
A Decision Support Method for the Selection of

Object Management Systems�

Sanjay Dewal, Wolfgang Emmerich, Karsten Lichtinghagen

University of Dortmund

Department of Computer Science

P.O.Box 500 500

4600 Dortmund 50

FRG

Abstract

With the increasing demand for highly complex, integrated and application

domain speci�c systems engineering environments (SEEs) more or less special-

ized components of the SEEs are developed. An important component is the

database management system (DBMS). It is generally accepted that conven-

tional DBMSs are not useful to ful�ll the requirements on highly complex, per-

sistent data structures. Rather specialized DBMSs, namely object management

systems (OMS), have been developed for ful�lling the enhanced requirements.

An advantage of OMSs is that they further enhance the integration not only

of data but also of processes.

Currently several specialized OMSs with signi�cantly di�erent properties

such as the data model, architecture and performance are available. Thus it is

very di�cult for an SEE developer to select the most appropriate OMS for his

SEE. In this paper we have proposed a decision support method which enables

an SEE developer to identify his requirements and to compare the evaluation

results of di�erent OMSs. Additionally we present a practical experiment where

we have applied the decision support method for comparing di�erent OMSs.

Experiences of the investigation are presented brie
y.

�This work has been partially funded by the Esprit II Project ATMOSPHERE (No. 2565)

1

2

1 Introduction

Nowadays more and more highly complex, integrated and application domain spe-

ci�c systems engineering environments (SEEs) are developed. For such SEEs the

development of more or less specialized components of the SEEs becomes necessary.

These components are tailored towards solving problems of the particular application

domain considered.

The demand for complex SEEs includes the necessity for managing persistent,

complex data structures. It is generally accepted that such complex data struc-

tures cannot be managed by conventional database management systems (DBMSs)

such as the well-known relational DBMSs ([GL85], [Mai89]). Non-standard database

management systems, namely object management systems (OMSs) have been

developed for managing the complex data structures.

For developing highly integrated SEEs it is necessary to determine the various

interfaces of the components of an SEE to be integrated and to de�ne particular inte-

gration mechanisms for achieving the integration. For example the ECMA reference

model for SEEs [Ear90] identi�es three interfaces of components, namely user, task

and data management interface. OMSs are the one of the major vehicles to achieve

data integration by enabling component interoperation via the programming inter-

faces of the OMSs (see �g. 1). Additionally particular trigger mechanisms enable

task integration with OMSs to some extent.

User Interface and Task
Management Interface

Message Server
Network Interface

Private Data

Private Methods

Data Services Interface

Message Server
Network Interface

OMS Self-Contained
 Browsers

OMS Administration
 Tools

OMS Programming
 Interface

Private Methods

Private Data

OMS Private
 Methods

User Interface and Task
Management Interface

Tools

Figure 1: SEE-Reference Architecture / Data Integration by OMSs

The heterogeneity of the requirements on (1) the persistent complex data struc-

3

tures of the di�erent application domains and (2) the degree of integration has re-

sulted in the development of many more or less specialized OMSs. The problem for

an SEE developer1 is to select the most appropriate OMS among the existing ones,

because the OMSs di�er signi�cantly regarding the data model, architecture, host

language, etc.

This paper focusses on de�ning a method to select an OMS for an SEE devel-

oper. In this context selection means identi�cation of the requirements on an OMS,

the evaluation of OMSs regarding these requirements and the comparison of the eval-

uation results of the di�erent OMSs in order to derive a purchasing decision. In

section 2 of the paper we present the particular goals of the decision support method

in detail. In sections 3 and 4 the decision support method and the decision process

for OMSs are presented. In section 5 the results of an evaluation of OMSs performed

in the project ATMOSPHERE2 by applying the decision support method analyzing

various OMSs are presented.

2 Goals of OMS Evaluation

In the project ATMOSPHERE existing OMSs are used for the development of SEEs

and components of SEEs, respectively. Our method therefore focusses on the selection

of an OMS for an SEE developer.

The scope of a selection of OMSs signi�cantly di�ers from the scope of such

a selection of conventional DBMSs. In the latter case the scope is on comparing

the implementations of the same interface, optimization and tuning of the DBMS or

performance estimation for prede�ned loads. For the selection of OMSs we propose

the following scope:

� the description of the technical properties of the product (architecture, perfor-

mance, functionality etc.)

1i.e. a person or institution developing SEEs
2ATMOSPHERE is a project that focusses on the development of a complex integrated industrial

SEE

4

� the description of the non-technical (commercial) properties of the product (sup-

plier, price, documentation, maintenance, support etc.)

� the assessment of the product, including an assessment of the adequacy and use-

fulness of the technical concepts, the performance and usability of the product.

Selecting an OMS means to de�ne requirements on the OMS. The requirements

on an OMS are obviously dependent of a particular SEE to build. The aforemen-

tioned heterogeneity of the applications and the resulting heterogeneity of the derived

requirements aggravates a general assessment of an OMS in such a way that either the

decision support method has to be restricted on assessing very common features of the

OMSs or has to use very precise requirements derived from a particular application.

Nonetheless the decision process may be very di�cult for several reasons.

� The di�erences of the various OMSs complicate the comparison of the evaluation

results.

� Due to the di�erences in philosophy and documentation of the various OMSs

it is even not trivial to identify common basic features.

We present a decision support method which overcomes the aforementioned

di�culties. The method presented in this paper focusses on the de�nition of such

an decision framework providing a uniform grid for the comparison and evaluation

of OMSs with the intention to be appropriate for many di�erent requirements and

OMSs. In particular our method allows to

� cope with the heterogeneity regarding OMS properties by de�ning a common

view on the di�erent systems using a classi�cation scheme,

� simplify an individual selection by allowing to check the application speci�c

requirements.

� assess the performance of the di�erent OMSs using benchmarks.

5

3 Decision Support Method for Selecting OMSs

An SEE developer applies the decision support method for identifying the most appro-

priate OMS for the currently developed system. A faulty decision may be disastrous

for the SEE developer, as the development schedule can be delayed or the funding

does not allow to buy another OMS. Thus the decision must be comprehensive. In

particular it is not su�cient to focus on some aspects of an OMSs only, but to consider

various aspects, such as data model, architecture, performance, etc.

For a comprehensive decision the SEE developer has to de�ne his requirements.

Such requirements describe the role which an OMS plays as part of an SEE. However,

the various characteristics dependent on the role of the OMS are quite di�cult to

derive. The problem is that for identifying such characteristics an SEE or parts of

an SEE must be completely developed. In particular it is important to de�ne the

requirements of an SEE user3 and to de�ne the architecture of the SEE on the basis

of the SEE user speci�c requirements in order to derive the particular role which the

OMS plays as a component of this SEE.

Such an approach is very complex and highly time- and e�ort-consuming. The

variety of existing requirements catalogues (see [GPI89], [GIE88], etc.) and the vari-

ety of the existing OMSs [SH90] point out the di�culties de�ning SEE user speci�c

requirements catalogues. For solving the problem we have de�ned a classi�cation

scheme. The classi�cation criteria identify and address the various aspects of OMSs

which are summarized in the following.

� General (non-technical) product information: name of the OMS, sup-

plier, hardware platform, price, documentation, etc.;

� Architecture: in particular the functions, internal interfaces, distribution con-

cepts, extensibility and openness;

� Functionality of the programming interface: the data model, identi�ca-

tion/navigation, versioning, external views, etc.;

� System Features: segmentation and clustering, transaction concepts and

mechanisms, access control, security, etc.;

3SEE user is a person or institution developing systems using an SEE

6

� Standard browser: required hardware/software, functionality, data model in

comparison with the programming interface, etc.;

� OMS administration: Installation, crash recovery, administration of distri-

bution, performance monitoring and tuning, etc.;

� Performance issues: execution time of the OMS functions, execution condi-

tions, etc.

The evaluation of OMSs regarding a classi�cation criterion is highly dependent

on the particular aspect addressed. Whether a particular concept is supported by

the data model can usually be decided on the basis of the documentation of the

SEE. However, aspects such as performance can be decided after practical use of

an OMS only. Therefore we distinguish analytical evaluation and experimental

evaluation which are described in the following sections.

3.1 Analytical Evaluation

During the analytical evaluation OMSs are evaluated on the basis of the documen-

tation or any marketing material available. For most of the classi�cation criteria it

is very di�cult to de�ne formal evaluation scales for the evaluation results. Thus we

have described the evaluation results of an OMS regarding each classi�cation criteria

informally.

With the analytical evaluation OMSs are evaluated regarding the classi�cation

criteria which consider aspects such as non-technical aspects, data model, architec-

ture, application interface, etc.

3.2 Experimental Evaluation

Experimental evaluation is typically applied for evaluating OMSs regarding perfor-

mance aspects. During the experimental evaluation a particular experiment further

called benchmark is implemented and executed on the OMS. Benchmarks known

for conventional DBMSs are usually de�ned in form of a source program (e.g. imple-

mented in C or SQL). As the OMSs di�er regarding their data model, interfaces and

7

host languages, it is not possible to de�ne a benchmark in form of a source program.

Rather it is important to de�ne the benchmark in a highly abstract way, such that

it can be implemented on top of a large variety of OMSs. Here the term \abstract"

means that the particular data storage problem is described on a highly abstract

level, e.g. based on an entity relationship model, in order to be implementable on

various OMSs. For distinguishing the benchmarks for conventional database systems

and OMSs, we call the latter benchmark abstract benchmark.

For deriving any decisions on the basis of the abstract benchmark it is important

that the abstract benchmark is SEE user speci�c. As an SEE usually works on com-

plex data structures and uses many OMS functions which access the data, the OMS

benchmark must ideally simulate the behaviour of an SEE or parts of an SEE (i.e.

de�ne may complex operations for complex data structures). An example for such a

complex benchmark is the HyperModel benchmark (see [BAM88, ABM+90]).

However, a complex benchmark is always only appropriate for a certain class of

applications and its implementation is fairly expensive. Moreover, the implementa-

tion of a complex benchmark is complicated in so far that the choice of a particular

data structure is usually not reproducible. Rather there exist several alternatives

for the implementation of a complex benchmark which produce signi�cantly di�er-

ent performance results. Thus the implementation must be optimized in order to

use the appropriate OMS functions with good performance only. The paradoxon is

that we must know the performance results of the OMS functions for evaluating the

performance of the OMS functions.

The solution of this problem is a two-step approach. In the �rst step we de-

�ne an OMS benchmark for elementary OMS functions using simple data structures.

The main idea is that these operations should be easy to implement and valid for all

OMSs constituting the basis for more complex and application dependent operations.

The performance results of this benchmark, further called simple benchmark, may

be afterwards used for implementing a complex benchmark. Such a simple bench-

mark has been de�ned in [DHS+91]. Figure 2 depicts the data structure of the simple

benchmark using a very simple entity relationship model. Figure 3 sketches the oper-

ations de�ned for the simple benchmark. The data structure of the simple benchmark

is described in the following.

8

DIR

DIRREL

SMALL BIG

DIRREL

MNREL

str10

str80

str160

str10

str80

str160

long

str10

str80

str160

Figure 2: Data Structure of the Simple Benchmark

� Initialization, Opening and Closing of the database.

� Creation and Deletion of objects without initialization of the attribute values.

� Write and Read of \small" attributes of an object.

� Write and Read of \big" attributes of an object.

� Write and Read of all \small" attributes of an object.

� Write and Read of a relation.

� Write and Read of a \small" attribute value of a relation.

Figure 3: Operations of the Simple Benchmark

9

The data structure of the simple benchmark consists of three di�erent object

types, namely DIR, SMALL, BIG. For each of the two object types SMALL and BIG

we de�ne three attributes of the type STRING. With the attributes it is possible to

store values (i.e. byte strings) with a maximum length of 10 Byte, 80 Byte and 160

Byte (\small attribute values"). For the object type BIG we de�ne an additional

attribute of type LONGFIELD where values up to 10 KByte and 128 KByte can be

stored. The object type DIR has no attributes.

For each pair of object types DIR/BIG, DIR/SMALL and SMALL/BIG we

de�ne relation types. The �rst two relation types are 1 : n (n � 1) relations without

attributes, for the third relation type that is of the kind n : m (n;m � 1) three

attribute of the type STRING are de�ned which are used for storing small attribute

values.

This entity relationship model is very simple but it includes the basic object

types and relationships that are typical within SEEs. Furthermore it can be im-

plemented using almost every OMS. On this basis it enables a measuring of the

elementary operations mentioned above that constitute the basis for all kinds of

complex operations in SEEs. Before starting the measuring an initial database has

been created for all tested OMSs that is based on the described entity relationship

model.

4 Decision Process

The SEE developer identi�es the most appropriate OMS by applying the decision

support method. However, we claim that the identi�cation process can be performed

di�erently to the decision process. The idea is to classify all existing OMSs by using

the classi�cation scheme and not to classify an OMS for a particular SEE developer

only. The advantage of such an approach is that it is possible to store the classi�cation

scheme and the results of all OMSs in a database and to provide tool support for the

identi�cation. Such a tool is called decision support system (DSS).

An SEE developer (1) views the existing classi�cation criteria of the classi�-

cation scheme, (2) de�nes the criteria of interest and (3) indenti�es the importance

of the selected criteria using the DSS. The DSS selects the evaluation results of the

10

OMSs stored in the database regarding the identi�ed classi�cation criteria. As the

evaluation results are de�ned informally, the SEE developer has to view and compare

the evaluation results thoroughly in order to identify the most appropriate SEE.

In case classi�cation criteria are missing, the SEE developer has to add these

criteria to the classi�cation scheme. It is obvious that the OMSs must be evaluated

regarding the newly de�ned criteria using analytical or experimental evaluation. The

addition of new criteria to the classi�cation scheme allows to improve the \quality"

of classi�cation scheme during repeated usage of the DSS.

Nonetheless the advantage of the DSS is that it is possible to derive decisions

not only once, but several times. Furthermore the e�ort is reduced signi�cantly as it

is not necessary to perform the benchmarks repeatedly.

5 A Practical Example

We have applied the decision support method several times in di�erent context (see

[DHS+91], [DELS91]). In this paper we present the evaluation results produced in

the context of the ATMOSPHERE project ([DELS91]), where we examined four

OMSs, namely PCTE/OMS ([GMT87]), CADLAB/OMS ([MGSW89]), GemStone

([BMO+89]) and Damokles ([DGL86]). PCTE/OMS and CADLAB/OMS are both

used within the ATMOSPHERE project, while the examination of GemStone and

Damokles serves for comparison purposes. GemStone is an example for a wide-spread

used commercial US-system, while Damokles is rather a research-oriented system than

a product. However, Damokles has very good and interesting concepts.

As the existing classi�cation schemata were not useful for the ATMOSPHERE

context and the OMSs to be evaluated within were di�erent, we had to perform the

decision process \from scratch" (i.e. to de�ne a new classi�cation scheme and to eval-

uate the OMSs of interest). Thus in the �rst step we have modi�ed the classi�cation

scheme de�ned in [DHS+91] according to the particular needs of ATMOSPHERE.

In the second step we have evaluated the OMSs regarding the classi�cation scheme.

In the third step we have implemented and executed the simple benchmark on the

di�erent OMSs. For the performance analysis we have choosen several test frames

that cover the most important execution conditions and enable to check the OMSs

11

according to these conditions. Examples for these test frames are executions

� with direct and navigational access,

� with and without transaction mechanism,

� in a \cold" database state (i.e. read and manipulation of objects directly after

opening the database) and in a \warm" database state (i.e. read and manipu-

lation of an object immediately after reading the object),

� with di�erent contents and sizes of the database.

Each benchmark has been performed using the same hardware platform (i.e.

computer, primary and secondary storage) and software platforms (i.e. operating

system, load). A constant load was achieved by guaranteeing exclusive access to

the computing system during the execution of the benchmark. Furthermore we have

repeated each operation and each benchmark several times in order to overcome

unexpected side-e�ects on the performance results.

The evaluation has shown that the evaluated OMSs di�er tremendously regard-

ing their data model, degrees of object orientation, transaction concepts and many

other aspects. In the remainder of this section we will only give some examples of our

evaluation results. Due to space limitations it is not possible to present all the eval-

uation results in detail. The complete evaluation report can be found in [DELS91].

Data Models. Concerning the data models of the programming interface the OMSs

di�er in the underlying abstract model. Thus PCTE/OMS and Damokles are based

on an extended entity relationship model, CADLAB/OMS has a graph-based and

GemStone a set-theoretical data model.

Object Orientation. Except GemStone that may be called fully or behaviourally

object-oriented4 (i.e. it enables the de�nition of class speci�c methods) all other OMSs

are only structurally object-oriented (i.e. methods are always prede�ned).

4Concerning the di�erent degrees of object-orientation c.f. [Dit86]

12

Transactions. We have identi�ed great di�erences in the supported transac-

tion concepts. Damokles e.g. supports mechanisms for design transactions and

PCTE/OMS covers short and nested transactions. The release of CADLAB/OMS

which we have evaluated, however, has only a simple locking mechanism but no real

transaction support, not even for short and
at transactions.

Standard-Browsers. Capable browsing facilities for comfortable interactive ac-

cess to the database are actually imperative for OMSs. It is desirable for an OMS

to provide at least one textual browser with full functionality or even better a graph-

ical browser. Damokles, however, provides no browser, while CADLAB/OMS only

provides a very low level textual browser (similar to a debugger) with restricted func-

tionality. PCTE/OMS and GemStone provide full browsing facilities.

Administration Tools and Documentation. Not all of the OMSs show su�cient

administration capabilities. GemStone and PCTE/OMS, however, provide speci�c

tools for administration support. Documentation of the administration is also a

general frailty of many systems.

Archivation and Recovery. Recovery and data replication is another weakness

of most OMSs. GemStone and PCTE/OMS, however, supply tools or respectively

procedures for replication and backup in case of system or media crashes.

Performance Concerning our performance measurements we have again identi�ed

tremendous di�erences between the OMSs. The execution times of the benchmark

for the di�erent OMSs have elucidated that each of the OMSs has its strength con-

cerning particular execution conditions and hence is obviously not appropriate in all

application areas. A general result is that there is one group of OMSs (PCTE/OMS,

Damokles) that is more appropriate to handle big objects, i.e.
at �les like textual or

multimedia documents, while the other group of OMSs (GemStone, CADLAB/OMS)

is more appropriate for small objects like e.g. syntax graphs or CAD objects.

Besides the mentioned results there are a lot of further interesting di�erences

between the various systems, e.g. concerning versioning, security and distribution.

13

6 Summary and Conclusion

In this paper we have de�ned a method for selecting OMSs and we have presented

evaluation results of OMSs which we have evaluated by applying the decision support

method. The practical experiment with the decision support method has further

pointed out the strength and weaknesses of the method.

In particular the experiment has shown that the classi�cation scheme may be

used for not only describing the various aspects of OMSs, but also for a comparison

in order to identify the most appropriate OMS.

The major disadvantage of the classi�cation scheme is that the de�nition of the

classi�cation criteria is not reproducible. In particular it is di�cult for other persons

to use the classi�cation scheme as there does not exist a glossary where the di�erent

terms are de�ned.

For the experimental evaluation the simple benchmark allows to derive the

performance of an OMS for simple OMS functions accessing simple data structures.

We had lots of di�culties for ensuring the same hardware and software platforms and

the same conditions such as work load in order to keep the results comparable. The

major problems of the benchmark are that it focusses on the simple OMS functions

only and that it does not cover an examination of concurrent execution.

In a next step, we are currently implementing a more complex benchmark for

accessing more complex data structures. Furthermore we will extend the focus of

the experimental evaluation on aspects such as distribution, multi-processing, etc.

Additionally the introduction of a glossary for the classi�cation criteria may allow

di�erent persons to work with the DSS.

Our experiences with OMS evaluation have shown that a single OMS can perhaps be

su�cient for a certain application, but not for a number of di�erent tasks within a

complex environment like an SEE. For instance, a common data repository within a

software development environment has to cope with �ne grained objects (e.g. for the

syntax graph of a syntax-directed editor) as well as with big objects (e.g. storage of

the modular structure of a software system). Moreover a project manager could per-

haps wish to store administrative data within a relational database system, especially

14

if we consider that he uses a tool that internally handles relational data.

The simple example depicts the demand of complex applications for various

highly heterogeneous requirements regarding di�erent features of an OMS. This ob-

servation means that an OMS is quite useful to play a role in an SEE for integrating

data and processes. However, for a highly complex SEE it is important to integrate

several OMSs in order to support the di�erent application speci�c requirements ap-

propriately.

Our future activities in the context of OMS evaluation and analysis focus on the

development and de�nition of a framework for integrating di�erent OMSs in order

to ful�ll the complex application speci�c requirements. This integration framework

is important, because the development of single overall optimal OMS ful�lling all

requirements seems to be technically unfeasible for the near future. The coupling of

di�erent suboptimal OMSs is the straight-forward approach to combine the features

of these OMSs.

The concept of such integration framework is based on the ESF-Software Bus

in many aspects. So the framework should be open and extensible in the sense that

an integration of OMSs has to be most easy by providing an appropriate plug-in con-

cept. OMSs will be horizontally integrated below an OMS interoperation mechanism

that de�nes di�erent qualities of interoperation and due to this di�erent degrees of

integration. We will use our OMS evaluation method for an examination of di�erent

OMSs concerning their features and suitability for an integration into the framework.

In this context the OMSs have to be analyzed concerning their interfaces, the di�erent

data models and the corresponding query languages with respect to OMS integration.

The examination will be based on the descriptions of the OMS products.

References

[ABM+90] T. L. Anderson, A. J. Berre, M. Mallison, H. H. Porter, and B. Schnei-

der. The hypermodel benchmark. In F. Bancilhon, C. Thanos, and

D. Tsichritzis, editors, Proceedings of the International Conference on

Extending Database Technology { LNCS 416, pages 317{331. Springer,

Mar. 1990.

15

[BAM88] A. Berre, T. L. Anderson, and M. Mallison. VBase and the HyperModel

Benchmark. Technical Report CS/E-88-031, Oregon Graduate Center,

1988.

[BMO+89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H.

Williams, and M. Williams. The GemStone data management system.

In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts,

Databases and Applications, pages 283{308. Addison-Wesley, 1989.

[DELS91] S. Di�mann, W. Emmerich, K. Lichtinghagen, and L. Sch�ope. OMSs

Comparative Study. Technical Report D2.4.3-rep-1.0-UDO-EL, ATMO-

SPHERE, 1991. To appear.

[DGL86] K. R. Dittrich, W. Gotthard, and P. C. Lockemann. Damokles { a

database system for software engineering environments. In R. Conradi,

T. M. Didriksen, and D. H. Wanvik, editors, Proc. of an Int. Workshop

on Advanced Programming Environments, LNCS 244, pages 353{371.

Springer, 1986.

[DHS+91] S. Dewal, H. Hormann, L. Sch�ope, U. Kelter, D. Platz, and

M. Roschewski. Bewertung von Objektmanagementsystemen f�ur

Software-Entwicklungsumgebungen (in German). In Proc. of the GI

Fachtagung Datenbanksysteme in B�uro, Technik und Wissenschaft, 1991.

[Dit86] K. R. Dittrich. Object-oriented database systems: the notion and the

issues. In K. Dittrich and U. Dayal, editors, Proc. of the 1986 Int.

Workshop on Object-Oriented Database Systems. IEEE Computer So-

ciety Press, 1986.

[Ear90] A. Earl. A Reference Model for Computer Assisted Software Engineering

Environment Frameworks. Technical report, Hewlett Packard, August

1990.

[GIE88] GIE Emeraude. Requirements and Design Criteria for Tool Support

Interface. Technical Report 15, ECMA TC33, 1988.

[GL85] W. Gotthard and P. C. Lockemann. Datenbanksysteme f�ur Software--

Produktionsumgebungen { Anforderungen und Konzepte (in German).

16

In W. E. Proebster, R. Remshardt, and H. A. Schmid, editors, Methoden

und Werkzeuge zur Entwicklung von Programmsystemen { Fachberichte

und Referate Band 16, pages 185{210. Oldenbourg, 1985.

[GMT87] F. Gallo, R. Minot, and I. Thomas. The object management system of

PCTE as a software engineering database management system. ACM

SIGPLAN NOTICES, 22(1):12{15, 1987.

[GPI89] GPI { The German PCTE Initiative. Requirements for the enhancement

of PCTE/OMS, version 2.0. Technical report, Nixdorf Computer AG,

Berliner Str. 95, D-8000 M�unchen 40, Mar. 1989.

[Mai89] D. Maier. Making database systems fast enough for CAD applications.

In W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts,

Databases and Applications, pages 573{582. Addison-Wesley, 1989.

[MGSW89] J. Miller, K. Gr�oning, G. Schulz, and C. White. The object-oriented

integration methodology of the cadlab work station design environment.

In Proc. of the 26th ACM/IEEE Design Automation Conference, pages

807{810, June 1989.

[SH90] L. Sch�ope and H. Hormann. �Ubersicht �uber Nicht-Standard Daten-

banksysteme. Internal Report 42, University of Dortmund, Dep. of Com-

puter Science, Software-Technology, FRG, Jan. 1990.

		2002-04-03T16:41:14+0200
	Universitaetsbibliothek Dortmund - Eldorado

