
Investigating Strategies for

Cooperative Planning of Independent Agents

through Prototype Evaluation�

E��E� Doberkat W� Hasselbring C� Pahl

University of Dortmund
Dept� of Computer Science� Informatik �� �Software Technology�

D���		� Dortmund� Germany
Tel�
 ����	����
���	
���	
��� Fax
 ����	����
���	���
fdoberkatjwillijpahlg�ls���informatik�uni�dortmund�de

Abstract

This paper discusses the application of the prototyping approach to investigating

the requirements on strategies for cooperative planning and con�ict resolution of

independent agents by means of an example application� the strategic game �Scotland

Yard�� The strategies for coordinating the agents� which are parallel algorithms�

are developed with a prototyping approach using ProSet�Linda� ProSet�Linda is

designed for prototyping parallel algorithms�

We concentrate on the techniques employed to elicit the requirements on the al�

gorithms for agent interaction� The example application serves to illustrate the pro�

totyping approach to requirements elicitation by means of a non�trivial instance for

investigating algorithms for cooperative planning and con�ict resolution�

Keywords� cooperative planning� multi�agent systems� prototyping parallel algorithms�
requirements elicitation

�A shortened version to appear in the Proceedings of the First International Conference on Coordination

Models and Languages� Cesena� Italy� Springer�Verlag Lecture Notes in Computer Science� April �����

�



� Introduction

Cooperative planning of independent agents is a realistic problem which requires careful
study� For concentrating on the essential aspects �plan generation� con�ict resolution� we
propose in this paper a prototypical approach which is realized for a strategic game called
�Scotland Yard	� This game has a number of cooperating detectives who chase a villain
through London using di
erent means of public transportation� The villain�s moves are
only partially visible� Each detective develops for each move a plan which may or may not
con�ict with the plans of fellow agents� if it does� the con�ict has to be resolved before all
the agents make their moves� There is no master detective who supervises plan generation
in general �and con�ict resolution in particular�� so the detectives have to come to terms
on their own�

Finding a clear and intelligible solution to plan generation and con�ict resolution is cer�
tainly more important than obtaining directly a very e
cient program � once a solution
is found through exploration� it may be used as an executable speci�cation for an e
cient
implementation� Consequently� we concentrate on conceptual aspects and implement our
solution in a prototyping language� The language is based on �nite sets and multisets� Set
theoretic notions come into our game quite naturally� e�g� the collection of all plans may be
a multiset� since more than one detective may have formulated the same plan� Each plan
must be inspected by every detective� so the plans are written on a blackboard� Technically�
this may be thought of as generative communication� so the blackboard is implemented as
a tuple space in the sense of Linda ����� This implies that a prototyping language providing
sets as well as tuple spaces will suit our purposes well�

Another aspect of prototyping should be mentioned� prototyping means modelling essential
features� and strategies� which are certainly essential here� may very well be isolated tex�
tually from the rest of the code� Then it is easy to experiment with strategies and� equally
important� easy to argue even informally about strategies� this is so since the very high level
character of our prototyping language makes the details of a strategy rather transparent
�which would not always be the case in programs written in one of the common production
languages��

The main technical contribution of this paper is demonstrating the �exibility of incorpor�
ating di
erent approaches for planning and con�ict resolution strategies for independent
agents� This is made possible through the use of a very high�level language and the corres�
ponding techniques for exploratively prototyping algorithms�

Section � takes a general look at cooperative planning of independent agents� Section �
presents our example application and Section � discusses some strategies for the agents
of this application� Section � provides a brief introduction to the prototyping language
ProSet�Linda and Section � presents the design and implementation of the program for
our example application� Section � essentially presents the work of our project group
�Scotland Yard	�� The Evaluation of the investigated strategies is discussed in Section ��

�In the computer science curriculum of the University of Dortmund� a project group consists of twelve

students working on a project for the duration of a year� We acknowledge the work of our students

Klaus Alfert� Oliver Alsbach� J�orn Bodemann� Markus Brameier� Stefan Hedtfeld� Marcus Kirsch� Peter

�



Section � takes a look a related work and Section � draws some conclusions and indicates
extensions�

� Cooperative Planning of Independent Agents

Distributed arti�cial intelligence is concerned with the development and analysis of en�
sembles of cooperating �intelligent� processes� These processes are called agents� In multi�
agent architectures� a set of autonomous agents cooperate to achieve a common goal� The
individual agent does not need to construct a plan that solves the whole problem� The
agent develops only the part of the plan which applies in his own domain of responsibility
or his area of knowledge� An autonomous agent is independent in his decisions from the
proposals of other agents� but is constrained by the rules of the problem� The agents are
expected to help in building the global plan� The primary goal is the solution of the given
main problem� In contrast to centralized planning� in cooperate planning both the problem
data and the development of the plan are distributed across several planning components
�agents��

Cooperation is the central aspect in distributed arti�cial intelligence applications� The
bene�ts of distributed problem solving can be capitalized on only through cooperation� The
agents are independent of each other in their decisions� but only the cooperation enables an
ensemble to achieve the common goal� Cooperation encompasses communication �transfer
of information� and synchronization �temporal ordering of actions��

Many cooperation models have been developed in the area of parallel and distributed pro�
gramming ��� and in the area of distributed arti�cial intelligence ��� ���� In distributed
arti�cial intelligence� the blackboard model is often employed ����� With the blackboard
model� the problem�solving data are kept in a global store� the blackboard� Agents produce
changes to the blackboard� which lead incrementally to a solution to the problem� Commu�
nication and synchronization among the agents take place solely through the blackboard�

In this paper� we employ ProSet�Linda�s model of coordination with tuple�spaces �see
Section � for a brief description� to implement a multi�agent system� ProSet�Linda is de�
signed for prototyping parallel algorithms� Tuple spaces have a lot in common with black�
boards� Both models provide a shared data space to the cooperating processes� however�
the operations to access the shared data space are quite di
erent�

� An Example Application� Scotland Yard

We discuss the development of cooperative planning algorithms for independent agents by
means of an example application in the present paper� the strategic game �Scotland Yard	
����� In this game� several detectives �agents� have to capture the mysterious villain Mister�
X� encircling him on a map of the City of London� The detectives and Mister�X are initially

Neumann� Dirk Niemann� Stefan Sch�uler� Horst Sdun� and Knuth Waltenberg to realize the presented

application program�

�



positioned at randomly selected transportation stops on the map �for taxi� bus� subway�
or ferry resp��� In every step� each detective moves to another station which is connected
with his current station by an appropriate vehicle� The detectives have a limited number
of tickets for the corresponding means of transportation� In contrast to the detectives� who
move visibly� Mister�X just announces the means of transportation he has taken� In regular
intervals� Mister�X has to appear on his current station� He disappears with his next move�
Every round involves the move of Mister�X together with the moves of each detective�

The detectives are allowed to exchange their plans and ideas� Therefore� this application is
well�suited for cooperative planning� No �master	 determines the moves of the individual
detectives� the decisions are rather to be arrived at by cooperation and negotiation� Hence�
before moving� the detectives coordinate their actions by exchanging ideas� Based on
the appearance of Mister�X and the knowledge about the tickets he used since his last
appearance� the detectives narrow down possible locations for Mister�X and try to catch
him�

� Strategies for the Agents of the Application

The common goal of the detectives is to capture Mister�X� The detectives are autonomous
agents� are able to access the same knowledge� and are expected to behave constructively to
achieve the common goal� The knowledge they can access to plan their moves are the rules
of the game� informations about the locations and available tickets of all detectives� the
possible locations of Mister�X� and distances between locations� Planning is the process of
selecting a suitable way of proceeding for solving the problems� A strategy is an algorithm
used by an agent to develop his own plan�

One strategy� which is based on the ideas presented in ���� tries to minimize the distance
between Mister�X and the detectives� Because of the uncertainty with respect to the current
location of Mister�X � remember that Mister�X appears only in intervals � the detectives
have to take all possible locations of Mister�X into account� If a detective gets close to all
possible locations with his next move� this move is assigned a high score� Technically� this
works as follows� Mister�X has several possibilities for a current location� the lengths of the
shortest paths between a detective�s target position and all these locations are summed up�
This yields a score of a particular target position� and the position with the lowest score is
selected as the next move� For comparability� the scores for the moves selected are �tted
then into one uniform scale �of course� other functions than summing the lengths of the
shortest paths are possible� e�g� the maximum could be taken�� This is only one possible
strategy� In Section �� the investigation of various alternative strategies by means of the
evaluation of executable prototypes is discussed�

The moves of the detectives have to be coordinated when con�icts arise or when the total
e
ort should be optimized� Con�icts arise when two or more detectives want to move to
the same location� Therefore� each detective computes a set of moves� each move is scored�
If two detectives want to move to the same location with their best moves� i�e� their highest
scored moves� the scores will determine� which detectives can execute his move and which
detective has to select another move� The latter detective is the detective whose loss is

�



smaller when he cannot execute his highest scored move� This loss is the di
erence between
his best and his second best scored move�

� Prototyping Parallel Algorithmswith ProSet�Linda

Before presenting the implementation of our example application� we have a look atProSet�
Linda as the language used for implementation� The procedural� set�oriented language
ProSet ��� is a successor to SETL ����� ProSet is an acronym for PROtotyping with
SETs� The high�level structures that SETL and ProSet provide qualify these languages
for prototyping ��� ���� Linda and the sequential kernel of ProSet both provide tuples�
thus� it is quite natural to combine both models to form a tool for prototyping parallel
algorithms �����

��� Basic Concepts

ProSet provides the data types atom� integer� real� string� Boolean� tuple� set� function�
module� and instance� Modules may be instantiated to obtain module instances� It is a
higher�order language� because functions and modules have �rst�class rights� ProSet is
weakly typed� i�e�� the type of an object is in general not known at compile time� Tuples
and sets are compound data structures� the components of which may have di
erent types�
Sets are unordered collections while tuples are ordered� There is also the unde�ned value
om which indicates unde�ned situations�

As an example consider the expression ����� �abc�� true� ���	� ��
�� which creates a
tuple consisting of an integer� a string� a Boolean� and a set of two reals� This is an example
of what is called a tuple former� As another example consider the set forming expression
f�
x� x in ������� � x�
g which yields the set f��� �	� ��� ��� ��g� Sets consisting
only of tuples of length two are called maps� There is no genuine data type for maps� because
set theory suggests handling them this way�

The control structures show that the language has ALGOL as one of its ancestors� There are
if� case� loop� while� and until statements as usual� and the for and whilefound loops
which are custom tailored for iteration over compound data structures� The quanti�ers ���
�� of predicate calculus are provided�

��� Parallel Programming

Parallel programming is conceptually harder to undertake and to understand than sequen�
tial programming� because a programmer often has to focus on more than one process at
a time� Consequently� developing parallel algorithms is in general considered an awkward
undertaking� The goal of the ProSet�Linda approach is to partially overcome this prob�
lem by providing a tool for prototyping parallel algorithms ����� To support prototyping
parallel algorithms� a prototyping language should provide simple and powerful facilities
for dynamic creation and coordination of parallel processes�

�



In ProSet� the concept for process creation via Multilisp�s futures ���� is adapted to set�
oriented programming and combined with the coordination language Linda ���� to obtain
the parallel programming language ProSet�Linda� Linda is a coordination language which
provides means for synchronization and communication through so�called tuple spaces� The
access unit in tuple spaces is the tuple� similar to tuples in ProSet� A tuple space may
contain any number of copies of the same tuple� it is a multiset� not a set� Process
communication and synchronization in Linda is called generative communication� because
tuples are added to� removed from� and read from tuple space concurrently� Synchronization
is done implicitly� Reading access to tuples in tuple space is associative and not based
on physical addresses� but rather on their expected content described in templates� This
method is similar to the selection of entries from a data base� Refer to ��� for a full account
to programming with Linda� ProSet supports multiple tuple spaces� Several library
functions are provided for handling multiple tuple spaces dynamically�

ProSet provides three tuple�space operations� deposit� fetch and meet� The deposit

operation deposits a tuple into a tuple space� The fetch operation tries to fetch and
remove a tuple from a tuple space� Templates are speci�ed to match tuples in a tuple space
�associative access�� The fetch operation blocks until a matching tuple is available �implicit
synchronization�� The selected tuple is removed from tuple space� The meet operation is
the same as fetch� but the tuple is not removed and may be changed� Changing tuples
is done by specifying values into which speci�c tuple �elds will be changed� Tuples which
are met in tuple space may be regarded as shared data since they remain in tuple space
irrespective of changing them or not� For a detailed discussion of prototyping parallel
algorithms in set�oriented languages refer to �����

� Design and Implementation of the Application

An important element to be realized in our implementation of the Scotland Yard game is a
program structure being supportive of coordinating the program components� These com�
ponents are a graphical user interface� a rule component� and �nally a planning component�
The graphical user interface displays the board and handles the communication with the
player� The rule component manages the board� supervises the correctness of the moves�
and executes the moves� The planning component is realized by autonomous detectives�

The rule and the planning components are implemented in ProSet� The graphical user
interface has been realized with Tcl�Tk� a public�domain system for developing graphical
user interfaces ����� The main window of the graphical user interface is presented in Figure ��
The user interface displays the map of London with the current locations of the detectives
and the last known location of Mister�X� Additionally� interesting information about Mister�
X and the detectives is presented below the map �remaining tickets etc�� Before the game
starts� the user may con�gure the game� e�g� the number of detectives participating in the
game and their start positions� The player determines the individual strategy a detective
works with� This supports evaluation of the individual strategies�

The user interface is an independent Unix process� The communication between the user
interface und the rule component is realized by inter process communication �IPC� on the

�




		2002-04-03T17:06:11+0200
	Universitaetsbibliothek Dortmund - Eldorado




