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Abstract

In this paper we introduce FUNSOFT nets. FUNSOFT nets are high level Petri nets
which are well-suited for software process modelling. We define the semantics of FUNSOFT
nets in terms of Pr/T nets. Thus we enable the use of standard Petri net analysis techniques
for examining software process model properties. We point out which analysis techniques
are of interest from a software process modelling point of view. Moreover, we give an
example for a software process model represented by a FUNSOFT net and we point out
which tools for editing and analysing FUNSOFT nets are available.
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1 Introduction

In this paper we describe a result of combining knowledge in the area of software process
modelling and in the area of Petri net research!. We introduce a kind of high-level Petri nets
which is well-suited for describing software process models.

Our basic motivation is the observation that formal languages which enable graphic animation
and the use of approved analysis techniques as well as the description of non-determinism
and concurrency are sought in various projects aiming at the development of software process
modelling languages. While these key requirements lead to Petri nets in general our work
partially carried out in the frame of the ESPRIT project ALF [BBCD89] and the EUREKA
project ESF [SW88] revealed that none of the standard Petri net types measures up to the
more detailed requirements like integration of existing tools into software process models,
description of complex object types, and distinction between data and control flow. Therefore,
we developed a Petri net type, namely FUNSOFT nets, which is well-suited for representing
software process models.

The semantics of FUNSOFT nets is defined in terms of Pr/T nets. Thus we benefit from using
FUNSOFT nets as application-oriented language and from using analysis techniques defined
for Pr/T nets for proving properties of software process models.

The next section focuses on giving a very concise overview about the relation of software
process modelling to software engineering in general, about some software process modelling
approaches of prime interest and it critically judges the results obtained in software process
modelling up to now. Section 3 introduces FUNSOFT nets. This introduction contains an
informal explanation of FUNSOFT nets, their definition, their graphic animation, an example,
and the semantics definition of FUNSOFT nets in terms of Pr/T nets. Section 4 sketches how
analysis techniques which are well-known for standard Petri nets can be applied to FUNSOFT
nets. Moreover, section 4 shows how results obtained by standard analysis techniques can be
interpreted to reveal properties of the software process model represented by a FUNSOFT net.
This section does not give a complete list of properties which are worthwhile to be proven,
but it puts emphasis on how to obtain software process relevant results. Section 5 gives a
short overview about some tools which enable the use of FUNSOFT nets. Finally, section 6
concludes our work.

2 Software Process Modelling

Software process modelling is an area of increasing interest [3ISPW, 4ISPW, 5ISPW]. Its
main focus is to describe software process models and to use such descriptions for communi-
cation between people involved in software development, for finding mistakes, and at last for
improving the productivity of software development and increasing the quality of produced
software.

The software process is the sequence of activities performed during the creation and evolution
of a software system.

This explanation of the term software process reflects some opinions given in [3ISPW] and

!The work described here is partially sponsored by the ESPRIT project ALF and by the EUREKA project
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[AISPW].

Regarding this idea of a software process it becomes obvious that there is one software process
for each software system that is developed. Several software processes are driven by the same
software process model. A software process model describes general features of a class of
processes but not those features which are unique for each process. Well-known examples
of software process models are the waterfall model [Royc70], the spiral model [Boeh88], and
prototyping models [BCG83]. Software process models describe which activities have to be
performed by which people, who is allowed to access which documents and which activities
have to be performed when. Software process models build the basis for the software process
itself. Software processes can be considered as software developments following a particular
software process model.

Two ways of describing software process models can be distinguished: a model description by
means of a formal notation and a narrative or informal description. The wide-spread use of
narrative descriptions is emphasized in the following quotation:

‘Narrative descriptions have been employed by organizations to record their standard operating
procedures - a form of process description’ [Kell88].

This statement shows that the idea of describing software processes is not a new one. Of course,
operating procedures have been described for each software development. The problem of the
most of these descriptions was and is that they are lacking in preciseness. They are given
in the form of general guidelines and advices like ”start with a requirements phase” or "test
each module carefully”. Therefore, they are the source for a lot of misunderstandings and
mistakes. Moreover, it is hardly possible to observe if an informal software process model is
respected during software development itself and no precise analysis techniques can be applied
to informal descriptions.

That is why we focus only on formal software process modelling approaches in the following.

One of the first ideas about how to model software processes was described by Osterweil. His
paper Software Processes Are Software Too [Oste87] raised a lot of controversial discussions.
The approach introduced by Osterweil is the Process Programming approach. The main
idea is to think of and model software processes as software.

That is one of the main motivations of Lehman to criticize the Process Programming approach.
He points out that it will hardly be possible to describe the creative process of software
development a priori [Lehm87], that means before starting the software development itself.

Several approaches to software process modelling can be found [Dows87, KF87, TBCOS8S,
Robe88, HJPS89, DGS89]. They differ mainly in the used language for describing software
process models and in the tools provided for modelling software processes. Even though
the most of these approaches claim not to follow the idea of Process Programming it must
be stated that they focus mainly on those parts of software process models which can be
supported by existing tools and which are well-understood (a typical example for such a part
is an edit-compile-test cycle). Other parts which belong to software development as well as
these understood parts, such as discussing a system’s design with a customer or doing a design
review are not considered.

For the rest of this paper we explicitly point out that we restrict ourselves to the well-
understood parts of software process models (or to be precise to their modelling and to their
analysis).



Another research area in software process modelling deals with different phases of building
and using software process models [MGDS90]. Whenever such phases are distinguished the
analysis of software process models is identified as an important activity in building and using
software process models [Kell89, Fink89, MGDS90].

Since we introduce a software process modelling language in the next section we discuss some
of the key requirements for languages which are to be used for describing software process
models in the following.

Graphic animation A software process model is very complex. Therefore a graphic ani-
mation can help to understand the structure of the model. The need for user-friendly
representations is emphasized in [Kell88, Dows86a)].

Representation of concurrency and non-determinism In software process models sev-
eral situations exist in which it is of no importance in which way something is done,
but only that it is done in one of several ways. It is necessary to model this kind of
non-determinism.

Moreover, it is necessary to model that several activities can be executed concurrently.
This must be expressible. The representation of activities which can be carried out
in parallel can help to find out how many people can be deployed, thus it can be the
basis for personnel management. The need to model this concurrency is emphasized
in [BB88, Tayl86].

Simulation and analysis Analysis of software process models can contribute to the early
detection of errors. By analysing software process models it is possible to prove specific
properties of these models, to detect errors, and to gain deeper insights into the nature
of the analyzed software process model. The need for employing analysis techniques in
the examining software process models is stressed in [Kell89, Fink89].

Representation of typical entities A language for the description of software process mod-
els must enable the description of essential components of such models, otherwise it does
not fulfill its main purpose. Essential components are object types, activity types and
some further kind of control conditions, since these components are used in all languages
for describing software process models. Our experiments have shown that besides object
types, activities, and control conditions it is necessary to model predicates of activi-
ties. Such predicates are conditions which must be fulfilled before the activity which
is associated with the predicate can be executed. These predicates correspond to the
preconditions of activities as defined in [KF87].

3 FUNSOFT Nets

In this section we introduce a Petri net type which is well-suited for describing process pro-
gramming fragments. This type of high level Petri nets is called FUNSOFT nets. Some of the
concepts of FUNSOFT nets are based on ideas implemented in Function nets [Godb83]. Be-
fore developing FUNSOFT nets existing high level Petri net types were examined. In principle
the standard high level Petri net types such as Pr/T nets [Genr86] and Coloured Petri nets
[Jens86] enable the representation of software process models. But due to the fact that these
Petri net types were not developed for software process modelling they do not measure up to
the detailed requirements for software process modelling languages. The modelling of already
existing tools causes problems as well as the definition of time consumptions and the definition
of different ways of accessing S-elements. That is why FUNSOFT nets were developed. The



essential advantage of FUNSOFT nets is that they enable a dense representation of software
process models. Thus the representation of software process models appears less complex since
some complexity is hidden in inscriptions of net elements.

3.1 Introduction to FUNSOFT Nets

A FUNSOFT net is a tuple (S,T, F,0, P, J, E,C, A, My) where (S,T’; F') denotes a net [Reis86].
Elements from S are called channels and elements from T are called instances.

In order to enable the representation of software process relevant object types and in order
to have an extensible set of object types, O := (OnxxOp) defines a set of object types.
Oy = TYPIDUBOOL,INTEGER,REAL,STRING} is a set of type identifiers and
Op defines a set of type definitions. {BOOL,INTEGER,REAL,STRING} are predefined
types and TY PID denotes identifiers of complex types. For each complex type Op contains
a type definition in the Language Lrype. In L7y, object types are defined analogously to the
way object types are defined in the programming language C [KR77]. For x € Oy range(x)
denotes the domain of the type x.

Since it is necessary to model that the execution of activities depends on explicit conditions
concerning values of tokens which are to be read we introduce activation predicates. Activation
predicates can be attached to instances. P C (PyxPp) denotes a set of activation predicates.
P is called the activation predicate library. Each predicate from the library consists of a name
from the set Py and a list of parameters from Pp.

In many net classes executable code can be attached to transitions (e.g. ML in Coloured Petri
Nets) in order to get less complex nets (provided that complexity is measured in number of
nodes). In our approach instances can be inscribed with jobs and if an instance occurs, the
corresponding job is executed. A job can be considered as an atomic and well-understood
activity. Jobs are members of the job library J, J = (JyXJprxJpoxJp). Jobs have got
names from Jy. For each job an input firing behaviour jr; € { ALL, MULT,COMPLEX}
and an output firing behaviour jy, € { ALL,SOME,DET, MULT,COMPLEX describe
informally how the job behaves when it is executed. An input firing behaviour ALL for
example indicates that the job reads tokens from all channels of the preset of the instance it
is assigned to. An output firing behaviour MULT for example indicates that the job writes
a natural number n to the first channel of the postset of the instance to which the job is
assigned and that it writes |n| tokens to the second channel of the postset of the instance the
job is assigned to. The job parameterization .Jp defines the types of tokens, which are read
and written by the job. The job parameterization consists of input parameters and output
parameters which are separated by an horizontal arrow.

Edges are inscribed by two functions £ := (Ep, Ey). We distinguish information flow and
control flow as well as reading tokens by removing and by copying. Er assigns an edge type
from the set {IN,CO,OU, ST, FI} to each edge. An edge e € F with Ep(e) € { IN,CO, OU}
models information flow and an edge e with Ep(e) € { ST, FJ} models control flow. If
Er((s,t)) = IN and t occurs, a token is removed from s. If Ep((s,t)) = CO and t occurs,
a token is copied from s. The function Ey defines an edge numbering. The edge numbering
is needed for checking consistency between the parameterization of the attached job and the
object types assigned to the channels in the pre- and postset.

C := (Ca,Cr) defines two functions which assign attributes to channels. C4 attaches an
access attribute to each channel. The possible values are {FIFO,LIFO,RANDOM?}. The



access attribute defines the order in which tokens are removed from the channel. FIFO
denotes a ’First-In-First-Out’order, LIFO defines a ’Last-In-First-Out’ order. Channels s
with Cp(s) = RANDOM behave like places in P/T-Nets do. Cr attaches an object type from
O to each channel. Each channel s can only be marked with tokens of type Cp(s).

An instance can be annotated with up to four inscriptions. They are assigned by four functions
A = (Aj,Ap,Ap, Aw). Ay assigns a job to each agency. Aj(t) denotes the job assigned
to the instance t. Ap is a partial function which assigns predicates from the predicate library
P to instances. Ap(t) denotes the predicate assigned to the instance t. The function Ap
assigns a positive real value or the value 0 to instances. Ap(t) denotes the time consumption
of instance ¢, it quantifies the amount of time which passes between reading tokens from
the preset of ¢t and writing tokens to the postset of ¢t. The function Ay, assigns one of the
values {PIPE,NOPIPFE} to instances. The pipelining attribute Ay (t) defines whether the
instance ¢ models a pipeline or not. If Ay (¢) = PIPE, t can fire without having finished
previous firings. Otherwise ¢ must finish each firing before it can occur again.

The initial marking of the net is defined by the function My, which assigns a set of tuples
from (range(Cr(s))xIN) to each channel s. The first component of each tuple is the object
value, the second one is a natural number. This natural number defines an order of the tokens.
This order is required for channels s with Cr(s) € { LIFO, FIF(, since the access to tokens
marking such channels depends on their arrival order.

3.2 Syntax of FUNSOFT Nets

Definition 3.1 Parameterizations of activation predicates and jobs

The languages Lap and Ljp which define the parameterizations of activation predicates and
jobs are defined by the following grammar. The language L op s generated with the start symbol
< ActivationPredicate Parameter > and for Lyp the start symbol is < JobParameter >.

< Char > n=al...|z|A]...|Z

< ComplexTypeid > n= < Char > {< Char >}j

< SimpleTypeid > = BOOL|INTEGER|REAL|STRING

< Typeid > n= < SimpleTypeid > | < ComplexTypeid >
< Parameter > = < Typeid > {x < Typeid >}§

< ActivationPredicate Parameter > 1= < Parameter >

< JobParameter > u= < Parameter > — < Parameter >

A word of the language L zp is for example personx REAL, a word of the language L;p is for
example personx REAL—BOQOL.

Definition 3.2 FUNSOFT nets
Let Lyype be the language for defining token types and let TY PID denote the set of correct
type identifiers. Let Lap and Ljp be languages for defining parameterizations of activation
predicates and jobs as defined above. A tuple FS=(S,T,F,0,P,J, A,C,E, My) is «a FUNSOFT
net, iff:
1. (S,T;F) is a net
2. OC (OnxOp) defines object types by

On = {BOOL,INTEGER,REAL,STRING}JTYPID

15 a set of type identifiers
Op € Lyype 15 a set of type definitions for Oy



3. P C (PnxPp) defines a library of predicates where
Py s a set of predicate names
Pp C Lap s a set of predicate parameterizations

4. JC (InxJprxJpoxJp) is a library of jobs with
JN 15 a set of job names
Jpr= {ALL,MULT,COMPLEX}
Jro = {ALL,SOME,DET,MULT,COMPLEX}
describe the input and the output firing behaviour
Jp € Ljp ist a set of parameterizations

5. E= ( 4HEy) define edge annotations with
Er: { ?2 Eizg; : } g\(k i,?}’ ST} function assigning an edge type
Eyn: F — IN defines an order on the pre- and postset of each instance by
Vits), (s tner En(t s) < [teo] AEN(s', 1) < [o ]
Vis,0),(s"00eF En(s,t) # En(s',t)
v(t,s),(t,s’)EF EN(t7 3) # EN(t7 Sl)

6. C = ( £ Cp) defines channel annotations by
Cys: S—{RANDOM,LIFO,FIFO}
function assigning access attributes
Cr: S — On function assigning object types

7. A= ( AAp,Ap, Aw) defines instance annotations by
Aj: T — J function assigning jobs
Ap: T — P partial function assigning activation predicates
Ap: T — IR§ function assigning time consumptions
Aw : T — { PIPE,NOPIPE} function assigning pipelining attributes

8. My defines the initial marking by
My : S—=P((Uoeco, Tange(o))xIN)
iff My respects the channel types defined by Cr.

3.3 Graphical Representation of FUNSOFT Nets

The net structure of a FUNSOFT net is graphically represented as usual: channels are drawn
as circles, instances as rectangles and edges as arrows.

The firing behaviours of jobs provide some information about the behaviour of jobs during
their execution. Firing behaviours are displayed as follows:

IE Fo

n Cc + n Cc

ALL MULT COMPLEX ALL SOME DET MULT COMPLEX

Figure 1: Graphical representation of the firing behaviour of jobs

Since each job has an input and an output firing behaviour graphical symbols for both kinds



of behaviours can be combined.

The Figure left to this paragraph shows where attributes of an

Name Person arriving instance depicted as a rectangle are displayed. The pipelining

ATO 0-01 attribute PTPE is indicated by a horizontal line in the lower
part of the rectangle. If this line is missing, the instance has the
Ay (® Login attribute NOPIPE. If Ap(t) = 0 it is omitted. On the right
A N(t) SA Analyzer hand of the Figure an example is given with A;(¢) = Login,
P Ap(t) = SA Analyzer, Aw(t) = PIPE and Ap(t) =0 .01.
Name Created Dfds

The graphical representation of channel attributes and of ini-

tial markings is shown in the Figure left to this paragraph.

(C (9 (fifostring) T.he example on the right of that Figure shows a channel s

A I\/I’(s-;- ['Roo’t Did’ 1] with Cr(s) = STRING, Ca(s) = FIFO and M(s) =
{('RootDfd',1)}. The channel name is optional.

The type of an edge is drawn near to the arrow representing the edge. If it is omitted an edge
(s,t) is of the type IN and an edge (¢, s) is of the type OU. Edge numbers are written under
edges. For the remainder of this document edge numbers are omitted whenever the parameter
position of tokens read from or written to channels is clear.

3.4 A FUNSOFT Net Example

This subsection introduces an example showing how a requirements analysis phase of a software
process can be modelled by means of FUNSOFT nets. The given nets are part of an example
provided in [Emme89|, where a complete waterfall driven software process is modelled by
means of FUNSOFT nets.

The graphical representation of this example is enabled by using two kinds of hierarchies,
which were introduced in [HJS89], namely instance substitution and channel fusion. In the
following nets instances inscribed with DEC denote that an instance is refined by a subnet.
For example the instance Requirements Analysis in Figure 3 is refined by the net in Figure 4.
Channels represented by a dotted circle are fusioned to a channel of the same name, which is
drawn by a solid circle and which appears in the same net or in another subnet. For example
the channels working sa-analyzers of Figure 4 are fusioned to the channel working sa-analyzer
of the net shown in Figure 2.

One of the object types used in this software process model is for example the object type
person which is a record containing a name, a salary, the number of hours worked at the current
day, number of hours worked in total, and a role. All object types used in this example are
explained in Table 2.

For an informal description of the jobs used in this example confer to Table 1.
Figure 2 shows an example of a model of project management activities.

Tokens in this net represent persons and are of the object type person. Persons can be in
the states coming to work, working and leaving work. The job Login reads a token of the type
person from the preset, initializes the number worked today and writes it to the postset. All
instances having the job Login are inscribed with different activation predicates. They check
the role of a person and guarantee, that the channels in the postset are only marked with
persons having the checked role.



Jobname Firing behaviour  (Input parameter)—(Output parameter)

Informal description of the job

Login (all,all) ( (parescaon ) —
Reads from the input channel a token representing a person, initializes the number person.worked_today

to zero and fires the token into the output channel.

Logout (all,all) ( (parescaon ) —
Reads from the input channel a token representing a person, adds the number person.worked_today to

person.worked_total and fires the result into the outpt channel.

ClosTime (all,all) ( (parescaon ) —

Reads a token from the input channel and fires it to the output channel.

CreEmpSA  (all,all) ( )—(samadel)

Reads a control token and fires an object of the type samodel which is initialized with empty lists into the
postset.

EditSA (all,all) ( sampeledprperson X samodel)

Reads a token from the type samodel and a token representing a person from the preset, increases
person.worked_today by the time consumption of the instance and fires the tokens to the postset.

AnalyzeSA  (all, some) ( )-sdmuodetlel x samodel X string)

Reads a token from the preset and fires it randomly either to the first or to the second output channel. If
the job fires to the second output channel a string modelling an error report is fired to the third output
channel

Less (all,all) ( stripgysefperson)
Reads a tokens from the preset, increases person.worked_today by the time consumption of the instance
and fires the modified token to the postset.

Decide (all, some) ( sparedel}— (personx samodel x samodel)

Reads a token from the first channel of the preset, and fires the increased component person.worked_today
into the first channel of the postset. Moreover, a token is read from the second channel of the preset. This
token is fired randomly into the second or into the third channel of the postset.

Move (all,all) ( )—(samodel x samodel)

Reads a token from the preset, duplicates it and fires one to each output channel.

Table 1: Jobs used in the example

working

sa-analyzers Logout SA-Analyzer

(random,person)

Analyzer Worked_enough
[p4,6000,0,0, SA_Analyzer'] Login i Logout
3,4000,0,0," Programmer’ working .
{gz 5000,0,0 ’Desiggner’] ] designers Logout Designer
[p1,4500,0,0," Tester’]
>

persons coming persons

to work leaving off work
Designer (random, person) Worked_enough g
Login L ogout
working
(random, programmers L0gout Programmer (random,person)
person)
>

(random,person)

Programmer Worked_enough

Login Logout
working
testers Logout Tester
E——
random,person
Tester ( p ) Worksd_enough
Login Logout
Closing
Time
16.0
ClosTime

Figure 2: Personnel Management



The job Logout reads tokens of the type person, adds the number worked_today to the
number worked_total and writes the new token into the preset. The activation predicate
worked_enough is attached to all instances inscribed with the job Logout. The predicate checks
whether worked_today is greater than 8.0 (hours). The job of the instance Closing Time has
got a time consumption of 16.0 hours and the instance allows pipelining, so that persons are
removed from persons leaving off work and written to persons coming to work with a delay of
16.0 hours.

Figure 3 shows a net which models a waterfall driven software process.

created modules

(fifo,module)

Implementation

Requirements Structured -
and Unit Test

start Analysis Design

correct
module src

modules to
implement

sa ready

random,module)

(fifo,bool) DEC (fifo,samodel) DEC (fifo,module) DEC
[TRUE] correct
export module
interfaces obj

Integratio

correct
and Test

system

(random,string) (random,string)

(random,

DEC string)

number of modules

(lifo,integer)

Figure 3: A waterfall driven software process modelled with FUNSOFT nets

Every instance of this net is refined by a submnet. Its channels define the ports between the
subnets. In the following we explain the refinement of the instance Requirements Analysis
which is shown in Figure 4.

Create
empty . Analyze
start SA-Model SaC_fgaézil Edit SA edlteéi | SA errors Read errors
0.01 4.0] Samoge 0.1 0.5

JA—.HQ ‘+—

(random string)

(fifo,bool) creEmpsA (random, EditsA (fifo, samodeI)AnalyzeSA Less
[TRUE] saquel) working
working analysed sa- analyzers
sa-analyzers sa- model
R sa ready
. /; (fifo, samodel)
Sl (random person)
(random,person) fifo,samodel)
modeled
question sa-model sa-model
S I R e Wl s
(lifo,string) Decide (random,samodel) Move (random,samodel)

[change model ?]
Figure 4: Requirements Analysis with SA

This net models a requirements analysis phase following the Structured Analysis method
[DeMa79]. The ports to the instance refined by this net, namely start and sa ready are showed
on the left respective right sight of this Figure.
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If the instance Create empty SA-Model occurs it reads the control token from its preset and
fires a token of the object type samodel into its postset. The instance Edit SA models the
editing of the SA model by sa-analyzers. The time to carry out this work is modelled by the
time consumption of 4.0 hours.

The check whether a SA model holds the consistency criteria proposed by de Marco for SA
documents is modelled by the instance Analyze SA. As this activity can be performed in the
background, this instance has the pipelining attribute value PIPFE. The instance Analyze SA
produces either an error message or an analyzed SA model, which is considered to be correct
(For detailed description cf. Table 1).

Reading of error messages by sa-analyzers is modelled by the instance Read errors. The fact
that the last decision on the correctness should be held by sa-analyzers, is modelled by the
instance holding the job Decide. This instance fires randomly the token from analyzed sa-
model either to created sa-model or to modeled sa-model. The instance holding the job Move
models the duplication of SA models in order to enable persons in later phases to read this
document.

3.5 Unfolding FUNSOFT Nets to Predicate/Transition Nets

In the beginning of section 3 we gave a short and informal explanation of the semantics of
FUNSOFT nets. This informal explanation does not enable us to define dynamic properties like
activation, firing behaviour or the reachability set. A formal semantics definition of FUNSOFT
nets is a prerequisite for analysing them by standard Petri net analysis techniques.

In this section we describe an algorithm which is a ‘local simulation’ [Star87] of FUNSOFT
nets by Pr/T nets with "Many-sorted Structures’, "Multi-Sets’, and the "Weak Transition Rule’
as proposed by Genrich [Genr86].

Pr/T nets resulting from applying the algorithm to FUNSOFT nets and the FUNSOFT nets
themselves are related by a net morphism [SR87]. The construction of Pr/T nets out of
FUNSOFT nets is called unfolding in the following. The result of applying this unfolding to a
net element is called the unfolded net element, the result of applying it to a FUNSOFT net is
called the unfolded FUNSOFT net.

In this section we describe the unfolding of FUNSOFT net components and how the unfolded
components are assembled. Furthermore we use the result of this construction to define the dy-
namic behaviour of FUNSOFT nets. That builds at last the foundation for calling FUNSOFT
nets a type of Petri nets.

In the following we give a rough sketch how the unfolding of FUNSOFT net elements is
performed. In the beginning a first-order structure building the support of the Pr/T net is
provided. Secondly, the object types are mapped onto variable predicates. They are used
in the unfolding of channels. Thirdly, for each access attribute value a Pr/T net is defined.
Fourthly, jobs are described by Pr/T nets. These Pr/T nets define the input and the output
firing behaviours of a job formally. Moreover, each activation predicate is translated into a
static predicate. They are assigned to transitions in unfolded instances. The unfolding of
instances is mainly determined by the Pr/T net defining the job attached to these instances.
The Pr/T nets resulting from unfolding channels and instances are connected according to the
edge type of the edge connecting channel and instance in the FUNSOFT net. At last, formal
sums of tuples of constants derived from the marking of the FUNSOFT net, are attached
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to places of the unfolded channels. This way of unfolding FUNSOFT nets to Pr/T nets is
described in detail in the rest of this section.

3.5.1 Support

The signature of the supporting structure used in the Pr/T nets encompasses the sorts: Bool,
Int, Real, Str, Set(Type), List(Type) as well as a set of commonly used functions and predicates
for these sorts.

3.5.2 Object types

The primitive type identifiers BOOL, INTEGER, REAL,STRING are translated into the
unary variable predicates (Bool), (Int),{Real), (Str). Type identifiers denoting complex object
types are translated into variable predicates reflecting the structure of the object types. The
construction of records is implemented by building tuples over the variable predicates. The
construction of list is mapped onto the abstract type List. Correspondingly the construction
of sets is mapped onto the abstract type Set.

In Table 2 the object types and the corresponding variable predicates used in the example
given in the previous subsection can be found.

Names (On) | Definitions (Op) Variable predicates
struct person {char *name;
float salary;
person float worked_today; (Str, Real, Real, Real, Str)
float worked_total;
char *role;}
dfdlist struct dfdlist {char *dfd; (List(Str))
struct dfdlist *next;}
dalist struct dalist {char *da; (List(Str))
struct dalist *next;}
msplist struct msplist {char *msp% (List(Str))
struct msplist *next;}
struct samodel {dfdlist *dfds;
samodel dalist *das; (List(Str), List(Str), List(Str))
msplist *msps;}

Table 2: Type definitions for complex object types

3.5.3 Channels

As mentioned above channels can have different access attribute values, namely FIFO, LIFO
and RANDOM. The unfolding of channels with different access attribute values results in
Pr/T nets with different internal structures. The elements of the surface of unfolded channels
are places. These places are called ports. We distinguish between input ports (places from
which transitions of the Pr/T net read tokens) and output ports (places to which transitions
of the Pr/T net write tokens). Independent from the access attribute value unfolded channels
always have the same ports. Thus there is only one way to connect unfolded channels to
unfolded instances. That fact allows us to restrict ourselves to describe the unfolding of a
FIFO channel in this paper.
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Figure 5 shows the generic Pr/T net which results from unfolding a FUNSOFT channel s with
Ca(s) = FIFO.

<Channeltype> <int> <int> <Channeltype>
<
<data> ,:ﬂlLiii* nr> <data> R
<nr> <nr+1>
Input Entered Removed Output
Enter data ,nr> <data ,nr> Remove
<Channeltypeint>
<FALSE>
<bool>
<FALSE> <TRUE>
D —— E————"»
<FALSE>
Reqguest

Hdl request

Ready

Figure 5: Generic Unfolding of a Channel s with C4(s) = FIFO

The variable predicates (Channeltype) (used for the places Input and Output) are replaced
by the predicates derived from the object type Cr(s). Accordingly the inscriptions (data) are
replaced by the symbolic sums representing objects of the type Cr(s). How the variable pred-
icates are derived from Cp(s) has been described in the previous subsection. The inscription
of the edges are derived analogously. By replacing the variable predicate (Channeltype) and
the (data) inscriptions we obtain a concrete Pr/T net.

The places Input, Output, Request and Ready are the ports of the Pr/T net. Exactly these
places are connected with other transitions when a Pr/T net for a whole FUNSOFT net is
assembled.

Tokens are written to Input by unfolded instances of the preset of s. Tokens are read from
Output by unfolded instances of the postset of s.

If the port Output is marked, it is marked with exactly that token which resides on the
FUNSOFT channel for the longest time. The places Entered and Removed are marked with
exactly one natural number, initially they are marked with 1. The number marking the place
Entered shows how often tokens were fired into the original FUNSOFT channel s. The number
marking the place Remowved shows how many tokens were already removed from s.

By marking the place Input the transition Enter is enabled. This transition reads a number
from Entered and a token from Imput, builds a tuple of both and fires this tuple to the place
Queue. In the same firing the number of the place Entered is increased and the boolean value
residing on Ready is set to TTRUFE. This shows that one token is ready to be processed by
transitions outside the unfolded channel and that token to transitions outside of this net and
that Imput can be marked again. In so far Ready can be considered as a semaphor for Input.
This enables the definition of an order of tokens arriving on Input.

The transition Remowve removes tokens from Queue exactly in their arrival order. Remove is
enabled, if the second component of the tuple marking Queue equals the number marking the
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place Remowved and if Qutput is unmarked. Whether Output is marked or not is indicated by
the marking of the place Delay. If Output is unmarked Delay is marked with FALSE. Firing
Remove means to cut the second component of the token read from Queue and to write the
first component to Output, and to increase the number marking the place Remowved, and to set
Delay to TRUE.

If an arbitrary transition reads a token from Output it additionally sets the markings of Request
and Ready to FALSE. Thereby the transition Hdl request is enabled. Hdl request sets the
marking of Request and Ready to TRU E again, the marking of Delay to FALSE. Afterwards
the next token can be fired to Quiput.

The Pr/T net of Figure 5 guarantees the required FIFO access to tokens of the channel s.

3.5.4 Jobs

Jobs are attached to instances. At last the structure of the job A;(¢) determines the structure
of the Pr/T net resulting from unfolding ¢. The jobs are defined in terms of Pr/T nets, thus
for each job of the job library a Pr/T net must be provided. This Pr/T net defines the
semantics of the job. Figure 6 shows as an example the Pr/T net for the Job CheckDfd. The
input firing behaviour of CheckDfd is ALL, its output firing behaviour is SOMFE and the
parameterization is (string—stringxstringxstring). CheckDfd reads a string which models
a data flow diagram from its input channel and writes it non-deterministic either to the first
or to the third output channel. In the latter case an error message is written to the second
output channel.

<Str>
<all> :: :
<Str> all=ell Inputl
<bool>
<ell> Time— <FALSE> >
Outputl <ell> h <TRUE>
Correct Ready1l
<bool> <Str> <Str>
<TRUE> <ell> _
P — >
<FALSE>
A ell>
Requestl Test Activation Param1l <'error’'> Input2
<TRUE> <bool>

a3l=ell
<FALSE> <FALSE>
<TRUE>
Time Ready2
<a3l> <Str>
<Ready1> Wrong <::>

<FALSE>

<TRUES> Input3

<bool>

Figure 6: Pr/T net defining the job CheckDfd

Corresponding to the parameterization we can find a place inscribed with the variable predicate
(Str) on the left side. Moreover, we find there two places with the names OReady! and
ORequestl. These places represent the input ports of the job CheckDfd. These places are
merged with ports of unfolded channels of the preset of instances to which the job CheckDfd
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is assigned. This merging takes place when a complete Pr/T net is assembled. On the right
we find three places inscribed with the variable predicates (Str). Together with the places
inscribed with Ready!, Ready2, Ready3 they build the output ports of the job CheckDfd. In
between input and output ports we find

e a transition which reads tokens from the places on the left and which checks the activation
predicate.

e a subnet which manipulates the input tokens and creates the output tokens.

For each job exactly one transition is labelled with Test Activation and at least one transition
is labelled with T%me. Static predicates and time consumptions are assigned to these labelled
transitions during the unfolding of instances.

In [Emme89] about 40 further jobs for software process modelling were defined in terms of
Pr/T nets.

3.5.5 Activation predicates

Each used activation predicate is translated into a first-order formula. These formulae are
used as static predicates of transitions Test Activation in unfolded instances. In the following
Table all activation predicates of the example mentioned above are given and translated into
first-order formulae.

Activation predicate Formula Description
Name Parameter
SA_Analyzer person 'SA-Analyzer’ = el5 | TRUE, if person has role ’SA-Analyzer’
Designer person "‘Designer’ = el5 TRUE, if person has role ’Designer’
Programmer person "Programmer’ = el5 | TRUE, if person has role ’Programmer’
Tester person "Tester’ = elb TRUE, if person has role 'Tester’
worked_enough | person el3 > 8.0 TRUE, if person has worked today at least 8 units

Table 3: Transformation of activation predicates into formulae

3.5.6 Instances

For explaining the unfolding of instances we refer to the mentioned Pr/T net representations
of jobs. The unfolding of an instance ¢ is essentially determined by the Pr/T net representing
the job A;(t). What has to be supplemented are components reflecting the specific instance
attributes, namely the formula derived from the activation predicate, a time consumption, and
a place for defining the pipelining behaviour.

The formula derived from the activation predicate is attached as static predicate to that
transition of the Pr/T net defining the attached job which is labelled with Test Activation, the
time consumptions of instances is assigned as time consumption to the transitions labelled with
Time. The semantics of time consumptions of transitions is the same as defined in [Ramc74].
Due to the internal structure of all nets defining jobs no conflicts are resolved by activation
times. Thus the application of analysis techniques for non timed Petri nets is not affected by
this definition of time consumptions.

Figure 7 shows a simplified net resulting from unfolding an instance and the extensions caused
by the pipelining attribute having the value PIPFE. The dashed box contains the extensions.
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Outputl
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Activation Paraml cals Q

Predicate Q Job a Inputl
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<FALSE>

<TRUE>

Paramn

<FALSE>

ORequestl
9 |Ready1

' Execute am>

" the Job

Outputn Inputm

<bool>/LTRUE> '

! IReadym

ORequestn

Figure 7: Extensions of a net defining a instance ¢ with Ay (t) = PIPE

The additional place inscribed with Active is connected to the transitions labelled with Test
Activation and Ezecute the Job. It guarantees, that the transition Test Activation is only
enabled if the transition Fzecute the Job has finished the firing. For a pipelining attribute
value NOPIPE the additional place and its adjacent edges are omitted.

3.5.7 Edges

If an edge e connects a channel and an instance corresponding edges have to connect the
unfolded channel and the unfolded instance. To connect an unfolded channel and an unfolded
instance means to merge their ports. For edges (s,f) we have to merge the output ports
of the unfolded channel s with the input ports of the unfolded instance t. For edges (,s)
the input ports of the unfolded channel s are merged with the output ports of the unfolded
instance t. Edges e with Ep(e) = ST are treated as edges with the edge type IN, edges e
with Er(e) = ST are treated as edges with the edge type OU. In the following Figure 8 it is
depicted how edges with edge type IN and OU are represented in the Pr/T net.

Edges (s,t) with Ep(s,t) = CO are represented as edges from the type IN, but the edges in
the Pr/T net connecting Request and Test Activation and vice versa are omitted and the edge
connecting Test Activation and Ready is inscribed with (TRUE).

3.5.8 Initial Marking

Transforming the marking of a channel s means to mark several places of the unfolded channel
s. In the following we describe how the initial marking M (s) of a channel s with Cy(s) = FIFO
is transformed into the initial marking of the unfolded channel. The transformation of initial
markings of channels s with Cy(s) € { LIFO, RANDOM;} is described in [Emme89).

If the marking M (s) is empty the initial marking of the unfolded channel corresponds to the
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Edge type IN Edge type OUT

<Channeltype> <Channeltype>
<el> <al>

» >

Output <TRUE>
<bool>

<TRUE> Output
<bool>

Test Execute
Activation Job

Ready

<bool>

Request

Figure 8: Pr/T net representation of edges with types IN and OU

one given in Figure 5. Otherwise the places of the unfolded channels are marked as follows:
The place Input is unmarked. The places Delay, Request and Ready are initially marked with
TRUE. The place Entered is marked with |M(s)| + 1 and the place Remowved is marked with
2. The place Output is marked with that token, that has to be accessed at first, i.e. with that
token whose second component equals 1. The place Queue is marked with all tokens of M(s)
which are not accessed at first.

Figure 9 shows as an example the transformation of the marking M (s) = {(4,1),(3,2),(7,3)}
of a channel s with Cp(s) = INTEGER and Cy(s) = FIFO.

<int> <int> <int> <int>
<data> 74’<nr+l> <nr> <data> 4
———> >
<nr> <nr+1>
Input Entered Removed Output
Enter <data ,nr> <data ,nr> Remove
<int,int>
<FALSE>

<bool>

<FALSE> <TRUE>

<FALSE>
Reqguest

Hdl request

Ready

Figure 9: Translation of a Marking for C4y = FIFO

3.5.9 Assembling unfolded channels and instances

The following Figure 10 shows an Pr/T nets resulting from assembling an unfolded instance ¢
with A;(t) = CheckD fd and its input and output channels. The input channel as well as the
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output channels have the access attribute value RANDOM.

<bool>

<TRUE>
<FALSE> |
Hdl Request Request :

|

<TRUE>
— |
<FALSE> !
Hdl Request Request ,

Figure 10: An assembled Pr/T net

3.6 Dynamic behaviour of FUNSOFT nets

Let in the following f denote the unfolding of channels and instances. f(s) denotes an unfolded
channel s and f(¢) denotes an unfolded instance t. Let f(et U t) respectively f(eot Ut U te)
denote the unfolding of the instance ¢ and its preset respectively pre- and postset together
with the construction of their edges as described in subsection 3.5.7.

Definition 3.3 Marking of FUNSOFT nets
Let FS = (S, T,F,0,P,J,A,C,E, M) denote a FUNSOFT net. The annotation
M : S—P(( U range(o))xIN)
0cO

15 colled Marking of FS, if it respects Crp.

Let g(M) denote in the following the translation of the marking M by means of the algorithm
sketched in subsection 3.5.8.

Definition 3.4 Enabled instances
Let FS = ( S,T,F,0,P,J,A,C,E, M) denote a FUNSOFT net. An instance t is enabled
under a marking M, iff a transition in f(et Ut) is enabled under g(M).
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Definition 3.5 Firing rule

Let FS = ( S,T,F,0,P,J,A,C,E, ) denote a FUNSOFT net. If t is enabled under a
marking M, the result of its occurence is determined by the firing of t1,...,t, € f(et Ut U te)
for which holds:

9(M)[tr:01) - - - [tiang (M)
with g(M') enabling no transition of f(et Ut U te)
Definition 3.6 Reachability set

Let FS = ( S,T,F,0,P,J,A,C,E, M) denote a FUNSOFT net and M be a marking of F'S.
The reachability set M[) of M is the smallest set for which holds:

1. M € M)
2. Yier + M[t)YM' = M' € M])

4 Analysis of FUNSOFT Nets

In this section we explain how FUNSOFT nets representing software process models can be
analyzed.

In principle we distinguish between validation of software process models (done by simulation)
and verification of software process model properties. Validation is performed by using the
FUNSOFT simulation tool which is described in detail in [MELM90]. In this section we focus
on analyzing software process models by verifying software process model properties.

Before we explain the applied analysis techniques in detail we sketch the method for obtaining
software process relevant results. This method is depicted in Figure 11.

Software Process transform o FUNSOFT transform Pr/T net
Model property 7 property property
proof proof

Proven Software Process Model property

Figure 11: Verification method for FUNSOFT nets

The diagram of Figure 11 shows that our approach towards analysis of software process models
is driven by the software process model specific relevance of expected results. That means
we start with defining software process model properties which we are interested in from a
software process modelling point of view. These properties are transformed into corresponding
properties of FUNSOFT nets. In some cases these properties can be verified by applying
algorithms directly to FUNSOFT nets, in other cases it is necessary to unfold FUNSOFT nets
to Pr/T nets and to verify the corresponding properties of the unfolded net.

Properties concerning FUNSOFT node and edges attributes Properties of this class
are proven by evaluating the attributes of channels, instances, and edges of FUNSOFT nets.
One interesting software process model property is to find out if the described software pro-
cesses require more than k programmers in order to be efficiently executed (k € IN). Such
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a property can be checked by examining how many concurrently working instances are sup-
ported by programmers. Moreover, it can be shown that a certain percentage of edges between
channels and instances are of type CO, which can be considered as a hint for a growing number
of objects managed in the software process.

Structural properties of a FUNSOFT net Properties of this class are proven by struc-
tural analysis techniques. These analysis techniques are partially implemented by algorithms
for detecting detect deadlocks, traps [Comm72], and conflicts [Reis86] and partially by the in-
terpretation of S-invariants of the unfolded FUNSOFT net (for example for obtaining results
concerning the conservativity [Pete81] of nets).

Reverting to the net depicted in Figure 2 one interesting software process model property is
whether one of the persons participating in software development may disappear somewhere
in the process (which means that someone does not participate in the software process and
what obviously reveals an error in the software process model). By calculating S-invariants
of the Pr/T net which results from unfolding the FUNSOFT net we were able to prove the
strict conservativity of the FUNSOFT net depicted in Figure 2. For calculating S-invariants
we used the tool described in [KL84] which is based on [Mevi81]. By means of this calculation
we showed that no person disappears during the software process.

Dynamic properties of a FUNSOFT net Properties of this class are proven by dynamic
analysis techniques. These techniques are implemented by algorithms which prove non-liveness
[Laut73], fairness [Mura89], and the non-reachability of particular markings. These examina-
tions are based on reachability trees. Reachability trees for arbitrary FUNSOFT nets are not
finite. Thus we have to apply reduction mechanisms for reachability trees. The reduction we
employed is the reduction to the number of tokens which abstracts from the individual value
of tokens. This reduction corresponds to the total projection as introduced in [Genr86]. The
reduction to the number of tokens means that we are not able to build reachability trees for
FUNSOFT nets in which the values of tokens determine if a transition is enabled or not. Thus
we are only able to consider simple FUNSOFT nets. Simple FUNSOFT nets are FUNSOFT
nets in which no activation predicates are assigned to instances and in which no jobs with a
MULT_IN or COMPLEX_IN input firing behaviour occur.

Thus we cannot obtain results as ”it cannot occur a state in which the channel which contains
modules is marked with the modules ml, m2, and m3” but we can obtain results which
concern the mere quantitative aspects such as ”it cannot occur a state in which the channel
which contains modules is marked with three modules”.

The mentioned properties are used for showing that a software process cannot reach final
states (or that exactly this is possible), that conflicts between activities are resolved in a fair
way. The non-reachability of particular markings corresponds to software process states which
never can be reached.

Reverting to the net depicted in Figure 4 one is interested in examining if the described
software processes reach final states (otherwise it cannot be guaranteed that the requirements
phase ends at all) and if not more than one sa-model can exist at a certain point in time
(since we have an inconsistent requirements analysis state otherwise). The reachability tree
for the FUNSOFT net proves both properties by showing the k-boundedness of the channel
encompassing sa-models and by identifying dead states.

This short sketch of how we exploit standard Petri net techniques has shown that our approach
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is a very pragmatic one. Our research of looking at software process model properties which can
be proven by standard Petri net techniques is an ongoing activity, since we do not believe that
all possibilities of analysis techniques have been exploited yet. Our current research focuses on
removing the restriction on total projections of FUNSOFT nets (which is the source for only
obtaining quantitative results). Our idea is not to use total projections, but to employ more
sophisticated reduction methods as equivalent markings [Jens86] and stubborn sets [Valm89].
By using more sophisticated reduction methods we hope to avoid the restriction to simple
FUNSOFT nets in the future.

5 Tool Support for FUNSOFT Nets

In this section we point out how our approach to the modelling of software processes and to
the analysis of software process models is implemented. On the one hand this section gives a
rough sketch of the relationships between some basic tools working with FUNSOFT nets and
on the other hand some of these tools are discussed in a little more detail.

Net Editor Job/Prgdlcate Object Type Simulator | Analysis Tool !
Editor Editor ! :
) IEUNZ,OEZT” v

'Analysis Tool | Petsl

v

., Unparser,

v v v v v v

DMM
GRAS

Figure 12: Relationships between basic FUNSOFT tools

Figure 12 provides a sketch of the relationships between the basic tools working with FUN-
SOFT nets. The arrows between different components represent the use-relationship between
components. Components represented by dashed boxes are under implementation. The tools
sketched in Figure 12 work in an incremental way, thus it is not necessary to predefine an
order of their application.

The Net Editor is a graphic editor used for editing the skeleton of FUNSOFT nets. These
nets are incrementally parsed and stored in the underlying Object Management System. The
Job/Predicate Editor and the Object Type Editor are used for editing the components O, P, and
J of a FUNSOFT net. These components are stored in the Object Management System, too.
The other tools are retrieving the FUNSOFT net representation from this common storage
medium. Since the Analysis Tool encompasses the tool PetSI it is necessary to build an
Unparser which provides the required Pr/T format. PetSIis a tool for calculating S-invariants
which is described in [Mevi81] and whose improvements are described in [KL84].

The Stmulator accesses the object management system to get the information which are needed
during simulation of FUNSOFT nets. In the FUNSOFT net simulation tool jobs and activation
predicates implemented in the programming language C can be used.
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The Net Editor enables the development of hierarchical FUNSOFT nets. This hierachical
structuring is obtained by enabling the definition of instances which can be refined by subnets.
This notion of refinement corresponds to the notion of substitution transitions as described
in [HJS89]. Other notions of refinements are not implemented yet. According to the definition
of hierarchical coloured Petri nets we consider the hierachical structuring as an operational
feature which does not affect the semantics definition of FUNSOFT nets. The user interface
of the editor is sketched in Figure 13.

EFUN-Editor V1.8 FUNCTION: EFUN-Editor M3ZP: armin MODUS: No Select

DELETE copy PARMETER DONE

Z00M_TIN Z00M_0uT ((VERBDSE ) (REDISPLAY) (CLEAR ] ((TRACES ) E
INPUT AGENCIES : B
|
&11_In Mult_In Compl_In
OUTPUT AGENCIES :

INERE

A11_0ut  Some_Out  Mult_0Out

K

Coma1_0ut

—_

Subnet Edge

O e

Charnel Token

Figure 13: User interface of the Net editor

The Analysis Tool consists of three main components. Firstly, it has a FUNSOFT net analysis
component which contains algorithms for directly examining FUNSOFT nets. Secondly, it has
an unparser component which provides the equivalent Pr/T representation for the component
which contains algorithms which are applied to the Pr/T net representation of the software
process model. Thirdly, it encompasses the Pr/T net analysis tool PetSI.

The underlying object storage system is GRAS [LS88] which was developed in the IPSEN
project [ELNS86]. GRAS is well suited for storing all kinds of graphs. The document manage-
ment module (DMM) builds an application specific interface of GRAS. This module provides
functions which enable the storage and the access of FUNSOFT components in a convenient
way. Typical examples are functions for storing single edges, for retrieving attributes of par-
ticular nodes or for retrieving all input channels of an instance. By means of these function it
is possible to access small parts of the FUNSOFT net. Thus, we are able to work with large
FUNSOFT nets without creating copies in the main memory.

A more detailed description of the environment build around FUNSOFT nets can be found
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in [MELM90].

6 Conclusion

In this paper we described a result of combining knowledge in the area of software process
modelling and in the area of Petri net research.

The result is an application oriented type of high-level Petri nets, namely FUNSOFT nets.
FUNSOFT nets can be used in software process modelling and they enable the exploitation
of standard Petri net analysis techniques. In this way results concerning the application area
can be obtained on a sound mathematical basis.

The described work is embedded in two European projects funded under the ESPRIT and
the EUREKA programme. It was carried out under very pragmatic conditions, that means
the suitability of the proposed formalism was an important argument throughout the whole
development of FUNSOFT nets. The proposed type of high level nets has not only be proven to
be suitable for describing software process models, it furthermore has contributed to measure
up to some of the essential and often demanded requirements (namely analysis of software
process models, graphic animation of software processes, and simulation of software processes).
Thus, FUNSOFT nets are a reasonable candidate for a formal software process modelling
language.

In the near future the implementation of an environment which enables to use FUNSOFT nets
for modelling, simulating, and analysing of software processes and software process models
will be finished. Our investigations of analysis techniques which are worthwhile to be used in
software process modelling remain an ongoing activity. Especially the use of more sophisticated
reduction mechanisms for FUNSOFT markings (instead of using total projections) seems to
be promising with respect to increasing the expressive power of results delivered by standard
Petri net analysis techniques.
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