
Algebraic semantics of ER-models from the standpoint of map

calculus.

Part I: Static view.1

Eugenio G. Omodeo2

Dipartimento di Matematica Pura ed Applicata
Universit�a degli Studi di L'Aquila

L'Aquila, Italy
omodeo@univaq.it

Ernst-Erich Doberkat
Department of Computer Science

Universit�at Dortmund
Dortmund, Germany

eed@LS10.de

Spring 2001

1This is a preliminary version. The �nal version will be published in Electronic Notes in Theoretical

Computer Science, URL: www.elsevier.nl/locate/entcs
2This research was in part supported through a travel grant from the Deutsche Akademischer

Austauschdienst

Abstract

Entity-Relationship modeling is a popular technique for data modeling. Despite its popularity
and wide spread use, it lacks a �rm semantic foundation. We propose a translation of an ER-
model into mapalgebra, suggesting that mapalgebra does provide suitable mechanisms for
establishing a formal semantics of entity-relationship modeling. This report deals with the
techniques necessary for the translation and provides a static view of an ER-model in its
mapalgebraic disguise.

Page 1

1 Goals of the present study

The structure of complex data may be speci�ed through an Entity-Relationship model. This
technique for modeling is rather popular, in part because it permits the visualization of the
relationship between data, making the structure of their interrelationship easily grasped. The
technique is based on Codd's seminal paper [3], it is available in many variants, and it is one
of the ancestors of the popular design method UML, see e.g. [11].
Despite its popularity, this approach to data modeling lacks a �rm formal foundation: it
appeals rather to the intuition of a modeler, neglecting the necessity of formally arguing
about an ER-model. There are some proposals for a formal semantics of various versions of
the model (section 7 provides a brief overview) which are mainly based on algebraic formalisms
like algebraic speci�cations. A semantics based purely on a calculus coming from logics has
not been investigated yet to the authors' knowledge.
Using the map calculus [1] as a formalization of set theory without variables [14] is intuitively
appealing: The naive semantics given to an ER-model is essentially set based | entities are
modeled through sets, relations through sets of n-ary tuples, and attributes as functions. It
is this naive approach which is formalized here.
Hence the language of map calculus (mapalgebra, as we will call it in brief) will serve as
the target language into which to translate an Entity-Relationship model. Is this translation
always possible? does it necessarily presuppose that some unduly arti�cial restrictions are
imposed on a modeling language which |as it stands| has an undebatable practical value?
will, perhaps, the limitations of mapalgebra force us into some richer target language?
We will carry out the translation at two levels. In the �rst place, since the primary role of
ER-modeling is to bridle the dynamics of a database within invariable boundaries, we will
manage to state the very same constraints in a di�erent and simpler-minded formalism. Only
this part of the translation constitutes object of the present paper. Then |in a subsequent
paper| we will head to a speci�cation of the abstract data types associated with an ER-
model. Mapalgebra lacks explicit means to describe change, and anyway the ADTs are left
implicit by the Entity-Relationship language too; nevertheless, we will strive to clarify the
semantics of database transactions by formulating how the new state enforced by an update
operation relates to the state immediately before it and by showing that updates never cause
permanent instability w.r.t. the statically �xed constraints.

At least one bene�t should ensue from a systematic translation of ER-models into mapalgebra|
to the extent to which this will demonstrate feasible: we will be forced to apply Okkam's razor
to the notions involved, so that e.g. the distinctions between relations and entities and be-
tween relations and attributes will fade away. Mapalgebra, in fact, was not designed to treat
objects of di�erent types, and can only take dyadic relations into account.

Our reference for the language of ER-models is [4] (see, e.g., [15] for an extensive treatment);
however, since the full variety of ER-models cannot be accommodated very easily into our
framework, we leave out of consideration attributes on relations, at least momentarily.
Our reference on map calculus is [6] (the most fundamental reference of all is [14]), and
we brie
y report on it in Sec.2. Let us recall here that map calculus, grown out of Boole's
\algebra of thought" just a few decades after the latter had been conceived (cf. [12, 13]), is an
enriched form of it. Today it looks like a simpli�ed version of Codd's relation algebra which
also happens to be a denominator common to a number of taxonomic languages proposed
for knowledge representation by several authors. Map calculus can hence be viewed both as

Page 2

an assembly language for knowledge representation and as a common ancestor of the many
systems of algebraic logic available today.

2 Map calculus in a nutshell

Very much like any logical formalism, map calculus consists of a symbolic language, an in-
tended semantics, a collection of logical axiom schemes (which, according to the intended
semantics, are valid, i.e. true in any legal interpretation), and a collection of inference rules.
Making use of a formalism means describing a privileged universe U of discourse (or perhaps
a variety of universes of interest) by means of proper axioms stated in the symbolic language,
in order to then be able to derive |by means of the inference rules| new facts which
necessarily follow from the axioms. More axioms means fewer interpretations, and therefore
a larger collection of derivable consequences; as an extreme case, in absence of proper axioms,
only valid sentences |which are a bit too vacuous to be really useful| are derivable.
Map calculus was designed to ease reasoning about dyadic relations |maps, as we will call
them| over an unspeci�ed, yet �xed, universe U . Its language is entirely equational, and
ground (i.e., devoid of individual variables); we feel therefore authorized to concentrate mainly
on syntax and intended semantics, to then summarize the logical axioms and inference rules
simply by a table, cf. Figure 2. After illustrating the use of mapalgebra by a few tiny examples,
in Sec.3 we will carry out in mapalgebra more challenging speci�cation tasks, which will bring
us closer to a crisp semantics of ER-modeling.

2.1 Syntax and semantics of mapalgebra

Mapalgebra consists of map equalities Q=R, where Q and R are map expressions:

De�nition 1 Map expressions are all terms of the following signature:

symbol : � 1l � ri \ 4 ; ^ � [

degree : 0 0 0 0 2 2 2 1 1 2 2
priority : 5 3 6 7 2 2

(Of these, \;4; ;;�;[will be used as left-associative in�x operators, ^ as a post�x operator,
and as a line topping its argument.)
We assume a countable in�nity r0; r1; r2; : : : of map letters to be available.

For an interpretation of mapalgebra one must indicate a nonempty U , and assign a subset r=i
of the Cartesian square U2 =

Den
U � U to each map letter ri. Then each map expression P

comes to designate, thanks to the rules below, a speci�c map P= (any equality Q=R between
map expressions turns out, accordingly, to be either true or false):

�
= =

Den
;; 1l= =

Den
U2; �

= =
Den

fha; ai | a in Ug ;
(Q\R)= =

Den
f h a; bi 2Q= | ha; bi 2 R= g;

(Q4R)= =
Den

f h a; bi 2 U2 | ha; bi 2 Q= if and only if ha; bi =2 R= g;
(Q;R)= =

Den
f h a; bi 2 U2 | there is a c in U for which ha; ci 2 Q= and hc; bi 2 R= g;

(Q^)= =
Den

f h b; ai 2 U2 | ha; bi 2 Q= g :
Of the operators and constants in the signature of mapalgebra, only a few deserve being re-
garded as primitive constructs; indeed, we choose to regard as derived constructs the following
ones, as well as others that we may add to the signature from time to time:1

1The priorities of �;
T
;
S
;
P

follow those of ;;\;[;4, and they are 6.5, 5.5, 2.5, 3.5.

Page 3

NonVoid(R) �
Den

Total(1l; R)
Func(R) �

Den
Coll(R^;R)

Snglt(R) �
Den

NonVoid(R) & Func(1l; R) & Func(R^)
Const(R) �Den Snglt(R) & Coll(R)
Dangl(D) �

Den
Coll(D ; 1l ;D)

Proj(L;R) �
Den

�
Func(L) & Func(R) & L;1l = R;1l

& 1l = L^ ;R & Coll(L ;L^ \R;R^)

Figure 1: Non-empty map, single-valued map, singleton maps, dangling-value map, and two
conjugated projections

P �
Den

P41l

P�Q �
Den

P\Q

P[Q �
Den

P�Q

dom(P) �
Den

P ;1l\ �

img(P) �
Den

1l; P \ �

Tn
i=1 Pi �

Den
P1\ � � �\PnSn

i=1 Pi �
Den

P1[� � �[PnPn
i=1 Pi �

Den
P14 � � �4Pn

�
n

i=1Pi �
Den

P1; � � � ;Pn

(to be intended as follows when n = 0:T0

i=1 Pi �Den
1l,

S0

i=1 Pi �Den
�,

P0

i=1 Pi �Den
�, �

0

i=1Pi �Den
�).

The interpretation of mapalgebra obviously extends to the new constructs; e.g.,2

dom(P)= =
Den

f h a; ai 2 U2 : there are bs in U for which ha; bi 2 P= g :
Through macros, we can also de�ne shortening notation for map equalities that follow certain
patterns, e.g.,

P�Q �
Den

P�Q=�

P=Q & R=S �
Den

�=P4Q [R4S

&n

i=1 Pi=Qi �
Den

�=
Sn
i=1 Pi4Qi

P�Q�R �
Den

P�Q & Q�R

Coll(P) �
Den

P��

Total(P) �
Den

P ;1l= 1l

so that Coll(E) means \E= consists of pairs of the form ha; ai" (hence E represents a collection
of entities rather than a genuine map), and Total(P) states that for all a in U there is at least
one pair ha; bi in P=.

As shown in Figure 1, macros are a device through which one can specify in mapalgebra quite
signi�cant properties of maps. Thus Func(P) means \P= is a partial function", Snglt(R)
states that R= consists of a single pair, Dangl(D) states that either D= is empty or it has the
form fhd; dig, etc.

In particular, by postulating Proj(�; %) one requires �=; %= to be conjugated projections, i.e.
functions de�ned on the same subset P of U so that
� for all a; b in U , there is a p in P s.t. �=(p) = a and %=(p) = b;

� if p; q in P are distinct, they cannot satisfy �=(p) = �=(q) together with %=(p) = %=(q).
Otherwise stated, p 7! h�=(p); %=(p)i is an injection from the subset P of U onto U2, which
implies that U is either singleton or in�nite.

2One often indicates as the domain of a map P any set which includes the actual set of �rst components of
pairs in P. With our de�nition, though, dom(P) represents what might be called the tight domain of P=.

Page 4

P 4P = �

P 4 (Q4P) = Q

R\Q 4 R\P = (P 4Q)\R

P \P = P

1l\P = P

(P ?1 Q) ?1 R = P ?1 (Q ?1 R)

� ;P = P

P^^ = P

(P ?2 Q)^ = Q^ ?2 P^

(P 4Q) ;R � Q ;R [P ;R

From P ;Q\R= � derive P^ ;R\Q= �

From P �Q derive P ;R�Q ;R

Substitution laws for equals (cf. [8])

?1 2 f4;\; ;g and ?2 2 f \;;g

Figure 2: Logical axioms and inference rules for the map calculus

3 Some basic speci�cations in mapalgebra

Quite often, only an intuitive characterization of the semantics of Entity-Relationship mod-
eling is found in the literature. This paper aims at clarifying it via a systematic translation
of ER-diagrams into mapalgebra. In view of the precise semantics of the latter (cf. Sec.2),
the translation will provide a formal semantics to the former, which we assume the reader to
be already conversant with.
Our translation will presuppose that the universe U has a certain structure, which we must
describe by subjecting some of the map letters to appropriate conditions. Only very few map
letters need to be reserved for this task; they are �; �; %; �; " , where we make the identi�cations
� �

Den
r0, � �

Den
r1, % �

Den
r2, � �

Den
r3, and " �

Den
r4 for the sake of de�niteness. What

conditions must be met by the maps which these symbols designate will be seen in subsections
3.1 and 3.2.
The translation will only operate on well-founded ER-diagrams|ER-models, as we call them;
not even on all of them (at least directly), because in order to ease the translation phase we
will place before it a preprocessing phase which brings any given ER-model into a suitably
normalized form.
The identi�ers of the ER-model will become map expressions under the translation. To make
things natural, we will translate them into (or, even more simply, identify them with distinct)
map letters. However, three kinds of identi�ers are used in ER-modeling whereas mapalgebra
has letters of only one kind; therefore, we must be able to express the distinction between
ER-entities, ER-relations, and ER-attributes by means of map equalities that constrain them
di�erently. Part of the task of clarifying this distinction is carried out in subsection 3.3 below,
while the tasks of specifying normalization and translation algorithms are postponed to later
sections.

Page 5

3.1 Flat tuples

Tuples of length > 2 forcibly enter into the study of database systems, if only because the
operation of inserting an entity e into a database often causes the simultaneous assignment
of a tuple of values to the attributes of e. To cope with this while avoiding the complications
that would result from the treatment of relations of arity greater than 2, we want the universe
U of discourse to include A�|viz., the set of all �nite-length sequences whose components
are entities drawn from A and are in some sense \atomic". We will assume for simplicity that
U = A[A� and A\A� = ;, and, to avoid triviality, that A 6 =;. We indicate by � the null
tuple in A�, and put A+ =

Den
A� n f �g.

Two operations on non-null tuples t0t1 � � � tm are essential, namely head isolation |which
determines the �rst component t0 of any given such tuple| and tail extraction|which deter-
mines the sub-tuple t1 � � � tm resulting from removal of the �rst component. Let us designate
these operations by �; %, in view of the a�nity between their properties and the ones of pro-
jections, discussed at the end of Sec.2. Moreover, let us represent by � and " the collection
A of atomic entities and the null tuple: more precisely, �= = fha; bi 2 A2 | a = bg and
"= = fh�; �ig in our intended interpretation =.

We can state that
� " designates a singleton and diagonal map, by the condition Const(");

� � represents a non-empty collection A of entities distinct from the entity, �, represented
by ", by means of the conditions Coll(�), NonVoid(�), "\ � = �;

� �; % designate functions � = �= and % = %= whose common domain A+ is the complement
of A[f �g in U , by means of the conditions

Func(�), Func(%), and � ; 1l = % ; 1l= (�[") ; 1l;

� %(p) belongs to A� for all p, by means of the condition �\ 1l ; %=�;

� for all a in A and all q in A� there is a tuple p with �(p) = a and %(p) = q, by means of
the condition � ; 1l ; � = �^ ; %;

� the function p 7! h�(p);%(p)i is injective, by the condition
Coll(� ; �^ \ % ; %^).

To sum all these conditions up, let us introduce the notation
HdTl(L;R; Y;E) �

Den
Func(L) & Func(R) & Const(E)
& Coll(Y) & NonVoid(Y) & E \ Y = �

& Y \ 1l ;R = � & L ; 1l= R ; 1l= (E [Y) ; 1l

& Y ; 1l ; Y = L^ ;R & Coll(L ;L^ \R ;R^) ;

so that we can concisely state everything by the single requirement Hdtl(�; %; �; ").
After noticing that �

�
i�1

j=1 %

�
; �

designates the operation of extracting the i-th component of a tuple, let us also provide a
handy characterization of h-tuples:

ith(L;R) �
Den
�

i�1

j=1R ; L

h-tuples(R) �
Den

img(R)\ dom(hth(R;R)) � dom((h+ 1)th(R;R)):
Thus, under assumption that Hdtl(�; %; �; "), the map expression h-tuples(%) represents the
collection of all tuples t1 � � � th in A� for any natural number h.

Page 6

3.2 Place-holders

Let r1; : : : ; rn be certain maps whose properties must, for the purposes of some application,
be stated formally. To take into account the fact that other maps may enter into play too, let
us designate the ris by the map letters rs+1; : : : ; rs+n (so as to reserve some \free space" at
the beginning for special map letters). As discussed above, we are assuming that our universe
of discourse is the disjoint union U = A [A� of a collection of atomic entities and a collection
of tuples; moreover, for the sake of simplicity, we assume that r1; : : : ; rn � A2.
Placeholders are special elements of U which occur at most once in r1; : : : ; rn; moreover,
no pair h�; ? i both of whose components are placeholders can belong to any ri. These as-
sumptions re
ect the possibility that, at least occasionally, when a pair ha0; a1i is about
being inserted into a relation in a database, the value of either component ab may still be un-
known; nevertheless, a provisional value which bears no information can temporarily occupy
the place of the missing value: performing the insertion would simply be a waste of e�ort if
both components were unknown.
Let us utilize � �

Den
r0 to state the properties of placeholders. It is understood that Coll(�)|

what we are representing here by a map is in fact a collection of entities. Thus, for each rs+i,
the requirement that no placeholder occurs twice as the �rst component of a pair in ri can
be stated as follows:

� \ ((rs+i \ (rs+i ; �)) ; 1l) = � (i = 1 ; : : : ; n) .
The similar requirement that for each distinct pair rs+i; rs+j no placeholder occurs both in ri
and in rj as the �rst component of a pair gets translated even more simply:

� \ (rs+i ; 1l) \ (rs+j ; 1l) = � (i; j = 1 ; : : : ; nand i < j) .
Then comes the requirement that for no pair rs+i; rs+j a placeholder can occur both as a �rst
component in ri and as a second component in rj:

� \ (rs+i ; 1l) \ (r^s+j ; 1l) = � (i; j = 1 ; : : : ; n) .
Then comes the requirement that placeholders cannot appear together in the same pair:

rs+i \ (� ; 1l) \ (1l ;�) = � (i = 1 ; : : : ; n) .
Next comes the requirement that if � is a placeholder and a 6= �, then neither the two pairs
h�; b i, ha; bi nor the two pairs hb; �i, hb; ai can belong together to the same ri for any b:

((� ; rs+i) \ (� ; rs+i)) [((rs+i ; �) \ (rs+i ; �)) = � (i = 1 ; : : : ; n) .
Finally, if � represents the collection A of all atomic entities (in a universe U which also
comprises such compound objects as tuples), then it seems natural to require that ���.

To condense all these requirements into a single condition
PlH(�; frs+1; : : : ; rs+ng; �),

it su�ces to put3

PlH(P; fR1; : : : ; Rng; Y) �
Den

� =
Sn

i=1

�Sn
j=i+1 P \ Ri ; 1l\ Rj ; 1l

[P \ (Ri \ Ri ; �) ; 1l
[Ri \ P ;1l\ 1l ;P
[P ;Ri \ � ;Ri [Ri ; P \Ri ; �

[
Sn

j=i P \ Ri ; 1l \ R^j ; 1l

�
& P � Y :

3We are now getting rid of redundant parentheses occurring in the preceding map equalities.

Page 7

3.3 Attributes, keys, and database entities

Suppose that C and �; %; �; " meet the conditions Coll(C) and HdTl(�; %; �; ") speci�ed above,
and let C be a collection of atomic entities, named C. Thinking of an attribute on C just as
a function partially de�ned on it whose values are atomic, we could specify that � designates
such an attribute � simply by stating

Func(�) & dom(�)� C & img(A) � �.
For technical reasons, we prefer � to assign a value, perhaps a \dummy" one, to every entity
e in C. Assuming that at most one dummy, d�, is needed for � (di�erent, as a general rule,
from the dummies of other attributes, and also distinct from place-holders that may be used
to represent unknown values), let �� designate either ; or fhd�; d�ig depending on whether
d� is or is not exploited at some time; accordingly, we require that Attr(�;C; ��; �) is met,
where

Attr(A;C;D; Y) �
Den

Func(A) & dom(A)= C

& Dangl(D) & D � img(A) � Y :

In the case of a mandatory attribute �, the condition becomes Attr(�;C; �; �), which is equiv-
alent to

Func(�) & dom(�)= C & img(�)� �.

When �0; : : : ; �k are distinct attributes which form a key of C, the conditions �0(c) =
a0; : : : ;�k(c) = ak identify at most one entity c in C for any (k + 1)-tuple of values ai.
Moreover such values are mandatory, in the strong sense that none of them can ever be
dummy or can be superseded by a placeholder indicating that it is temporarily unknown.
This can be stated as

Key(f�0; : : : ; �kg; �) & &k

i=0 Attr(�i; C; �; �),
where � designates the collection of all placeholders (cf. Sec.3.2 above) and

Key(fA0; : : : ; Akg; P) �
Den

Func(
Tk
i=0 (i+ 1)th(�; %) ;A^

i)

& &k

i=0 P \ img(Ai)=� :

A class of entities of the same type, once an ordering A1; : : : ; Ah of its distinct attributes has
been �xed, can be represented as a function F such that Ens(F; �; �; %; �; �A1

; : : : ; �Ah
), where

Ens(F; P; L;R; Y;D1; : : : ;Dh) �
Den

dom(F)\ (P [img(R)) = �

& img(F)� h�tuples(R)

& &h

i=1 Attr
�
F ; ith(L;R); dom(F); Di ; Y

�
:

Notice that the condition Func(F) needs not to be made explicit here, as it holds in conse-

quence of the requirements img(F)�h-tuples(%) and &h

i=1Func(F ;i
th(�; %)).

4 An ER-model is given. . .

In this initial study, let us convene that every diamond represents a dyadic relation |a map
in our terminology| and that no diamond bears any attributes.
We need to regard one parameter of a relation as �rst, and the other one as second, which
we do according to the numbering stipulation

Page 8

1

2

3

4

Uniqueness of names is assumed to its fullest extent; viz., we are forbidding synonymy not
only between (entity-)boxes, between diamonds and between ovals, but also between a box
and a diamond etc.

We assume the IsA-graph to be acyclic; i.e.,

IsA^ \�
n

i=1IsA = �

must hold for all n � 0. Moreover, we assume that at most one IsA-edge exits from each box:
IsA^ ; IsA � �boxes.

The latter assumption re
ects two facts: on the one hand, we are taking into account single
inheritance only; on the other hand, we are forbidding shortcuts in inheritance chains, by
requiring that

IsA \�
n+2

i=1 IsA = �

holds for all n � 0.
Since an acyclic function de�ned on a �nite set (the set of boxes in our case) cannot be total,
the IsA-graph will have nodes of outdegree 0. Such \sink" nodes |which represent objects of
maximal genericity| are usually called roots in the literature on the object-oriented paradigm.
Clearly, there would be no loss of generality in assuming that there is exactly one root .

4.1 Digression on a little anomaly that may be caused by IsA

An IsA-edge connecting box E to box F indicates that the set E of entities designated by E is
included at all times in the one, F, designated by F . Unless this inclusion could be satis�ed,
at least occasionally, as a strict inclusion, distinguishing between E and F would hardly make
any sense, and the ER-model would be somehow redundant.
Notice, however, that the following situation implies that E and F designate the same entity:

IsA

E F
1 1

(Indeed, F = E ensues from jEj = jFj and E � F when F is known to be �nite).
Generalizations of this situation are easily found, e.g.

Page 9

IsA

E F
1

G
1 1 1

(where F = E ensues from jFj � j Gj � j Ejand E � F in view of the �niteness of F|note
that G = E is not entailed, though!). Admitting slightly defective ER-models of the above
kind would cause some marginal conceptual di�culties in the part of this research which
regards `dynamics', momentarily postponed to another paper. However, since we have the
reasonable expectation that any similar anomaly can be revealed by a simple semantic check,
so as to be then corrected, we assume that this check is available to us and we do not digress
any further on this issue.

5 Normalization of an ER-model

We will present below a simple preprocessing algorithm that converts any given ER-model
(devoid of relation-attributes) into one that better �ts our translation purposes.
Thanks to our normalization process, tight domain and image of each map |in the sense to
be explained now| will be at hand in an ER-model M; this is to say, they will be endowed
with an explicit name.

De�nition 2 We call E the tight domain of R in M if M requires that

E R

The de�nition of tight codomain, or brie
y image, is symmetric.

Here is the preprocessing algorithm:

Phase 0: Detect all pairs E;F with E 6� F such that, due to the IsA-anomaly, E and F

must designate the same class of entities. For every such pair, coalesce E with F .

Phase 1 (Factorization): Make all relations both left- and right-total, by repeated use of
the rewriting rules below (where `; r 2 f 1;�g, and E0; F 0 are fresh names):

Page 10

FE R

FE R

FE R

FE R

F‘

IsA

l

l

l

lr

r

r

r

FE R

F‘

IsA

l r

E‘
IsA

FE R
l r

6 Renderings of ER-models in mapalgebra

Here is one way of translating into a set of map equalities an ER-model M resulting from
the normalization process presented above:

A. Introduce p.w. distinct symbols �; �; %; " which also are distinct from � and from any iden-
ti�er in M. For each identi�er A of an optional attribute in M (this ignores, among
others, any attribute which is in a key), introduce a brand new symbol �A. Postulate
that

HdTl(�; %; �; ") & PlH(�;<; �)
(cf. Sections 3.1 and 3.2), where < is the set of all attribute-, and relation-identi�ers in
M and of all new symbols �A that have been associated with optional attributes.

We are, of course, regarding the elements of < [f �; �; %; �; " g|as well as the entity
identi�ers in M| as symbols drawn from the alphabet of map letters ri, typed in a
di�erent font. This identi�cation with map letters induces an ordering between identi-
�ers which we will tacitly call into play when saying, e.g., \let A1; : : : ; Ah be all distinct
attribute identi�ers that refer to the entity class represented by E" (in such a case will
assume the function j 7! ij to preserve order, where ij is the subscript of Aj among
map letters).

B. For every IsA-edge E � F in M, impose that dom(E)�dom(F). For every entity
identi�er F which has no issuing IsA-edge, impose that dom(F)��.

C. For every entity identi�er F , let A1; : : : ; Ah be all distinct attribute identi�ers that refer
to F in M. Impose that

Ens(F; �; �; %; �; �A1
; : : : ; �Ah

) & &h

i=0 Ai = F ; ith(�; %)
(cf. Sec.3.3), where �Ai

�
Den

� for each mandatory attributeAi. Moreover, ifAi0 together
with Ai1 ; : : : ; Aik constitutes a key for F , then require that Key(fAi0 ; Ai1 ; : : : ; Aikg; �).

Page 11

D. For every pairA;B of distinct attributes ofM whereA is optional, impose that �A\img(B) = �.

D0. For every pair A;F where A identi�es an optional attribute in M and F identi�es an
entity class in M, impose that �A \ dom(F) = �.

E. For every part

FE R
l r

of M, impose that
dom(E) = dom(R)� � & dom(F) = img(R)� � :

Moreover, if r � 1, then impose that Func(R); and, if ` � 1, then impose that Func(R^).

De�nition 3 Let Mr be the conjunction of all map constraints resulting from the above

translation algorithm applied to M; moreover, let Ms and Mw be the analogous conjunctions

that result when the main condition in step E of the translation is either strengthened into

dom(E) = dom(R) & dom(F) = img(R) :
or weakened into

dom(R)� � � dom(E) & img(R)� � � dom(F) :
respectively.

Then Mr, Ms, and Mw are called the relaxed, strict, and weak counterpart of M
in mapalgebra.

Our rationale for adopting a cautious translation such as Mr as the o�cial one, in spite of
Ms appearing to be more faithful, will clearly emerge in our next paper of this series (it was
only brie
y hinted at in our discussion on placeholders in Sec.3.2). In the meantime, the
following two lemmas show that even the weakest of the three translations, namely Mw, is
in a sense acceptable.

Lemma 1 Let = be an interpretation satisfying Mw so that �= n
S
i2Nnf0g r

=
i has in�nite

cardinality.

Then there is an interpretation =0 such that

� P= � P=0

for all map letters P ;

� P=0

= P= for all map letter P not acting as a relation identi�er in M;

� =0 satis�es Mr.

Lemma 2 Let = be an interpretation satisfying Mr so that the domain of discourse of = can

be decomposed as U = A[A� (where A = fa 2 U | ha; ai 2 �= g).
Then there is an interpretation =0 over an extended domain U 0 = B [B� such that
� P= � P=0

for all map letters P ;

� P=0

\ (U n �=)2 = P= n �2 for all map letter P ;

� =0 satis�es Ms.

Remark 1 A variant version of step E (of the relaxed translation, which also happens to be

our favorite translation) would �t very well with our purposes too. Here it is:

Page 12

E0. For every part

FE R
l r

of M, impose that
E = �^ ; (R ; 1l\ %) & F = �^ ; (R^ ; 1l\ %)

& img(R)[dom(R) � � [img(%) :
Moreover, if r � 1, then impose that Func(R); and, if ` � 1, then impose that Func(R^).

Indicating by Mr0 the result of the new translation, it is easily seen that interpretations of

mapalgebra satisfying Mr induce interpretations satisfying Mr0 and conversely. This appears

more clearly if we replace R by a new map letter R0 in Mr0 and then observe that an R

complying with the old translation and an R0 complying with the new one correspond to each

other as follows:
R = (�^ [�) ;R0

; (�[�) ;

R0
= (� [(�\ % ;

Tn
i=1 ith(�; %) ;A^i)) ; R

; (� [(�\ % ;
Tm
j=1 jth(�; %) ;B^

j))
^

;

where A1; : : : ; An and B1; : : : ; Bm are the respective attributes of E and F .

7 Related Work

This study stands in line with other approaches to provide a �rmly based semantics for
ER-models. They are mainly based on algebraic modeling techniques and capitalize on the
semantic framework that come with them. Hettler [9] gives a translation of these models
into the speci�cation language SPECTRUM, essentailly modeling entities as records with
attributes as entries, but not taking inheritance into account. The report [2] transforms an
ER-diagram into an attributed graph signature, and the integrity constraints into �rst-order
logic formulas. The ER-models considered do not take inheritance explicitly into account.
The paper focusses on the dynamic aspects | viz., transactions { through homomorphisms,
hence showing how transactions may be caught through an algebraic framework. The formal
semantics of an extended ER-model is investigated in [7, 10] from a database point of view,
proposing the semantics of a database signature as the set of all interpretations; this work
does not mention algebraic speci�cations explicitly. In [4] it is shown how to generate an
algebraic speci�cation from an ER-model, hereby carrying the model based semantics of such
a speci�cation over to ER-models. [5] generalizes this approach somewhat by proposing the
colimit of a diagram extracted from an ER-model as the categorial semantics of the model.

References

[1] D. Cantone, E. G. Omodeo, and A. Policriti. Set Theory for Computing. Springer-Verlag,
2001. in print.

[2] I. Cla�en, M. L�owe, S. Wa�erroth, and J. Wortmann. Static and dynamic semantics of
entity-relationship models based on algebraic methods. Technical report, Department of
Computer Science, Technical University, Berlin, 1994.

Page 13

[3] E. F. Codd. A relational model for large shared data banks. Communications of the
ACM, 13(6):377{387, 1970.

[4] E.-E. Doberkat. Generating an algebraic speci�cation from an ER-model. International
Journal of Software Engineering and Knowledge Engineering, 7(4):525{552, 1997.

[5] E.-E. Doberkat. The categorial semantics of ER-models. Technical report, Chair for
Software Technology, University of Dortmund, 1999.

[6] A. Formisano, E.G. Omodeo, and M. Temperini. Goals and benchmarks for automated
map reasoning. Journal of Symbolic Computation, 29(2):259{297, 2000.

[7] M. Gogolla and U. Hohenstein. Towards a semantic view of an extended entity-
relationship model. ACM Transactions on Database Systems, 16:369{416, 1991.

[8] D. Gries and F.B. Schneider. A logical approach to discrete math. Texts and Monographs
in Computer Science. Springer-Verlag, 1994.

[9] R. Hettler. Zur �Ubersetzung von E/R-Schemata nach SPECTRUM. Technical Report
TUM I-9333, Technical University, Munich, 1993.

[10] U. Hohenstein. Formale Semantik eines erweiterten Entity-Relationship Modells. B. G.
Teubner, Stuttgart und Leipzig, 1993.

[11] M. Page-Jones. Fundamentals of Object-Orientied Design in UML. Dorset House Pub-
lishing & Addison-Wesley, New York and Boston, 2000.

[12] E. Schr�oder. Vorlesungen �uber die Algebra der Logik (exakte Logik), volume 2.1. B.
Teubner, 1891. Reprinted by Chelsea Publishing Co., New York, 1966.

[13] E. Schr�oder. Vorlesungen �uber die Algebra der Logik (exakte Logik), volume 3, Alge-
bra und Logic der Relative, part 1. B. Teubner, Leipzig, 1895. Reprinted by Chelsea
Publishing Co., New York, 1966.

[14] A. Tarski and S. Givant. A formalization of set theory without variables, volume 41 of
Colloquium Publications. American Mathematical Society, 1987.

[15] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.
Springer-Verlag, 2000.

		2002-04-03T16:34:02+0200
	Universitaetsbibliothek Dortmund - Eldorado

