
SFB 

823 

A A A A copulacopulacopulacopula----based based based based 

nonparametric measure of nonparametric measure of nonparametric measure of nonparametric measure of 

regression dependenceregression dependenceregression dependenceregression dependence    
    

D
is

c
u

s
s

io
n

 P
a

p
e

r 

 
Holger Dette, Karl Friedrich Siburg,  

Pavel A. Stoimenov 

 

 
Nr. 5/2010 

 

 

 

 

 

 

 

 

 



 



Submitted to the Annals of Statistics

A COPULA-BASED NONPARAMETRIC MEASURE OF
REGRESSION DEPENDENCE

By Holger Dette and Karl Friedrich Siburg
and Pavel A. Stoimenov

Ruhr-Universität Bochum and Technische Universität Dortmund, Germany

This paper presents a framework for comparing bivariate distri-
butions according to their degree of regression dependence. We intro-
duce the general concept of a regression dependence order (RDO). In
addition, we define a new nonparametric measure of regression de-
pendence and study its properties. Beside being monotone in the new
RDOs, the measure takes on its extreme values precisely at indepen-
dence and almost sure functional dependence, respectively. A consis-
tent nonparametric estimator of the new measure is constructed and
its asymptotic properties are investigated. Finally, the finite sample
properties of the estimate are studied by means of small simulation
study.

1. Introduction and motivation. There is an extensive body of liter-
ature on the problem of ordering and measuring the dependence of two ran-
dom variables. Almost all of the research in this area is concerned with the
concept of positive dependence. Orders of positive dependence were consid-
ered by many authors, e.g., Lehmann [16], Esary et al. [7] and Schriever [24];
see also Scarsini and Shaked [23] for a detailed survey. Axiomatic approaches
to orders and measures of positive dependence were introduced by Kimeldorf
and Sampson [14] and Scarsini [22], respectively. The abundance of notions
of positive dependence contrasts, however, with the silence concerning re-
gression dependence, with the exception of the work of Da↪browska [3, 4] and
the measure suggested by Hall [12].

This paper presents a new approach to the problem of ordering and mea-
suring regression dependence in the bivariate case. The terms “order” and
“ordering” are used in the sense of a preorder, i.e., a reflexive and transi-
tive relation. We drop the requirement of antisymmetry in order to allow
for an arbitrary functional form of the regression. For convenience, an order
for random variables and the corresponding relations for distributions and
distribution functions are used synonymously. Also, we do not strictly dis-
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criminate between distribution functions and distributions; the notation is
the same.

Let (X,Y ) be a random vector with marginal distribution functions FX
and FY , respectively, and joint distribution function FX,Y . Since regression
dependence is a directional relationship, it is first necessary to specify the
direction of interest. Without loss of generality, we study the dependence
of Y on X. The fundamental idea behind regression is predictability—the
more predictable Y is from X, the more regression dependent they are. It
is straightforward to single out the two extreme cases: independence and
almost sure functional dependence, when there exists a Borel measurable
function g such that Y = g(X) with probability one; see Lancaster [15]. In
the former case, X provides no information about Y , whereas in the latter
case there is perfect predictability of Y from X.

Apart from the two extreme cases, however, there exists a variety of in-
termediate ones with a certain degree of regression dependence in a sense
yet to be specified. The essence of our approach is the fact that the pre-
dictability of Y from X is intrinsically related to the variability of the con-
ditional distributions FY |X=x of Y given X = x. More precisely, the less
variable FY |X=x, the more predictable Y from X, and thus the more regres-
sion dependent (X,Y ). For example, perfect predictability, i.e. almost sure
functional dependence of Y on X, is equivalent to the degeneracy of FY |X=x

for almost all x. Unless otherwise stated “almost” is used in the sense of the
respective probability measure, which is clear from the context. It follows
that, if (X̃, Ỹ ) is another pair of random variables, then the general idea is
to consider (X,Y ) less regression dependent than (X̃, Ỹ ) if FY |X=x is more
variable than F

Ỹ |X̃=x
for almost all x. Therefore, a bivariate regression de-

pendence order is associated to a univariate variability order, and different
variability orders could lead, in general, to different regression orders.

This approach, however, is not applicable unless X and X̃ have the same
distribution. Moreover, it is even necessary that Y and Ỹ are identically
distributed because, otherwise, their different variability will affect the vari-
ability of FY |X and F

Ỹ |X̃ and, in this way, the degree of regression de-

pendence. For this reason, a comparison of two bivariate random vectors
with arbitrary marginals is possible only after their transformation to the
same Fréchet class. If the marginals are continuous, it is natural to con-
sider the probability integral transformations (U, V ) = (FX(X), FY (Y )) and
(Ũ , Ṽ ) = (F

X̃
(X̃), F

Ỹ
(Ỹ )), which have uniform marginal distributions. In

this case, we regard (X,Y ) less regression dependent than (X̃, Ỹ ) if FV |U=u

is more variable than F
Ṽ |Ũ=u

for almost all u.

It should be noted, however, that while lower variability of the conditional
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distributions is a necessary condition for defining a regression dependence
order, it is not sufficient. As the details will be given later in Section 3, we
only mention here that the choice of the variability order cannot be arbitrary,
but should take into account the two extremes of regression dependence,
namely, independence and almost sure functional dependence. We will show
that the most common variability orders lead indeed to regression orders.

In Section 4 we introduce a new nonparametric measure of regression
dependence, study its properties and demonstrate its advantages over the
correlation ratio. Beside being monotone in the new regression orders, the
measure possesses several appealing properties. For instance, it takes on its
minimum if and only if X and Y are independent, and its maximum if and
only if Y is almost surely (a.s.) a Borel function of X.

Two estimates of the new dependence measure are introduced in Section 5
and their asymptotic properties are investigated. Finally, Section 6 contains
a small simulation study which shows that the proposed estimates have a
reasonable performance for moderate sample size.

2. Notation and preliminaries. This section introduces the notation
and states some technical facts which will be needed in the sequel. Except
for the results on univariate variability orders, attention is restricted to
the set F of all bivariate distribution functions with continuous marginal
distribution functions, as well as the set X of all bivariate random vectors
with distribution functions in F. For (X,Y ) ∈ X, FX,Y ∈ F denotes its
joint distribution function with marginal distribution functions FX and FY ,
respectively, while FY |X=x denotes the conditional distribution function of
Y given X = x. For the probability integral transformations of (X,Y ) ∈ X
we shall write

U := FX(X) and V := FY (Y ) .

Thus, U and V have uniform distributions on the closed unit interval [0, 1],
which will be denoted by I. The notation FU,V and FV |U=u will be used for
joint and conditional distribution of (U, V ) and V given U = u, respectively.
The first result describes the two extreme cases of regression dependence for
(X,Y ) in terms of (U, V ).

Proposition 2.1. For any (X,Y ) ∈ X, the following are true:

(i) X and Y are independent if and only if U and V are independent.
(ii) U and V are independent if and only if FV |U=u = FV for almost all u.

(iii) Y is a.s. a Borel function of X if and only if V is a.s. a Borel function
of U .
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(iv) V is a.s. a Borel function of U if and only if FV |U=u is degenerate for
almost all u.

Proof. (i) and (ii) are obvious. As for (iii), since FX is continuous,
Y = f ◦ X a.s. implies Y = f ◦ F−1X ◦ FX ◦ X a.s., so that V = g ◦ U a.s.
with the measurable function g := FY ◦ f ◦ F−1X ; conversely, if V = g ◦ U
we set f := F−1Y ◦ g ◦ FX . Finally, (iv) follows from the observation that
V = f(U) is equivalent to the fact that the graph of f is measurable and
has probability one, i.e.,

1 =

∫
I2
1gr f (u, v) dFU,V (u, v) =

∫
I

∫
I
1gr f (u, v) dFV |U=u(v) dFU (u).

This is equivalent to FV |U=u being degenerate for almost all u.

Since we work with the probability integral transformations, the concept
of copulas is tailored for our approach. Formally, a bivariate copula (or
briefly, a copula) is the restriction to I2 of a bivariate distribution function
with uniform marginals on I. In fact, the unique copula CX,Y of (X,Y ) ∈
X coincides with FU,V on I2. In particular, the copula corresponding to
independent variables is the product copula P (u, v) = uv.

Denote by C the set of all copulas, and by ∂iC the partial derivative of
C ∈ C with respect to the i-th variable. The following properties of copulas
are easy consequences of the definition; for a proof see, e.g., [18].

Proposition 2.2. For any C ∈ C, the following statements are true:

(i) C is Lipschitz continuous; more precisely, for all (u1, v1), (u2, v2) ∈ I2
we have

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.

(ii) For each v ∈ I, ∂1C(u, v) exists for almost all u ∈ I; similarly, for
each u ∈ I, ∂2C(u, v) exists for almost all v ∈ I. Moreover, the partial
derivatives satisfy

0 ≤ ∂iC ≤ 1

for i = 1, 2 wherever they are defined.

Remark 2.3. (i) Note that the Lipschitz continuity implies that a
copula is absolutely continuous in each argument, so that it can be
recovered from any of its partial derivatives by integration.
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(ii) In fact, we have 0 ≤ ∂iC ≤ 1 for i = 1, 2 Lebesgue almost everywhere
(a.e.) on I2 since, as Lipschitz continuous functions, copulas are dif-
ferentiable Lebesgue a.e. in view of Rademacher’s Theorem; see [8].
Moreover, by [8, Thm. 5.8.4], we also have ∂iC ∈ Lp(I2,R) with p ≥ 1.

There is a relationship between the conditional distribution FV |U=u and
the corresponding copula CX,Y , which is given by

(2.1) FV |U=u(v) = ∂1CX,Y (u, v)

wherever the partial derivative exists; see [18]. Moreover, we have the fol-
lowing result related to Proposition 2.1.

Proposition 2.4. For any (X,Y ) ∈ X, the following are true:

(i) X and Y are independent if and only if ∂1CX,Y (u, v) = v for Lebesgue
almost all (u, v) ∈ I2.

(ii) Y is a.s. a Borel function of X if and only if ∂1CX,Y (u, v) ∈ {0, 1} for
Lebesgue almost all (u, v) ∈ I2.

Proof. The first statement follows from Remark 2.3 (i), while the second
is a consequence of [5, Thm. 11.1] and [26, Thm. 4.2].

Since our approach to ordering regression dependence employs the vari-
ability of the conditional distribution functions, the rest of this section deals
with stochastic orders that compare the variability or dispersion of two ar-
bitrary random variables X and Y (or their univariate distributions FX
and FY ); we refer to [17] and [25] for a detailed study of stochastic orders.

Probably the most common variability order is the convex order. X is
smaller than Y in the convex order (denoted as X ≤cx Y ) if

(2.2) E[φ(X)] ≤ E[φ(Y )]

for all convex functions φ : R → R, provided the expectations exist. De-
pending on the context, i.e., whether working with random variables or dis-
tribution functions, we write X ≤cx Y or FX ≤cx FY . This order reflects the
intuitive idea that convex functions take on their (relatively) larger values
over regions of the form (−∞, a)∪ (b,∞) for a < b. Therefore, if (2.2) holds,
Y is more variable (or more dispersed) than X. The next result is a direct
consequence of (2.2).

Proposition 2.5. Let X and Y be two random variables. If X ≤cx Y ,
then E[X] = E[Y ] and Var[X] ≤ Var[Y ].
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As can be seen from Proposition 2.5, only random variables with the same
expectations can be compared. When X and Y have finite expectations, we
can use the convex order to define a location-free variability order. Namely,
we call X smaller than Y in the dilation order (denoted as X ≤dil Y ) if

(2.3) X − E[X] ≤cx Y − E[Y ].

Corollary 2.6. Let X and Y be two random variables. If X ≤dil Y ,
then Var[X] ≤ Var[Y ].

Another important location-free variability order is the dispersive order.
FX is smaller than FY in the dispersive order (denoted as FX ≤disp FY ) if

(2.4) F−1X (b)− F−1X (a) ≤ F−1Y (b)− F−1Y (a)

for all 0 < a ≤ b < 1. As noted in [25], it is conceptually clear that this
order compares the variability of FX and FY because it requires the differ-
ence between any two quantiles of FX to be smaller than the corresponding
quantiles of FY .

The next result shows the relation between the orders ≤disp and ≤dil;
compare [25, Thm. 3.B.16].

Proposition 2.7. Let X and Y be two random variables with finite
expectations. Then X ≤disp Y implies X ≤dil Y .

3. Regression dependence orders. The fundamental idea to intro-
duce an order of regression dependence on X (respectively F) is to compare
the variability of the conditional distributions, since low and high dispersion
is tantamount to high and low predictability, respectively. However, as dis-
cussed in the introduction, a comparison of two elements of X with arbitrary
marginals is possible only after their transformation to the same Fréchet
class which can be accomplished using the probability integral transforma-
tions. Essentially, a random vector (X,Y ) ∈ X is less regression dependent
than another random vector (X̃, Ỹ ) ∈ X if F

Ṽ |Ũ=u
is less variable (in some

univariate variability order) than FV |U=u for almost all u. More precisely,
we adopt the following definition.

Definition 3.1. A relation 4 on X (or F) is a regression dependence
order (RDO) if it is reflexive and transitive, and satisfies the following:

(O1) (X,Y ) 4 (X̃, Ỹ ) implies F
Ṽ |Ũ=u

≤ • FV |U=u for almost all u ∈ I,

where ≤ • is a univariate variability order;



7

(O2) If Y is a.s. a Borel function of X, and if (X,Y ) 4 (X̃, Ỹ ), then Ỹ is
a.s. a Borel function of X̃;

(O3) If X and Y are independent, and if (X̃, Ỹ ) 4 (X,Y ), then X̃ and Ỹ
are independent.

Property (O1) indicates that an RDO is always associated to a given
variability order. Therefore, a relation 4 satisfying (O1) with respect to the
univariate variability order ≤ • will be denoted by 4 •.

Conditions (O2) and (O3) deal with the two extreme cases. Since al-
most sure functional dependence is equivalent to perfect predictability of Y
from X, the corresponding distribution must have the greatest regression
dependence possible. Consequently, any distribution which is more depen-
dent must also correspond to almost sure functional dependence; hence (O2).
Similarly, the least dependent situation is given when X and Y are indepen-
dent. Hence, any less dependent distribution must be again the distribution
of independent random variables, which is expressed in (O3).

In view of condition (O1), probably the easiest way to construct an RDO
is to choose some variability order ≤ •, define (X,Y ) 4 (X̃, Ỹ ) if and only if
F
Ṽ |Ũ=u

≤ • FV |U=u for almost all u ∈ I, and check whether conditions (O2)

and (O3) are satisfied. In fact, since no distribution is less dispersed than a
degenerate one, (O2) should always be satisfied in view of Proposition 2.1,
and it remains to prove (O3).

It is important to note that an RDO corresponding to a variability order
which is not location-free (e.g., the convex order ≤cx) is unnecessarily re-
strictive, for then only distributions with the same regression function can
be compared. However, since we want to compare the strength of regression
dependence with respect to possibly different regression functions, we will
consider location-free orders only. Amongst them, the dilation order ≤dil

and the dispersive order ≤disp are the most important and common ones.
The next result states that the corresponding relations 4dil and 4disp are
indeed RDOs.

Theorem 3.2. The relations 4dil and 4disp are RDOs.

Proof. In view of Proposition 2.7 we need only prove (O2) and (O3) for
the relation 4dil. It is clear from Corollary 2.6 that 4dil satisfies (O2). In
order to prove (O3) we may, in view of Proposition 2.1, restrict to consid-
ering U and V instead of X and Y . Assuming that (Ũ , Ṽ ) 4dil (U, V ) with
independent U and V , we conclude from Corollary 2.6 that

(3.1) Var[Ṽ |Ũ = u] ≥ 1

12
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for almost all u. By the law of total variance, we obtain equality in (3.1), as
well as

(3.2) E[Ṽ |Ũ = u] = E[Ṽ ] =
1

2

for almost all u. From (3.2) and (3.1) it follows that, for almost all u,
FV |U=u ≤cx FṼ |Ũ=u

with equal variances. But then both distributions are the

same; see [25, Thm. 3.A.42]. This proves (O3), and hence the theorem.

4. Measures of regression dependence. We now turn to the subject
of how to measure the degree of regression dependence in the set X (or F).
It is clear that without specifying an RDO any discussion of measures of
regression dependence is problematic. We adopt the following definition.

Definition 4.1. Let 4 be an arbitrary RDO. A function µ : X→ [0, 1]
is a measure of regression dependence (MRD) with respect to 4 if it satisfies
the following conditions:

(M1) (X,Y ) 4 (X̃, Ỹ ) implies µ(X,Y ) ≤ µ(X̃, Ỹ );
(M2) µ(X,Y ) = 1 if and only if Y is a.s. a Borel function of X;
(M3) µ(X,Y ) = 0 if and only if X and Y are independent.

Remark 4.2. Alternatively, µ can also be defined as a functional on F,
and we sometimes write µ(FX,Y ) instead of µ(X,Y ).

Condition (M1) is the usual monotonicity property required by any mea-
sure of dependence. (M2) and (M3) concern the two extreme cases of re-
gression dependence. We point out how strong both conditions are—in fact,
a measure of dependence satisfying (M2) and (M3) has not yet been pro-
posed in the literature. For instance, (M2) is much stronger than Rényi’s
corresponding postulate in [21], according to which a measure of dependence
should take on its maximal value 1 if one of X and Y is a.s. a function of the
other. What is more, Rényi mentioned that it is natural to pose an “only if”
requirement, but since the condition was rather restrictive, it was better to
leave it out. With respect to (M3), we point out that the well-known cor-
relation ratio is not a MRD in the sense of Definition 4.1 because it attains
its minimum at 0 not only when X and Y are independent; examples are
presented later in this section.

We now turn to the construction of a nonparametric MRD. The following
is the main result in this section.
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Theorem 4.3. The function r : X→ [0, 1] defined by

(4.1) r(X,Y ) = 6

∫ 1

0

∫ 1

0
FV |U=u(v)2 dv du− 2

is a MRD concurring with both 4dil and 4disp .

Remark 4.4. Note that in view of (2.1), we have

(4.2) r(X,Y ) = 6‖∂1CX,Y ‖22 − 2

where ‖ · ‖2 denotes the L2-norm on I2. By Remark 2.3 (ii), this shows that
r is indeed well defined. Moreover, r can also be viewed as a functional on
the set of copulas C, and we write r(CX,Y ) = r(X,Y ).

In order to prove Theorem 4.3 we make use of the following result.

Lemma 4.5. For any CX,Y ∈ C, we have ‖∂1CX,Y ‖22 ∈ [1/3, 1/2]. More-
over, the following assertions hold:

(i) ‖∂1CX,Y ‖22 = 1/3 if and only if X and Y are independent.
(ii) ‖∂1CX,Y ‖22 = 1/2 if and only if Y is a.s. a Borel function of X.

Proof. (i) Consider the inequality

0 ≤
∫ 1

0

∫ 1

0
(∂1CX,Y (u, v)− v)2 du dv =

∫ 1

0

∫ 1

0
(∂1CX,Y (u, v))2 du dv − 1

3
.

Hence, ‖∂1CX,Y ‖22 ≥ 1/3 with equality if and only if ∂1CX,Y (u, v) = v
Lebesgue a.e. on I2, which by Proposition 2.4 (i) is equivalent to the inde-
pendence of X and Y .

(ii) By Theorem 2.2 (ii) we have 0 ≤ ∂1CX,Y ≤ 1 and thus (∂1CX,Y )2 ≤
∂1CX,Y , with equality if and only if ∂1CX,Y ∈ {0, 1}. Consequently,

‖∂1CX,Y ‖22 ≤
∫ 1

0

∫ 1

0
∂1CX,Y (u, v) du dv =

1

2

with equality if and only if ∂1CX,Y ∈ {0, 1} Lebesgue a.e. in I2, which by
Proposition 2.4 (ii) is equivalent to Y being a.s. a Borel function of X.

We will also make use of the following representation formula for univari-
ate distribution functions whose support is contained in I. The proof uses in-
tegration by parts for Lebesgue-Stieltjes integrals (see, e.g., [13, Thm. 21.67])
and is omitted.
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Lemma 4.6. Let F be a univariate distribution function with support
in I. Then

2

∫ 1

0

∫ p

0
F−1(t) dt dp−

∫ 1

0
F−1(t) dt =

∫ 1

0
F (v)2 dv −

∫ 1

0
F (v) dv.

We now turn to the proof of the theorem.

Proof of Theorem 4.3. The property 0 ≤ r(X,Y ) ≤ 1, as well as the
conditions (M2) and (M3), are immediately implied by Lemma 4.5.

It remains to show the monotonicity condition (M1); in view of Proposi-
tion 2.7, it suffices to prove it for the RDO 4dil. Ramos and Sordo showed
in [20, Thm. 2.1] that two univariate distribution functions F and G with
finite expectations satisfy F ≤dil G if and only if, for all v ∈ [0, 1],

(4.3)

∫ v

0
F−1(t) dt− v

∫ 1

0
F−1(t) dt ≥

∫ v

0
G−1(t) dt− v

∫ 1

0
G−1(t) dt .

Now assume that (X,Y ) 4dil (X̃, Ỹ ) so that F
Ṽ |Ũ=u

≤dil FV |U=u for almost

all u ∈ I. Then, integrating (4.3) over v we obtain∫ 1

0

∫ v

0
F−1
Ṽ |Ũ=u

(t) dt dv − 1

2

∫ 1

0
F−1
Ṽ |Ũ=u

(t) dt ≥∫ 1

0

∫ v

0
F−1V |U=u(t) dt dv − 1

2

∫ 1

0
F−1V |U=u(t) dt

for almost all u ∈ I. Applying Lemma 4.6 we find that, for almost all u,∫ 1

0
F
Ṽ |Ũ=u

(v)2 dv −
∫ 1

0
F
Ṽ |Ũ=u

(v) dv ≥∫ 1

0
FV |U=u(v)2dv −

∫ 1

0
FV |U=u(v) dv .

Integrating this over u ∈ I, substituting ∂1CX,Y (u, v) for FV |U=u(v) by (2.1),

and using
∫ 1
0

∫ 1
0 ∂1CX,Y (u, v) dv du = 1/2 for all CX,Y ∈ C, we obtain

‖∂1CX̃,Ỹ ‖
2
2 =

∫ 1

0

∫ 1

0
(∂1CX̃,Ỹ (u, v))2 dv du ≥∫ 1

0

∫ 1

0
(∂1CX,Y (u, v))2 dv du = ‖∂1CX,Y ‖22.

Since, by Remark 4.4, r(X,Y ) = 6‖∂1CX,Y ‖22 − 2, this proves (M1) and
hence the theorem.
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Proposition 4.7. If f, g : R→ R are strictly monotone functions then

r(f(X), g(Y )) = r(X,Y ) .

Proof. We distinguish four different cases. If f and g are both increasing,
it is well known [18, Theorem 2.4.3] that

Cf(X),g(Y ) = CX,Y ,

which immediately implies r(f(X), g(Y )) = r(X,Y ). If f is increasing and
g is decreasing, then

Cf(X),g(Y )(u, v) = u− CX,Y (u, 1− v);

see [18, Theorem 2.4.4]. Therefore, we conclude ‖∂1Cf(X),g(Y )‖22 = ‖∂1CX,Y ‖22,
which again implies r(f(X), g(Y )) = r(X,Y ). If f is decreasing and g is in-
creasing, the result follows from interchanging f and g in the previous case.
The final case when f and g are both decreasing can be shown similarly.

We now turn attention to another quantity that might seem a natural
choice for an MRD, namely the correlation ratio of the probability integral
transformations. Define the functional η̃ : X→ R by

(4.4) η̃(X,Y )2 := η(U, V )2 =
Var[E[V |U ]]

Var[V ]
= 1− E[Var[V |U ]]

Var[V ]
.

Since Var[V ] = 1/12, it follows that

η̃(X,Y )2 = 12Var[E[V |U ]] .

In fact, the ordering of regression dependence suggested in [3, Sec. 3.1]
is an ordering by correlation ratios and therefore is not consistent with
our approach to RDOs. Moreover, neither the correlation ratio of Y on X
nor the related measure η̃(X,Y )2 are MRDs in the sense of Definition 4.1,
because (M3) will not be satisfied. Indeed, it follows from Propositions 2.7
and 2.5 that η̃ is monotone with respect to both 4disp and 4dil; in addition,
η̃(X,Y ) = 1 if and only if Y is a.s. a Borel function of X. However, η̃ does
not satisfy condition (M3) because there are random variables X and Y
with η̃(X,Y ) = 0, which are not independent; we give two such examples.

Example 4.8. Consider X and Y whose probability integral transfor-
mations U and V have the singular distribution with the support depicted
in Figure 1(a). The support is the union of the main and secondary diago-
nal in I2, so that probability mass 1/2 is uniformly distributed on each line
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(a) Support of the distribution of
(U, V ) in Example 4.8

(b) Support of the distribution of
(U, V ) in Example 4.9

Fig 1. Examples of η̃(X,Y ) = 0 where X and Y are not independent

segment. For every u ∈ I, the resulting conditional distribution FV |U=u is a
two-point distribution at v = u and v = 1−u and, thus, E[V |U = u] = 1/2.
Consequently, the conditional expectation E[V |U ] is degenerate and its vari-
ance Var[E[V |U ]] vanishes, which means that η(U, V ) = η̃(X,Y ) = 0. How-
ever, U and V and, thus, X and Y are not independent.

Example 4.9. Another situation where η̃(X,Y ) = 0 but X and Y are
not independent is given when FX,Y is the circular uniform distribution. It is
well known that in this case the ordinary correlation ratio η(X,Y ) vanishes.
The same is true for the related measure η̃(X,Y ) since in this case FU,V
is a degenerate distribution whose support is given in Figure 1(b); see [18,
Sec. 3.1.2]. The arguments are analogous to those in the previous example.

5. Nonparametric estimation of r. In this section we present a sam-
ple version of the MRD defined in (4.2). As pointed out in Remark 4.4, r is
a function of the copula CX,Y alone. CX,Y can be consistently estimated by
the empirical copula; see Deheuvels [6] and Fermanian et al. [10]. However,
the empirical copula is locally constant and, thus, the estimation of r is more
involved since it requires the estimation of the copula’s partial derivative.
The need for differentiability calls for a smooth (differentiable) estimation
of the copula, e.g., with a kernel-based technique.

For this purpose let (X1, Y1), . . . (Xn, Yn) denote independent identically
distributed random variables with distribution function F and copula C,
let K denote a symmetric kernel with compact support, say [−1, 1], with
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corresponding cumulative distribution function

K(x) =

∫ x

−∞
K(t) dt.

As an estimate for the partial derivative of the copula τ(u, v) = ∂
∂u C(u, v)

we use

τ̂n(u, v) =
1

nh1

n∑
i=1

ω
(u− F̂n1(Xi)

h1
,
v − F̂n2(Yi)

h2

)
,(5.1)

where F̂n1 and F̂n2 denote the empirical distribution functions of X1, . . . , Xn

and Y1, . . . , Yn, respectively, h1, h2 denote bandwidths converging to 0 with
increasing sample size and ω(x, y) = K(x)K(y). Note that τ̂n is an integrated
version of the estimate for the copula density considered in Fermanian [9].
Intuitively, we have for large sample size

E[τ̂n(u, v)] ≈ 1

h1

∫
ω

(
u− FX(x)

h1
,
v − FY (y)

h2

)
dF (x, y)

=
1

h1

∫ 1

0

∫ 1

0
ω

(
u− s
h1

,
v − t
h2

)
c(s, t) dsdt

=

∫ 1

0
K

(
v − t
h2

)
c(u, t) dt · (1 + o(1))

=

∫ v

0
c(u, t) dt · (1 + o(1)) =

∂

∂u
C(u, v)(1 + o(1)),

where FX , FY denote the marginal distributions of (X1, Y1) and c(s, t) is the
copula density. The following result makes these heuristic arguments more
precise and gives a corresponding statement for the integrated version of
τ̂n(u, v)

τ̂2n =

∫ 1

0

∫ 1

0
τ̂2n(u, v) dudv,(5.2)

which will serve as an estimate for the quantity

τ2 =

∫ 1

0

∫ 1

0
‖ ∂1 C(u, v) ‖22 dudv.

The estimate of the measure τ = r(X,Y ) defined in (4.2) is finally given by

r̂n = 6τ̂2n − 2.(5.3)

The next results show that τ̂2n and r̂n are asymptotically normal distributed.
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Theorem 5.1. Assume that the copula C(u, v) is three and two times
continuously differentiable with respect to the variable u and v, respectively.
If the kernel K is symmetric, two times continuously differentiable with com-
pact support and the bandwidths h1 and h2 satisfy

hj −→ 0 (j = 1, 2)(5.4)

nh31 −→∞ ; nh1h2 −→∞ ; nh41 −→ 0,(5.5)

then

√
n (r̂n − r)

D−→ N (0, 144σ2),

where

σ2 =

∫ 1

0

∫ 1

0

∫ 1

0
τ(s, v ∧ w)τ(s, v)τ(s, w) dsdvdw −

(∫ 1

0

∫ 1

0
τ2(u, v) dudv

)2

.

Proof. The assertion follows from (5.3) and the weak convergence

√
n (τ̂2n − τ2)

D−→ N (0, 4σ2).(5.6)

Recalling the definition of τ̂n(u, v) and τ̂2n in (5.1) and (5.2) and using the
notation

(ωh1,h2 ∗ c)(u, v) =
1

h1

∫ 1

0

∫ 1

0
ω
(u− u1

h1
,
v − v1
h2

)
c(u1, v1) du1dv1

we obtain the decomposition

τ̂2n = B1n + 2B2n +B3n,(5.7)

where

B1n =

∫ 1

0

∫ 1

0
(τ̂n − ωh1,h2 ∗ c)2(u, v) dudv,

B2n =

∫ 1

0

∫ 1

0
(τ̂n − ωh1,h2 ∗ c)(u, v) · (ωh1,h2 ∗ c)(u, v) dudv,

B3n =

∫ 1

0

∫ 1

0
(ωh1,h2 ∗ c)2(u, v) dudv.

Similar arguments as given in Fermanian [9] show that

B1n = Op

(
1

n
√
h1

)
= op

(
1√
n

)
,(5.8)
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while standard arguments (using the differentiability of the copula) yield

B3n = τ2 +O(h21),(5.9)

B2n = B̂2n(1 + op(1)),(5.10)

where the quantity B̂2n is defined by

B̂2n =

∫ 1

0

∫ 1

0
(τ̂n − ωh1,h2 ∗ c)(u, v) · τ(u, v) dudv.

We will show at the end of this proof that

B̂2n − B̃2n = oP

( 1√
n

)
,(5.11)

where the statistic B̃2n is obtained from B̂2n by replacing the empirical
distribution function F̂n1 and F̂n2 by their theoretical counterparts FX and
FY , respectively, that is

B̃2n =

∫ 1

0

∫ 1

0
(τ̃n − ωh1,h2 ∗ c)(u, v) · τ(u, v) dudv

with

τ̃n(u, v) =
1

nh1

n∑
i=1

ω

(
u− FX(Xi)

h1
,
v − FY (Yi)

h2

)
.(5.12)

Obviously, B̃2n is of order Op(
1√
n

) and observing (5.7), (5.8) and (5.9) -

(5.11) now yields

(5.13)
√
n(τ̂2n − τ2) = 2

√
nB̃2n + oP (1).

The assertion can now be proved by showing the asymptotic normality of

√
n B̃2n =

1√
n

n∑
i=1

(
Xni − E[Xni]

)
with

(5.14) Xni =
1

h1

∫ 1

0

∫ 1

0
ω
(u− FX(Xi)

h1
,
v − FY (Xi)

h2

)
τ(u, v) dudv
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(i = 1, . . . , n). The expectation of Xni is given by E[Xni] = τ2+O(h21) while
the second moment is obtained by a tedious but straightforward calculation,
i.e.

E[X2
n1] =

1

h21

∫
[0,1]4

∫
[0,1]2

ω
(u− s

h1
,
v − t
h2

)
ω
( ũ− s

h1
,
ṽ − t
h2

)
× τ(u, v)τ(ṽ, ũ)c(s, t) dudũdvdṽ dsdt

=

∫
[0,1]3

τ(s, v ∧ ṽ)τ(s, v)τ(s, ṽ) dsdvdṽ (1 + o(1)).

The asymptotic normality (5.6) now follows from Ljapunoff’s Theorem, that

is 2
√
nB̃2n

D−→ N (0, 4σ2), where

σ2 = lim
n→∞

V ar(
√
nB̃2n) = lim

n→∞
V ar(Xn1) = lim

n→∞
E[X2

n1]− τ2.

Proof of the estimate (5.11). We use similar arguments as in Fermanian [9]
and obtain

B̂2n − B̃2n = (C1n + C2n) (1 + oP (1)),(5.15)

where the random variables C1n and C2n are given by

Cin =

∫ 1

0

∫ 1

0
Cin(u, v)τ(u, v) dudv, i = 1, 2(5.16)

and

C1n(u, v) =
1

nh21

n∑
i=1

K ′
(u− FX(Xi)

h1

)
K
(v − FY (Yi)

h2

)
(5.17)

× (F̂n1(Xi)− FX(Xi)),

C2n(u, v) =
1

nh1h2

n∑
i=1

K
(u− FX(Xi)

h1

)
K
(v − FY (Yi)

h2

)
(5.18)

× (F̂n2(Yi)− FY (Yi)).

A standard calculation shows that

E[C1n] =

∫ 1

0

∫ 1

0
E[C1n(u, v)]τ(u, v) dudv

=
1

nh21

∫ 1

0

∫ 1

0
E
[
(1− FX(X1))K

′
(u− FX(X1)

h1

)
×K

(v − FY (Y1)

h2

)]
τ(u, v) dudv

= O
( 1

nh1

)
.(5.19)
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The calculation of the second moment

E[C2
1n] =

∫
[0,1]4

E[C1n(u, v)C1n(ũ, ṽ)]τ(u, v)τ(ũ, ṽ) dudvdũdṽ(5.20)

is more complicated. For the integrand in this expression we have

E[C1n(u, v)C1n(ũ, ṽ)] =
1

n2h41

n∑
i,i′=1

E
[
K ′
(u− FX(Xi)

h1

)
K ′
( ũ− FX(Xi′)

h1

)
×K

(v − FY (Yi)

h2

)
K
( ṽ − FY (Yi′)

h2

)
×(F̂n1(Xi)− FX(Xi))(F̂n1(Xi′)− FX(Xi′))

]
=

1

n4h41

n∑
i,i′=1

n∑
k,k′=1

E

[
K ′
(u− FX(Xi)

h1

)
K ′
( ũ− FX(Xi′)

h1

)
×K

(v − FY (Yi)

h2

)
K
( ṽ − FY (Yi′)

h2

)
×(I{Xk ≤ Xi} − FX(Xi))(I{Xk′ ≤ Xi′} − FX(Xi′)

]
= E[C1n(u, v)] E[C1n(ũ, ṽ)] +O

( 1

n2h31

)
,

uniformly with respect to (u, v), (ũ, ṽ) ∈ [0, 1]2, where the last estimate
follows by a careful inspection of the common indices in the tupel (i, i′, k, k′).
Observing (5.19) and (5.20) this implies Var(C1n) = O( 1

n2h31
), which yields

C1n = Op

( 1

nh
3/2
1

)
= op

( 1√
n

)
by assumption (5.5). The corresponding estimate for the term C2n in (5.15)
can be shown by similar arguments, that is

C2n = Op(
1

n
√
h1h2

),

which proves assertion (5.11) and completes the proof of Theorem 5.1.

It is worthwhile to mention that in any implementation the integral in
(5.2) is usually calculated by a numerical integration, that is

(5.21) τ̂2appr =
1

g2

g∑
i=1

g∑
j=1

τ̂2n(ui, vi)
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where {ui, vj}gi,j=1 defines an appropriate grid. If the number of points used

in the grid is fixed, then τ̂2appr is a consistent estimate of

τ2appr =
1

g2

g∑
i=1

g∑
j=1

τ2(ui, vi).

The following result shows that the estimate r̂appr = 6τ̂2appr − 2 converges
with a different rate to the quantity rappr = 6τ2appr − 2 . It can be proved
by similar arguments as presented in the proof of Theorem 5.1, which are
omitted for the sake of brevity.

Theorem 5.2. If the assumptions of Theorem 5.1 are satisfied, then√
nh1(r̂appr − rappr)

D−→ N (0, 144σ2appr)

where the asymptotic variance is given by

σ2appr =
4

g4

∫ 1

−1
K2(x)dx

g∑
i,j,k=1

τ(ui, vj)τ(ui, vk)τ(ui, vj ∧ vk).

Remark 5.3. Theorem 5.1 and 5.2 can be generalized to dependent
data under suitable mixing properties of the data generating process [11,
Assumptions 3 and 4]. The details are omitted for the sake of brevity.

6. Finite sample properties. In this section we present a small sim-
ulation study in order to study the finite sample properties of the proposed
estimate. We begin with the study of the mean squared error of the estimate
when the underlying copula is the Clayton copula, that is

(6.1) C(u, v) = (u−θ + v−θ − 1)−θ; θ > 0

In order to address the problem of boundary effects in the statistic τ̂n we
have adapted the estimate investigated recently in Chen and Huang [1] and
Omelka et al. [19] to our problem. To be precise we have used the statistic

τ̂ (LLS)n (u, v) =
1

b(u)h1n

n∑
i=1

Ku,h1

(u− F̂m1(Xi)

b(u)h1

)
Kv,h2

(v − F̂n2(Yi)
b(v)h2

)
,

as an estimate of τ(u, v) = ∂
∂uC(u, v) where b(w) = min{

√
w,
√

1− w} and
the kernel Ku,h1 is defined by

Ku,h1(x) =
K(x){a2(u, h1)− a1(u, h1)x}
a0(u, h1)a2(u, h1)− a21(u, h1)

I

{
u− 1

h1
< x <

u

h1

}
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with

a`(u, h1) =

∫ u/h1

(u−1)/h1
t`K(t)dt; ` = 0, 1, 2.

Note that τ̂
(LLS)
n is a local linear estimate, where the bandwidth function

“shrinks” the value of the bandwidth close to zero at the corners of the unit
square.

The estimates τ̂2n and τ̂2appr are constructed by (5.2) and (5.21), respec-

tively, replacing τ̂n by τ̂
(LLS)
n and similar arguments as in Chen and Huang [1]

and Omelka et al. [19] show that Theorems 5.1 and 5.2 remain valid.
In Table 6 we present the simulated mean squared error of the estimate

for the sample sizes 50, 100 and 200. These results are based on 25.000
simulation runs. The bandwidth is chosen as h = n−3/10 and the integral in
the definition of the estimate is calculated over a grid of 49×49 points. The
random variables distributed according to the Clayton copula are generated
by the method presented in Cook and Johnson [2]. We observe that in all
cases the measure r is estimated with a reasonable precision. It is worthwhile
to mention that the estimate is less accurate if τ = 0.

In the second part of our numerical study we investigate the approxi-
mation by the normal distribution for moderate sample sizes. In order to
obtain a good approximation by the limit distribution it is important to
have a precise estimate of the limiting variance. For this purpose we pro-
pose an estimate which is motivated by a careful inspection of the proof of
Theorem 5.1. To be precise, note that by (5.13) the statistic

√
n(τ̂2n − τ2) is

asymptotically equivalent to a sum of iid random variables defined by (5.14),
in particular

V ar(
√
nτ̂n) ≈ 4V ar(

√
nB̃2n) = 4V ar(Xni),

where Xni is defined in (5.14). Therefore we use the empirical variance of
the random variables

Vni =
1

n1

∫ 1

0

∫ 1

0
ω

(
u− F̂n1(Xi)

h1
,
v − F̂n2(Yi)

n2

)
τ̂n(u, v)dudv(6.2)

as estimate for the asymptotic variance of τ̂
(LSS)
n , that is

σ̂2n =
4

n

n∑
i=1

(Vni − V n·)
2.

A corresponding estimate σ̂2appr of the asymptotic variance of the statistic√
nh1 τ̂appr is obtained by replacing the integration in (6.2) by its Riemann
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n \ θ 0.0 0.5 1.0 2.0

50 3.452 · 10−2 9.281 · 10−3 4.962 · 10−3 1.093 · 10−2

100 1.674 · 10−2 2.748 · 10−3 2.487 · 10−3 2.282 · 10−3

200 9.608 · 10−3 9.396 · 10−4 1.627 · 10−3 6.298 · 10−4

Table 1
Simulated mean squared error of the estimate (5.3), when the underlying copula is the

Clayton copula defined in (6.1).

approximation. In Table 2 we show the simulated probabilities

P

(√
n(τ̂appr − τ)

6σ̂appr
≤ u1−α

)
≈ 1− α,(6.3)

where u1−α denotes the (1 − α)-quantile of the standard normal distribu-
tion. The sample is n = 100 and n = 200, the bandwidth is again chosen
as h = n−3/10 and the underlying copula is the Clayton copula. We ob-
serve a reasonable approximation by the limit distribution in all cases under
consideration.

1− α n \ θ 0.0 0.5 1.0 2.0

100 0.885 0.878 0.891 0.916
90% 200 0.891 0.903 0.984 0.912

100 0.962 0.939 0.964 0.964
95% 200 0.942 0.951 0.958 0.961

Table 2
Simulated probabilities of the form (6.3) for the Clayton family.
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