Investigating Strategies for
Cooperative Planning of Independent Agents
through Prototype Evaluation™

E.-E. Doberkat W. Hasselbring C. Pahl

University of Dortmund
Dept. of Computer Science, Informatik 10 (Software Technology)
D-44221 Dortmund, Germany
Tel.: 49-(231)-755-2780/2781, Fax: 49-(231)-755-2061
{doberkat|willi|pahl}@ls10.informatik.uni-dortmund.de

Abstract

This paper discusses the application of the prototyping approach to investigating
the requirements on strategies for cooperative planning and conflict resolution of
independent agents by means of an example application: the strategic game “Scotland
Yard”. The strategies for coordinating the agents, which are parallel algorithms,
are developed with a prototyping approach using PROSET-Linda. PROSET-Linda is
designed for prototyping parallel algorithms.

We concentrate on the techniques employed to elicit the requirements on the al-
gorithms for agent interaction. The example application serves to illustrate the pro-
totyping approach to requirements elicitation by means of a non-trivial instance for
investigating algorithms for cooperative planning and conflict resolution.

Keywords: cooperative planning, multi-agent systems, prototyping parallel algorithms,
requirements elicitation

* A shortened version to appear in the Proceedings of the First International Conference on Coordination
Models and Languages, Cesena, Italy, Springer-Verlag Lecture Notes in Computer Science, April 1996.

1 Introduction

Cooperative planning of independent agents is a realistic problem which requires careful
study. For concentrating on the essential aspects (plan generation, conflict resolution) we
propose in this paper a prototypical approach which is realized for a strategic game called
“Scotland Yard”. This game has a number of cooperating detectives who chase a villain
through London using different means of public transportation. The villain’s moves are
only partially visible. Each detective develops for each move a plan which may or may not
conflict with the plans of fellow agents; if it does, the conflict has to be resolved before all
the agents make their moves. There is no master detective who supervises plan generation
in general (and conflict resolution in particular), so the detectives have to come to terms
on their own.

Finding a clear and intelligible solution to plan generation and conflict resolution is cer-
tainly more important than obtaining directly a very efficient program — once a solution
is found through exploration, it may be used as an executable specification for an efficient
implementation. Consequently, we concentrate on conceptual aspects and implement our
solution in a prototyping language. The language is based on finite sets and multisets. Set
theoretic notions come into our game quite naturally: e.g. the collection of all plans may be
a multiset, since more than one detective may have formulated the same plan. Each plan
must be inspected by every detective, so the plans are written on a blackboard. Technically,
this may be thought of as generative communication, so the blackboard is implemented as
a tuple space in the sense of Linda [10]. This implies that a prototyping language providing
sets as well as tuple spaces will suit our purposes well.

Another aspect of prototyping should be mentioned: prototyping means modelling essential
features, and strategies, which are certainly essential here, may very well be isolated tex-
tually from the rest of the code. Then it is easy to experiment with strategies and, equally
important, easy to argue even informally about strategies: this is so since the very high level
character of our prototyping language makes the details of a strategy rather transparent
(which would not always be the case in programs written in one of the common production
languages).

The main technical contribution of this paper is demonstrating the flexibility of incorpor-
ating different approaches for planning and conflict resolution strategies for independent
agents. This is made possible through the use of a very high-level language and the corres-
ponding techniques for exploratively prototyping algorithms.

Section 2 takes a general look at cooperative planning of independent agents. Section 3
presents our example application and Section 4 discusses some strategies for the agents
of this application. Section 5 provides a brief introduction to the prototyping language
PROSET-Linda and Section 6 presents the design and implementation of the program for
our example application. Section 6 essentially presents the work of our project group
“Scotland Yard”.! The Evaluation of the investigated strategies is discussed in Section 7.

'In the computer science curriculum of the University of Dortmund, a project group consists of twelve
students working on a project for the duration of a year. We acknowledge the work of our students
Klaus Alfert, Oliver Alsbach, Jorn Bodemann, Markus Brameier, Stefan Hedtfeld, Marcus Kirsch, Peter

Section & takes a look a related work and Section 9 draws some conclusions and indicates
extensions.

2 Cooperative Planning of Independent Agents

Distributed artificial intelligence is concerned with the development and analysis of en-
sembles of cooperating (intelligent) processes. These processes are called agents. In multi-
agent architectures, a set of autonomous agents cooperate to achieve a common goal. The
individual agent does not need to construct a plan that solves the whole problem. The
agent develops only the part of the plan which applies in his own domain of responsibility
or his area of knowledge. An autonomous agent is independent in his decisions from the
proposals of other agents, but is constrained by the rules of the problem. The agents are
expected to help in building the global plan. The primary goal is the solution of the given
main problem. In contrast to centralized planning, in cooperate planning both the problem
data and the development of the plan are distributed across several planning components
(agents).

Cooperation is the central aspect in distributed artificial intelligence applications. The
benefits of distributed problem solving can be capitalized on only through cooperation. The
agents are independent of each other in their decisions, but only the cooperation enables an
ensemble to achieve the common goal. Cooperation encompasses communication (transfer
of information) and synchronization (temporal ordering of actions).

Many cooperation models have been developed in the area of parallel and distributed pro-
gramming [3] and in the area of distributed artificial intelligence [9, 14]. In distributed
artificial intelligence, the blackboard model is often employed [15]. With the blackboard
model, the problem-solving data are kept in a global store, the blackboard. Agents produce
changes to the blackboard, which lead incrementally to a solution to the problem. Commu-
nication and synchronization among the agents take place solely through the blackboard.

In this paper, we employ PROSET-Linda’s model of coordination with tuple-spaces (see
Section 5 for a brief description) to implement a multi-agent system. PROSET-Linda is de-
signed for prototyping parallel algorithms. Tuple spaces have a lot in common with black-
boards. Both models provide a shared data space to the cooperating processes, however,
the operations to access the shared data space are quite different.

3 An Example Application: Scotland Yard

We discuss the development of cooperative planning algorithms for independent agents by
means of an example application in the present paper: the strategic game “Scotland Yard”
[21]. In this game, several detectives (agents) have to capture the mysterious villain Mister-
X, encircling him on a map of the City of London. The detectives and Mister-X are initially

Neumann, Dirk Niemann, Stefan Schiiler, Horst Sdun, and Knuth Waltenberg to realize the presented
application program.

positioned at randomly selected transportation stops on the map (for taxi, bus, subway,
or ferry resp.). In every step, each detective moves to another station which is connected
with his current station by an appropriate vehicle. The detectives have a limited number
of tickets for the corresponding means of transportation. In contrast to the detectives, who
move visibly, Mister-X just announces the means of transportation he has taken. In regular
intervals, Mister-X has to appear on his current station. He disappears with his next move.
Every round involves the move of Mister-X together with the moves of each detective.

The detectives are allowed to exchange their plans and ideas. Therefore, this application is
well-suited for cooperative planning. No “master” determines the moves of the individual
detectives, the decisions are rather to be arrived at by cooperation and negotiation. Hence,
before moving, the detectives coordinate their actions by exchanging ideas. Based on
the appearance of Mister-X and the knowledge about the tickets he used since his last
appearance, the detectives narrow down possible locations for Mister-X and try to catch
him.

4 Strategies for the Agents of the Application

The common goal of the detectives is to capture Mister-X. The detectives are autonomous
agents, are able to access the same knowledge, and are expected to behave constructively to
achieve the common goal. The knowledge they can access to plan their moves are the rules
of the game, informations about the locations and available tickets of all detectives, the
possible locations of Mister-X, and distances between locations. Planning is the process of
selecting a suitable way of proceeding for solving the problems. A strategy is an algorithm
used by an agent to develop his own plan.

One strategy, which is based on the ideas presented in [4], tries to minimize the distance
between Mister-X and the detectives. Because of the uncertainty with respect to the current
location of Mister-X — remember that Mister-X appears only in intervals — the detectives
have to take all possible locations of Mister-X into account. If a detective gets close to all
possible locations with his next move, this move is assigned a high score. Technically, this
works as follows: Mister-X has several possibilities for a current location; the lengths of the
shortest paths between a detective’s target position and all these locations are summed up.
This yields a score of a particular target position, and the position with the lowest score is
selected as the next move. For comparability, the scores for the moves selected are fitted
then into one uniform scale (of course, other functions than summing the lengths of the
shortest paths are possible, e.g. the maximum could be taken). This is only one possible
strategy. In Section 7, the investigation of various alternative strategies by means of the
evaluation of executable prototypes is discussed.

The moves of the detectives have to be coordinated when conflicts arise or when the total
effort should be optimized. Conflicts arise when two or more detectives want to move to
the same location. Therefore, each detective computes a set of moves, each move is scored.
If two detectives want to move to the same location with their best moves, i.e. their highest
scored moves, the scores will determine, which detectives can execute his move and which
detective has to select another move. The latter detective is the detective whose loss is

smaller when he cannot execute his highest scored move. This loss is the difference between
his best and his second best scored move.

5 Prototyping Parallel Algorithms with PROSET-Linda

Before presenting the implementation of our example application, we have a look at PROSET-
Linda as the language used for implementation. The procedural, set-oriented language
PROSET [8] is a successor to SETL [17]. PROSET is an acronym for PROTOTYPING WITH
SETS. The high-level structures that SETL and PROSET provide qualify these languages
for prototyping [7, 17]. Linda and the sequential kernel of PROSET both provide tuples;
thus, it is quite natural to combine both models to form a tool for prototyping parallel
algorithms [13].

5.1 Basic Concepts

PROSET provides the data types atom, integer, real, string, Boolean, tuple, set, function,
module, and instance. Modules may be instantiated to obtain module instances. It is a
higher-order language, because functions and modules have first-class rights. PROSET is
weakly typed, i.e., the type of an object is in general not known at compile time. Tuples
and sets are compound data structures, the components of which may have different types.
Sets are unordered collections while tuples are ordered. There is also the undefined value
om which indicates undefined situations.

As an example consider the expression [123, "abc", true, {1.4, 1.5}] which creates a
tuple consisting of an integer, a string, a Boolean, and a set of two reals. This is an example
of what is called a tuple former. As another example consider the set forming expression
{2%x: x in [1..10] | x>5} which yields the set {12, 14, 16, 18, 20}. Sets consisting
only of tuples of length two are called maps. There is no genuine data type for maps, because
set theory suggests handling them this way.

The control structures show that the language has ALGOL as one of its ancestors. There are
if, case, loop, while, and until statements as usual, and the for and whilefound loops
which are custom tailored for iteration over compound data structures. The quantifiers (3,
V) of predicate calculus are provided.

5.2 Parallel Programming

Parallel programming is conceptually harder to undertake and to understand than sequen-
tial programming, because a programmer often has to focus on more than one process at
a time. Consequently, developing parallel algorithms is in general considered an awkward
undertaking. The goal of the PROSET-Linda approach is to partially overcome this prob-
lem by providing a tool for prototyping parallel algorithms [12]. To support prototyping
parallel algorithms, a prototyping language should provide simple and powerful facilities
for dynamic creation and coordination of parallel processes.

In PROSET, the concept for process creation via Multilisp’s futures [11] is adapted to set-
oriented programming and combined with the coordination language Linda [10] to obtain
the parallel programming language PROSET-Linda. Linda is a coordination language which
provides means for synchronization and communication through so-called tuple spaces. The
access unit in tuple spaces is the tuple, similar to tuples in PROSET. A tuple space may
contain any number of copies of the same tuple: it is a multiset, not a set. Process
communication and synchronization in Linda is called generative communication, because
tuples are added to, removed from, and read from tuple space concurrently. Synchronization
is done implicitly. Reading access to tuples in tuple space is associative and not based
on physical addresses, but rather on their expected content described in templates. This
method is similar to the selection of entries from a data base. Refer to [5] for a full account
to programming with Linda. PROSET supports multiple tuple spaces. Several library
functions are provided for handling multiple tuple spaces dynamically.

PROSET provides three tuple-space operations: deposit, fetch and meet. The deposit
operation deposits a tuple into a tuple space. The fetch operation tries to fetch and
remove a tuple from a tuple space. Templates are specified to match tuples in a tuple space
(associative access). The fetch operation blocks until a matching tuple is available (implicit
synchronization). The selected tuple is removed from tuple space. The meet operation is
the same as fetch, but the tuple is not removed and may be changed. Changing tuples
is done by specifying values into which specific tuple fields will be changed. Tuples which
are met in tuple space may be regarded as shared data since they remain in tuple space
irrespective of changing them or not. For a detailed discussion of prototyping parallel
algorithms in set-oriented languages refer to [13].

6 Design and Implementation of the Application

An important element to be realized in our implementation of the Scotland Yard game is a
program structure being supportive of coordinating the program components. These com-
ponents are a graphical user interface, a rule component, and finally a planning component.
The graphical user interface displays the board and handles the communication with the
player. The rule component manages the board, supervises the correctness of the moves,
and executes the moves. The planning component is realized by autonomous detectives.

The rule and the planning components are implemented in PROSET. The graphical user
interface has been realized with Tc1/Tk, a public-domain system for developing graphical
user interfaces [16]. The main window of the graphical user interface is presented in Figure 1.
The user interface displays the map of London with the current locations of the detectives
and the last known location of Mister-X. Additionally, interesting information about Mister-
X and the detectives is presented below the map (remaining tickets etc). Before the game
starts, the user may configure the game, e.g. the number of detectives participating in the
game and their start positions. The player determines the individual strategy a detective
works with. This supports evaluation of the individual strategies.

The user interface is an independent Unix process. The communication between the user
interface und the rule component is realized by inter process communication (IPC) on the

		2002-04-03T17:06:11+0200
	Universitaetsbibliothek Dortmund - Eldorado

