total, total attributes may be key attributes. This scenario is usually not su�cient for
the purposes of semantic data modelling, but it is rich enough to be interesting on its own, and it
permits demonstrating the techniques for obtaining an algebraic speci�cation from an ER-model;
more complicated models may be delt with in a similar fashion, but of course at the cost of a more
involved technical machinery.

Given an ER-model M, the dependecies between the objects in the model may be of a varied
and rather subtle kind (e.g. deleting a pair (x; y) from a total relation which has the entity E
as its domain and for which the entity E0 is in the transitive closure of IsA implies among others
deleting x from E0 and deleting all pairs having x as the �rst component from all relations having
E0 as their domain). We capture this by building up an abstract data type (ADT) from M, the
underlying structure of which is a graph with nodes coming essentially from the objects in M
(there are some other nodes, too). This graph contains directed as well as undirected vertices, the
directed edges re
ecting the structure of the IsA-relation, the undirected ones being generated from
relations and from attributes. Each node in the graph is labelled with a sort which is generated or
constructed from the corresponding object in M. The ADT operates on this graph and speci�es
for each operation in M the e�ect it has on each node. This gives rise to local axioms which may
be thought of decorating each node, the entire decoration constitutes the set of axioms comprising
the interesting part of the speci�cation. There are other, basic parts to the speci�cation: since
we use operations from set theory for the basic constructions, we have to provide an algebraic
speci�cation for that part of set theory relevant here (essentially simple manipulations on �nite
set, �nite Cartesian products, and on �nite associative maps). The primitive constructions (e.g.
describing the speci�cation SET(s) of sets over s for a sort s) are parametrized according to
their respective basic sorts, so that a simple import mechanism takes care of making all basic

2 PRELIMINARIES 2

speci�cations available through collecting the corresponding instantiations for the primitive parts.
We build our construction on this import by enriching it with new function symbols and new
axioms.

Section 2 introduces algebraic speci�cations and de�nes the
avor of ER-model we are working
with. Section 3 then shows how to construct a graph as the basic data structure from a given
ER-model, and the speci�cation is constructed in detail in section 4. We brie
y indicate how to
combine condition/event nets with (the terms of) an algebraic speci�cation in section 5 and discuss
implementation issues in section 6. The �nal section 7 discusses related work and suggests some
extensions. The basic constructions mentioned above are partly done in section 2, partly delegated
to the appendices A.1 and A.1.

2 Preliminaries

In this section we provide a brief de�nition of algebraic speci�cations and of the version of ER-
models which are considered here.

2.1 Algebraic Speci�cations

We follow the notation in [22] in introducing algebraic speci�cations. Let � be a signature, i.e.,
� = hS;�i, where S is a set of sorts and � is a set of function symbols disjoint from S; each f 2 �
is associated its domain s1; : : : ; sn and its co-domain sn+1, so that f : s1 � : : : � sn ! sn+1. If
n = 0, f is a constant. Let X = (Xs)s2S be an S-sorted set of free variables, then the S-sorted
set T (�; X) = (T(�; X)s)s2S is the smallest S-sorted set (Vs)s2S such that these three conditions
hold:

1. 8s 2 S : Xs � Vs,

2. whenever f 2 � such that f :! s, then f 2 Vs,

3. whenever f 2 � such that f : s1 � : : : � sn ! sn+1, and t1; : : : ; tn are terms such that
t1 2 Vs1 ; : : : ; tn 2 Vsn , then f(t1; : : : ; tn) 2 Vsn+1 .

Thus T (�; X) contains free variables as well as constants, and it is closed under the application of
function symbols from �. Let =s be the equality relation on T (�; X)s, then the set w�(�; X) of
well de�ned formulas contains all the equalities t1 =s t2 for t1; t2 2 T (�; X)s; s 2 S, and is closed
under disjunction, negation and existential quanti�cation (i.e. if G;H 2 w�(�; X), and s 2 S is a
sort, then G _H;:G; 9x :s:G are members of w�(�; X).

An algebraic speci�cation h�;�i is a signature � together with a set � � w�(�; X) of axioms:
the signature describes the function symbols together with their syntax, the axioms describe how
these functions relate to each other.

Now let h�;�i be an algebraic speci�cation with � = hS;�i. Suppose each sort s 2 S is assigned
a carrier set As, and let each function symbol f 2 � with

f : s1 � : : :� sn ! sn+1

be associated with a map
fA : As1 � : : :�Asn ! Asn+1 :

This association f 7! fA is an interpretation of the function symbol f , it carries over in a natural
way to ground terms, i.e. terms without free variables, so that we can talk about the interpretation
tA of a ground term t. Variables are taken care of by valuations. A valuation v = (vs : Xs ! As)s2S

2 PRELIMINARIES 3

if true then x else y fi =s x
if false then x else y fi =s y

Figure 1: Default axiom for s-sorted branch

is an S-sorted familiy of maps assigning values to variables. Putting v�s (x) := vs(x); if x 2 Xs,
v�s (c) := cA, if c :! s is a constant, and setting

v�s (f(t1; : : : ; tk)) := fA
�
v�s1 (t1); : : : ; v

�
sk
(tk)

�
whenever f : s1 � : : : � sk ! s is a function symbol, and t1 2 T (�; X)s1 ; : : : ; tk 2 T (�; X)sk are
terms, v is extended to an S-sorted map v� = (v�s : T (�; X)s ! As)s2S .

A well-formed formula G is valid in A i� the interpretation of G is a true statement in A no matter
what values are assigned to its free variables ([22] de�nes this more formally, but this rather
intuitive de�nition will do for our present purposes). The S-sorted set A = (As)s2S is a model for
the speci�cation i� all the axioms are valid in A. The model A is term-generated i� each element
of a carrier set can be represented as the interpretation of a suitably chosen term. This notion of a
term-generated model formalizes the intuitive notion of the implementation of a speci�cation. Let
B be another model. A homomorphism 	 : A ! B is an S-sorted set of maps (s : As ! BS)s2S
such that for each function symbol f : s1 � : : : � sk ! s and each a1 2 As1 ; : : : ; ak 2 Ask the
equality

	s(f
A(a1; : : : ; ak)) = fB(s1(a1); : : : ;	sk (ak))

holds. A is an inital model i� for each model B there exists a unique homomorphism 	 : A ! B,
it is a terminal model i� for each model B there exists a unique homomorphism 	 : B ! A . The
initial semantics of an algebraic speci�cation is given by all term-generated initial models, similarly
for its terminal semantics. Its loose semantics consists of all term-generated models.

Speci�cations will be built incrementally, assuming that the primitive speci�cation bool for the
data type Boolean with the usual axioms and two di�erent constants true and false is already
provided for. It is understood that each speci�cation contains bool. We will assume tacitly that
with each sort s a ternary function symbol

if : then : else : fi : bool� s� s! s

(the conditional) is associated; the | usual | semantics is given in Fig. 1. Moreover we tacitly
associate with s an error symbol

errors :! s

indicating that some extraordinary action will have to take place. The occurrence of errors will
be data dependent (it will be found only in the branches of some conditionals) and will take care
of integrity constraints; hence we leave it to speci�c interpretations to deal with error.

In general, speci�cations are built up incrementally:

speci�cation h�;�i imports h�1;�1i; : : : h�k ;�ki end

denotes the speci�cation

h� +�1 + � � �+�k;� [�1 [� � � [�ki:

Here the sum operator + is de�ned through

hS0;�0i+ hS00;�00i := hS0 [S00;�0 [�00i;

This requires �0 and �00 being compatible, i.e., each function symbol occurring in their intersection
having the same signature. Extending the sum to more than two operands requires that the

2 PRELIMINARIES 4

:(x 2s emptys)
x 2s inserts(x; b)

:(x 2s deletes(x; b))
inserts(x; inserts(y; a)) =set(s) inserts(y; inserts(x; a))
inserts(x; deletes(x; a)) =set(s) inserts(x; a)

(deletes(x; inserts(x; a)) =set(s) a) =bool :(x 2s a)
emptys �s a

inserts(x; a) �s b =bool (a �s b) ^ x 2s b
a �s b ! a �s inserts(x; b)

a �s deletes(x; b) ! a �s b
a �s inserts(x; a)

deletes(x; a) �s a
a �s a

(a =set(s) b) =bool (a �s b ^ b �s a)
a �s b ^ b �s c ! a �s c

Figure 2: Axioms for sets

operands are mutually compatible. The incremental approach has the advantage that it permits
separation of concerns, as may be observed in the following sections.

Let S be an in�nite set of sorts, and �x s 2 S. Then set(s) is a fresh member of S, and let the
speci�cation of sets of sort s be

SET(s) := h�;�i

with
� := hfs; set(s)g; femptys; : 2s :; : �s :; : =set(s) :; inserts; deletesgi

such that

emptys : ! set(s)
inserts : s� set(s) ! set(s)
deletes : s� set(s) ! set(s)
: 2s : : s� set(s) ! bool

: �s : : set(s)� set(s) ! bool

(: 2s :, : �s : and : =set(s) : are used as in�x operators). The axioms suggested for �s can be
found in Fig. 2.

Suppose a model A for SET(s) is term-generated, then the usual property of the subset relation

a �As b, 8 x2 As : x 2
A
s a! x 2As b

holds; note that the equality of Aset(s) with the power set P(As) of As is not implied.

Similar to the construction s 7! SET(s) describing sets of a sort s we construct a speci�cation
ABB(s1; s2) for the description of all partial maps from s1 to s2 (see A.1) respectively CART(s1; s2)
for all pairs of sort s1 and s2 (see A.1).

For the rest of the paper the indication of the sort will be omitted when talking about equality,
since the sort under consideration will be clear from the context.

2.2 ER-Models

An entity-relationship model [20, 2.4] consists of entities, relationships on these entities and at-
tributes both on entities and relations. Only binary relations will be considered for the sake of

3 THE GRAPH 5

simplicity. Entities may be related by the IsA relation: E1 IsA E2 indicates that each instance of
E1 is also an instance of E2, hence shares all the attributes de�ned on the latter entity. IsA+ is
the transitive closure of IsA. Multiple inheritance is not permitted (i.e, no entity may be related to
more than one other entity via an IsA -relation). Names are supposed to be unique; in particular
no attributes may be rede�ned in an IsA relation. As usual, entities are represented graphically
as boxes, attributes as ovals, and relations as diamonds, resp. Mathematically, entities are rep-
resented as sets (the extension of an entity), relations as subsets of the Cartesian product for the
sets representing the corresponding entities. If R relates the entities E1 and E2, the entities in E1

(in E2) are said to be in the domain (in the co-domain) of R. In the graphical representation the
order of the factors for the product is not immediate, hence we number the corners of the diamond
counterclockwise starting in the northern corner, identifying domain and co-domain uniquely. At-
tributes are usually represented as maps; as usual, an attribute is a key for an entity i� it uniquely
determines each instance. A relation R is N : 1 i� b1 = b2 is true whenever both aRb1 and aRb2
hold (i.e. whenever R is a partial map), i.e. i� for each instance a in the domain of R the set
fb : aRbg contains at most one element. In a similar way 1:N relations are characterized: R is an
1 :N relation i� its inverse R�1 is N : 1. A relation is said to be N :M i� there are no restrictions
concerning the domain or the co-domain of the pairs participating in the relation. That a relation
is N : 1 is indicated in the graphical representation by labelling the edge leading to the domain
with an � , and a 1 as a label for the co-domain.

Fig. 3 displays an example for modelling a simple graphical user interface.

The entities are window, button, textfield, menu entry, moreover trigger and text(fixed),
both of which are related to menu entry via the IsA relation, and output window and icon,
for which IsA window holds. The relations are sequence, which is an N : M relation between
windows, residesIn, a 1 :N relation between window and button, contains relates textfield
and window as anN :1 relation, inMenu is anN :1 relation between trigger and window, and �nally
invocation relates trigger and menu entry 1:N . Attributes are e.g. window layout de�ned on
entity window or button position de�ned on relation residesIn. As usual, key attributes are
underlined, and total relations or attributes carry a dot where they are total.

3 The Graph

This section will construct a graph from an ER-model.

Given an ER-modelM, denote by E , R and by A the set of entities, of relations, and of attributes,
resp.; let NE , NR and NA be fresh and disjoint sets of nodes representing E and the domains and
co-domains for the relations in M, resp. M, so that each E 2 E is associated with a unique node
nE 2 NE , similarly for R. Construct a directed edge nE1 ! nE2 i� E1 IsA E2 holds in M. If R
is a relation in M with E1 as domain and E2 as co-domain, construct non-directed edges between
nE1 and nR and between nR and nE2 ; additionally, generate two fresh nodes n�(R) and n
(R) in
NE which are linked through the directed edges n�(R) ! nE1 and n
(R) ! nE2 to their domain
and co-domain, resp. (this re
ects the fact that the domain and the co-domain of R have to be
taken care of when it comes to manipulate the relation). Similarly, add a fresh node n� 2 NA for
each attribute � 2 A de�ned on entity E or relation R , and add an undirected edge from n� to
n, where n 2 NE [NR is the node in corresponding to E resp. R.

This graph G contains directed as well as undirected edges, removing the undirected edges will
result in a directed graph eG.
Fig. 4 displays the graph constructed from the ER-model given in Fig. 3, where squares, diamonds,
and bullets represent entities, relations, and attributes, resp. The directed subgraph is given in
Fig. 5.

3 THE GRAPH 6

invocation

#entries

entry

layout

text (fixed)
menu

entrytrigger

texfield contains

layout window

position

sequence

window
window

layout

output

window
icon

button

position

button layout

inMenu

residesIn

IsAIsA

1

1

1

1

IsA IsA

*

*

*

**

*

menu
position

Figure 3: ER-model for a simple graphical user interface

3 THE GRAPH 7

button textfield

co-domain (contains)

entry

layout domain (invocation)

menu

entry

text

(fixed)

co-domain (invocation)co-domain (in menu)

trigger

domain (in menu)

icon

output

window

domain

(contains)

co-domain (sequence)

domain (sequence)

sequence

(residesIn)

co-domain

window

$entries

invocation

window

position

contains

layout

menu

position

window

layout

resides in

button position

domain

resides in

layout

Figure 4: Graph for the ER-model

3 THE GRAPH 8

domain (invocation)

menu

entry

text

(fixed)

co-domain (invocation)co-domain (in menu)

trigger

domain (in menu)

icon

output

window

domain

(contains)

co-domain (sequence)

domain (sequence)

sequence

window

(residesIn)

co-domain

button textfield

co-domain (contains)

Figure 5: Directed subgraph for the ER-model

4 CONSTRUCTING THE SPECIFICATION 9

4 Constructing the Speci�cation

We will interpret G as an abstract data type which will be manipulated as a whole, since local
operations for an entity or a relation will have side e�ects on certain other nodes in the graph.

4.1 Basic Constructions

Generate for each root node w in eG a fresh sort sw. A path p in G is called admissible i� p is a
path in eG (so p does not contain cycles) such that the �rst node of p is a leaf or the last node of

p is a root in eG. For easier notation, denote by "n the admissible path in eG having node n as the
�rst node ending in a root node, and let +n be the set of all nodes in eG which are on an admissible
path ending in n.

Let n be a node in eG, hence n comes from an entity. Then there exists a uniquely determined
root node w(n) in eG such that there is an admissible path from n to w(n) (this is so since we do
not permit multiple inheritance). Label the node n with sort sn := sw(n): directed edges come
from IsA-relations which correspond to subset-relations in set theory, our model assumes that the
instances from entities along an IsA chain all belong to the same set. This implies that all nodes
on the path "n as well as the nodes in +n carry the same label.

If R is a relation between entities E and F , label the corresponding node nR in G with sort
snR := cart(snE ; snF). The attribute � for entity E or relation R is modelled as a function symbol
A� : s� ! s�, with s� as the sort underlying E resp. R. The corresponding node n� is labelled
with sn� := abb(s�; s�).

Now put �m := set(sm), if m is a node coming from an entity or from a relation, and set �m := sm
otherwise (hence m is an attribute node), then set

sG := [[�m : m is a node in G]] :

De�ne for each node m the projection from G to m upon renaming

projm := �[[�m:m is a node in G]];�m

(see A.1 for these constructions).

Intuitively, we have decorated G so that each node generated from an entity has a set as its label,
each relational node is labeled with a subset of the Cartesian product, and each attribute node
carries a map. The corresponding operations come from the following speci�cation:

speci�cation �hsigmam : m is a node in Gi
imports fSET(se) : e is an entity nodeg
imports fSET(sr) : r is a relational nodeg
imports fABB(s�; s�) : � is an attribute node with label abb(s�; s�)g
end

This speci�cation will be extended gradually through the following considerations by adding func-
tion symbols and axioms.

4.2 Manipulating Entities

If E is an entity in M with associated node nE in G, this node is labelled with sort snE . So are
all nodes on the path "nE and in +nE . Generate the functions

4 CONSTRUCTING THE SPECIFICATION 10

projm(init
E(a)) = emptysnE for each node m 2 +nE

projm(init
E(a)) = projm(a) for each node m =2 +nE

projnR(init
E(a)) = emptysnR

for each relational node nR the relation of which has E
as its domain or co-domain (cp. 4.3)

projm(insert
E(x; a)) = insertsnE (x; projm(a)) for each node m 2 "nE

projm(insert
E(x; a)) = projm(a) for each node m =2 "nE

testE(x; a) =
V
fx 2snE projm(a) : m 2 "nEg

Figure 6: Axioms for insertion operations for entities

initE : sG ! sG
insertE : snE � sG ! sG
testE : snE � sG ! bool

deleteE : snE � sG ! sG

with the axioms given in Fig. 6.

The set of axioms concerning insertE makes sure that insertion is done along IsA links, and along
these links only. The axiom concerning testE checks along the corresponding path. Note that
initE is not formulated as a constant. This is so since the entire ER-model is formulated as one
abstract data type, hence initializing an entity has to take the state of this ADT into account, in
particular it must not a�ect other, unrelated entities or relations.

Deleting an element is a bit more complicated: when an element is deleted from entity E, we have
to be sure that it is neither contained in E nor in

� any of the entities F such that F IsA � E,

� any domain or co-domain of any relation R in which E plays this part; this implies that
deletion operations have to be triggered for the corresponding relations,

� any domain of an attribute on E.

We will deal with attributes after modelling operations on relations. Let delDomR and delCoDomR

be the deletion function for the domain, and for the co-domain of relation R between entities E0

and F 0, having the respective signatures snE0
� sG ! sG and snF 0

� sG ! sG (to be more precise,
delDomR is used for modelling the relation DeleteFromDomain(x, Rel) which consists of the
given relation Rel having all pairs in which x appears in the �rst component deleted; similarly for
delCoDomR). These function symbols will be considered in 4.3. Once they are provided, deletion
may be formulated.

The motivation is as follows: if m = nE0 is a node coming from relation E0 such that E0 IsA+ E
holds, deleting an instance from E implies deletion of that instance from E0. If node m, however,
is a node of the form n = n�(R), so that E is the domain entity for some relation R, then deletion
from E implies deletion from the domain of R and from R itself, so that no pair in R having the
instance deleted as the �rst component survives.

Again note that we are de�ning the behavior of the function symbols under consideration by their
projections onto particular nodes (if only specifying for most nodes that nothing changes). This
follows from the observation that the ER-model is formulated as one ADT.

4 CONSTRUCTING THE SPECIFICATION 11

projm(delete
E(x; a)) = deletesnE (x; projm(a)) for all nodes m 2 +nE nMr

projm(delete
E(x; a)) = projm(delDom

R(x; projm(a)))
for all nodes m = n�(R) 2M�;m = nR
for relation R

projm(delete
E(x; a)) = projm(delCoDom

R(x; projm(a)))
for all nodes m = n
(R) 2M
 ;m = nR
for relation R

projm(delete
E(x; a)) = projm(a) for all nodes m =2 +nE

(here

M� := fm 2 +nE : m = n�(R) for some relation Rg

M
 := fm 2 +nE : m = n
(R) for some relation Rg

Mr := M� [M

denote leaves coming from domains or co-domains of relations.)

Figure 7: Axioms for deletion operations from an entity

projnR(init
R(a)) = emptysnR

projn�(R) (init
R(a)) = emptysnE

projn
(R) (init
R(a)) = emptysnF

projm(init
R(a)) = projm(a) for each node m =2 f nR; n�(R); n
(R)g

projnR(insert
R(x; y; a)) = insertsnR (pairsnE ;snF (x; y); projnR (a))

projm(insert
R(x; y; a)) = insertsnE (x; projm(a))

for each node m 2 "n�(R)

projm(insert
R(x; y; a)) = insertsnF (y; projm(a))

for each node m 2 "n
(R)

projm(insert
R(x; y; a)) = projm(a) for each other node m in G

testR(x; y; a) = pairsnE ;snF (x; y) 2snR projnR(a) ^
testE(x; a) ^ testF (y; a)

Figure 8: Axioms for the insertion operations for relations

4.3 Manipulating Relations

Let r be a node in G generated from relation R with domain E and co-domain F , then label nR
with snR := cart(snE ; snF), modelling the fact that relations correspond to subsets of Cartesian
products.

4.3.1 The General Case

The following function symbols are generated for initialization, insertion, and testing, resp.:

initR : sG ! sG
insertR : snE � snF � sG ! sG
testR : snE � snF � sG ! bool

together with the axioms given in Fig. 8. Note that inserting a pair into a relation implies the
insertion of the �rst component and the second one into the domain and the co-domain, resp.

4 CONSTRUCTING THE SPECIFICATION 12

projnR(delete
R(x; y; a)) = deletesnR (pairsnE ;snF (x; y); projnR (a))

projn�(R) (delete
R(x; y; a)) = if 9y1:snF : :(y = y1) ^ testR(x; y1; a)

then

projn�(R) (a)

else

deletesnE (x; projn�(R) (a)

fi

projn
(R) (delete
R(x; y; a)) = if 9x1:snE : :(x = x1) ^ test

R(x1; y; a)
then

projn
(R) (a)

else

deletesnF (y; projn
(R) (a))

fi

Figure 9: Axioms for the deletion operations from relations

Again, initialization takes the whole ADT into account, and inserting a pair into a relation must
not touch unrelated nodes.

Deletion is a bit more complicated, when it comes to delete from the domain and from the co-
domain of R:

deleteR : snE � snF � sG ! sG
delDomR : snE � sG ! sG

delCoDomR : snF � sG ! sG

with the axioms given in Fig. 9 and obtained from the patterns in Figs. 10, and 11, resp. The
axioms in Fig. 9 specify that deleting a pair from a relation means for the node carrying that
relation that the pair has to be removed from the corresponding set of pairs sitting there. The
pair's �rst component has to be deleted from the domain node only if no other pair with the same
�rst component exists in the relation; similarly for the second component. Fig. 10 is instantiated
with Md := fn�(R)g and describes what happens when all pairs having a given �rst component
are being deleted from a relation. This is essentially described for relations which may be built up
through a sequence of insertions and deletions (since only term-generated models are of interest
here), and it is described how the values decorating the nodes for the relation proper, its domain,
and its co-domain are a�ected. All other nodes remain untouched. Symmetric considerations apply
to instantiating Fig. 11 with Mc := fn
(R)g to the analogous situation of deleting all pairs from a
relation when the second component is given as an argument.

The axioms in Figs. 10, and 11 are a bit involved, since they are to describe the e�ect of the domain
resp. the co-domain of a relation. Their complexity is due to the fact that these deletions may
have remote side e�ect, e.g., deleting from the domain a�ects the set decorating the co-domain
(and vice versa). Moreover, there are some degrees of freedom through the respective sets Mc and
Md: they specify on which nodes a plain deletion takes place, but these nodes may vary from the
constrain for the relation under consideration.

4.3.2 Constraints

Relation R between entities E and F is called left-total if each instance of E is related to some
instance of F , i.e., i� given an instance e of E there exists an instance f of F such that e is
related to f via R; R is called right-total i� R�1 is left-total, it is called total i� it is both left- and
right-total.

4 CONSTRUCTING THE SPECIFICATION 13

delDomR(x; initR(a)) = initR(a)
projnR(delDom

R(x; insertR(x1; y1; a))) = if x = x1
then

projnR(delDom
R(x; a))

else

projnR(insert
R(x1; y1; delDom

R(x; a)))
fi

projnR(delDom
R(x; deleteR(x1; y1; a))) = if x = x1

then

projnR(delDom
R(x; a))

else

projnR(delete
R(x1; y1; delDom

R(x; a)))
fi

projm(delDom
R(x; a)) = deletesnE (x; projm(a))

for each node m 2Md

projn
(R) (delDom
R(x; insertR(x1; y1; a))) = if x = x1

then

projn
(R) (delDom
R(x; a))

else

projn
(R) (insert
R(x1; y1; delDom

R(x; a)))

fi

projn
(R) (delDom
R(x; deleteR(x1; y1; a))) = if x = x1

then

projn
(R) (delDom
R(x; a))

else

projn
(R) (delete
R(x1; y1; delDom

R(x; a)))
fi

projm(delDom
R(x; a)) = projm(a) for each node m =2

�
fnR; n
(R)g [Md

�
Figure 10: Axiom patterns for the deletion operations from relations (domain)

Left-Total Relations Now suppose that E has a left-total relation R among the relations having
E in its domain with F as the entity for the co-domain for R. Then only the function symbols
testE with the same signature as above is generated, but we do without the function symbols
insertE and deleteE, since manipulation of E (initialization, insertion, deletion) is done as a side
e�ect through R. Hence the axioms in Fig. 6 are modi�ed accordingly, the axioms given in Fig. 7
are not needed in this case. Fig. 9 is augmented by the set of axioms

projm(delete
R(x; y; a)) = if :

�
9x1:snE : :(x = x1) ^ testR(x1; y; a)

�
then

deletesnE (x; projm(a)

else

projm(a)
fi

for all nodes m 2 +nE

Since the domain of a left-total relation is somewhat tightly coupled to the relation proper, we
instantiate the templates from Fig. 10 and Fig. 11 by putting Md := +nE and Mc := +nE , resp.

Right-Total Relations The case that entity F has a relation R which is right-total is now
rather symmetric: neither initE, insertE nor deleteE are generated, the axioms from Fig. 9 are

4 CONSTRUCTING THE SPECIFICATION 14

delCoDomR(y; initR(a)) = initR(a)
projnR (delCoDom

R(y; insertR(x1; y1; a))) = if y = y1
then

projnR(delCoDom
R(y; a))

else

projnR(insert
R(x1; y1; delCoDom

R(y; a)))
fi

projnR(delCoDom
R(y; deleteR(x1; y1; a))) = if y = y1

then

projnR(delCoDom
R(y; a))

else

projnR(delete
R(x1; y1; delCoDom

R(y; a)))
fi

projn
(R) (delCoDom
R(y; a)) = deletesnF (y; projn
(R) (a))

for each node m 2Mc

projn�(R) (delCoDom
R(y; insertR(x1; y1; a))) = if y = y1

then

projn�(R) (delCoDom
R(y; a))

else

projn�(R) (insert
R(x1; y1; delCoDom

R(y; a)))

fi

projn�(R) (delCoDom
R(y; deleteR(x1; y1; a))) = if y = y1

then

projn�(R) (delCoDom
R(y; a))

else

projn�(R) (delete
R(x1; y1; delCoDom

R(y; a)))
fi

projm(delCoDom
R(y; a)) = projm(a) for each node m =2

�
fnR; n
(R)g [Mc

�
Figure 11: Axiom patterns for the deletion operations from relations (co-domain)

augmented by a very similar set of axioms, viz.,

projm(delete
R(x; y; a)) = if :

�
9y1:snE : :(y = y1) ^ testR(x; y1; a)

�
then

deletesnF (x; projm(a))

else

projm(a)
fi

for all nodes m 2 +nF

and the axiom pattern from Fig. 10 and Fig. 11 by putting Md := +nF and Mc := +nF , resp.

Total relations are treated as the combination of the cases considered so far and need not be
discussed further.

N:1 Relations Let R be an N : 1-relation for the entities E and F ; we do not assume R to be
a left- or right-total relation (the modi�cations are obvious). All function symbols dealing with
insertion into R have to be modi�ed according to the following pattern

4 CONSTRUCTING THE SPECIFICATION 15

projn�(InitAtt�(a)) = initsnE ;s�
projm(InitAtt�(a)) = projm(a) for each node m 6= n�

projn� (PutAtt�(x; y; a)) = putsnE ;s�(x; y; A�)

projm(PutAtt�(x; y; a)) = putsnE ;s�(x; a) for each node m 2 "nE
projm(PutAtt�(x; y; a)) = projm(a) for each node m =2 "nE [f n�g

GetAtt�(x; a) = getsnE ;s�(x; projn� (a))

projn� (UnPutAtt�(x; a)) = unputsnE ;s�(x; projn� (a))

projm(UnPutAtt�(x; a)) = projm(a) for each node m 6= n�

Figure 12: Manipulating attributes (general case)

projnR(insert
R(x; y; a)) = if :

�
9x1:snE : testR(x1; y; a)^ : (x= x1)

�
then

insertsnR (pairsnE ;snF (x; y); projnR (a))

else

errornR
fi

The conditions guard the insertion from inserting a pair the second component of which is already
related to another instance.

4.4 Specifying Attributes

We discuss only the case of attributes de�ned on entities; attributes de�ned on relations are delt
with cum grano salis in a similar way.

4.4.1 The General Case

Let � be de�ned on entity E such that the corresponding function symbol A� has the signature
snE ! s�. The following function symbols are de�ned

InitAtt� : sG ! sG
PutAtt� : snE � s� � sG ! sG
GetAtt� : snE � sG ! s�

UnPutAtt� : snE � sG ! sG

Informally stated, InitAtt�(a) initializes the attribute, PutAtt�(x; y; a) sets the attribute value for
the instance x to y, GetAtt�(x; a) retrieves the value for the instance x, and �nally UnPutAtt�(x; a)
removes the value for x from the attribute. Note that we always take the global state of the ADT
into account.

The axioms are given in Fig. 12; they are essentially an adaption of the axioms for abb(snE ; s�) to
the graph G.

4.4.2 Special Cases: Total Attributes

Let TotalE and NonTotalE be the set of all total resp. non-total attributes de�ned on E. Hence
�(e) is de�ned for each instance e of E and each � 2 TotalE. Then removing the value for
an attribute implies removing the corresponding instance, inserting an instance into E requires
de�ning the values for all the attributes in TotalE. Thus the situation is similar to N :1-relations.

In fact, if TotalE 6= ;, we need not generate the function symbols initE, insertE and deleteE, since
initializing, inserting and deleting is done as a side e�ect through the corresponding operations for

4 CONSTRUCTING THE SPECIFICATION 16

projn�i (InitTotAtt
E(a)) = initsnE ;s�i for i = 1 ; : : : ; k

projm(InitTotAtt
E(a)) = if emptysnE (projnE (a)

then

emptysnE
else

errorsnE
fi

for all nodes m 2 +nE
projnR(InitTotAtt

E(a)) = if emptysnE (projnE (a)

then

emptysnR
else

errorsnR
fi

for each relational node nR
such that R has E as its domain or co-domain

projm(InitTotAtt�(a)) = projm(a) for each other node m
projn�i (PutTotAtt

E(x; y1; : : : ; yk; a)) = putsnE ;s�i (x; yi; A�i)

for i = 1 ; : : : ; k
projm(PutTotAtt

E(x; y1; : : : ; yk; a)) = projm(insert
E(x; a))

for all nodes m 2 "nE
projm(PutTotAtt

E(x; y1; : : : ; yk; a)) = projm(a) for each node
m =2 "nE [f n�1 ; : : : ; n�kg

projn�i (UnPutTotAtt
E(x; a)) = unputsnE ;s�i (x; projn�i (a))

for i = 1 ; : : : ; k
projm(UnPutTotAtt

E(x; a)) = projm(delete
E(x; a))

for all nodes m 2 +nE
projm(UnPutTotAtt

E(x; a)) = projm(a) for each node
m =2 +nE [f n�1 ; : : : ; n�kg

Figure 13: Modi�ed axioms for total attributes on entity E

the attributes in TotalE; test
E is generated, however. Let TotalE = f�1; : : : ; �kg and generate the

function symbols InitAtt�, PutAtt�, UnPutAtt� for each attribute � 2 NonTotalE, and GetAtt�
for each attribute � de�ned on E. Instead of generating the missing function symbols individually
for each � 2 TotalE, we do it for the whole collection:

InitTotAttE : sG ! sG
PutTotAttE : snE � s�1 � : : : s�k � sG ! sG

UnPutTotAttE : snE � sG ! sG

The axioms for this case are given in Fig. 13.

4.4.3 Special Cases: Keys

Let � be a key attribute on entity E, then � corresponds to a total injective map. Assume that
TotalE = KeyE [NonKeyE is partitioned into key and non-key attributes,

KeyE = f�1; : : : ; �`g;

NonKeyE = f�`+1; : : : ; �kg;

5 APPLICATION TO PETRI NETS 17

and assume that ` > 0 holds. Hence each element in KeyE is a key attribute on its own. The
axioms for the function symbol PutTotAttE given in Fig. 13 are modi�ed so that a value for a key
attribute is set only if it did not occur before, hence injectivity is preserved. To be more speci�c,

projm(PutTotAtt
E(x; y1; : : : ; yk; a))

is guarded for each node m by the condition

j=`^
j=1

:
�
9zj :s�j : GetAtt�j (zj ; projn�j (a)) = yj

�
:

If the condition is true, the insertion indicated in Fig. 13 is returned, and an error value otherwise.
The obvious details are left to the reader.

5 Application to Petri Nets

The ER-model M generates an algebraic speci�cation h�M;�Mi according to the constructions
outlined above. We indicate how this mechanism may be put to use in the context of Petri nets by
discussing the general situation in which valid formulas from the algebraic speci�cation are used
as conditions, and labels for
ows, resp.

It is well known that Petri nets may be used for the functional speci�cation of concurrent systems
(cp. e.g. [11, 5.5.3]), and that the conceptual description of data and their relations may in
many cases be formulated using ER-diagrams. These speci�cations are usually done separately.
Information systems, however, require the joint description of functional properties and conceptal
properties of data, hence a formalism specifying both the functional and the data view could make
use of a tight coupling of Petri nets and ER-diagrams. In this section we propose such a marriage
through condition-event nets [18, 13]. The following de�nition is an adaptation of Reisig's de�nition
of this class of nets, see [18, Sec. 8.2].

Formally, a condition-event net consists of an underlying bipartite graph (P; T;�), where P is the
set of places, T is the set of transitions, and � � (P � T)[(T � P) is the
ow relation. As usual,
put for a 2 P [T

�a := fb 2 P [T : (b; a)2 �g

a� := fb 2 P [T : (a; b)2 �g

Now let h�;�i be an algebraic speci�cation with the S-sorted set X of free variables, where
� = hS;�i. Fix a model A = (As)s2S for the speci�cation, and assume that

� : �! w�(�; X)

c : P ! w�(�; X)

are maps such that for each
ow ' and each place p all terms in �(') and in c(p) are valid in A.
c is called a condition. A transition t 2 T is c-activated i� for each s 2 S the following holds:

8p 2 �t : �s(p; t) � cs(p)

8p 2 t� : �s(t; p) \ cs(p) = ;

Thus the condition imposed by c holds for each label on the
ow (p; t), and no label on (t; p)
satis�es the condition. In this case, the transition may �re, and a new condition c0 is de�ned upon
setting

c0s(p) :=

8>><
>>:

cs(p) n �s(p; t); p 2 �t n t�

cs(p) [�s(t; p); p 2 t� n �t
(cs(p) n �s(p; t)) [�s(t; p); p 2 �t \ t�

cs(p) otherwise

6 IMPLEMENTATION ISSUES 18

The formalism outlined here permits the joint modelling of functions and data: functional modelling
may be done through a Petri net, the
ows of which are annotated with formulas coming from
the model for an algebraic speci�cation of an ER-model, where free variables are interpreted in a
speci�c way. Places are marked with conditions pertaining to the model.

6 Implementation Issues

The ER-speci�cation given here is based on speci�cations related to set theory. This makes con-
structing a model rather straightforward: suppose Ms; Cs1;s2 , and Fs1;s2 are models for the re-
spective speci�cations SET(s);CART(s1; s2), and ABB(s1; s2) (cp. 2.1). Then label each node in G
correspondingly: a node generated for an entity which is assigned sort snE obtains the labelMsnE

,
a node for a relation which is assigned sort cart(snE ; snF) is labeled with CsnE ;snF , similarly for
attribute nodes: a label abb(s�; s�) is interpreted Fs�;s� . The operations carry over in a natural
way, e.g. insertE is interpreted for an entity E as set insertion in MsnE

along the admissible
path from nE to the corresponding root node, and as the identity on all nodes of G outside "n.
Consequently, the operations on MsnE

may be extended in a natural way to operations on the
decorated graph, similar extensions hold for the operations on CsnE ;snF and on Fs�;s� . The dis-
cussion above disregards e.g. constraints on relations or attributes, taking them into account will
make notation clumsier but does not change the argumentation. So we lock them out.

It is plain that this procedere induces an interpretation, and that the decorated graph is in fact a
model for the speci�cation. Moreover, if Ms; Cs1;s2 , and Cs1;s2 are all chosen to be initial models,
an initial model is obtained, similarly, selecting only terminal models for the basic speci�cations
translates into a terminal model. These considerations provide initial and terminal semantics for
the ER-speci�cation, loose semantics is obtained from selecting arbitrary (reachable) models for
the basic speci�cations. Thus we have provided a formal semantics for the class of ER-models
considered in this paper.

We have implemented a generator for the speci�cation, which takes a textual description for an
ER-model as an input. The results are somewhat discouraging: the speci�cation generated for the
simple user interface from Fig. 3 included 14 speci�cations to be imported, 83 function symbols, and
2232 axioms, all this on top of the basic parametrized speci�cations. Most of the axioms are identity
axioms, stating that nothing changes on most nodes in G; omitting these axioms, 220 axioms are
left, which is a considerable reduction, but still too large to be maintained without a supporting
tool. Thus the proposal put forth in section 5 of using terms coming from an ER-speci�cation
as labels for Petri nets should be complemented by a suitable tool assisting in manipulating the
particulars of the speci�cation (Petri nets for realistic applications tend to be large, hence tool
support is mandatory anyway).

The model theoretic observations make it easy to implement the ER-speci�cation, at least in a
language like SETL ([19, 8]) or ProSet [9] supporting directly the dictions of �nite set theory
(in fact, a package implementing set operations would be su�cient, see the experiment reported
about in [7]). Taking these operations as a basic layer, the operations for the ER-speci�cations are
translated directly into expressions of the programming language. The graph G is not constructed
explicitly but may rather be maintained implicitly through the
ow of control (e.g. by grouping all
the insert statements which are generated for insertE along the nodes in "nE into one insertion
procedure and omitting the identity axioms altogether). This reduces the size of the implement-
ation considerably, and a generator may easily be derived from the one indicated above. Thus it
is possible to adequately model data using ER-models within the context of software prototyping
with persistent data [6, 10], one of the goals of the ProSet project. An ER-model translates into
a module having the state of the current instances for the entities, relations, and attributes as its
internal state and exporting all the operations on the model generated from the ER-speci�cation,
so that the ER-model is manipulated entirely through this module. Having �rst class citizen

7 RELATED WORK AND FURTHER STUDY 19

rights, modules may be made persistent, thus we end up with a persistent implementation of the
ER-model.

7 Related Work and Further Study

The problem of formally describing ER-models has been undertaken by severals authors with
di�erent kinds of ER-models and di�erent motivations in mind.

Hettler [14] focusses on a formulation in the speci�cation language SPECTRUM, modelling entities
as records with attributes as entries. Dependencies between entities via IsA are not formulated
using a graph or a comparable structure. It is noted that these dependencies have to be taken care
of, and an example shows how to do it. The motivation for this work is to demonstrate that this
data modelling technique may be made accessible in SPECTRUM.

The report [3] proceeds in two steps: transformation of the ER-diagram into an attributed graph
signature and transformation of the integrity constraints into �rst-order logic formulas. The ER-
model used does not take the IsA relation explicitly into account. The paper has its focus not on
providing a static semantics but rather formalizing the dynamic aspect | transactions | through
�-homomorphisms, hence showing how transactions may be caught in an algebraic framework.

Gogolla & Hohenstein [12] and a bit later Hohenstein [15] deal with the formal semantics of
an extended ER-model form a data base point of view. The goal is to provide a mathematical
semantics of EER-models and to propose a calculus for their manipulation ("a well founded calculus
taking into account data operations on arbitrary user de�ned types and aggregate functions\ is
the formulation in [12]). These authors propose the semantics of a data base signature as the set
of all interpretations ([15], p. 63) and work within that framework; algebraic speci�cations are not
used explicitely.

Further Study The basic ER-model may be extended to support semantic data modelling
techniques [16]. This would be done along the lines provided here by �rst adding some primitive
operations to the speci�cation SET(s) (e.g., the disjoint union has to be formulated), then extending
the speci�cation in section 4 correspondingly. Graphical support through an ER-editor would make
working with the machinery proposed here more pleasant; work on such an editor is under way.
Combining the algebraic speci�cation with functional speci�cations using Petri nets as suggested
in section 5 should be supported by a visually oriented tool. In a similar way, the problems arising
in interfacing an ER-editor with a graphical editor e.g. for the speci�cation language � (cp. [1])
do not appear to be entirely trivial.

It should be possible to automatically derive an implementation in a procedural or object-oriented
language for the speci�cation of an ER-model, given the results reported e.g. by Lin [17]. It is
plain that what we called above identity axioms will serve as pre- and as postconditions, and that
most of the other axioms may be read from left to right, yielding procedure calls. Augmenting the
model may change the picture, and investigating such an automatic derivation may be interesting.

ER-models tend to become large and unmanageable, so they are modularized. We deal here with

at ER-models. A modular ER-speci�cation should of course re
ect the modular structure of the
underlying model, so adequate techniques for modularizing algebraic speci�cations are needed,
cp. [22, 9.3,9.2].

A Appendix

This appendix provides speci�cations for the Cartesian product, and for the associative maps of
set theory.

REFERENCES 20

�[[s1;:::;sk]];s i
�
tup[[s 1;:::;sk]](x1; : : : ; xk)

�
=si xi

for i = 1 ; : : : ; k

z1 =[[s 1;:::;sk]] z2 =bool
i=kV
i=1

�
�[[s 1;:::;sk]];si(z1) =si �[[s1;:::;sk]];s i(z2)

�
z =[[s 1;:::;sk]] tup[[s1;:::;sk]](�[[s1;:::;sk]];s1(z); : : : �[[s 1;:::;sk]];sk(z))

Figure 14: Axioms for the Cartesian product

A.1 The Cartesian Product

Let s1; : : : ; sk be sorts, with : =si : as the equality relation on si for i = 1 ; : : : ; k. The sorts need
not be di�erent. Generate a fresh sort [[s1; : : : ; sk]], and put

S := fs1; : : : ; sk; [[s 1; : : : ; sk]]g

as the signature for the Cartesian product. The set � of function symbols consists of

tup[[s 1;:::;sk]] : s1 � : : :� sk ! [[s 1; : : : ; sk]]
�[[s1;:::;sk]];s i : [[s1; : : : ; sk]] ! si

for i = 1 ; : : : ; k

Intuitively, the tup-function builds a tuple from its argument, and the �-functions are the cor-
responding projections. The set � of axioms (which are not really surprising) is enumerated in
Fig. 14. The speci�cation

�hs1; : : : ; ski := hhS;�i;�i

denotes then the speci�cation for the Cartesian product. If we have only two sorts s1; s2, the rather
clumsy notation may be alleviated somewhat: the speci�cation is then denoted by CART(s1; s2),
the tuple function and the projections are renamed to pairs1;s2 and �s1 ; �s2 , resp., and the new
sort [[s1; s2]] is denoted by cart(s1; s2) subsectionAssociative Maps Given the sorts s1; s2 with
: =s1 :; : =s2 : as the corresponding equality relations, we generate a fresh sort abb(s1; s2) and the
set � function symbols

� := finits1;s2 ; puts1;s2 ; gets1;s2 ; unputs1;s2 ; undefs1;s2g

with these signatures:

inits1;s2 : ! abb(s1; s2)
puts1;s2 : s1 � s2 � abb(s1; s2) ! abb(s1; s2)
gets1;s2 : s1 � abb(s1; s2) ! s2

unputs1;s2 : s1 � abb(s1; s2) ! abb(s1; s2)
undefs1;s2 : ! s2

Intuitively, the initialization of a partial map happens through inits1;s2 which produces a map that
is unde�ned everywhere, i.e. that has the value undefs1;s2 for each argument. Setting an argument
to a value happens through puts1;s2 : the function takes the argument x, the value y and the map
f , producing a new map which behaves exactly as f does, except that it assigns the value y to x.
The function gets1;s2 retrieves the function value, and unputs1;s2 reverses the e�ect of puts1;s2 .

The axioms are given in Fig. 15.

References

[1] S. Alker. Ein hybrider graphischer Syntaxeditor f�ur Kon�gurationsspezi�kationen in der �-
Sprache. Master's Thesis, University of Dortmund, Chair for Software Technology, 1993.

REFERENCES 21

gets1;s2(x; inits1;s2) =s2 undefs1;s2
gets1;s2(x; puts1;s2(x; y; f)) =s2 y
gets1;s2(x; unputs1;s2(x; f)) =s2 undefs1;s2

gets1;s2(x
0; puts1;s2(x; y; inits1;s2)) =s2 if x0 =s1 x then y else undefs1;s2 fi

unputs1;s2(x; puts1;s2(x; y; f)) =abb(s1;s2) unputs1;s2(x; f)

unputs1;s2(x; inits1;s2)) =abb(s1;s2) inits1;s2
puts1;s2(x; y; puts1;s2(x; y

0; f)) =abb(s1;s2) puts1;s2(x; y; f)�
f =abb(s1;s2) g

�
=bool 8x:s1 : (gets1;s2(x; f) =s2 gets1;s2(x; g))^�

unputs1;s2(x; f) =abb(s1;s2) unputs1;s2(x; g)
�

Figure 15: Axioms for operations on partial maps

[2] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth, F. Regensburger, Slo-
tosch O., and K. St�len. The requirements and design speci�cation language SPECTRUM
| an informal introduction. Technical Report TUM I9311 - 12, Technische Universit�at
M�unchen, 1993.

[3] I. Cla�en, M. L�owe, S. Wa�erroth, and J. Wortmann. Static and dynamic semantics of Entity{
Relationship models based on algebraic methods. Technical report, Technische Universit�at
Berlin, Fachbereich Informatik, 1994.

[4] J. Cramer. Interconnecting and Reusing Component Speci�cations. PhD thesis, University of
Dortmund, Chair for Software Technology, November 1994.

[5] J. Cramer, W. Fey, M. Goedicke, and M. Gro�e-Rhode. Towards a formally based component
description language - a foundation for reuse. Structured Programming, 12:91 { 110, 1991.

[6] E.-E. Doberkat. Integrating persistence into a set-oriented prototyping language. Structured
Programming, 13:137 { 153, 1992.

[7] E.-E. Doberkat, E. Dubinsky, and J.T. Schwartz. Reusability of design for complex programs:
an experiment with the SETL optimizer. In Proc. IT & T Workshop on Reusability of Software,
pages 106 | 108, Providence, R.I., 1983.

[8] E.-E. Doberkat and D. Fox. Software Prototyping mit SETL. Teubner { Verlag, 1989, Stut-
tgart.

[9] E.-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, and C. Pahl. ProSet
| A Language for Prototyping with Sets. In N. Kanopoulos, editor, Proc. Third International

Workshop on Rapid System Prototyping, pages 235{248, Research Triangle Park, NC, June
1992. IEEE Computer Society Press.

[10] E.-E. Doberkat, W. Franke, U. Kelter, and W. Seelbach. Verwaltung persistenter Daten in
einer Prototyping{Umgebung. In H. Zuellighoven, W. Altmann, and E.-E. Doberkat, editors,
Requirements Engineering '93: Prototyping, pages 147 { 164. Teubner-Verlag, Stuttgart, 1993.

[11] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering. Prentice
Hall, Englewood Cli�s, 1991.

[12] M. Gogolla and U. Hohenstein. Towards a semantic view of an extended Entity{Relationship
model. ACM Transactions on Database Systems, 16:369 { 416, 1991.

[13] X. He and J. A. N. Lee. A methodology for constructing predicate transition net speci�cations.
Software - Practice and Experience, 21:845{875, August 1991.

REFERENCES 22

[14] R. Hettler. Zur �Ubersetzung von E/R{Schemata nach SPECTRUM. Technical Report TUM
I9333, Technische Universit�at M�unchen, 1993.

[15] U. Hohenstein. Formale Semantik eines erweiterten Entity-Relationship-Modells. B. G. Teub-
ner Verlagsgesellschaft, Stuttgart, Leipzig, 1993.

[16] R. Hull and R. King. Semantic database modeling: Survey, applications, and research issues.
ACM Computing Surveys, 19:201 { 261, 1987.

[17] H. Lin. Procedural implementation of algebraic speci�cations. ACM Trans. Prog. Lang. Syst.,
15:876 { 895, 1993.

[18] W. Reisig. Petrinetze. Springer{Verlag, Berlin, Heidelberg, New York, 1982.

[19] J.T. Schwartz, J. Dewar, E. Dubinsky, and E. Schonberg. Programming With Sets: An

Introduction To SETL. Springer { Verlag, 1986, New York.

[20] J. D. Ullman. Database and Knowledge-Base Systems, volume I. Computer Science Press,
Rockville, MD, 1988.

[21] M. Wirsing. Structures algebraic speci�cations: a kernel language. Theoretical Computer

Science, 43:123 { 250, 1986.

[22] M. Wirsing. Algebraic speci�cations. In J. v. Leeuwen, editor, Handbook of Theoretical Com-

puter Science, vol. B: Formal Models and Semantics, pages 675 { 788. Elsevier, Amsterdam,
1990.

		2002-04-03T16:48:58+0200
	Universitaetsbibliothek Dortmund - Eldorado

