
A Prolog-based Semantics of a Dedicated Process

Design Language �

Gerald Junkermann

University of Dortmund, Informatik X, D-44221 Dortmund, Germany

June 27, 1994

1 Introduction

Like for the development of industrial products, the process underlying the development of
software should be �xed in advance in order to achieve high productivity and high quality
of the process and the resulting product. Currently, this process is speci�ed through com-
pany internal development guidelines. These usually voluminous and informal documents are
written in a \natural" language which make them di�cult to use, because they allow di�er-
ent interpretations. To avoid di�erent interpretations a language with a precise semantic is
needed.

The use of formal languages and tools for the de�nition and enactment [FH93] of process
programs [Ost87] enable a unequivocal interpretation of the speci�ed processes. The process
de�nitions can now be interpreted by machines. The consequence is, that there is no more
a recommendation through guidelines then a guiding of software development through the
de�nition and enactment of processes.

A further advantage is, that processes can now be analyzed and validated [Lon93]. Through
validation, de�ciencies and necessary process improvements can be detected. After change,
the improvements will become an integral part of the process and will be used immediately.

Recently, several process modeling languages have been developed. Most of them are multi-
paradigm approaches, as proposed in [DGS89], centered around one main paradigm like rules
(e.g. Marvel [EFP88], Merlin [JPSW94], Oikos [AM92]), imperative programming languages
(e.g. APPL/A [HSO90], IPSE 2.5 [War89]) or petri-nets (e.g. Melmac [Gru91], ProcessWeaver
[Fer93], SLANG [BaAM91]).

Most of the above listed process programming languages are on the same level of abstraction
as \traditional" programming languages and, therefore di�cult to understand and unsuitable
to explain the process de�ned. When writing a process program, the process engineer has
to consider a lot of technical features of the used programming language, which hampers the
process de�nition itself.

What is needed is a high-level process design language which o�ers a more intuitive representa-

�This work has been supported by the Provincial Ministry for Research (MWF) of the state of Northrhine
Westphalia

1

tion of the process. A promising starting point is to apply the concepts of already known and
accepted graphical languages, which have been used successfully for the design of databases
and complex reactive systems.

This paper presents ESCAPE 1, a graphical design-language for the design of process-programs.
The design-language will become part of the Merlin Process-centered Software Development
Environment (PSDE) prototype [JPSW94].

In section 2 the aspects to be considered when modeling processes are worked out by an
examination of the problem area of PSDEs. The section ends with a proposal for a high level
process design language. The proposed design language is based on an EER-model extended
by Statecharts. The EER-model and Statecharts are introduced in section 3 and an example
process, is given. The example process shows, that application speci�c restrictions can be made
on the introduced language to ease its use. Examples for necessary restrictions on the language
as well as context-sensitive conditions and semantic conditions to be kept are introduced in
section 4. The graphical design language is not enactable and only the front-end to the process-
engineer. Therefore, it is mapped to an enactable language. The chosen enactable language
is the PROLOG-like process programming language of the Merlin-prototype. In section 5 it
is shown, how to map the graphical design language to the enactable language. In section
6 related systems are introduced and it is shown how they di�er from ESCAPE. In section
7, a conclusion with a summary of results as well as further plans to extend the prototype
functionality is given.

2 Problem de�nition

Documents, relationships between documents, properties of documents, tools which can be
applied to documents and roles, are the ingredients (objects) which have to be considered
when specifying a software development process.

Documents are manipulated in one of the phases of the underlying software life cycle (e.g.
waterfall model, spiral model). For every phase, one or more documents can be determined. A
speci�cation document is, for example, part of the design phase, whereas the code of a module
(e.g. c module) is part of the implementation phase.

The documents which are part of the software production process are related to each other
by relationships (e.g. a uses relationship between two c-modules, an is implemented in re-
lationship between a speci�cation and its c module). Relationships are needed, to propagate
changes to related documents or to get information which is needed for the development of
the document of concern (e.g. (1) if an operation name is changed, this change must be prop-
agated to all related documents using this operation, (2) a module can only be compiled if all
imported modules have been compiled successfully).

Both, documents and relationships can have properties. Examples are the behaviour of a
document or the EBNF correspondence between two documents. The EBNF correspondence
is used to relate the contents of one document, or only a part of it, to the contents of the related
document (e.g. the operation name in the speci�cation and implementation of a module must
be the same).

Tools correspond to activities and are used to access and manipulate the document contents

1
EER-models and Statecharts Combined for Advanced Process Engineering

2

or its management information (e.g. a time stamp). Tools can be distinguished into those
which require user interaction (e.g. editor, debugger) and those which can be started and no
further user interaction is required (e.g. compiler). In the following, tools of the �rst category
are named interactive tools, and those of the second category batch tools.

In addition to the technical aspect, there is also a managerial aspect. If a large number of
developers are involved in a project, the whole work is divided into smaller parts. Each part
is assigned to one of the developers who is now responsible for it. To support specialization
and by that increase productivity, these parts are centered around activities which are highly
related (e.g. project management, design, test). A group of activities which are highly related
is named role. One or more roles (e.g. manager, programmer, tester) can be assigned to a
developer to de�ne his task and to �x the work which can and must be performed by him
(e.g. a developer having as role programmer is responsible for writing the code but has no
responsibilities for managing the development activities).

From the structural perspective the above listed ingredients are su�cient for the speci�cation
of a software development process. What has not been considered is, that the development
activities must be perfomed in a certain order to get the desired output. It is for example not
possible to test a program before it has been written. Furthermore, development activities may
be perfomed in parallel and have to be coordinated. To solve this problem, synchronization
is needed. Through synchronization, the work of several developers working cooperatively
on a common project is coordinated and the desired output is guaranteed. Synchronization
can only be realized, if the development state of a document is known and if the e�ects of
modi�cations are propagated to all objects a�ected by this modi�cation.

The development state of a document is �xed by the document state. For each development
state, one unique value is de�ned. The set of all values valid for the document is the domain
of the document state.

An example for the development states of a c module is: (1) the speci�cation of the module is
not complete or it is currently modi�ed, implementation can not start or an old implementation
has to be adapted to new requirements, (2) the speci�cation is complete and the implemen-
tation of the module can start, (3) the module is implemented as speci�ed and all imported
modules are compiled successfully, (4) the compilation is successful. The corresponding state
values are: (1) incomplete, (2) not yet implemented, (3) implemented, (4) compiled.

A change of state for a document can have two reasons: (1) a document is modi�ed by using
a tool and a new state is set by the user or system, or (2) the e�ect of a change of state for
the document of concern must be propagated to related documents.

Propagation of changes concern the aspect that a change of state for one document might
cause a change of state for possibly an arbitrary number of related documents. If, for exam-
ple, the state of a speci�cation changes from complete to incomplete, the state of the related
implementation must be changed too (to not yet implemented). The change of state for the
implementation is necessary to guarantee, that the changes made for the speci�cation will also
be considered for the implementation. The change of state for the implementation may also
cause further state changes to other related documents which have to be handled in the same
way.

If a document is modi�ed by a tool it has to be guaranteed, that the tool can only be applied
to a document, if it makes sense in the current state of development, i.e. some preconditions
must be ful�lled. A precondition for a compilation is for example, that the developer has

3

choosen the role programmer and that coding has been �nished. Analogously, the result of tool
application should be important for further activities to be performed, i.e. a postcondition
must be �xed. An example for a postcondition is, that the document is ready for test if the
compilation was successful.

Summarizing, the development of a process-design language is highly in
uenced by the follow-
ing aspects to be considered when modeling processes.

� Which documents are manipulated during software development?

� Which are the relationships between documents?

� Which are the properties of a document/relationship?

� Which tools/activities can be invoked on a document?

� Which roles are supported?

� What are the states a document may be in?

� How does the invokation of a tool in
uence the state of a document?

� How does a change of state for one document in
uence the state of related documents?

� What are the preconditions and postconditions for tool invokation?

The above given problem de�nition has shown, that two di�erent perspectives have to be
considered for process-design. The structural perspective and the behavioural perspective.

The structural perspective includes the speci�cation of document types, relationship types,
tools that can be applied to documents of a speci�c type, states a document may be in, and
the supported roles.

The behavioural perspective captures those aspects of the process that are concerned with
change. Every activity performed on one document may change the state of the document of
concern or related documents.

As proposed in [EG94], the process design language should support an explicit modeling of
both perspectives to decrease the complexity of the modeling activity and to improve the
changeability of software process speci�cations.

The similarities between the above given requirements and those for information modeling are
obvious. Therefore, the three information modeling approaches Object Modeling Technique
(OMT) [RBP+91], the Booch method [Boo94], and the method supported by STATEMATE
2 [HLN+90] have been examined to take advantage of knowledge already available.

Due to the fact that the object model is most fundamental, because it is necessary to describe
what is changing before describing when and how it is changed it becomes the central part of
the speci�cation. It captures the structural perspective of the process. For modeling that part,
the EER-model, as supported by OMT and the Booch method, is a suitable expedient. Using
a speci�cation technique which is build around object classes rather than around functionality,
more closely corresponds to the real world and therefore modeling becomes easier.

2STATEMATE is a trademark of i-Logix, Inc., Burlington, MA

4

For modeling the behavioural perspective, the EER-model must be extended. In STATEM-
ATE, which is an environment for the development of reactive systems, the activity charts and
module charts are used to specify the structural perspective. These charts are combined with
Statecharts to specify the behavioural perspective. Similarly, the above proposed EER-model
is extended by Statecharts [Har87]. Statecharts are formally well de�ned and support the spec-
i�cation of states, transitions between states, and, through orthogonality, the speci�cation of
synchronization.

3 Process Modeling using an EER-model

In the previous section an EER-model was proposed as formalism for the speci�cation of
software processes. In this section the suitability of this approach is shown. The used EER-
models and Statecharts are brie
y introduced and an example process design is given.

3.1 Concepts of the supported EER-model

The supported EER-model is based on the de�nitions and graphical representations introduced
by Rumbaugh et al. in [RBP+91].

The syntax of the used EER-models can be explained by the example given in �gure 1. The

a6: t6 = default6m3
m4

a5: t5 = default5

a3: t3 = default3
a2: t2 = default2

entity2 entity3

m5

a4: t4 = default4

a1: t1 = default1

entity1 class identifier

attributes

m1
m2

methods

rel1 rel2

Figure 1: Example EER-diagram

speci�cation of attributes and methods is shown for each of the three speci�ed classes, named
entity1, entity2 and entity3. The number of attributes and methods is unlimited. Classes are
graphically represented by a box separated into three parts. The �rst part contains the class
identi�er, the second the attributes and the third the methods. A class being re�ned is called
a superclass and the re�ned version is called a subclass. Non-leaf nodes are called abstract
classes and leaf nodes are called concrete classes.

For class entity1 the attributes a1, a2, and a3 are speci�ed. For each of them, a type and
default value are given. In the case of a1, the type is t1 and the default value is default1. The
methods speci�ed for that class are m1 and m2.

Two relationship types are speci�ed, named rel1 and rel2. Relationships are allowed between

5

two concrete classes, between an abstract class and a concrete class, and between two abstract
classes. Relationship types are graphically represented by an arrow having the relationship
identi�er attached to it.

For sharing similarities among classes they are organized in an inheritance hierarchy. All
properties, methods and relationships are inherited.

3.2 Concepts of the supported Statecharts

The supported Statecharts are based on the de�nitions and graphical representations intro-
duced by Harel in [Har87], [Har88]. Statecharts are based on state-transition-diagrams en-
hanced by orthogonality, depth and a broadcast-communication mechanism. They o�er as
modeling concepts states and labeled transitions. Labels are an event/action pair used to spec-
ify the dynamic behaviour. The supported broadcast mechanism guarantees, that all external
and internal events are received by every part of the system, independent of the sender.

The syntax of Statecharts can be explained by the example Statechart given in �gure 2.
Orthogonality is shown in state Z, which is composed out of the states G, H and I. The

Y

G H IO M

a/b in(B) in(A)
b

b
a

1h

c
d

K

L

N

A

B

C

D

E

F

Z

Figure 2: Example of a Statechart

notation is, that the box is split into components using dashed lines. When in being Z, the
system is in all states of its components (e.g. fA, C, Eg). Clustering and re�nement is
supported as shown for state M. M is used to cluster K and L. When clustering states, the
system can only be in one of the speci�ed components which are part of the cluster (i.e. for the
given example K or L). If the event a occurs, the new state will be N, if one of the states K or
L have been pre-states. If event b occurs, the new state will be N, if the pre-state was K, or it
will be K, if the pre-state was L. A default-state, indicated by an arrow with a �lled dot (e.g.
A for the state G) and history, graphically represented by a circle, are also supported. The
history h1 in state M indicates, that the system will return to the state it has been in before
leaving M. An example for a condition is in(A) as shown for the transition between states E
and F. An example for an event/action pair is a/b as shown for the transition between states
A and B. If event a occurs, the transition can �re and event b is send.

Through orthogonality, the Statecharts support the speci�cation of concurrency. If, in the
example given in �gure 2, the system is in the state fK, A, C, Eg and the event a occurs,
the new state will be fN, B, C, Fg. The two components O and G have changed state
simultaneously.

For further details concerning syntax and semantic of Statecharts the reader is refered to

6

[HPSS87].

3.3 Process modeling example

The aim of this section is to demonstrate by an example, that the structural as well as be-
havioural perspective of a process can be modeled using EER-diagrams and Statecharts.

To structure the explanation, the whole process is introduced in a step-wise manner. The
steps give a �rst idea of the di�erent steps to be performed to get a process design and re
ect
the aspects to be considered when specifying processes (see section 2). Although the steps are
explained separately, incremental development, iteration, and re�nement will be usual.

As mentioned in section 2, the speci�cation should be build around object classes. Therefore,
the �rst three steps are dedicated to the speci�cation of the class hierarchy.

Step 1: Examine the documents manipulated in the di�erent phases of the software life cycle
and classify them. After identifying all document classes, its properties and the tools
which can be applied to documents of this class are �xed. Properties are de�ned by
attributes and tools correspond to methods.

Analogous to the separation of tools into interactive tools and batch tools, methods are
also separated into interactive methods and batch methods. This separation on the spec-
i�cation level is needed to distinguish between those tools which must be invoked by the
user (e.g. an editor) and those which can automatically be invoked by the process engine
(e.g. a compiler). If the same tool can be applied interactively as well as automatically
(e.g. a compiler could for example be used for a syntax check and for the �nal compila-
tion), it has to be speci�ed twice with di�erent names, because the semantic when using
the tool is di�erent in both cases. Graphically, interactive methods and batch methods
are separated by a dashed line.

Step 2: After the speci�cation of attributes and methods, the similarities among document
classes are identi�ed. Similarities can for example be the same document structure or
the same methods.

The �nal result is a class hierarchy where the concrete classes represent those document
classes which are part of the �nal product to be developed (e.g. source code, documen-
tation) as well as the document classes produced to ease development and to improve
quality and performance (e.g. test plan, project plan). Figure 3 shows a sample class hi-
erarchy. For the abstract classes executable and editable the speci�cation of the attribute
document type structure is given. The attribute is inherited from class documents, its
type is an enumeration and for both classes, a value is selected. In the �nal shaping, for
each class the attribute document type structure is speci�ed.

The interactive methods ascii pager, ascii printer, and ascii editor are speci�ed for the
abstract class editable, because they can be invoked on every editable document. The
concrete class c module, for example, inherits these methods and is enhanced by the
batch method c compiler.

Step 3: Identify the relationship-types which exist between instances of concrete document
classes.

An example for a relationship type is is implemented in. The relationship type relates
the speci�cation and implementation of a module. It is used to perform changes to the

7

is_executable_in

is_reviewed_in

ascii_editor

is_implemented_in

ascii_printer

compile_errors_are_in

imports

document_type_structure:enum = [ascii_file, binary_file]

documents class identifier

properties
interactive methods
batch methods

realisation_is_imported_in

uses

ascii_pager

editableexecutable

binary_read

test_plan c_program c_module err_repspecification

debug c_compiler

document_type_structure: enum = [binary_file] document_type_structure: enum = [ascii_file]

Figure 3: Document classes and their relationship types

implementation if the speci�cation has been changed or vice versa.

Up to this point, the structural perspective of the process was speci�ed. For the speci�cation
of the behavioural perspective, for each concrete class a Statechart must be speci�ed.

For the speci�cation of a Statechart, steps 4 to 6 have to be performed. The given examples
are part of the Statechart used to specify the behaviour of class c module.

Step 4: Identify the states a document may be in. One of these states has to be selected as
default-state. The default-state is assigned to document instances after creation.

For class c module, the states incomplete, not yet implemented, implemented, not yet compiled,
compiled, compiled with errors, not yet tested, and complete are speci�ed. As default
state, incomplete is choosen.

Step 5: For all methods, the preconditions and postconditions must be speci�ed. This is
performed through the speci�cation of labels having an empty event and as action a
method identi�er. The source and target state of the transition correspond to the pre-
and post-state for method invokation.

The labels shown in �gure 4 are interpreted as follows. The two methods ascii printer

incomplete

complete
not_yet_tested compiled_with_errors

not_yet_compiled

/c_compiler

compiled

/c_compiler

implemented

history

not_yet_implemented

/ascii_editor /ascii_editor

/ascii_pager /ascii_printer

c_module

Figure 4: Speci�cation of tool invocation

and ascii pager can be applied to a c module any time, i.e. each state is a pre-state

8

for method invokation. This makes sense, because the user must be able to print or
visualize the contents of the document whenever needed. Since there is no e�ect on the
development state of the document itself, the post-state must be same as before. On the
speci�cation level this is expressed by a transition having as source a cluster of all states
a document may be in and as target the history-state.

For the two methods ascii editor and c compiler only the pre-states can be determined.
As post-states, two states are possible. Which of the possible states will be the post-state
can not be decided in advance (e.g. the result when executing a compiler is for example
a successful (post-state compiled) or erroneous (post-state compiled with errors) compi-
lation). This non-determinism within the Statechart exactly re
ects the real situation.

Step 6: As already explained in section 2, a change of state for the document of concern might
be triggered by a change of state of a related document. Conditions for such changes are
speci�ed by a condition as label.

Two kinds of conditions are distinguished: (a) those which ckeck if at least one related
document is in a certain state, and (b) those which check if all related documents are in
a certain state.

Figure 5 shows the Statechart of �gure 4 extended by transitions having a condition as
label. The interpretation of these transitions is explained by the following two examples.

[exists(in(<compile_errors_are_in>#
err_rep#with_errors))]

specification#complete))]
[forall(in(-<is_implemented_in>#

not_yet_compiled

compiled_with_errors

test_plan#test_review_rejected))]
[exists(in(<is_reviewed_in>#

compiled
not_yet_testedcomplete

test_plan#complete))]
[forall(in(<is_reviewed_in>#

history

implemented

[forall(in(<imports>#
c_module#complete))]

forall(in(<is_reviewed_in>#test_plan#incomplete))]
[forall(in(<compile_errors_are_in>#err_rep#no_errors)) and

[exists(in(-<is_implemented_in>#
specification#not_yet_specified))]

not_yet_implemented

incomplete

/c_compiler /c_compiler

/ascii_printer/ascii_pager

/ascii_editor/ascii_editor

c_module

Figure 5: Speci�cation of inter-document dependencies

� The transition between the state c module and the state incomplete speci�es, that
the state of a c-module must be changed to incomplete, if the related speci�cation
was changed. The label is interpreted as follows: the document of concern can
change from every state to incomplete, if at least one document of type speci�ca-
tion, related to the document by an is implemented in relationship, is in the state
not yet speci�ed.

9

� The transition between the states implemented and not yet compiled speci�es, that
a c-module can only be compiled, if all imported modules have been compiled
successfully. The label is interpreted as follows: the document of concern can
change its state, if all documents of type c module, related to the document by an
imports relationship, are in the state complete.

The following scenario (see �gure 6) explains the speci�cation of synchronization in
more detail. Consider the following �ve documents and their states: (1) Spec1 in state
not yet speci�ed, (2) Spec2 and Spec3 in state complete, (3) Mod in state incomplete,
and Arch in state complete. Spec1, Spec2 and Spec3 are of class speci�cation, Mod is
of class c module, and Arch of class architecture. Arch is related to Spec1 by a creates
relationship, Spec1 is related to Spec2 and Spec3 by a uses relationship, and Spec1 is
related to Mod by an is implemented in relationship (the upper left part of �gure 6
shows the corresponding EER-diagram; the upper right part shows the instances and
how they are related).

5

Mod

6

incomplete

complete
Spec 2

complete
Spec 3

complete
Arch

not_yet_specified
Spec 1

is_implemented_in

documents

specificationc_module architecture

uses creates

ascii_editor opus_editor

uses uses
creates is_implemented_in

71

2 8

6

/opus_editor

4

1 2 3 7 8

/ascii_editor

/ascii_editor

specification

543

c_module

[forall(in(-<creates>#architecture#complete))]

incomplete

complete

specified

incomplete

implemented

specification#complete))]

not_yet_specified))]

[forall(in(<uses>#specification#complete))]

not_yet_specified

[exists(in(-<creates>#
architecture#not_yet_designed))]

/opus_editor

[forall(in(-<is_implemented_in>#

not_yet_implemented

[forall(in(-<is_implemented_in>#specification#

document_type_structure: enum = [ascii_file]

Figure 6: Synchronization

The Statecharts in �gure 6 show a sequence of snapshots to explain the dynamic be-
haviour of the documents Spec 1 and Mod. The state of the documents at a certain
moment in time is given in the �gure by a pair of black dots with a white number.

In the following, the sequence of state changes is explained (the number refers to the dot
in the Statecharts):

1. initial state

2. Spec1 is modi�ed using the opus editor, the developer selects the state speci�ed to
�x the development progress

3. the speci�cations used by Spec1 are in the state complete, the state of Spec1 changes
to complete

4. Mod is speci�ed and can now be implemented, the state of Mod changes to not yet -
implemented

10

5. Mod is modi�ed using the ascii editor, the developer selects the state implemented
to �x the development progress

6. Arch is currently be modi�ed, these modi�cations must be considered for Spec1, the
state of Spec1 is set back to incomplete

7. Arch is now in state complete because the modi�cations are completed, Spec1 is set
to not yet speci�ed

8. Spec1 is modi�ed using the opus editor, the developer selects the state speci�ed to
�x the development progress

After the speci�cation of document classes, relationship types and the behaviour of class
instances, the roles are speci�ed.

Step 7: Specify the role-hierarchy through identifying the supported roles (see �gure 7). The

manager
visibility: table = ...

programmer designer
visibility: table = ... visibility: table = ...

roles
visibility: table =

assistant employee

Figure 7: Role hierarchy

attribute visibility is used to specify a role dependent view on the total amount of doc-
ument instances (see step 8).

Step 8: Specify the attribute visibility for each role. Attribute visibility is of type table and
de�nes the document types which are visible under a certain role.

Tables are composed out of three columns and an arbitrary number of rows. They contain
the document classes the developer can modify under this role (column working document
type, shaded row) and the related document classes which are visible to perform the work
(column related document type, white rows) (access rights are preassumed). The column
state is used to specify the state a document of the given type must be in to be visualized.

Figure 8 shows an example table for the role programmer. A programmer can modify

working document type related document type state

specification

c_module

test_plan

c_module

c_program

not_yet_implemented
complete
review_rejected
not_yet_executed
not_yet_programmed

Figure 8: Speci�cation of the role programmer

instances of the document classes c module and c program. The documents become

11

visible in the programmers working context, if they are in the states given in the last
column of the table (e.g. for c module this is the state not yet implemented). To perform
his work, the programmer needs further information available in documents of the related
classes. These classes are speci�ed in a similar way. For the programmer, these are for
example document instances of class speci�cation and test plan if in the state complete
and review rejected, respectively. Dependent on the states a document is in, the methods
which can be applied to this document can be derived out of the speci�cation given in
the Statecharts.

4 A Dedicated Process Design Language

The example given in section 3.3 has shown, that only a limited part of those concepts o�ered
by EER-models and Statecharts is needed for the design of process models.

In this section, application speci�c adaptions to the before introduced language are made.
Based on these adaptions, context-sensitive conditions are introduced. Context-sensitive con-
ditions guarantee, that only syntactically correct process models can be speci�ed. Since not
every syntactically correct process model makes sense, those semantic conditions which can be
checked statically are given. Those semantic conditions which have to be checked dynamically
can only be identi�ed by a simulation.

In the subsequent sections, adaptions and conditions are only introduced by examples due to
the limited space available for this paper. Simulation is not discussed within this paper.

4.1 Application speci�c adaptions

This subchapter includes examples for application speci�c adaptions. For EER-models these
are:

Since a process model only deals with objects of type document and role, the number
of hierarchies which can be speci�ed for one process is restricted to two, namely the
document-hierarchy and the role-hierarchy.

Any document and role class can and must be speci�ed by the same attributes. The
reason for having the same attributes is, that exactly the same information must be avail-
able for all document and role classes to support their unique interpretation. Making use
of inheritance, the attributes have to be de�ned once for the root-class of the document
hierarchy. For inherited attributes, rede�nition is supported. In the EER-models shown
in section 3.3 the prede�ned part of the hierarchy is represented shaded.

A modi�cation of class instances is performed through methods. Since only docu-
ments are modi�ed during process enactment, the speci�cation of methods is limited
to document-classes. For every documement class, an unlimited number of methods can
be speci�ed.

In accordance to the distinction made in section 2, methods must be further divided
into those methods which are applied by the user (e.g. ascii editor) and those methods
which can automatically applied by the system (e.g. compiler). On the speci�cation
level this distinction is necessary, because otherwise the enaction component can not

12

distinguish between those tools which must be invoked automatically and those which
must be invoked interactively.

Since the problem de�nition does not give reasons for the introduction of multiple inher-
itance, only single inheritance is supported. If two classes are related by an inheritance
relationship, all attributes, methods, and relationships are inherited. Rede�nition of
attributes is supported.

For Statecharts, examples for application speci�c adaptions are:

The behavioural perspective is speci�ed based on state changes. A change of state can
only be triggered by a tool invokation or a change of state for a related document.
Therefore, only labels

{ having an empty event and a method identi�er in the action part, and

{ having a condition (see section 3.3, step 6) in the event part and an empty action
part

are supported.

The conditions are structured as follows: the �rst part is a relationship identi�er, the
second part a class identi�er, and the third part a state identi�er. For separating the
identi�ers, a # is used (e.g. in(<compile errors are in>#err rep#no errors)). If the
relationship identi�er is given in <>, the target document of the relationship is refered
to. To refer the source document, -<> must be used. The class identi�er in the second
part contains the identi�er of the source or target class, respectively. The third part, the
state identi�er, contains the state the refered document must be in that the condition
becomes true.

Two kind of conditions are distinguished:

{ those which check if at least one related document is in a certain state (exists-
quantor), and

{ those which check if all related documents are in a certain state (forall-quantor).

Conditions starting with an exists-quantor are connected by a logical or, those starting
with a forall-quantor by a logical and.

4.2 Context-sensitive conditions

This subchapter includes examples for context-sensitive conditions. Some of those which must
be kept for Statecharts are:

Method identi�ers used in the action part of a label must be speci�ed in the document
class the Statechart belongs to.

For a condition as label the following context-sensitive conditions must be kept:

{ a relationship with the given relationship identi�er must be connected to the
document-class the Statechart belongs to,

{ if there is a - in front of the relationship identi�er, the identi�er of the source class,
the relationship is connected to, must be the one used in the second part; otherwise,
the identi�er of the target class must be used, and

13

{ the state identi�er must be de�ned for the Statechart of the class identi�ed by the
second part.

Examples for context-sensitive conditions which must be kept for tables are:

For all identi�ers used in the columns working document type and related document type,
a class with the given identi�er must exist.

The state (column state) speci�ed for the document class must exist for that class.

4.3 Static semantic of process models

The consideration of the above given application speci�c adaptions as well as the context-
sensitive conditions can be supported using a syntax-directed editor. What can not be ensured
using an editor is, that the speci�ed process models are semantically correct. To ensure
semantic correctness, an analyser has to be used. When analyzing a process model, to kind of
faults may occur:

� warnings and

� errors

A warning indicates that the process model can be enacted but that some inconsistencies have
been found. An error indicates that this process model can not be enacted.

Examples for situations which cause warnings are:

A document-class is speci�ed without methods. The consequence is, that the document
contents can not be accessed or manipulated. The document becomes useless for the
process.

There are similar tables speci�ed for di�erent roles. Since the role speci�cation is the
same, the two roles can be combined to one.

A document can not be set to a speci�ed state. The reason might be, that this state
is isolated (no transition is leading to this state) or that the condition can not become
true.

Examples for situations which cause errors are:

Attributes are not fully speci�ed. The interpretation will cause on error due to missing
information.

A transition, having as source and target state the same state and as label a batch-
method. This will result in a non determining tool execution.

5 From process-design to process-program

In the previous section a graphical design-language for the speci�cation of software processes
has been introduced. In the following it is shown, how the graphical language can automatically

14

be mapped to an enactable process programming language. Advantages of this approach are,
that (1) the speci�ed processes can immediately be enacted, (2) the graphical language gets a
well de�ned semantic, and (3) process improvements become part of the enactable process.

As enactable process programming language, the process programming language of Merlin is
chosen. The Merlin process programming language is a dedicated rule-based language whose
semantics is PROLOG-like [JPSW94]. The reason for chosing this approach is its e�ciency in
execution (no type checking is performed) and its possibility to realize changes on the
y.

In Merlin, software development processes are described on three di�erent levels, namely the
Project, the Process, and the Kernel level respectively (see [Kru93]).

The project level description is supported by a set of prede�ned predicates which de�ne a
particular project status. This concerns, for example, the name of a project and the persons
who participate in that project, the roles of those persons, and their responsibilities.

Those facts are usually not introduced as \
at" facts by the process engineer but rather
generated as output from a project management tool. The prede�ned predicates serve as an
interface de�nition between such a tool and the Merlin fact base. For prototyping purposes
those facts can, of course, also be types in directly.

The next level of description, namely the process level, is again supported by providing a
prede�ned set of predicates. Process level means, a de�nition of the ingredients of any process
which are independent of any particular project. Those ingredients include e.g. types of
documents, possible document states, possible state transitions.

Finally, the Kernel of a process de�nition in Merlin is de�ned by a set of PROLOG-like rules
using the above described fact base. This level encapsulates the Merlin philosophy and acts as
the inference machine for software processes. The Kernel speci�es for example how to interpret
the basic entity-types (e.g. roles, documents), how to build a customized working-context for
any user, how to deal with a client/server architecture and how to realize multi-user support
through a sophisticated transaction concept ([PSW92], [JPSW94]).

Process and project description are simpli�ed as the Kernel prede�nes the predicates to be
used for describing the Process level and the Project level. De�ning new processes and projects
basically means �lling in the values of parameters of these predicates.

The above informally given semantics of the various facts is formally and precisely de�ned by
the rules of the Kernel. The Kernel only needs to be changed when the user interface paradigm
is changed or new features like con�guration management or transaction management are
added. It is thus the most stable part of the process description. Changes to the software
process require changes to facts describing the Process and Project (which can be held more
easily in a consistent state).

Further examinations of the Merlin tripartition have shown, that the Kernel is the invariant
part of the process-program. The Project concerns the management of instances during process
enactment and therefore can also be ignored during process-design. The part of a Merlin
process-program describing a speci�c process is the Process description.

For a detailed description of the predicates which represent the Process level the reader is
refered to [JPSW94].

In the following, the feasibility of mapping the process design to a process programm is shown.

15

Therefore, parts of the example given in section 3.3 are mapped to the Process level of the
Merlin process programming language. The resulting facts can be interpreted by the process-
engine.

The EER-diagram shown in �gure 3 (page 8) can be mapped to the facts as follows:

Step 1: For each concrete document class, a fact of type document type structure is generated.
Predicate document type structure speci�es the existing document classes as well as the
type of �le used by these classes to store the document contents. The �rst parameter
includes the class identi�er and the second the type.

The information needed is derived out of the class identi�er (�rst parameter) and the
value of attribute document type structure belonging to the document class.

Examples for generated facts are:
document type structure(c module, ascii �le).

document type structure(speci�cation, ascii �le).

Step 2: For each relationship type, a fact of type document relation type is generated. Pred-
icate document relation type speci�es the the type of relationships which exist between
document classes.

The �rst parameter includes the relationship identi�er, the second the source class, and
the third the target class of the relationship. The information needed is derived out of
the source and target class of the relationship and the relationship identi�er.

Examples for generated facts are:
document relation type(imports, c module, c module).

document relation type(uses, speci�cation, speci�cation).

document relation type(is implemented in, speci�cation, c module).

document relation type(realisation is imported in, speci�cation, c module).

The next steps are dedicated to the mapping of the Statechart given in �gure 5 (page 9).

Step 3: For each Statechart, one fact of type document type states is generated. Predicate
document type states speci�es the states allowed for a document instance of the speci�ed
class.

The �rst parameter includes the class identi�er and the second the list of states allowed.

The following fact is generated for the document class c module:
document type states (c module, [incomplete, not yet implemented, implemented, not yet

compiled, compiled with errors, compiled, not yet tested, complete]).

Step 4: For each outgoing transition, having an identi�er of an interactive method as action
part of the label, a fact of type document type tools is generated. If several outgoing
transitions have the same method identi�er in the action part, they are combined in one
fact.

Predicate document type tools speci�es the interactive tools which can be applied to a
class instance. The state the document instance must be in before tool invokation as
well as the states the document instance can be set to after tool termination is speci�ed.
The access right of the tool to the document contents is given to be able to distinguish
between tools which allow modi�cation and those which do not.

16

The �rst parameter contains the class identi�er of the class this Statechart belongs
to, the second the method identi�er, the third the access rights to the document, the
fourth the source state of the transition, and the �fth all the target states of those
transitions, having the before given source state and the method identi�er given in the
second parameter. Any state is a placeholder for all states this document instance may
be in and [] indicates, that the document instance will be set to the state it has been in
before tool invokation.

Examples for generated facts are:
document type tools (c module, ascii editor, writable, not yet implemented, [not yet

implemented, implemented]).

document type tools (c module, ascii pager, readable, Any state, []]).

Step 5: Similar as for interactive methods, for batch methods a fact of type document type call
is generated, except that no access right is needed.

An example for a generated fact is:
document type call (c module, c compiler, not yet compiled, [compiled

with errors, compiled]).

Step 6: For each outgoing transition, having an \exists" condition as label, a fact of type
next state or condition is generated. Predicate next state or condition speci�es the change
of states for a document instance triggered by a change of state for a related document.

The �rst parameter contains the class identi�er of the class this Statechart belongs to,
the second the source state of the transition, the third the target state, and the forth a
list of triples which specify conditions which check, if a related document is in a desired
state. The �rst parameter of this triple is source or destination, indicating, which of the
document classes related by the relationship type given in the second parameter must
ful�l the condition. The third parameter includes the state this document instance must
be in that this part of the condition becomes true. If there is more than one triple, the
corresponding conditions are connected by a logical or. Any state and [] are interpreted
similar as explained before.

Examples for generated facts are:
next state or condition (c module, Any state, incomplete, [[source, is implemented in, not yet

speci�ed]]).

next state or condition (c module, compiled with errors, not yet implemented, [[destination,

compile errors are in, with errors]]).

Step 7: Similar as for transitions having an \exists" condition as label, for those having a
\forall" condition a fact of type next state and condition is generated.

Predicate next state and condition speci�es the change of states for a document instance
triggered by a change of state for a related document. Automation conditions are used
to change the state of a document if the preceding activity is completed correctly (for
further details see section 2).

Examples for generated facts are:
next state and condition (c module, incomplete, not yet implemented, [[source, is implemented in

complete]]).

next state and condition (c module, implemented, not yet compiled, [[destination, imports,

complete]]).

The last step is dedicated to the mapping of the role hierarchy given in �gure 7. The tables
shown in �gure 8 are part of the role speci�cation and have to be mapped too.

17

Step 8: For each table, several facts of type roletype document work on are generated. Pred-
icate roletype document work on speci�es the visibility of document instances for a de-
veloper under a certain role.

The �rst parameter contains the role identi�er of the class this table belongs to, the
second the �rst document class (column working document type in the shaded row), the
third the state document instances of this class must be in to be visualized (column state
in the shaded row). The last parameter contains tuples of document class identi�er and
state and is derived out of the rows below the shaded row.

Examples for generated facts are:
roletype document work on (programmer, c module, not yet implemented, [[speci�cation,

complete], [test plan, review rejected]]).

roletype document work on (programmer, c program, not yet executed, [[c module,

not yet programmed]]).

roletype document work on (designer, speci�cation, not yet speci�ed, [[speci�cation,

complete], [speci�cation, not yet speci�ed], [speci�cation, speci�ed]]).

6 Related Work

A number of related projects have also combined the ideas of an integrated environment and the
explicit representation of a software process. This paper is focused on the design of process-
programs and therefore existing PSDEs are examined under its support for a user-friendly
representation of the process.

Marvel [BK90] uses a rule-based language for process modeling. The recently developed
language ASL [KPBS93] is an extension of MSL [EFP88] and combines the speci�cation of
local constraints on individual tools and data with the speci�cation of global control
ow
and synchronization. A main disadvantage of MSL, using post-conditions to specify how an
activity on one object might in
uence all related objects, has not been considered for the
new implementation. These post-conditions become very complex because also the continuous
changes have to be considered and are therefore di�cult to change and keep consistent. Similar
to MSL, ASL is still on the level of \traditional" programming languages and does not support
structuring mechanisms or an intuitive representation of the process.

The petri-net approach followed by MELMAC [GJ92] is a good candidate for a graphical
representation of the behavioural perspective of a process. A disadvantage is, that the modeling
of the behaviour of one object is completely interwined with the modeling of the behaviour for
a set of objects. This results in very complex nets which tend to become so large that they
are neither comprehensible nor manageable, even through providing tool support.

SOCCA [EG94] uses an EER-model for modeling the date perspective, state transition di-
agrams and PARADIGM for modeling the behaviour and synchronization perspective, and
object
ow diagrams for modeling the process perspective. SOCCA and ESCAPE are based
on similar formalisms, but there is one important di�erence which set o� ESCAPE. In SOCCA,
the external behaviour of an object class is speci�ed by a state transition diagram. At this
level, only those aspects are considered which result out of a modi�cation of the object of
concern. For specifying the synchronization aspect, PARADIGM is used. Synchronization
is speci�ed on the instance level and results in very complex state transition diagrams for
relatively small problems. What still remains unclear is, how to specify changes triggered
by a change of state for a related document. The Statecharts used by ESCAPE support the

18

speci�cation of external behaviour and synchronization in a concise way.

The Software Engineering Institute (SEI) 3 uses the commercial available tool STATEMATE
for software process modeling [CKO92] [HLN+90]. Main goal is a better understanding of pro-
cesses, which is reached by a simulation of the speci�ed process models. Furthermore, through
simulation, also a validation of processes is supported. Similar to ESCAPE, STATEMATE
o�ers an intuitive graphical representation and uses Statecharts for the speci�cation of the
behavioural perspective of processes. A disadvantages is, that no object-oriented approach is
supported to specify the structural perspective.

All mentioned languages, except Marvel, support a graphical language. They are on a higher
level of abstraction than \traditional programming" languages. MELMAC lacks in the point
that nets become very complex because the speci�cation of the behaviour of one object is
interwined with the speci�cation of the behaviour of a set of objects. In STATEMATE, the
speci�cation of the static perspective is build around functionality rather than around object
classes, which decreases the support for changeability. SOCCA is the approach which supports
most of the aspects to be considered for process modeling, but its support for synchronization
must be improved.

7 Conclusion

To summarize, none of the prevailing PSDEs today support the design and enactment of
process-models. The introduced process design language ESCAPE is the �rst approach which
o�ers a convenient representation formalism which supports a visual representation, enact-
ment, and is based on concepts which are well accepted. The process-information is structured
through object-oriented clustering and the process design becomes minimal because features
o�ered by Merlin (e.g. a sophisticated transaction concept, a customized users working con-
text) can be presumed and must not be considered for process design. ESCAPE supports
an explicit modeling of the structural and behavioural perspective of processes and through
mapping it to the Merlin rule-language, the language becomes formally well de�ned. A further
advantage is, that the semantic of the Process facts is �xed which frees the process-engineer
from technical details.

The next steps in extending the prototype include:

� the development of a syntax-directed editor for the process design-language introduced,

� the development of a tool to transform a given design into the enactable Merlin Process
facts,

� an examination of how changes on the
y can be supported by the given approach and

� the development of a semantic analyzer which supports the analysis of a variety of aspects
of completness, correctness, and consistency.

3Carnegie-Mellon University, Pitsburgh

19

Acknowledgements

I want to thank the entire Merlin team for intensive discussions and especially S. Sachweh,
D. Jacobs, O. Neumann, K. Ross and W. Sch�afer for giving helpful comments on earlier
versions of this paper.

References

[AM92] V. Ambriola and C. Montagero. Oikos at the Age of Three. In Proceedings of the
2nd European Workshop on Software Process Technology, Trondheim, Norway, sept.
1992. LNCS 635, Springer, Berlin.

[BaAM91] Sergio Bandinelli and Carlo Ghezzi amd Angelo Morzenti. A Multi-Paradigm Petri
Net Based Approach to Process Description. In Proceedings of the 7th International
Software Process Workshop, Yountville, California, October 1991.

[BK90] Naser S. Barghouti and Gail E. Kaiser. Multi-Agent Rule-Based Software Develop-
ment Environments. In 5th Annual Knowledge-Based Software Assistant Confer-
ence, pages 375{387, New York, September 1990.

[Boo94] Grady Booch. Object-Oriented Analysis and Design. Benjamin/Cummings, second
edition, 1994.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Communications of
the ACM, pages 75{90, September 1992.

[DGS89] W. Deiters, V. Gruhn, and W. Sch�afer. Process Programming: A structured Multi-
Paradigm Approach Could be Achieved. In Proceedings of the 5th International
Software Process Workshop, Kennebunkport, Maine, USA, September 1989.

[EFP88] Gail E.Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent Assistance for
Software Development and Maintenance. IEEE Software, pages 40{49, May 1988.

[EG94] Gregor Engels and Luuk Groenewegen. Speci�cation of Coordinated Behaviour by
SOCCA. In Brian C. Warboys, editor, Proceedings of the 3rd European Workshop
on Software Process Technology, pages 128{151, Villard de Lans, France, February
1994. LNCS 772, Springer, Berlin.

[Fer93] Christer Fernstr�om. PROCESS WEAVER: Adding Process Support to UNIX. In
Proceedings of the 2nd International Conference on the Software Process, pages
12{26, Berlin, Germany, February 1993.

[FH93] Peter H. Feiler and Watts S. Humphrey. Software Process Development and Enact-
ment: Concepts and De�nitions. In Proceedings of the 2nd International Conference
on the Software Process, pages 28{40, Berlin, Germany, February 1993.

[GJ92] V. Gruhn and R. Jegelka. An Evaluation of FUNSOFT Nets. In J.-C. Derniame,
editor, Software Process Technology - Proceedings of the 2nd European Workshop,
pages 194{214, Trondheim, Norway, September 1992. Springer. Appeared as Lec-
ture Notes in Computer Science 635.

20

[Gru91] Volker Gruhn. The Software Process Management Environment MELMAC. In
Proceedings of the 1st European Workshop on Software Process Modeling, pages
191{201, Milan, Italy, May 1991. A.I.C.A. Press.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231{274, 1987.

[Har88] David Harel. On Visual Formalisms. Communications of the ACM, 31(5):514{530,
May 1988.

[HLN+90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot. STATEMATE: A
Working Environment for the Development of Complex Reactive Systems. IEEE
Transactions on Software Engineering, 16(4):404{414, 1990.

[HPSS87] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Semantics of
Statecharts. In Proceedings of the 2nd IEEE Symp. Logic in Computer Science,
pages 54{64, Ithaca, New York, 1987.

[HSO90] D. Heimbigner, St.M. Sutton, and L. Osterweil. Managing Change in Process-
Centered Environments. In Proceedings of the 4th ACM SIGSOFT Symposium on
Software Development Environments, Irvine, California, USA, December 1990.

[JPSW94] G. Junkermann, B. Peuschel, W. Sch�afer, and S. Wolf. Merlin: Supporting Co-
operation in Software Development through a Knowledge-based Environment. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software Process Modelling
and Technology, Research Studies Press (UK). distributed by: John Wiley & Sons,
1994.

[KPBS93] Gail E. Kaiser, Steven S. Popovich, and Israel Z. Ben-Shaul. A Bi-Level Language
for Software Process Modeling. In Proceedings of the 15th International Conference
on Software Engineering, pages 132{143, Baltimore, Maryland, May 1993. IEEE
Press.

[Kru93] Rainer Kruschinski. Konzeption einer Wissensbasis f�ur die Software-Prozess-
Modellierung (in German). master thesis, University of Dortmund, 1993.

[Lon93] Jacques Lonchamp. A Structured Conceptual and Terminological Framework for
Software Process Engineering. In Proceedings of the 2nd International Conference
on the Software Process, pages 41{53, Berlin, Germany, February 1993.

[Ost87] L. Osterweil. Software Processes are Software Too. In Proceedings of the 9th Inter-
national Conference on Software Engineering, Monterey, California, April 1987.

[PSW92] B. Peuschel, W. Sch�afer, and S. Wolf. A Knowledge-based Software Development
Environment Supporting Cooperative Work. International Journal on Software En-
gineering and Knowledge Engineering, 2(1):79{106, 1992.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[War89] Brian Warboys. The IPSE 2.5 Project: Process Modelling as the basis for a Support
Environment. In International Conf. on System Development Environments &
Factories, pages 59{74, Berlin, 1989. Pitman.

21

		2002-04-03T16:47:45+0200
	Universitaetsbibliothek Dortmund - Eldorado

