
On the Speci�cation of Shared Objects in �

J. Cramer, H. Schumann

October 17, 1991

Abstract

Critical points in the current version of the �-Language [CS90] are the treat-

ment of shared objects and the object con�guration speci�cation. Both features
of the �-Language have lead to major di�culties in the past. Concerning shared
objects we found out that the semantics of the share-statement is quite unclear

and as a consequence also their speci�cation. Concerning the object con�guration
speci�cation it has turned out that this view as a whole is incomprehensible and

hard to motivate.
In this paper we propose an alternative approach in which the sharing of objects

is speci�ed on the type level by introducing `shared' types. Only objects of these
explicitly marked types can be used as shared objects. How objects are then

actually shared is speci�ed in the imperative view speci�cation of single CEMs.
The introduction of shared types has two consequences. The �rst is that the

separate object con�guration speci�cation is no longer necessary. This reduces
the syntax of the con�guration speci�cation by more than two thirds. The second
concerns the treatment of shared objects in distributed modular systems. To

handle object con�gurations in such systems it is necessary to introduce `virtual'
CEMs on top of the con�guration speci�cation. These are CEMs which are re-

sponsible for the installation of shared objects in such con�gurations, but need
not necessarily to be implemented.

Contents

1 Introduction 2

2 Basic Idea 2

3 Shared Objects/Types in Single CEMs 3

3.1 Type View Speci�cation . 3

3.2 Imperative View Speci�cation . 5

1

4 Shared Types in Con�guration Speci�cations 9

5 Virtual Top CEMs for Distributed Modular Systems 11

6 Summary and Open Questions 13

A Syntax Description of the Con�guration Speci�cation 15

1 Introduction

In the current version of the �-Language [CS90] we describe the sharing of objects by
means of so-called con�guration actions in the object con�guration speci�cation. In
contrast to usual CEM operations, con�guration actions describe system management
activities, like eg.

� creation of initial object con�guration,

� sharing of objects,

� manipulation of a given object con�guration.

These con�guration actions should be performed only at speci�c points in time (eg.
system initialization, system update) by only some authorized persons (eg. system man-
ager, superuser). Due to the large similarities in the description of CEM operations and
con�guration actions - in both cases we use imperative algorithms - the object con�gur-
ation speci�cation is often hard to motivate and should be replaced by a more intuitive
description scheme.

Another drawback of the current version is that on the type level there is no information
available about the sharing of objects. As a consequence it is not possible to determ-
ine correctness and compatibility properties concerning shared objects based on type
speci�cations (type view speci�cations and type con�gurations). Such tests are only
possible if the corresponding object con�guration is speci�ed.

In the following we discuss an alternative approach in which the sharing of objects is
speci�ed on the type level by introducing `shared' types. A positive side-e�ect of this
approach is that the object con�guration speci�cation is no longer necessary.

2 Basic Idea

The basic idea of the new approach is to distinguish on the type level between `normal'
and `shared' types. The di�erence between both is that only objects of the latter can

2

be used as shared objects. All other objects can only be used exclusively.

The distinction between `normal' and `shared' types makes it necessary to instantiate
data type speci�cations, as `normal' types in one case and as `shared' types in the other
case. For example if we have a CEM which needs a local and a shared bu�er, we can
use the same bu�er speci�cation in two instantiations. Thus we have not only CEM
incarnations due to di�erent actualizations of a CEM but also data type incarnations
due to its usage as `shared' or `normal' data type.

In the following we describe �rst how shared objects/types are used and described within
a single CEM and then how con�gurations are built containing shared objects/types.

To illustrate this approach we use a slightly modi�ed version of the well-known producer-
consumer example, in which we have two subsystems communicating via a shared object.
Both subsystems have a similar structure. They consist of a local part, a local bu�er
and a shared bu�er (see also �gure 1).

Producer Consumer

Local
Producer

Local
Buffer

Shared
Buffer

Local
Buffer

Local
Consumer

Figure 1: Object Con�guration of the Producer-Consumer Example

During the following chapters we sketch the speci�cation of this example but concentrate
ourselves on the shared object/shared type aspect.

3 Shared Objects/Types in Single CEMs

3.1 Type View Speci�cation

The only thing we have to do in the type view speci�cation of a single CEM is to
distinguish between sorts which are shared and sorts which are not shared. Due to the
idea that each data type specifcation can be instantiated either as `shared' sort or as
`normal' sort, this distinction is only speci�ed in the import section of a CEM and not
in the export interface. Because the common parameters are part of the export interface
we therefore restrict the import of shared sorts to the import section of a CEM.

On the syntactical level this results in the following modi�cation of rule T6 [CS90]:

3

T6: <tv cem import> ::=

[" shared"] " sort"<sort name>
[" general description"<comment>]
f <operation description> g�

["local operations" <local operation list>]

If we consider the type view speci�cation of the CEM PRODUCER in our producer-
consumer example we obtain the following speci�cation skeleton:

cem PRODUCER

type view specification

export

sort Producer

operation initialize_producer: Local_prod, Local_buffer, Shared_buffer -> Producer

operation start_produce: Producer -> Producer

...

body

sort Producer

construction of Producer is Triple

where

Item1 <- Local_prod,

Item2 <- Local_buffer,

Item3 <- Shared_buffer

end where

operation initialize_producer: Local_prod, Local_buffer, Shared_buffer -> Producer

variables

lp: Local_prod;

lb: Local_buffer;

sb: Shared_buffer

equations

initialize_producer (lp, lb, sb) = make_triple (lp, lb, sb)

operation start_produce: Producer -> Producer

...

import

sort Local_prod

operation create_local_prod: -> Local_prod

...

4

sort Local_buffer

operation create_local_buffer: -> Local_buffer

operation read_local_buffer: Local_buffer -> Data

operation write_local_buffer: Data, Local_buffer -> Local_buffer

...

shared sort Shared_buffer

operation create_shared_buffer: -> Shared_buffer

operation read_shared_buffer: Shared_buffer -> Data

operation write_shared_buffer: Data, Shared_buffer -> Shared_buffer

...

sort Triple

operation make_triple: Item1, Item2, Item3 -> Triple

operation get_first: Triple -> Item1

...

sort Data

...

end cem PRODUCER

According to this import section speci�cation only objects of sort Shared bu�er can be
used as shared objects within the body speci�cation of the CEM PRODUCER.

3.2 Imperative View Speci�cation

Due to the strict conformance between type and imperative view we distinguish in the
imperative view between shared types and non shared types. As a consequence we have
similar changes in the syntax description as in the type view:

I6: <iv cem import> ::=

[" shared"] " type"<type name>
[" general description"<comment>]
f <procedure description> g�

5

The respective speci�cation of the CEM PRODUCER looks as follows:

cem PRODUCER

imperative view specification

export

type Producer

procedure initialize_producer (in lp: Local_prod;

lb: Local_buffer;

sb: Shared_buffer)

returns Producer

procedure start_produce (inout p: Producer)

...

body

type Producer

construction of Producer is Triple

where

Item1 <- Local_prod,

...

Item2 <- Local_buffer,

...

Item3 <- Shared_buffer,

...

end where

procedure initialize_producer (in lp: Local_prod;

lb: Local_buffer;

sb: Shared_buffer)

returns Producer

begin

return make_triple (lp, lb, sb)

end

procedure start_produce (inout p: Producer)

...

import

type Local_prod

procedure create_local_prod returns Local_prod

...

type Local_buffer

6

procedure create_local_buffer returns Local_buffer

procedure read_local_buffer (in lb: Local_buffer) returns Data

procedure write_local_buffer (in d: Data inout lb: Local_buffer)

...

shared type Shared_buffer

procedure create_shared_buffer returns Shared_buffer

procedure read_shared_buffer (in sb: Shared_buffer) returns Data

procedure write_shared_buffer (in d: Data inout sb: Shared_buffer)

...

type Triple

procedure make_triple (in i1: Item1; i2: Item2; i3: Item3) returns Triple

procedure get_first (in t: Triple) returns Item1

...

type Data

...

end cem PRODUCER

Up to now we have introduced those changes which are due to the distinction between
shared and normal types. In the next step we have to de�ne how the actual sharing of
a speci�c object is described. This is done in the procedure bodies, where we deal with
control
ow, an abstract notion of storage and the creation and deletion of objects.

Objects are created at the beginning of a procedure execution according to the declare-
statement and are deleted at the end of the procedure execution in which they are
declared. During their lifetime they can be used in the construction of more complex
objects, as parameters in other procedure invocations, or simply as stores for interme-
diate results.

The important di�erence between shared and normal objects is their way to become part
of a more complex object. In case of normal objects only a copy of the object becomes
part of the more complex object. This has the consequence that a normal object can
never be a part of di�erent more complex objects. In contrast to this a shared object
is directly used to build a more complex object. This allows that one (shared) object
is at the same time part of di�erent more complex objects, and that a shared object
can survive (as part of another object) the end of the procedure execution in which it
is declared.

7

From a more technical view the di�erence between both kind of objects is the parameter
passing mechanism in case of in-parameters. Normal objects are passed through by a
call-by-value semantics. This means that each time a normal object is used as in-
parameter the invoked procedure works conceptually with a copy of this object. This
ensures the strict encapsulation principle, on which the �-Language is based, because
we have only well-de�ned1 side-e�ects in the resulting systems.

In contrast to this shared objects are passed through using the call-by-reference se-
mantics. This mechanism allows that one and the same object can be part of di�erent
complex objects at the same time.

To illustrate this let us consider the procedure create_prod_cons in our producer-
consumer example, which creates the initial object con�guration of our producer-
consumer system (see �gure 1).

body

...

procedure create_prod_cons (in lp: Local_prod;

lc: Local_cons)

returns Prod_cons_tuple

declare

lb : Local_buffer;

prod: Producer;

cons: Consumer

shared objects

sb : Shared_buffer

end declare

begin

prod := initialize_producer (lp, lb, sb);

cons := initialize_consumer (lc, lb, sb);

return make_tuple (prod, cons)

end

...

The object which is returned at the end of the procedure has the structure depicted in
�gure 2.

As we can see this structure has one shared object, the object sb, which is explicitly
declared as shared object in the delare-statement at the beginning of the procedure
create_prod_cons. The local bu�er object lb, which is not declared as shared object,
appears as two di�erent objects in the resulting object con�guration. This is because the
constructing procedures initialize_producer and initialize_consumer use copies
of the object lb but references in case of the shared object sb.

On the syntactical level we need only a simple modi�cation of rule IP8:

1Well-de�ned means here that side-e�ects are limited to the one inout-parameter of an object modi-
fying procedure.

8

prod cons

lp lb sb lb lc

prod_cons_tuple

Figure 2: Return-Object of the Procedure create prod cons

IP8: <object declaration> ::=

"declare"
<object declaration> f ";" <object declaration> g�

"shared objects"
<object declaration> f ";" <object declaration> g�

"end declare"

This explicit distinction of shared and non shared objects in the declare-statement is
to some degree redundant, because the type information implies whether an object is a
shared one or not. But we prefer here an explicit speci�cation because the sharing of
objects is an error-proning issue which makes a careful and disciplined use necessary.

4 Shared Types in Con�guration Speci�cations

The aforementioned changes are the only ones needed on the level of single CEMs.
But with this little syntactical modi�cations we have reached the goal that information
about the sharing of objects is available on the type view level and we need no longer
an object con�guration speci�cation. Thus the con�guration speci�cation consists only
of the type con�guration.

The necessary modi�cations in the type con�guration speci�cation depend mainly on
the fact that we have to build component incarnations not only due to di�erent ac-
tualizations of a component but also due to the possible instantiation of a data type
speci�cation as shared or not-shared sort. Only a sort which is instantiated as a shared
sort (see example below) can be used to actualize a `shared sort' import requirement.

9

Together with the omission of the object con�guration we have got major changes in
the con�guration speci�cation, which results in a complete redesign of the syntax de-
scription. The complete syntax for the con�guration speci�cation is given in Appendix
A. At this place we sketch only the con�guration speci�cation of our producer-consumer
example. The interesting point here is the instantiation of the CEM BUFFER as a shared
bu�er and as a non shared bu�er in the component incarnation statement. Only the
component incarnation shared_buffer with the explicit marked sort Buffer as shared
sort can be used to actualize the import requirements of the producer and consumer
speci�cations, where we had explicitly speci�ed the need for a shared sort Buffer.

The classi�cation of component incarnations as virtual and root components in the
following example is optional and explained in chapter 5.

configuration PRODUCER_CONSUMER_SYSTEM

component incarnations

prod_cons : Prod_cons is virtual;

producer : Producer is root;

consumer : Consumer is root;

shared_buffer : Buffer with shared sort Buffer;

local_buffer : Buffer;

producer : Producer;

consumer : Consumer;

local_prod : Local_prod;

local_cons : Local_cons;

triple : Triple;

tuple : Tuple;

string : String

component connection

connection of prod_cons

...

connection of producer

from local_prod import

sort Local_prod <- Local_prod

operations

create_local_prod <- create_lp

...

from local_buffer import

sort Local_buffer <- Buffer

10

operations

create_local_buffer <- create_buffer;

read_local_buffer <- read_buffer;

write_local_buffer <- write_buffer;

...

from shared_buffer import

sort Shared_buffer <- Buffer

operations

create_shared_buffer <- create_buffer;

read_shared_buffer <- read_buffer;

write_shared_buffer <- write_buffer;

...

from triple import

sort Triple <- Triple

operations

make_triple <- make_triple

get_first <- get_first

...

from string import

sort Data <- String

...

end configuration PRODUCER_CONSUMER_SYSTEM

5 Virtual Top CEMs for Distributed Modular Sys-

tems

If we investigate the described approach more closely we see that we need always an
upper level CEM which declares and introduces the shared objects for lower level object
con�gurations. As far as we consider only not distributed modular systems this makes
no problems. But in case of distributed systems we have to answer the question how to
specify a shared object for the distributed parts of a system.

Our solution for this problem is the introduction of virtual CEMs on top of distributed
modular systems. These virtual CEMs model an entity which has to some degree an
overview and overall control of the complete distributed system. These CEMs have not
to be implemented as usual programs but re
ect more the work of a system manager
who has control on global names or can install communication facilities etc.2.

2Nevertheless in some cases it can be possible that parts of such a virtual CEM are implemented

11

If we come back to our producer-consumer example we can imagine that the producer
should be located on one site and the consumer on another site. Thus the top CEM
PROD_CONS does only exist as a virtual part of our system (see �gure 3).

local_buffer shared_buffer local_cons

producer consumer

prod_cons

local_prod

virtual part

Figure 3: Virtual Part of a Distributed Modular System

To specify that a CEM is only a virtual one we modify the syntax rule G2 as follows:

G2: <cem speci�cation> ::=

"cem" <cem name>
[" is virtual"]
[" general description"<comment>]
[<type view speci�cation>]
[<imperative view speci�cation>]
[<concurrency view speci�cation>]
"end cem" <cem name>

on one or di�erent sites of a distributed system. But usually at least some part will be realized by
hardware (global name services) or via global system management.

12

According to this rule we have the following speci�cation of the CEM PROD_CONS:

cem PROD_CONS

is virtual

general description { ... }

type view specification

...

imperative view specification

...

concurrency specification

...

end cem PROD_CONS

In the con�guration speci�cation we can identify virtual CEMs by an optional attribute
is virtual in the component incarnation part (see example in chapter 4).

6 Summary and Open Questions

In this paper we propose a new approach to handle the speci�cation of shared objects
in �. This approach is based on the idea to make the information of object sharing
available on type level and on the level of single CEMs.

On the syntactical level there are only minor modi�cations necessary which do not
complicate the syntax of the language. On the contrary due to the omission of the
object con�guration speci�cation the complete syntax of the �-Language is reduced by
approximately 35 rules. This is more than two thirds of the complete con�guration
speci�cation of the old version 2.0.

From the point of use we have got the impression that the handling of shared objects
is much easier if we can specify as early as possible which objects are shared and which
not. In this new approach this is possible as well on type level as on the object level
within single CEMs.

Furthermore this approach allows the dynamic sharing of objects. In contrast to the
old version, where the sharing of objects is speci�ed explicitly by a share-action in a
con�guration action, objects can now be shared dynamically at arbitrary points during
the execution of a program (if they are declared as shared objects). This broadens the
�eld of applications, but is on the other side a potential new source of errors.

13

This approach gives also rise to some open questions. These are centered around the
notion of a virtual CEM on the one hand side and on the other side around the notion
of a shared sort on type level.

Concerning virtual CEMs we identify the following open questions:

� How many virtual CEMs may exist in a modular system? Do we allow virtual
CEMs in subcon�gurations or do we have at most one virtual CEM in a complete
system?

� What is the semantics of virtual CEMs and how do we realize them?

Questions around the notion of shared sorts concern especially the formal algebraic basis
but address also pragmatic problems:

� How can we use the sharing information on type level to determine correctness
and compability properties?

� What is the meaning of an import speci�cation? Is it the speci�cation of a data
type as seen from the importing CEM (relative requirement) or is it an absolut
requirement for the complete system? Using an example, does a stack speci�cation
in the import section require a non shared stack incarnation (due to the equations
top(push(s,i)) = i and pop(push(s,i)) = s) or can we use also a shared stack
incarnation to ful�ll these stack requirements?

Another open problem is related to the disconnect-statement of the old version. There
this statement should describe how two object con�gurations which are linked by a
shared object could be separated (disconnected). The question is whether we need an
equivalent statement in this new approach and how it could look like.

Altogether we can say that this new approach seems to be a real improvement compared
to the old version although we have up to now made no experiences in larger systems.

14

A Syntax Description of the Con�guration Speci�c-

ation

General Description:

G2: <con�guration speci�cation> ::=

"con�guration" <con�guration name>
[" general description"<comment>]
<type con�guration>
"end con�guration" <con�guration name>

Type Con�guration

ST1: <type con�guration> ::=

<component incarnation speci�cation>
[<component connection speci�cation>]

ST2: <component incarnation speci�cation> ::=

"component incarnations"
<component id declaration> f ";" <component id declaration> g�

ST3: <component id declaration> ::=

<component id list> ":" <component name>
[<incarnation attribute>]

ST4: <incarnation attribute> ::=

"is virtual" j
"is root" j
"with shared sort" <sort name list>

ST5: <component connection speci�cation> ::=

"component connection"
f <component connection description> g+

15

St6: <component connection description> ::=

"connection of" <component id>
f <actual import> g+

ST7: <actual import> ::=

"from" <component id> "import"
f <actualization> g+

ST8: <actualization> ::=

[" import of"<component id>]
f <data type actualization> g+

ST9: <data type actualization> ::=

<sort actualization>
<operation actualization list>

ST10: <sort actualization> ::=

"sort"
<sort name> " " <sort name>

ST11: <operation actualization list> ::=

"operations"
<operation actualization> f ";" <operation actualization> g�

ST12: <operation actualization> ::=
<operation name> " " <operation name>

16

References

[CS90] J. Cramer and H. Schumann. Syntax Description of the �-Language with Ex-
amples (Version 2.0). Technical Report No. 49, University of Dortmund, Dept.
of Computer Science, Software-Technology, July 1990.

17

		2002-04-03T16:42:32+0200
	Universitaetsbibliothek Dortmund - Eldorado

