
- 1 -

Merlin: Supporting Cooperation in Software Development
through a Knowledge-based Environment1

G. Junkermann*, B. Peuschel#, W. Schäfer*, S. Wolf#

1 Introduction

Merlin2 is a prototype Process-centred Software Development Environment (PSDE), devel-
oped within the context of the Merlin project carried out at University of Dortmund in cooper-
ation with STZ, a Dortmund based software house. This prototype uses a rule-based technique
to describe and enact a software process. Users of Merlin are either software developers or
managers who are involved in a software process to produce a product. A further kind of user
or group of users respectively called the process engineer(s) are responsible for defining a par-
ticular process in terms of Merlin rules (or rather a dedicated process modeling language as will
be explained later), i.e. they customize a Merlin PSDE to a particular software process or
project.

The major benefit of using an environment like Merlin for software production is sophisticated
team support, i.e. support for coordinating access to shared information on different levels of
granularity (e.g. from more or less complete systems of modules or documents down to a pro-
cedure definition in the export list of a single module), and dedicated message servers for
broadcasting information about project states, (urgent) tasks to do, and getting feedback of
completed work packages, etc. A further achievement of such an environment is the computer
supported integration of development and management activities. For example, project man-
agers are able to retrieve on-line information about the current project state at any time and de-
velopers are immediately informed about any necessary actions to be taken or any constraints
applying to executing activities.

This paper describes the main concepts behind the implementation of the Merlin prototype and
sketches current and further work within the research project evolving from the current expe-
rience with the prototype.

1. This work has been supported by the German Ministry for Research (BMFT) as part of the Eureka project ESF
(Eureka Software Factory) and is supported by the Provincial Ministry for Research (MWF) of the state of North-
rhine Westphalia.

2. Merlin is not an acronym. Merlin stands for the idea to support software construction based on a well-defined set
of building blocks of software and their respective attributes and relations. Using this information, a process-cen-
tred software development environment like Merlin can provide maximum information to developers (or manag-
ers resp.) to support them to perform activities in the software process. This idea relates to the old english fairy
tale about King-Arthur. The wizard Merlin is supposed to have built the Stonehenges in southern England (a set
of well-defined building blocks and relations) and the wizard was able to foresee the future at least to a certain
extent such that king Arthur could make reasonable plans for his further moves in ruling his country.

STZ - Gesellschaft für Software-Technologie mbH
Helenenbergweg 19
D - 44225 Dortmund

Germany

* Informatik X
University of Dortmund

D - 44221 Dortmund
Germany

- 2 -

The novel features of Merlin described in this paper are: (1) the trisection of software process
programs to simplify the process definition and to support changes of the software process (on
the fly) in an easy manner, (2) a sophisticated graphical language which is mapped to the Mer-
lin rule-language to specify processes and (3) a special transaction concept which is embedded
into the Merlin rules to support cooperative work of multiple users.

In more detail the next chapter describes the Merlin user interface. Sections 3 and 4 respective-
ly explain the Merlin support for the process engineer, i.e. the way how rules and more sophis-
ticated language constructs are used to specify an executable software process. Section 5
sketches our non-standard transaction protocol supporting flexible cooperation and avoiding
some of the disadvantages of standard transaction mechanisms. Section 6 describes the under-
lying architecture. Section 7 concludes with remarks on current and further work within the
Merlin research project.

2 User Interface

Any process definition whose execution is supported by Merlin consists of the following enti-
ties:

- Activities: a collection of tasks which achieve a goal related to the production of a
software product (e.g. specify, edit, compile or test a module);

- Roles: groups of activities which are logically highly related (e.g. project manager,
technical leader, programmer);

- Documents: objects of any type that are produced during the software development
process (e.g. modules, documentation, test plans);

- Resources: people who participate in the production of software, and technical re-
sources such as tools supporting the software development activities (e.g. editors
and debuggers).

A document is bound to a set of activities able to be performed on the document and to a set of
tools supporting these activities. For example, a module to be programmed is edited by a lan-
guage-sensitive editor and a module to be tested is executed by a debugger. In addition, users
are associated with one or more roles.

As a result of this view of the software process, users are assisted primarily by the display of
all relevant information in a working context associated with their current role. The working
context displays the documents to be manipulated, their dependencies to other documents and
the activities able to be performed on each document. This varies from other PSDEs (like e.g.
Marvel [BK92,PSL91]) in that the user is presented with all information needed to perform a
task and can be confident that there is no more relevant information available (contrary to op-
erating systems for example, where the user has to know which activities exists, which docu-
ments can manipulated by these activities and, often, where to locate the appropriate tools).

A working context in Merlin is displayed on the screen in the following way: documents are
represented as boxes, the boxes have context-sensitive menus attached which contain the ac-
tivities that can be and/or have to be performed on the corresponding documents. Labelled ar-
rows between the boxes describe the inter-document relationships.

Selection of a menu item triggers the execution of an activity and hence the invocation of the
corresponding tool. Possible menu items are displayed in Fig. 1 where a user has read access
to the specifications m1_spec and m2_spec as well as read/write access to the documents m1_c
and m2_c. After selecting the ascii_editor for m1_c, two additional windows appear on the

- 3 -

screen, one for editing and the second to set the new state (see Fig. 2).

Fig. 1 A Merlin working context

The top line of the ProcessEngine window and the WorkBench window displays the user's
name and the current role (in our example miller is currently in the role programmer). The
menu items of the ProcessEngine window allow the user to login, select a project, select a role
within the project, execute activities (e.g. to start the working context), and ask queries about
the current project state. To query the project state provides information which is not automat-
ically displayed within a user's working context and enables any user to get a complete over-
view of the project, including information not directly relevant to the current activities (e.g. all
members of the project team). The menu items of the Workbench window allow the user to cus-
tomize his working context. To customize the working context means, for instance, selecting a
preferred tool to perform particular activities (e.g. a preferred editor).

When an activity is performed whose result influences another or the same working context,
(e.g. document states have changed or new documents have been created), the developer is in-
formed about this situation by the update flag in the top left corner of the Workbench window.
If he clicks this flag the changes are propagated in his working context (e.g. a new object or a
number of new objects are added or a menu is extended by a further item indicating new activ-
ities which can be performed on the corresponding objects). This avoids to have highly user-

- 4 -

unfriendly, more or less permanent refreshes of the working context which are outside the us-
er’s control.

Fig. 2 Editing a module in the Merlin working context

As a brief example how Merlin supports cooperative software development, we take an excerpt
from a Merlin instance which supports the process as defined in the ISPW6/ISPW7 example
[KFF+91]. For a more elaborate description how that process is modeled and supported by
Merlin we refer to [PSW92].

Assume two developers Smith and Miller performing two roles, namely a quality assurance
engineer and a programmer who are responsible for testing modules and for coding/reviewing
modules respectively. The process is defined as follows: The quality assurance engineer per-
forms extensive testing of a module based on a predefined test plan, after a module has been

- 5 -

coded, reviewed and briefly tested before by the responsible programmer.

Fig. 3 Cooperation between a programmer and a quality assurance engineer

In our concrete example, we further assume that Miller could currently work on testing module
m1_c and that Smith could work on creating (editing) the test plan m2_tp for module m2_c. The
corresponding working contexts for these two developers are given in Fig. 3 (For reasons of
saving space, we do not give complete screen dumps, but just the excerpts from a screen which
are of concern for this example). We now assume that Miller has finished coding and testing
module m1_c. His working context becomes empty. Smith’s working context is refreshed, be-
cause he is responsible for testing module m1_c, i.e. all information needed for testing m1_c is
displayed additionally in his working context. This part of our scenario is given in Fig. 4.

If module m1_c does not pass the quality tests performed by Smith (which is indicated by the
corresponding status information given by Smith), Miller’s working context is displayed again
as pictured in Fig. 3.

Login Name: miller Role: programmer

C - Module
m2_c

C - Module
m1_c

C - Specification
m2_spec

C - Specification
m1_spec

list
print

list
print

list
print

list
print

C - Program
m1_prg

imports

is_implemented_in is_implemented_in

realisation_is_imported_in

is_executable_in

uses

execute

Login Name: smith Role: quality assurance eng.

print

list
print

list
print

C - Module
m2_c

C - Specification
m2_spec

Test Plan
m2_tp

implementation_is_reviewed_in

C - Program
m2_prg

is_executable_in

is_implemented_in

is_reviewed_in

execute

edit

- 6 -

Fig. 4 Updated working contexts

3 Process Definition and Enactment

The process engine is that part of the Merlin environment which builds and refreshes user’s
working contexts by executing the given process definition. In principle, constructing and re-
freshing working contexts are based on the definition of activities and corresponding docu-
ments which are manipulated by performing the activities. Each activity has a number of asso-
ciated preconditions which define e.g. the roles who could perform the activity, the person who
is responsible for it, the corresponding access rights to the appropriate (set of) document(s), or
the dependency with other activities. An activity whose preconditions are all true could be car-
ried out (and is thus displayed in a working context). Performing an activity could result in new
preconditions becoming true (based on the user input of status information, cf. Fig. 2) and con-
sequently new activities to be displayed. A process engine‘s major job is thus to evaluate all
preconditions and to refresh all displayed working contexts accordingly.

In addition, the process engine should not only display working contexts but it should also be
able to explain current and previous process states on request. For instance, the environment
should be able to answer questions from a user like Why should I code module m1_c?, Who is
involved in the project?, Who changed the specification for module m1_c? What are the time
constraints for coding m1_c?, i.e. questions which could be asked by selecting the information
button (cf. section 2).

Login Name: miller Role: programmer

There are no more activities to be performed within this role

Login Name: Smith Role: quality assurance eng.

C - Module
m2_c

C - Module
m1_c

C - Specification
m2_spec

C - Specification
m1_spec

list
print

list
print

list
print

list
print

C - Program
m1_prg

C - Program
m2_prg

list
print

list
print

imports

is_implemented_in is_implemented_in

realisation_is_imported_in

is_executable_in

uses

Test Plan
m1_tp

Test Plan
m2_tp

print print

imple._is_reviewed_in impl._is_reviewed_in

is_executable_in

is_reviewed_in
edit edit

- 7 -

Furthermore, an important requirement is support for changes on the fly which even happen
frequently. A process can usually not be fully determined in advance either because of unfore-
seen events (e.g. sickness of staff, lack in skills, break-down of machines) or because parts of
the process depend on decisions during the course of the process (e.g. introduction of a new test
strategy, new test cycles, a new experimental development path). For a more detailed and sys-
tematic discussion of what kind of changes may happen cf. [MS91]. Note that the requirement
of changes on the fly requires an interpretative approach as the basis for the process engine and
makes a compiler unusable.

Finally, the language used to define a software process should have a clearly defined semantics
and should be easy enough such that a programm can be interpreted efficiently.

These requirements led us to select a rule-based language, namely a PROLOG-like language
as our process implementation language. Thus, the construction of a working context or other
questions about current and previous process states are uniformly handled as PROLOG goals
which can or cannot be satisfied by the corresponding process definition.

A major disadvantage of rule-based languages (like PROLOG) is the lack of structuring mech-
anisms for facts and rules and mechanisms to keep the facts and rules consistent. This problem
can, however, be avoided to a large extent in the special context of process modeling by using
the special Merlin strategy, which we describe in detail in the sequel of this section and the next
section.

In Merlin, a software development process is described on three different levels, namely the
Kernel, the Process and the Project. The Kernel provides a predefined set of rules, which
manage the ProcessEngine and WorkBench windows and their contents and which build and
update the working context information. The Kernel has only to be changed when the user
interface paradigm (as explained in section 2) is changed or new features like configuration
management are added. It is thus the most stable part of the whole description.

Having these three levels of modeling, changes of the software process do not require changes
of the Kernel (the only level using rules) but only changes of facts (which can be held much
more easily in a consistent state). Therefore, the Kernel acts as an inference machine for soft-
ware processes using the facts describing the Process and the Project as input.

The Kernel rule set is structured in five so called rule clusters namely StartUp, WorkingCon-
text, ChangedStates, TransactionManager and LockManager. StartUp contains all rules
managing the login of a user, the project, role, activity and information selection of the Proc-
essEngine window. WorkingContext contains all rules to select the information needed to dis-
play a working context. ChangedStates contains the rules to update the process information, if
states of documents have been changed. The TransactionManager and LockManager are ex-
plained in section 5.

As an example consider a part of the rule defining the existence of a working context (see Fig.
5). Preconditions include that a person (identified by the parameter Ident) in a project (param-
eter Project) performing a role in this project (parameter Role) has some responsibilities in this
project. Responsibilities is a fact explained below. In addition, after having identified his re-
sponsibilities, the corresponding documents must be in a state allowing to manipulate them ac-
cording to the defined responsibilities. This is checked by executing rule documents which is

- 8 -

for the sake of simplicity not explained in full detail here. Fact roletype_document_work_on is
however explained below.

Fig. 5 Definition of rule working context

If an activity in the development process changes the state of a document this new state is in-
serted to the knowledge base. Changes of a document state usually cause state changes of oth-
er documents. This is defined by consistency conditions and automation conditions (see
below).

Document states are changed using so called envelopes (cf. [PSW92,PS92]). An envelope en-
capsulates either an interactive tool or a batch tool. In case of a batch tool the envelope re-
ceives the new state directly from the tool, in case of an interactive tool the envelope demands
a new document state from the developer.

Rules changed_states of rule cluster ChangedStates define the goal to look for further docu-
ment states to be changed by an envelope. The first and second rule define the state changes
depending on a consistency or automation condition (see Fig. 10 and Fig. 11). The third rule
defines the invocation of batch tools (this is defined by the built-in CALL which implements
the tool envelope). The last rule defines state changes of related documents.

The rules working_context and changed_states are called in a rule which is the main rule of
cluster StartUp (Further rules in StartUp calculate menu items of the ProcessEngine window
and react on the user inputs (login, project selection etc.)). This rule is responsible to create
the working context and to wait for state changes initiated by an activity. Then, rule
changed_states is executed and a new working context is calculated for the for the developer.

working_context (Ident, Project, Role, Menu_Activity_List, Document_List, Relation_List,):-
responsibilities (Ident,Role,Responsibility_List),
documents (Role, Responsibility_List, Document_List),
...

documents (Role, Responsibility_List, Document_List) :-
...
document_state(Doc,State),
roletype_document_work_on (Role, Type, State, Rdoctypes),
...

- 9 -

Fig. 6 Definition of rule act_on_document

The main idea to simplify process- and project-descriptions is that the Kernel predefines the
predicates to be used for describing the Process level and the Project level. Defining new proc-
esses and projects basically means to fill in values of parameters of these predicates, as we
will explain now.

The first step of modelling a Process is to define the document types that are used in the soft-
ware process. For example, the fact document_type_states defines all possible states for a par-
ticular document type. As an example, the definition of the states of document types specifica-
tion and c_module as used in section 2 is given in Fig. 7.

Fig. 7 Definition of document_type_states

Fact document_type_tools defines which tools can be used in which states and which access
rights have to be granted, i.e. this information is the basis for computing the menu lists attached
to documents in the working context display (cf. section 2). As an example see Fig. 8. The first
fact of this example must be read as: If a c_module can be accessed with readable access an
ascii_pager is presented. The second fact is to be read as: If a c_module can be accessed with
readable access an ascii_printer is presented. The third fact must be read as: If a c_module can
be accessed with writeable access an ascii_editor is presented; the tool is only presented if the
document is in the state not_yet_implemented; the possible new state of the document after hav-

changed_documents (Ident, Project, Role, Document, State) :-
document (Document, Type, Path),
consistency_condition (Type, State, New_state, Condition_list),
...
changed_documents (Ident, Project, Role, Document, New_state).

changed_documents (Ident, Project, Role, Document, State) :-
document (Document, Type, Path),
automation_condition (Type, State, New_state, Condition_list),
...
changed_documents (Ident, Project, Role, Document, New_state).

changed_documents (Ident, Project, Role, Document, State) :-
document (Document,Type,Path),
document_type_tools (Type, Call, Access, State, [New_state_failure,
 New_state_success]),
document_call (Document,Call,Program_to_call),
CALL (program_call, Document, Program_to_call, New_state_failure,
 New_state_success, New_state),
REMOVE (document_state(Document, Old_state),
INSERT (document_state(Document, New_state),
document_state (Document, New_state),
changed_documents (Ident, Project, Role, Document, New_state).

changed_documents (Ident, Project, Role, Document, State) :-
act_on_related_documents (Ident, Project, Role, Document, State).

document_type_states (specification,[incomplete, not_yet_designed, designed, complete]).

document_type_states (c_module, [incomplete, not_yet_implemented, implemented, not_yet_compiled,
compiled, not_yet_tested, complete]).

- 10 -

ing it manipulated is either not_yet_implemented or implemented.

Fig. 8 Definition of document_type_tools

Fact document_relation_type specifies the relation type between document types. This infor-
mation is required by Merlin to be able to draw the lines between documents in the working
context and to change document states depending on changes of related documents. Some of
the document relation types used in our example are listed in Fig. 9. For example, the first fact
is to be read as: Between a document type specification and a document type c_module a rela-
tionship called is_implemented_in exists.

Fig. 9 Definition of document_relation_type

State changes of documents are triggered by so called consistency conditions and automation
conditions. They describe how states of related documents have to be changed if either the user
or a batch tool have changed the document’s state. For example, if quality assurance engineer
Smith in Fig. 4 detects errors in module m1_c which require the change of the specification,
the state of the corresponding specification m1_spec is set to not_yet_specified (i.e. the speci-
fication) and the state of module m1_c is set to incomplete.

Consistency conditions are used to preserve the consistency of the process, if the change of a
document state demands resetting of states of other documents, e.g. a c_module has to be re-
edited because the test executed after the first editing of the c_module demands changes in the
c_module.

Automation conditions change states of documents to enable new activities to be performed if
the proceeding activity has been completed correctly. These conditions support the automation
of the process (invocation of batch tools and setting of states to enable activities to be carried
out in further phases of the process (e.g. after having finished the specification phase the coding
phase can start)).

Consistency conditions and automation conditions are defined by facts consistency_condition
and automation_condition.

document_type_tools (c_module, ascii_pager, readable, Any_state, []).

document_type_tools (c_module, ascii_printer, readable, Any_state, []).

document_type_tools (c_module, ascii_editor, writeable, not_yet_implemented, [not_yet_implemented,
implemented]).

document_type_tools(c_module, c_compiler, executable, not_yet_compiled, [compiled_with_errors,
compiled]).

document_relation_type (is_implemented_in, specification, c_module).

document_relation_type (uses, specification, specification).

document_relation_type (realisation_is_imported_in, specification, c_module).

document_relation_type (implementation_is_reviewed_in, specification, test_plan).

document_relation_type (imports, c_module, c_module).

document_relation_type (is_executable_in, c_module, c_program).

document_relation_type (is_reviewed_in, c_module, test_plan).

- 11 -

Fig. 10 Definition of consistency_condition

Fact consistency_condition in Fig. 10 have to be read as follows:

The state of a c_module is changed to incomplete independent of the current state (Any_state),
if either the state of a source document of the relationship is_implemented_in is changed to no-
t_yet_designed, or if the state of a source document of the relationship realisation_is_importe-
d_in is changed to not_yet_designed. That means a c_module cannot be accessed anymore if
one of the corresponding specifications has to be changed

Fig. 11 Definition of automation_condition

The two automation_condition facts in Fig. 11 have to be read as follows:

The state of a c_module is changed from incomplete to not_yet_implemented (i.e. the c_module
may be programmed now), if the states of all source documents of the is_implemented_in rela-
tion have state complete (i.e. the specification of the c_module has been completed) and the
states of all source documents of the relation realisation_is_imported_in have state complete
(i.e. the specification of all imported c_modules have been completed).

Next, the state of a c_module is changed from implemented to not_yet_compiled, if the states
of all destination documents of the imports relationship are complete, i.e. a c_module can only

be compiled, if the work on all imported c_modules has been finished1.

Facts consistency_condition and automation_condition are used by the Kernel as follows: The
first rule given in Fig. 6 checks the existence of a consistency condition for the current docu-
ment. If a consistency condition does exist, the state of the document is changed (following the
definition in Fig. 10) and rule changed_documents is called for the new state again. If there
does not exist a consistency condition the second rule changed_documents searches for an au-
tomation condition. If a automation condition does exist, the state of the document is changed
(following the definition in Fig. 11) and rule changed_documents is called for the new state
again. In the third rule changed_documents the invocation of a batch tool is checked. If a tool
can be invoked the rule changed_documents is called again. If all conditions for the current
document have been checked the last rule changed_documents is called again to perform nec-
essary changes for all related documents.

Fact roletype_document_work_on specifies the role name, and the documents as well as the ac-
cess rights to these documents to be presented in the working context of a user performing this

1. Those examples are not meant to indicate that Merlin only supports waterfall-like production processes. In fact,
any kind of incremental production process can be defined by the Merlin approach. It is just the case that the ex-
ample used here, namely the ISPW6/ISPW7 example prescribes a mainly waterfall-like process.

consistency_condition (c_module, Any_state, incomplete, [[source, is_implemented_in, not_yet_desig-
ned],[source, realisation_is_imported_in, not_yet_designed]]).

automation_condition (c_module, incomplete, not_yet_implemented, [[source, is_implemented_in,
complete], [source, realisation_is_imported_in, complete]]).

automation_condition (c_module, implemented, not_yet_compiled, [[destination, imports, complete]]).

- 12 -

role. As an example consider the definition of the role programmer and the corresponding doc-
uments.

Fig. 12 Definition of roletype_document_work_on

The two facts defining the role of a programmer have to be interpreted as follows:

A programmer gets a c_module in his working context, if this module has the state not_yet_-
implemented. In this case, the corresponding specification is displayed within his working con-
text with read access if the specification has the state complete, and an c_error_report is dis-
played within the working context with read access if this report has the state with_errors. Fur-
thermore, the corresponding review is displayed if it has the state review_rejected. Note that
the documents specified in the list are only displayed, if there exists a document relation be-
tween these documents and the c_module.

The second fact must be read as: The programmer can get a program in his working context, if
the c_program has the state not_yet_executed. In this case, the corresponding c_module is dis-
played within his working context with read access if it has the state not_yet_tested.

The definition of real projects on the project level now becomes very simple. The main infor-
mation to be provided is the names, roles, and responsibilities of persons participating in a
project, and the types and names of documents to be produced. As examples we describe the
facts project, has_roles, and responsibilities. The example in Fig. 13 describes a project called
merlin_demo_project with two participants called smith and miller who perform the roles of a
programmer and quality_assurance_engineer respectively. Miller is responsible for m1_c and
smith is responsible for m2_tp.

Fig. 13 Definition of a project

Of course, this information is usually defined by a project management tool and is not neces-
sarily given by the process engineer just as other facts on the Project level. In addition, it is
worthwhile to note here again that the above informally given semantics of the various facts is
formally and precisely defined by the rules of the Kernel.

The Merlin Forward Chaining Rules proposed in [HJP+89,PSW92,PS92] have been skipped
in this new modelling approach for the following reason:

Because of the Merlin user interface paradigm (more than one activity can be executed in one
working context and changes of document states trigger new activities in other users’ working
contexts) the evaluation of preconditions and postconditions of activities has become very
complex, because a hierarchy of conditions has to be evaluated. Of course, it is possible to spec-
ify the evaluation of this hierarchy of preconditions with production rules (which have been
used as Merlin forward chaining rules). The result is a break down of the hierarchy into a lot

roletype_document_work_on (programmer, c_module, not_yet_implemented,
[[specification, complete], [c_error_report, with_errors], [review, review_rejected]]).

roletype_document_work_on (programmer, c_program, not_yet_executed,
[[c_module, not_yet_tested]]).

project (merlin_demo_project, [smith, miller]).

has_roles (miller, [programmer]).

has_roles (smith, [quality_assurance_engineer]).

responsibilities (miller, programmer, [m1_c]).

responsibilities (smith, quality_assurance_engineer, [m2_tp]).

- 13 -

of artificial (technical) rules which do not have any activities in their bodies as for example hap-
pens in Marvel [KFP88] or Matisse [GP93]. In contrast to Marvel which allows only one ac-
tivity to be performed by one user at a certain point in time, the working context paradigm in
Merlin requires more than one activity to be executed by one user at a certain point in time. The
evaluation of the hierarchy of preconditions and postconditions is much better defined in a
PROLOG-like style and, therefore, defined by PROLOG goals in the Merlin Kernel (cf. Fig. 5
and Fig. 6).

4 A Dedicated Process Modeling Language

For the specification of the Process level, Merlin provides a graphical design-language based
on the concepts of Extended-Entity-Relationship(EER)-diagrams, finite-state-machines
and predicate-logic.

The predicates being part of the Process level can be subdivided in two groups: (1) those spec-
ifying the static part of the process (i.e. document_type_states, document_relation_type and ro-
letype_document_work_on) and (2) those specifying the dynamic part of the process (i.e. doc-
ument_type_tools, automation_condition and consistency_condition).

The EER-model is based on the definition given in [EGH+93] and offers as modeling concepts
entities, attributes and relationships as well as refinement (not explained here) and inheritance
for structuring purposes.

The EER-diagram in Fig. 14 shows an example, how the predicates document_type_states and
document_relation_type are specified and how we exploit inheritance.

Fig. 14 Document-hierarchy

Predicate document_type_states is specified in Fig. 14 by an entity (graphically represented by
a rectangle) and an attribute (graphically represented by an oval).

c_program

state:[...]

state:[...] c_moduletest_plan specification

is_executable_in is_implemented_in

realisation_is_

implementation_
is_reviewed_in

designed, complete]
state:[incomplete,not_yet_designed

imported_in

uses

is_reviewed_in

imports

=

editable

documents

=

=

document_type_structure:[binary_file]

executable

state: enum

document_type_structure:[binary_file,ascii_file]

document_type_structure:[ascii__file]

state:[incomplete,not_yet_implemented, implemented,
not_yet_compiled, compiled, not_yet_tested, complete]

- 14 -

The first fact of the example in Fig. 7 is reflected by the rectangle which contains the name
specification and has an attribute state of type enumeration (with values [incomplete, not_yet_-
designed, designed, complete]). The second fact is reflected by the rectangle which contains
the name c_module together with its attribute state (with values [incomplete, not_yet_imple-
mented, implemented, not_yet_compiled, compiled, not_yet_tested, complete]).

Predicate document_relation_type is specified in the diagram by a relationship (graphically
represented by a diamond).

The first fact of the example in Fig. 9 is reflected by the diamond which contains the name
is_implemented_in and is connected by edges to the entities named specification and c_module.
The other six facts are reflected similarly.

Each document type is specified on the Process level by a predefined set of predicates. This is
reflected in the EER-diagram by an invariant part (represented with a dark background). The
attributes of the invariant part are inherited by all new introduced document types and can be
further specified. As variant part, the process engineer can only specify new document and re-
lationship types.

A finite-state machines is attached to each entity which has an attribute of type enumeration.

An example finite-state machine for the attribute state of the document type c_module is given
in Fig. 15.

Fig. 15 Finite-state machine of c_module

The predicates belonging to the second group specify the conditions under which a transition
which is represented as rectangle within the finite-state machine becomes true. Predicates spec-
ifying the behaviour which results from the use of interactive tools are represented by rectan-
gles labelled INTER (i.e. document_type_tools). Predicates specifying the behaviour which re-
sults from the use of a batch tools are represented by rectangles labelled BATCH (i.e. docu-
ment_type_tools). Predicates specifying the behaviour which results from changes on related
documents are represented by rectangles labelled COND (i.e. automation_condition and con-
sistency_condition).

The first fact of the example in Fig. 8 is reflected in the finite-state machine as follows. Param-
eter ascii_pager is given below the rectangle (the second rectangle in the top left corner) and
parameter readable is given by the character r below INTER. In the case of writeable or exe-
cutable the characters w or x respectively are used. The precondition allows tool invocation in

C
O
N
D

incomplete

C
O
N
D

C
O
N
D

complete

C
O
N
D

implemented

C
O
N
D

compiled

R

I
N

E
T

r

R

I
N

E
T

r

R

I
N

E
T

w

H

B
A
T
C

(1)

(2)

(3)

(5)

(4)

(6)

C
O
N
D

X

compiler

ascii_printer

ascii_pager

ascii_editor

not_yet_compiled

not_yet_tested

not_yet_implemented

- 15 -

any state (given by Any_state). This is represented in the finite-state machine by the arrow star-
ing from the double-circle. Double-circle is a placeholder for all states of the document type.
The empty postcondition [] is represented by the reverse arrow pointing to the double-circle.
This means the documents’ state remains unchanged.

The second fact is reflected similarly. The third fact represents an ascii_editor and has as pre-
condition not_yet_implemented and as possible postcondition not_yet_implemented and imple-
mented. The corresponding rectangle is shown in the finite-state machine in the middle of the
right side. The precondition is reflected by the source state of the incoming arrow (written be-
low the circle) and the postcondition is reflected by the two target states of the outgoing arrows.

Batch tools are reflected in the finite-state machines similar to interactive tools.

For the specification of the predicates automation_condition and consistency_condition, for-
mulas in predicate-logic (based on the definition in [Mey88]) are attached to the COND tran-
sitions in the finite-state machine. The formulas used in Fig. 15 (referred to by numbers in the
finite-state machine) are given in Fig. 16.

Fig. 16 Formulas attached to conditional-transitions

Predicate automation_condition specifies, that a condition must be fulfilled for all documents
related to the document of interest by a given relationship. This is reflected in the formula by
using the quantor ∀.

The counterpart of the first fact of the example given in Fig. 11 is formula (2) of Fig. 16. This
formula belongs to the COND transition between the states incomplete and not_yet_implement-
ed (see Fig. 15). The automation_condition can be mapped to the formula as described now.
Parameter incomplete is the source state of the incoming arrow connected to the COND transi-
tion. Parameter not_yet_implemented is the target state of the outgoing arrow. The last param-
eter is a list of conditions which must be fulfilled. The first condition expresses, that all docu-
ments related to the c_module by an is_implemented_in relationship must be in the state com-
plete. This condition is reflected in the formula by is_implemented_in(x,self) ∧ =(x.state,
"complete").

Predicate consistency_condition is specified by formulas having the quantor ∃, because the
conditions must be fulfilled for only one related document to become true. The fact given in
Fig. 10 is reflected by formula (1) in Fig. 16. Consistency_conditions are mapped similar to au-
tomation_conditions.

For a detailed description of the design-language we refer to [Jun93].

(1) ∃ x,y ∈specification • ((is_implemented_in(x,self) ∧ =(x.state,
"not_yet_designed")) ∨ (realisation_is_imported_in(y,self) ∧ =(y,state,
"not_yet_designed")))

(2) ∀ x,y ∈specification • ((is_implemented_in(x,self) ∧ =(x.state, "complete")) ∧
(realisation_is_imported_in(y,self) ∧ =(y,state, "complete")))

(3) ∀ x ∈ c_module • (imports(self,x) ∧ =(x.state, "complete"))
(4) ∀ x ∈ test_review • (module_is_reviewed_in(self,x) ∧ =(x.state,

"incomplete"))
(5) ∃ x ∈ test_review • (module_is_reviewed_in(self,x) ∧ =(x.state,

"test_review_rejected"))
(6) ∀ x ∈ test_review • (module_is_reviewed_in(self,x) ∧ =(x.state,

"complete"))

- 16 -

5 The Transaction Concept

As already mentioned above the process engine must manage the effects of the parallel work
on each developer’s working context, i.e. presentation and update of a working context may
happen in a distributed fashion. The main problem occurs if a document is accessed by different
developers in their working contexts which is a very natural requirement for performing com-
plex tasks. For instance, the documentation of a subsystem might be written cooperatively by
all programmers responsible for modules of the subsystem.

Providing the same document in different working contexts at the same time causes concurren-
cy problems like read/write or write/write conflicts on documents. Additional conflicts may
arise because the process engine performs the before mentioned batch jobs. To synchronize the
concurrent access to documents either by the users or by the process engine a transaction mech-
anism is required which avoids or solves the conflicts.

A lot of approaches already exist each having its specific advantages and disadvantages (for a
detailed discussion c.f. [BK91]). But the open problem still is how to integrate the described
transaction mechanisms into a PSEE (or even SEE), and how far can the knowledge about a
process be used for deciding which concurrency control policy should be used in which situa-
tion?

In Merlin we develop a transaction model which is adopted to the working context based user
interaction model. Five different transaction types are supported in Merlin. They can be distin-
guished in the transactions triggered by the user by performing activities in the working context
(user transactions) and the transactions triggered by the process engine by performing batch
jobs (process engine transactions).

The user transactions differ first in the number of objects they access and second in their syn-
chronization policies. A user transaction in Merlin either controls the execution of a single ac-
tivity on a single document (e.g. editing a test plan) or it includes and controls all activities per-
formed within a working context (e.g. editing several source code modules, compiling and link-
ing them). Single activity transactions, in the following called activity transactions, could be
synchronized either in a pessimistic or optimistic way. Transactions controlling all activities
within a working context, in the following called working context transactions, are only syn-
chronized in a pessimistic way because the possible rollback of those transactions in the opti-
mistic case after having performed many (time consuming) activities is not acceptable.

User transaction types enable to support long transactions (working context transactions) as
well as short transactions (activity transactions), the latter ones providing either exclusive and
secure document access in the pessimistic case or concurrent (write) access in the optimistic
case. The pessimistic case, of course, decreases the number of concurrent accesses whereas the
optimistic policy may result in a merge of concurrently performed modifications.

The process engine transactions differ with respect to the semantics of the activities performed
under the control of those transactions. Either the process engine follows some automation con-
ditions in the process definition, and therefore changes states of documents and invokes tools
(e.g. compilation of a module after the imported modules have been finished), or states and
documents are accessed triggered by some consistency conditions (e.g. re-compilation of an al-
ready compiled module because an imported module has been modified). Respectively, the
process engine transaction types in Merlin are called automation transactions or consistency
transactions (c.f. the separation between automation chains and consistency chains in Marvel
[Bar92]).

- 17 -

The type of transaction to be applied is prescribed by the role definition, task definition, the
users’ access rights, and also by the current project state. For instance, if the programming of
a module has to be finished very soon in order to meet a project milestone, the system will not
allow to access the module by an optimistic activity transaction anymore (in order not to risk
the completion by concurrent accesses).

If still alternative transaction types are applicable for a task (or a set of tasks) the system sup-
ports the user in choosing the correct transaction type by providing him information about cur-
rently active working contexts, running transactions related to a user’s working context, trans-
actions requested by other developers (e.g. requested locks), and changed states of related doc-
uments (as an extension of the communication modes proposed in [SZ89]). For instance, a user
performing an optimistic transaction then might decide to abort the optimistic transaction and
to restart it with pessimistic control or even to contact other developers to discuss the planned
modifications and to prepare the necessary merge activity.

The synchronisation algorithm for controlling the concurrent execution of Merlin transactions
is based on the definition of priorities for the five transaction types. In case of a conflict the
access right is granted to the transaction with the higher priority. For instance a consistency
transaction has the highest priority and the pessimistic synchronized user transactions have a
higher priority than an automation transaction. A conflict resolution strategy, which distin-
guishes the access to documents and the access to document states, allows the Transaction-
Manager (see below) to resolve specific conflict situations not only by aborting one of the two
conflicting transactions based on the priority definitions, but also by withdrawing a lock on a
document state from one of the conflicting transactions (e.g. a user editing a module then still
can continue his editing activity but cannot access and change the module’s state).

As mentioned before, the selection of the right user transaction type is based on the process def-
inition and on the project’s state. The decision to initiate a transaction of one of the process en-
gine transaction types depends on the semantics of the activities performed by the process en-
gine. On the database level information like role definitions, user access rights, the project’s
state or the semantics of activities is not known. Therefore the selection of a transaction type,
the initiation of a transaction of a selected type and the completion of that transaction is inte-
grated in the Kernel. Fig. 17 shows the integration of working context transactions in the rule
working_context which was explained in section 3.

Fig. 17 Invocation of a working context transaction in the rule working_context

working_context (Ident, Project, Role,Menu_Activity_List, Document_List, Relation_List):-
working_context_transaction(Ident, Project,Role),
start_transaction(Ident, Project,Role, wc_transaction, T_id),
responsibilities (Ident,Role,Responsibility_List),
locked_documents(Role,Responsibility_List,Document_List,T_id),
...

locked_documents(Role,Responsibility_List,Document_List,T_id):-
document(Doc,Type),
document_state(Doc,Doc_State),
roletype_document_work_on(Role,Type,State,Rdoctypes),
document_lock(Doc,T_id),
state_lock(Doc,T_id),
...

working_context (Ident, Project, Role,Menu_Activity_List, Document_List, Relation_List):-
responsibilities (Ident,Role,Responsibility_List),
documents(Role,Responsibility_List,Document_List,None,None),
...

- 18 -

When the existence of a working context is checked, the rule working_context_transaction
checks whether the working context has to be (or the user wants it to be) controlled by a work-
ing context transaction. In that case, a working context transaction is started by invoking the
rule start_transaction which is a rule of the TransactionManager described below. After hav-
ing identified the user’s responsibilities, the rule locked_documents checks the documents’
states w.r.t. to the role definition, and locks the documents and their states using the rules doc-
ument_lock and state_lock of the TransactionManager.

If the working context is not controlled by a working context transaction, the second rule with
the name working_context is executed which checks the existence of a working context without
any transaction control and without locking any document or state. In this case, each user ac-
cess to a document in the working context is controlled either by an optimistic or pessimistic
activity transaction. Activity transactions are integrated in other rules in the WorkingContext
cluster of the Kernel whereas the process engine transactions are integrated in the Changed-
States cluster.

Fig. 18 Defining selection criterion for transaction types by additional facts

The selection of a transaction type for a specific task as discussed above is based on additional
process facts and project facts. For instance, fact working_context_transaction_required in
Fig. 18 defines that a programmer’s working context has to be controlled by a working context
transaction if the working context enables the programmer to modify at least two modules with
an import relation. By that it is assured that the modification of related documents is controlled
in one transaction.

The second fact, prohibit_transaction_type_near_deadline, prohibits to control the access to a
c_module by an optimistic activity transaction if the deadline to complete the task of program-
ming a c_module is reached in 10 days or less. Additional rules in the WorkingContext and the
ChangedStates cluster interpret those facts whenever a transaction is required to control an ac-
tivity (e.g. the rule working_context_transaction in Fig. 17 interprets facts of type working_-
context_transaction_required). These rules define the semantics of the facts used to influence
the selection of a transaction type.

The TransactionManager and LockManager are implemented as rule clusters in the Kernel in-
stead of using a conventional programming language. This achieves tight integration of the
transaction control mechanism and the process control mechanism. For instance a transaction
might be aborted because a lock request is rejected by the lock manager or because the process
engine detects that an activity performed within a transaction cannot be continued because
some preconditions have changed and unrecoverable inconsistencies would arise. In both cas-
es, the backtracking mechanism of Merlin is used either by the transaction manager or by the
process engine to abort and undo a transaction.

The TransactionManager consists of rules to start transactions, commit transactions, validate
optimistic transactions, abort transactions or to request and release locks. Information about all
active transactions, i.e. the transactions’ identifiers and types, the names and roles of the users
performing the transactions etc. is described by facts. The TransactionManager’s decisions to
reject a lock request and to abort or even to modify a transaction is triggered by the conflict
detection which is done by the lock manager.

The LockManager consists of rules to manage all lock information like existing locks on doc-
uments and states as well as the compatibility definition of the existing lock modes. If a trans-

working_context_transaction_required (programmer, c_module, c_module, imports).

prohibit_transaction_type_near_deadline (opt_activity_transaction, c_module, 10d).

- 19 -

action requests a lock from the TransactionManager, the TransactionManager requests that
lock from the LockManager who checks for incompatibility with already existing locks. In case
of a conflict the transaction manager is informed about the conflict and decides how to resolve
the conflict.

For a detailed description of this transaction concept we refer to [Wol94].

6 Architecture Overview and Implementation Issues

Fig. 19 represents an overview of the Merlin architecture. In this diagram boxes denote mod-
ules or subsystems. Arrows denote a use-relationship, i.e. a module or subsystem respectively
imports resources provided by a "target" module or subsystem respectively. This use-relation-
ship is very much like the Modula-2 import-relationship or the EIFFEL client-server relation-
ship.

Fig. 19 Merlin architecture

The architecture is based on a distribution model which assumes several WorkBenches where
each one is associated with a Process Engine. The diagram in Fig. 19 just gives the overview
about one such pair. WorkBench and Process Engine communicate with each other via the
Message Dispatcher’s facilities based on TCP/IP. The subsystem Process Engine Control
transmits working context updates based on the Process Engines’s computation (see below) to
the WorkBench. Subsystem WorkBench Control is in charge of initiating the corresponding
screen display and transmitting the updated state information, which results from the execution
of tools, back to the Process Engine.

Each pair WorkBench/Process Engine in a Merlin environment communicates also via a mes-
sage dispatcher with each other (not shown in the diagram). It is worthwhile to note here that
the process data which is stored in the underlying data base is not (yet) stored in a distributed
fashion, i.e. only the process interpreter exists in several instances but not the facts of a partic-
ular process and project description.

WorkBench ProcessEngine

WorkBench
Control

Tool1

Merlin Window
System

Process
Knowledge Base

Process Engine

X-Windows

Process Engine
Control

Tooln

Document
Representation1

Message
Dispatcher

Document
Representationn

Process Modelling
Tools

distributed, heterogeneous Database

UNIX-FS GRAS GemStone

- 20 -

We currently investigate the use of a message server, namely the HP Softbench, to improve the
services provided by the current message dispatcher. This would result in a architecture which
is very similar to the SPADE-1 architecture as described in [BFG+93]. In this sense we suggest
here a possible break-down of their course-grained "three component"-architecture which con-
sists of the user environment (corresponding to our WorkBench), the process engine environ-
ment (corresponding to our Process Engine) and the filter (corresponding to our WorkBench
Control and Process Engine Control respectively). The further difference is that SPADE-1 uses
the DEC FUSE message server instead of HP Softbench. A more thorough investigation and
comparison of those approaches is subject to further research.

The Process Engine-subsystem is in charge of storing, retrieving, and interpreting the specifi-
cation of a development process as explained in section 3. In particular, it implements the trans-
action synchronisation as mentioned in section 5.

Process Modelling Tools provide the edit and analysis facilities to specify a process by using
the graphical modeling language as explained in section 4.

The underlying data base management system used to store documents and process informa-
tion is heterogeneous. Some documents are stored as UNIX-files, because the corresponding
tools are UNIX-tools like vi, cc, etc. Some documents are manipulated by more sophisticated
tools and their contents is stored in the form of an abstract syntax graph. To store a massive
amount of fine-grained data we exploit the features of the non-standard data base system GRAS
[LS88]. That paper explains in detail why GRAS is a highly suitable storage mechanism for
abstract syntax graphs.

Module Process Knowledge Base just provides the special operations to access facts and rules
based on the schema definition as given in [PS92]. This schema definition is basically an ab-
stract syntax graph definition of a PROLOG-like program and thus a storage mechanism like
GRAS is needed to give adequate support for storing this fine-grained data. In particular, the
tools supporting the modeling of processes are all sophisticated syntax-directed tools and thus,
as mentioned above, need support like GRAS offers.

Process data, namely the facts and rules of the Kernel, Process and Project levels are stored
partly in GRAS (the rules) and partly in the fully object-oriented data base system (OODBMS)
GEMSTONE (the facts). Facts are stored in GEMSTONE rather than in GRAS, because the
transaction mechanism as explained in the last section requires to lock facts. GRAS only pro-
vides locking of complete graphs whereas facts are small subgraphs which cannot be locked
separately in GRAS. In an OODBMS like GEMSTONE this granularity problem does not ex-
ist, as locking can be performed on any level of granularity, i.e. on small objects representing
facts as well as on larger granular like a collection of objects representing a complete abstract
syntax graph.

7 Current and Further Work

The problem with at least the currently available version of GRAS with respect to multi-user
support and transaction management in general as well as the good availability and perform-
ance of OODBMSs in that respect kicked off a new research direction in the Merlin project,
namely the investigation of OODBMSs as dedicated software engineering platforms. First re-
sults indicate that this is a very promising way to go but that existing OODBMSs still need
some improvement to fulfil all software engineering requirements [ESW93], [EKS93].

A further major piece of work is to integrate a configuration management component in Merlin,
i.e. to improve Merlin‘s support for cooperation by enabling to specify a particular version and

- 21 -

corresponding configuration model within the Merlin modeling language. This again means to
extend the Kernel level by rules which fix a basic VM/CM model and then provide a number
of predefined predicates which are used to define a particular process or project-specific VM/
CM model [Sac93].

Finally, a major effort is geared towards improving the architecture with respect to distribution
as indicated in [PW93]. The main idea is to have, in addition to distributed process interpreters,
also partly distributed process data. This, of course requires much more sophisticated synchro-
nisation policies which keep the process data in a consistent state. The communication which
is needed to keep this consistency should be supported by a sophisticated message server which
is also under investigation.

An important part of the Merlin research project is technology transfer. Thus, some of the men-
tioned concepts are or have already been used in the commercial production of CASE tools to-
gether with our industrial partners. The transfered concepts includes the exploitation of GRAS
and the idea of an explicit definition of a software process as the major part of tools which sup-
port multi-user cooperation.

Acknowledgements
We are indebted to the other members of the Merlin project, namely Wolfgang Emmerich, Olaf
Neumann and Sabine Sachweh who contributed a lot to the state of the project as described here
through a lot of exploitive and fruitful discussions.

We gratefully acknowledge the implementation work of a number of master students which
only brought the current version of the prototype into existence. Those theses include the work
of Frank Buddrus, Oliver Gritsch, Jens Jahnke, Thomas Leppek, Rainer Kruschinski, Klaus
Marquardt and Michael Nippel.

References

[BK91] N.S. Barghouti, G. Kaiser, "Concurrency Control in Advanced Database Appli-
cations", ACM Computing Surveys, Vol. 23, Nr. 3, 1991.

[BK92] N.S. Barghouti, G. Kaiser, “Scaling Up Rule-based Software Development
Environments”, in: International Journal of Software Engineering and Know-
ledge Engineering (March 1992), Vol. 2, No. 1, pp. 59-78.

[Bar92] N.S. Barghouti, "Concurrency Control in Rule-Based Software Development
Environments", Ph.D. Thesis, Columbia University, Technical Report CUCS-
001-92, New York, USA, 1992.

[BFG+93] Sergio Bandinelli, Alfonso Fuggetta, Carlo Ghezzi, Luigi Lavazza, "An Over-
view of the SPADE Project", this volume.

[EGH+93] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G.
Saake, H.-D. Ehrich, "Conceptual modelling of database applications using an
extended ER model", in: Data & Knowledge Engineering (1992/1993), Vol. 9,
No. 2, pp. 157-204.

- 22 -

[EKS93] W. Emmerich, P. Kroha, W. Schäfer, "Object-oriented Database Management
Systems for Construction of CASE Environments", in: Proc. of the 4th Int.
Conf. on Database and Expert Systems Application, Prague, Czech Republic,
1993 (to appear), Springer LNCS.

[ESW93] W. Emmerich, W. Schäfer, J. Welsh, "Databases for Software Engineering En-
vironments --- The Goal has not yet been attained", in: Proc. of the 4th Europe-
an Software Engineering Conference, Garmisch-Partenkirchen, Germany, 1993
(to appear), Springer LNCS.

[GP93] P.K. Garg, T.Q. Pham, "Process Modeling in Matisse, A Team Programming
Environment", in: Proc. of the 8th Int. Software Process Workshop, Dagstuhl,
Germany, 1993.

[HJP+89] H. Hünnekens, G. Junkermann, B. Peuschel, W. Schäfer, K.J. Vagts, "A Step
Towards Knowledge-based Software Process Modeling" in: Madhavji N.,
Schäfer W., Weber H. (ed.): Proceedings of the First Conference on System De-
velopment Environments and Factories (SDE&F 1), Pitman Publishing, Lon-
don, 1990.

[Jun93] G. Junkermann, "A design method to improve process-programming in Merlin"
(submitted for publication).

[KFF+91] M.I. Kellner, P.H. Feiler, A. Finkelstein, F. Katayama, et. al., ISPW6 Software
Process Example, in: M. Dowson (ed.), Proc. of the 1st Int. Conf. on the Soft-
ware Process (IEEE Press, Oct. 1991) pp. 176-186.

[KFP88] Gail E.Kaiser, Peter H. Feiler, Steven S. Popovich, "Intelligent Assistance for
Software Development and Maintenance", IEEE Software, 1988, pp. 40-49.

[LS88] C. Lewerentz, A. Schürr, "GRAS - a Management System for Graph-like Doc-
uments", in: Beeri, Schmidt, and Dayal (eds.), Proc. of the 3rd Conf. on Data
and Knowledge Bases (Morgan Kaufmann, 1988) pp. 19-31.

[Mey88] B. Meyer, "Introduction to the Theory of Programming Languages", Prentice
Hall, 1988.

[MS91] Madhavji N.H., Schäfer W., "Prism - Methodology and Process-Oriented Envi-
ronment", IEEE Transactions on Software Engineering, Vol. 17, No. 12, De-
cember 1991, pp. 1270-1283.

[PS92] B. Peuschel, W. Schäfer, "Concepts and Implementation of a Rule-based Proc-
ess Engine, Proc. of the 14th Int. Conf. on Software Engineering, Melbourne,
May 1992, pp. 257-276.

[PSL91] Programming Systems Laboratory, “Marvel 3.0 User’s Manual”, Technical re-
port CUCS-033-91, Columbia University Department of Computer Science,
October 1991.

- 23 -

[PSW92] B. Peuschel, W. Schäfer, S. Wolf, "A Knowledge-Based Software Develop-
ment Environment", in: International Journal of Software Engineering and
Knowledge Engineering (March 1992), Vol. 2, No. 1, pp. 79-106.

[PW93] B. Peuschel, S. Wolf, "Architectural support for distributed process centered
software development environments", in: Proc. of the 8th Int. Software Process
Workshop, IEEE Press, Dagstuhl, Germany, 1993.

[Sac93] Sabine Sachweh, "A Proposal for Configuration- and Version-Management in
Merlin", Technical report, University of Dortmund, Department of Computer
Science, Software-Technology (to appear).

[SZ89] A.H. Skarra, S.B. Zdonik, "Concurrency Control and Object Oriented Databas-
es", in: W. Kim, F.H. Lochovsky (ed.) Object Oriented Concepts, Databases
and Applications, pp. 395-421, ACM Press, New York, 1989.

[Wol94] S. Wolf, "Supporting Cooperation in Process-Centered Software Development
Environments (in german)", (in preparation: Ph.D. thesis, University of Dort-
mund, Dep. of Computer Science, 1994).

		2002-04-03T16:46:39+0200
	Universitaetsbibliothek Dortmund - Eldorado

