
M E M O Nr. 134

Tracing Relations Probabilistically

Ernst-Erich Doberkat

März 2003

Internes Memorandum des
Lehrstuhls für Software-Technologie
Prof. Dr. Ernst-Erich Doberkat
Fachbereich Informatik
Universität Dortmund
Baroper Straße 301

D-44227 Dortmund ISSN 0933-7725



Tracing Relations Probabilistically

Ernst-Erich Doberkat

Chair for Software Technology

University of Dortmund

doberkat@acm.org

February 27, 2003



Abstract

We investigate similarities between non-deterministic and probabilistic ways of describing a
system in terms of computation trees. We first show that the construction of traces for both
kinds of relations follow the same principles of construction (which could be described in
terms of monads, but this does not happen here). Finally representations of measurable trees
in terms of probabilistic relations are given.
Keywords: Probabilistic relations, specification techniques (nondeterministic, stochastic),
representation theory.
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1 Introduction

This paper investigates the relationship between trees and probabilistic relations. Trees arise
in a natural way when the behavior of a system is specified through relations. Given a family
(Rn)n∈N of non-deterministic relations Rn ⊆ X ×X over a state space X, Rn describes the
behavior of the system at step n, so that the current state xn may be followed by any state xn+1

with 〈xn, xn+1〉 ∈ Rn. Rolling out the Rn yields a computation tree, the tree of traces that
describe all possible paths through the system. If, on the other hand, a system is described
through a sequence (Kn)n∈N of probabilistic relations Kn, then computing the traces for Kn

gives the probabilistic analogue of a computation tree. We are interested in the relationship
between the non-deterministic and the probabilistic relations, seeing a probabilistic relation as
a refinement of a non-deterministic one: whereas a non-deterministic relation R specifies for
a state x through the set R(x) := {y|〈x, y〉 ∈ R} all possible subsequent states, a probabilistic
relation K attaches a weight K(x)(dy) to each next state y (to be more precise: it describes
for a set A the probability K(x)(A) that y is a member of A). Introducing a relation |=
between R and K which says that R |= K iff K(x) assigns positive probability to exactly the
members of R(x), we see that R |= K indicates K being a probabilistic refinement of R.
The problem discussed in this paper is, then, whether it is possible to find a probabilistic
refinement for a given computation tree T . Thus we investigate the problem of finding for T
a sequence (Kn)n∈N of probabilistic relations such that after a computation history w ∈ T and
a given state x at time n the set {y|wxy ∈ T} of all possible next states for this computation
is exactly the set of states that are assigned positive probability by Kn(x). If this is answered
in the positive, then not only single steps in a non-deterministically specified computation
can be refined stochastically but also whole traces arising from those specifications have a
probabilistic refinement. This sheds further light on the relationship between stochastic and
non-deterministic relations (compare [4, 6]).
In fact, it can be shown that under some not too restrictive conditions a computation tree
has a probabilistic representation. The restrictions are topological in nature: we first show
(Proposition 5) that a probabilistic representation can be established provided the set of all
possible offsprings at any given time is compact. This condition is relaxed to the assumption
that the state space is σ-compact, using a topological characterization of the body of a tree
over the natural numbers (Proposition 6).

Overview We introduce in the next section computation trees and define their probabilistic
counterparts. It is shown that a computation tree is spawned by the traces of a sequence of
non-deterministic relations. This also works the other way around: each computation tree
T exhibits a certain lack of memory in the actions it describes, thus it generates a sequence
of relations for which T is just the corresponding tree. The probabilistic analogue is also
studied: we show under which conditions the probabilistic counterparts of computation trees
are spawned by probabilistic relations; it turns out that memoryless relations between X and
the set X∞ of all X-sequences characterize the situation completely. Section 3 introduces
measurable trees as those class of trees for which a characterization is possible. It gives the
mentioned representations, first for the compact, then for the σ-compact case. It turns out
that the latter case is interesting in its own right because it requires studying trees over the
natural numbers. The paper closes with a generalization of the following convexity result:
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suppose that Ri |= Ki for i = 1, 2, and put for 0 ≤ p ≤ 1 the convex combination

K1 ⊕p K2 : x 7→ p ·K1 + (1 − p) ·K2,

then
R1 ∪R2 |= K1 ⊕p K2,

indicating that a non-deterministic specification leaves much room for probabilistic refine-
ments.

Related Work Non-deterministic relations have been studied extensively since the times
of Ernst Schröder, [2] gives a good overview. Probabilistic relations have been introduced by
Panangaden [14] drawing an analogy to non-deterministic ones through a Kleisli construction
for two popular monads. These relations have been studied in the context of bisimulation and
labelled Markov processes [3, 7, 5] and probabilistic testing [18]. The relationship between
nondeterminism and probabilities is studied from different angles [15, 4, 6].

Acknowledgement The author is grateful to Georgios Lajios for his critical comments.

2 Computation Trees

Denote for a set V by V ∗ as usual the free semigroup on V with ε as the empty word; V ∞ is
the set of all infinite sequences based on V . If v ∈ V ∗, w ∈ V ∗ ∪ V∞, then v � w iff v is an
initial piece of w, in particular σ |k� σ for all σ ∈ V∞, k ∈ N, where (sn)n∈N |k:= s0 . . . sk is
the prefix of (sn)n∈N of length k + 1. Denote for M ⊆ V ∗ all words of length n by πn(M).
A tree T on V is a subset of V ∗ which is closed under the prefix operation, thus w ∈ T and
v � w together imply v ∈ T . The body [T ] of T [17] is the set of all sequences on V each
finite prefix is in T , thus

[T ] := {σ ∈ V∞|∀k ∈ N : σ |k∈ T}.

Clearly a finite tree like a binary search tree or a heap has an empty body.
Suppose we specify the nth step in a process through relation Rn ⊆ V × V . Execution
spawns a tree by rendering explicit the different possibilities opening up for exploitation. Put
R := (Rn)n∈N

and

Tree (R) := {v ∈ V ∗|v0 ∈ dom(R0), vj ∈ Rj−1(vj−1) for 1 ≤ j ≤ |v|} ∪ {ε},

then Tree (R) is a tree with body

[Tree (R)] = {α ∈ V∞|α0 ∈ dom(R0) & ∀j ≥ 1 : αj ∈ Rj−1(αj−1)}.

This is the computation tree associated with R; Tree (R) collects all finite, [Tree (R)] all
infinite traces.
In fact, each tree T spawns a sequence of relations: Define

RT
0 := V 2 ∩ T,

and inductively for k ≥ 1

〈xk, xk+1〉 ∈ R
T
k ⇔ ∃〈x0, x1〉 ∈ RT

0 ∃x2 ∈ RT
1 (x1) . . . ∃xk−1 ∈ RT

k−2(xk−2) :

xk ∈ RT
k−1(xk−1) ∧ x0x1 . . . xkxk+1 ∈ T.
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Example 1 Let T := {ε} ∪H12, where Hk is the tree underlying a heap of size k, the nodes
being the binary representations of the corresponding numbers. Then

RT
0 = {〈1, 0〉, 〈1, 1〉},

RT
1 = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉},

RT
2 = RT

1 .

We see that
Tree

(

(

RT
n

)

n∈N

)

= {ε} ∪H15

holds, to that T is not generated from the relations RT .

The trees T which may be represented through Tree

(

(

RT
n

)

n∈N

)

are of interest, they turn out

to be memoryless in the sense that the behavior described by the tree at time k + 1 depends
directly only on the behavior at time k, once the initial input is provided.
Let for the sets X,Y be A as subset of some set X, and f : X → 2Y be a set-valued map.
Then define

A⊗ f := {〈a, b〉|a ∈ A, b ∈ f(a)}

as the product of A and f . It is clear that each subset M ⊆ X × Y can be represented as a
product M = πX [M ] ⊗ fM with fM (a) := {b ∈ Y |〈a, b〉 ∈M}.
Using this product, we define memoryless trees through the following observation: πn+1(T )
can be decomposed as a product

πn+1(T ) = πn(T ) ⊗ Jn

with Jn : Xn → 2X . Thus the next letter xn in a word x0 . . . xn ∈ T is under this decomposi-
tion an element of Jn(x0, . . . , xn−1), and the tree being memoryless means that the latter set
depends on xn−1 only. Thus Jn is induced by a map fn : X → 2X in the sense that

Jn(x0, . . . , xn−1) = fn(xn−1)

holds for all 〈x0, . . . , xn−1〉 ∈ Xn.

Definition 1 A tree T over V is called memoryless iff for each n ∈ N with n ≥ 2 the set

πn+1(T )

can be written as
πn(T ) ⊗ Jn,

where Jn : Xn → 2X is induced by a map X → 2X .

This means that only the length of the history and the initial input determines the behavior
of a memoryless tree. Heaps, for example, are not always memoryless:

February 27, 2003



Page 4 Tracing Relations Probabilistically

Example 2 Let T be the tree according to Example 1, then using the notation of the decom-
position above

J1(1) = {0, 1}

J2(1, 0) = J2(11) = {0, 1}

J3(1, 0, 0) = J3(101) = {0, 1}

J3(1, 1, 0) = {0}

J3(1, 1, 1) = ∅.

Clearly, {ε} ∪Hk is memoryless iff k = 2t − 1 for some t.

It is not difficult to see that the tree Tree
(

(Rn)n∈N

)

is memoryless, and that for a memoryless
tree T with associated maps Jn : X → 2X the equality

RT
n−1 = {〈x, y〉|x ∈ dom(Jn), y ∈ Jn(x)}

for all n ≥ 2 holds.

Proposition 1 Let T be a tree over V . Then the following conditions are equivalent:

1. The sequence R =
(

RT
n

)

n∈N
of relations RT

n ⊆ V ×V defined through T has the property
that T = Tree (R) holds.

2. T is memoryless.

Proof Both implications are established through inductions on the length of words. �

In the remainder of the paper we will not distinguish relations from the associated set valued
maps. We will see soon (Prop. 2) that a similar notion will be helpful to characterize the
probabilistic analogue of trees.
Turning to the stochastic side of the game, we denote for a measurable space X by P (X)
the set of a probability measures on (the σ-algebra of) X. We usually omit mentioning the
σ-algebra underlying a measurable space and talk about its members as measurable subsets,
or as Borel subsets, if X is a metric space, see below. P (X) is endowed with the ∗−σ-algebra,
i.e. the smallest σ-algebra that makes for each measurable subset A of X the evaluation map
µ 7→ µ(A) measurable.
Define for the measurable map f : X → Y and for µ ∈ P (X) the image of µ under f by

P (f) (µ)(B) := µ(f−1[B]),

then P (f) (µ) ∈ P (Y ). It is easily established that P (f) : P (X) → P (Y ) is measurable.
This makes P a functor on the category of measurable spaces with measurable maps as
morphisms; in fact, it is the functorial part of monad investigated by Giry [9].
A probabilistic relation K : X  Y between the measurable spaces X and Y [1, 14, 6, 4] is a
measurable map K : X → P (Y ), consequently it has these properties:

1. for all x ∈ X, K(x) is a probability measure on Y ,

2. for all B ⊆ Y which are measurable, x 7→ K(x)(B) is a measurable map on X, where
measurability of real functions always refers to the Borel sets in R.
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Sometimes a probabilistic relation K is called a Markov relation. When general probabilistic
relations are used to model computations, Markov relations model terminating computations
(so that for a non-Markovian relation K, for which K(x) is a subprobability measure, the
difference 1 − K(x)(Y ) may be interpreted as the amount of nontermination on input x,
since this is the probability for “no state at all” [13]).
Probabilistic relations may be composed similar to set theoretic ones: let K : X  Y and
L : Y  Z be probabilistic relations, then define for x ∈ X and the measurable subset C ⊆ Z

the (ordinary) product of K and L by

(K�L)(x)(C) :=

∫

Y

L(y)(C) K(x)(dy),

thus
K�L : X  Z.

This is just the Kleisli product in Giry’s monad, giving further support for the analogy we
are exploring: The composition of relations is the Kleisli product in the well known monad
the functorial part of which is the powerset functor [12, Ex. VI.2.1]
If µ ∈ P (X) ,K : X  Y , define for the measurable subset A ⊆ X × Y

(µ⊗K)(A) :=

∫

X

K(x)(Ax) µ(dx)

with
Ax := {y ∈ Y |〈x, y〉 ∈ A}.

Consequently, µ⊗K ∈ P (X × Y ) .
A Polish space X is a completely metrizable separable topological space; as usual, we take
the Borel sets as the σ-algebra on a Polish space. If X is Polish, so are [16]

• P (X) under the topology of weak convergence; the ∗ − σ-algebra coincides with the
Borel sets,

• Xn under the product topology for n ∈ N, andX∗ under the topological sum of (Xn)n∈N,

• X∞ under the topological product; the Borel sets are the σ-algebra generated by sets of
the form

∏

n∈N
An, where all An ⊆ X are Borel sets, and all but a finite number equal

X.

The topology of weak convergence on P (X) is the smallest topology for which the evaluation
maps µ 7→

∫

X
f dµ are continuous for every bounded and continuous function f : X → R. If

Q is another topological space, then by the celebrated Portmanteau Theorem [16, Theorem
II.6.1] a map g : Q→ P (X) is continuous for this topology iff the set {q ∈ Q|g(q)(U) > 0} is
open for each open subset U of X.
An important example of a Polish space is furnished by the Baire space N := N

∞, where the
natural numbers N have the discrete topology, so that each subset of N is open; N carries
the product topology. This space is interesting since it is the prototypical Polish space in the
following sense [17, Theorem 2.6.9]: Every Polish space is a one-to-one and continuous image
of a closed subset of N . A base for the topology on N consists of sets of the form A×

∏

k>n N,

where A ⊆ N
n, n ∈ N. Closed subsets of N may be characterized in terms of trees:
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Lemma 1 A set D ⊆ N is closed iff D = [T ] for some tree T over N. The body [T ] of a tree
T over N is a Polish space.

Proof The first assertion follows from [17, Prop. 2.2.13]. Since closed subsets of Polish
spaces are Polish again in their relative topology, the second part is established. �
One immediate consequence of working in a Polish space is that disintegration of measures
is possible: Suppose µ ∈ P (X1 ×X2) is a probability measure on the product of the Polish
spaces X1 and X2. Then there exists a probability µ1 on X1 and a probabilistic relation
K : X1  X2 such that µ = µ1 ⊗K holds.
Fix for the rest of the paper X as a Polish space. The product Xn is always equipped with
the product topology, the free monoid X∗ has always the topological sum, and P (X) always
the topology of weak convergence as the respective topologies.
Now suppose that a sequence K := (Kn)n∈N

of probabilistic relations Kn : X  X is given.
Define inductively a sequence Kn

0 : X  Xn+1 by setting K0
0 := K0, and for x ∈ X,A ⊆ Xn+2

measurable

Kn+1
0 (x)(A) :=

∫

Xn+1

Kn+1(xn)({xn+1|〈x0, . . . , xn+1〉 ∈ A}) Kn
0 (x)(d〈x0, . . . xn〉).

Let Kn specify probabilistically the nth state transition of a system, then Kn
0 (x)(A) gives the

probability that the sequence 〈x1, . . . xn〉 is an element of A, provided the system was initially
in state x.
It is not difficult to see that the sequence (Kn

0 )n∈N forms a projective system: for the mea-
surable subset A ⊆ Xn+1 and for x ∈ X the equality

Kn+1
0 (x)(A×X) = Kn

0 (x)(A)

holds for each n ∈ N. This is the exact probabilistic counterpart to the property that a tree
is closed with respect to prefixes.
Denote the resp. projections (xn)n≥0 7→ 〈x0, . . . , xn〉 by projn+1. Standard arguments [16,
V.3] show that there exists a uniquely determined probabilistic relation

K∞
0 : X  X∞

such that for all x ∈ X the equality

P (projn+1) (K∞
0 (x)) = Kn

0 (x)

holds. Thus K∞
0 (x)(A) is the probability that the infinite sequence σ of states the system

is running through is an element of A, provided the system starts in x. Averaging out the
starting state x through an initial probability µ ∈ P (X), i.e. forming

Tree (K)µ (A) :=

∫

X

K∞
0 (x)(A) µ(dx)

yields a probability measure on X∞. This is the probabilistic analogue to the body [R] of
the tree formed from the sequence R of non-deterministic relations.
We have shown how to reverse this construction in the non-deterministic case by showing
that each tree T yields a sequence of relations R with T = Tree (R). Investigating similarities
between non-deterministic relations and their probabilistic counterparts, the question arises
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whether this kind of reversal is also possible for the probabilistic case. To be more specific:
Under which conditions does there exist for a probability measure ν∞ ∈ P (X∞), a sequence
K = (Kn)n∈N

of probabilistic relations Kn : X  X and an initial probability µ ∈ P (X)
such that the representation ν∞ = Tree (K)µ holds?
Since in this case µ = P (proj0) (ν∞) must hold, the question is reduced to conditions under
which we can construct for a probabilistic relation L : X  X∞ a sequence K of probabilistic
relations X  X such that L = K∞

0 .

Definition 2 A transition probability L : X  X∞ is called memoryless iff the projection

P (projn+1) (L(x))

can be written for each n ∈ N, x ∈ X as a disintegration

P (projn) (L(x)) ⊗ Jn

with Jn : X  X, where Jn is independent of x.

The reader may wish to compare the definition of a memoryless probabilistic relation to that
of a memoryless tree in Def. 1. Similarly, a comparison of Prop. 1 for the set valued case with
Prop. 2 addressing the probabilistic case may be illuminating. Fix x, and interpret µ := L(x)
in Definition 2 as the joint distribution of a stochastic process (ζi)i≥0 with ζi : Ω → X over
the probability space (Ω,A,P). Since X is Polish, there exists for each n ∈ N a regular
conditional distribution of ζn conditional to 〈ζ0, . . . , ζn−1〉 (cf. [16, Theorem V.8.1]), hence a
probabilistic relation Jn : Xn

 X such that for the Borel sets B1 ⊆ Xn, B2 ⊆ X

µn(B1 ×B2) = P(〈ζ0, . . . , ζn−1〉 ∈ B1, ζn ∈ B2)

=

∫

B1

Jn(x0, . . . xn−1)(B2) µn−1(d〈x0, . . . , xn−1〉).

Consequently, a memoryless distribution corresponds to a Markov process, since in this
case Jn(x0, . . . , xn−1) only depends on the last state xn−1 and not on the whole history
x0, . . . , xn−1. Taking things a little further, consider a sequence Ln : X  X of probabilistic
relations. Define for x ∈ X the probabilistic relation L∞ : X  X∞ upon setting

L∞(x) :=
⊗

n∈N

Ln(x),

then L∞ is evidently memoryless. This corresponds to an independent stochastic process.
Memoryless transition probabilities characterize those relations that arise through refine-
ments.

Proposition 2 Let L : X  X∞ : be a probabilistic relation. Then the following conditions
are equivalent:

1. There exists a sequence K = (Kn)n∈N
of probabilistic relations Kn : X  X such that

L = K∞
0 holds.

2. L is memoryless.
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Proof 1. “(1) ⇒ (2):” The probabilistic relation K∞
0 is plainly memoryless. The construction

shows that

P (projn+1) (K∞
0 (x)) = Kn

0 (x)

= Kn−1
0 (x) ⊕Kn

holds.
2. “(2) ⇒ (1):” Define inductively K0(x) := P (proj1) (L(x)), and let Kn+1 be determined
through

P (projn+2) (L(x)) = P (projn+1) (L(x)) ⊗Kn+1.

From the definition of Kn
0 above we see through an inductive argument that

Kn
0 (x) = P (projn+1) (L(x))

holds, because the equality
Kn+1

0 (x) = Kn
0 (x) ⊗Kn+1

is inferred from the defining equation. Since the extension of the projective system (K n
0 )n∈N

to a probabilistic relation X  X∞ is unique, the assertion follows. �

Thus there are in fact striking similarities between non-deterministic relations and their prob-
abilistic counterparts, when it comes to specify reactive, i.e., long running behavior. Both
generate memoryless trees, and from these trees the single step behavior can be recovered.
This is always true for the non-deterministic case (since we consider here only possibilities
without attaching any constraints), it is possible in the probabilistic case under the condition
that probabilities on product spaces can be suitably decomposed.
The next section will deal with a transfer between non-deterministic and probabilistic rela-
tions: Given is a tree, can we generate it probabilistically?

3 Representing Measurable Trees

A stochastic representation K of a non-deterministic relation R should have the following
properties: we have K(x)(R(x)) = 1 for each x, indicating that a state transition in state x
is guaranteed to lead to a state in R(x), and we want the latter set to be exactly the set of all
target states. This latter condition on exact fitting of R(x) is a bit cumbersome to formulate
if the space X is not finite or countable. But the topological structure on X comes in helpful
now. We want R(x) to be the smallest set of all states for which each open neighborhood U
has positive probability K(x)(U).
This is captured through the support of a probability: Given µ ∈ P (X) , define supp(µ) as
the smallest closed subset F ⊆ X such that µ(F ) = 1, thus

supp(µ) :=
⋂

{F ⊆ X|F is closed and µ(F ) = 1}.

It can be shown that µ(supp(µ)) = 1, and x ∈ supp(µ) iff µ(U) > 0 for each neighborhood U
of x. So this is exactly what we want.

Definition 3 Let Y be a measurable space, and Z be a Polish space, R ⊆ Y × Z a non-
deterministic relation, and K : Y  Z a probabilistic one. Then

R |= K ⇔ ∀y ∈ Y : R(y) = supp(K(y)).

We say that K represents R.
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These are some elementary properties of the representation:

Example 3 Let f : X → X be a measurable map, and put

∆f (x) := δf(x),

δx denoting the Dirac measure on point x. Then

Graph(f) |= ∆f .

Example 4 Assume Ri |= Ki for i = 1, 2, where Ri ⊆ X × Y, then

R1 ∪R2 |= K1 ⊕p K2.

Here the union is taken element wise, 0 ≤ p ≤ 1, and

(K1 ⊕p K2) (x)(A) := p · k1(x)(A) + (1 − p) ·K2(x)(A)

is the convex combination of K1 and K2.

This will be generalized considerably in Proposition 7.
Measurable relations will provide a link between non-deterministic and stochastic systems, as
we will see. Let us fix some notations first.
Assume that Y is a measurable, and that Z is a Polish space. A relation R ⊆ Y ×Z induces
as above a set-valued map through

Y 3 y 7→ R(y) := {z ∈ Z|〈y, z〉 ∈ R} ∈ 2Z .

If R(y) always takes closed and non-empty values, and if the (weak) inverse

(∃R)(G) := {y ∈ Y |R(y) ∩G 6= ∅}

is a measurable set, whenever G ⊆ Z is open, then R is called a measurable relation on Y ×Z.
Since Z is Polish, R is a measurable relation iff the strong inverse

(∀R)(F ) := {y ∈ Y |R(y) ⊆ F}

is measurable, whenever F ⊆ Z is closed [10, Theorem 3.5]. It is well known that a measurable
relation R constitutes a measurable subset of Y × Z.
It is immediate that the support yields a measurable relation for a probabilistic relation
K : Y  Z: put

RK := {〈y, z〉 ∈ Y × Z|z ∈ supp(K(y))},

then
(∀RK)(F ) = {y ∈ Y |K(y)(F ) = 1}

is true for the closed set F ⊆ Z, and

(∃RK)(G) = {y ∈ Y |K(y)(G) > 0}

holds for the open set G ⊆ Z. Both sets are measurable. In fact, if y 7→ K(y) is weakly
continuous, then ∃RK(G) is open for G open. It is also plain that R |= K implies that R has
to be a measurable relation. Given a set-valued relation R, a probabilistic relation K that
satisfies R can be found. For this, R has to take closed values, and a measurability condition
is imposed; from [6] we get:
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Proposition 3 Let R ⊆ Y × Z be a measurable relation for Z Polish. If Z is σ-compact,
or if R(y) assumes compact values for each y ∈ Y , then there exists a probabilistic relation
K : Y  Z with R |= K.

Compactness plays an important role in the sequel, so we state the representation only for
this case, leaving aside a more general formulation.
We are interested in trees. The notion of a measurable tree is introduced as an analogue to
measurable relations.

Definition 4 The tree T ⊆ X∗ is called a measurable tree iff the following conditions are
satisfied:

1. T is memoryless,

2. [T ] 6= ∅,

3. T • := {〈v, x〉 ∈ X∗ ×X|vx ∈ T} constitutes a measurable relation on X ∗ ×X.

The last condition implies that T •(v) is a closed subset of X for all v ∈ T . The condition
[T ] 6= ∅ makes sure that ∀v ∈ T : T •(v) 6= ∅, so that the tree continues to grow, hence T has
the proper range for a measurable relation. Since T • constitutes a measurable relation the
graph of which is just T , it follows that T is a measurable subset of X ∗. The first condition
constraints our attention to memoryless trees; this is not too restrictive because a tree that
is represented through a stochastic relation is memoryless in view of Prop. 1.
The easy way to represent a measurable tree through a probabilistic relation would be to
capitalize on Prop. 3: if T is a measurable tree such that either T •(v) is always compact, or if
X is σ-compact, then there exists a probabilistic relation K • : X∗

 X such that T • |= K•.

This solution, however, is less than satisfactory: Given v ∈ X ∗ and the measurable subset
A ⊆ X, the probability K•(v)(A) depends directly on the entire history v. Having a look at
the construction of the relations (Sn)n∈N

based on the tree, we see, however, that the tree has
a kind of a Markov property: the state xn+1 at time n+1 depends directly only on some state
xn with 〈xn, xn+1〉 ∈ Sn+1 and only indirectly on the entire history. This observation is not
reflected in the representation above, hence we will need some refinement of the arguments
above.
We start with a simple observation: If all relations Rn are measurable relations, then Tree (R)
is a measurable tree:

Lemma 2 Construct Tree (R) from the sequence R = (Rn)n∈N
as above, then this tree has

the following properties:

1. Tree (R) ⊆ X∗ is a Borel set, provided each Rn ⊆ X ×X is,

2. Tree (R) = {〈v, x〉|v ∈ Tree (R) , x ∈ X so that vx ∈ Tree (R)} is a measurable relation
on X∗ ×X, provided each Rn is.

Proof 1. Define inductively

B0 := X,

B1 := R1,

Bk+1 := Bk ×X ∩Xk ×Rk+1.
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Then each Bk is a Borel subset of Xk+1 under assumption 1. Since Tree (R) =
⋃

k≥0Bk, the
assertion follows.
2. It is easy to see that

(∀Tree (R))(F ) =
⋃

n≥1

(

Bn−1 ∩X
n−1 × (∀Rn−1)(F )

)

,

(∃Tree (R))(G) =
⋃

n≥1

(

Bn−1 ∩X
n−1 × (∃Rn−1)(G)

)

,

holds. This implies the second part of the assertion. �

Since a probabilistic relation generates a measurable relation, this has as an easy consequence:

Proposition 4 Let (Kn)n∈N be a sequence of probabilistic relations Kn : X  X. Then
Tree

(

(supp(Kn))n∈N

)

constitutes a measurable tree.

We can show now that under a compactness condition a measurable tree may be generated
from some probabilistic refinement. Recall that the set K(X) of all compact non-void subsets
of X is a Polish space when endowed with the Vietoris topology, and that measurability of a
compact-valued relation R ⊆ X×X is equivalent to measurability of the map R : X → K(X).

Proposition 5 Let T be a measurable tree on X, and assume that T ∩ X k is compact for
each k ≥ 0. Then there exists a sequence (Kn)n≥0 of probabilistic relations Kn : X  X such
that

T = Tree
(

(supp(Kn))n∈N

)

holds.

The proof of this statement makes substantial use of some non trivial properties of Borel sets
in Polish spaces.
Proof 1. Define the sequence (RT

k )k≥0 of relations for T as above, then there exists for each
k ≥ 1 a measurable subset Dk ⊆ X such that

RT
k : Dk → K(X)

is a measurable map. This will be shown now. Fix k ≥ 0, and let (xn)n≥0 ⊆ RT
k+1(x

′) be a

sequence, thus we can find vn ∈ T∩Xk with vnx
′xn ∈ T∩Xk+2. Since the latter set is compact,

we can find a convergent subsequence (vn`
x′xn`

)`≥0 and vx′x ∈ T with vn`
x′xn`

→ vx′x, as
`→ ∞. Consequently, RT

k+1(x
′) is closed, and sequentially compact, hence compact, since X

is Polish. Thus RT
k+1(x) ∈ K(X), provided the former set is not empty. The domain Dk of

RT
k is

Dk = πX [{〈v, x〉 ∈ T ×X|T (vx) 6= ∅}]

= πX [{〈v, x〉 ∈ T ×X|T (vx) ∩X 6= ∅}] .

If we can show that (∀RT
k+1)(F ) is Borel in X whenever F ⊆ X is closed, then measurability

of Dk will follow (among others).
2. In fact, if F ⊆ X is closed, then the compactness assumption for T implies that

{〈v, x〉 ∈ T ×X|T (vx) ∩ F 6= ∅}
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is closed, consequently,
H(F ) := {〈v, x〉 ∈ T ×X|T (vx) ⊆ F}

is a Gδ set, since F is one. Hence H (F ) is Borel. Because the section H
(F )
x is compact for

each x ∈ X, the Novikov Theorem [17, Th. 5.7.1] implies now that

πX

[

H(F )
]

= (∀RT
k+1)(F )

is measurable.
3. The map RT

k+1 : Dk → K(X) is measurable for each k ≥ 0. Because RT
k+1 takes compact

and nonempty values in a Polish space we can find by Prop. 3 a probabilistic relation Kk+1 :
X  X such that RT

k+1 |= supp(Kk+1). Hence

T = Tree
(

(supp(Kn))n∈N

)

is established. �

This result makes the rather strong assumption that each slice T ∩Xn of the tree at height
n is compact. A little additional work will show that this may be relaxed to σ-compactness.
For this fix a measurable tree T over a σ-compact Polish space X (so X may be represented
as

X =
⋃

n∈N

Xn,

where each Xn is compact) such that T ⊆ X∗ is closed. Define for α = n0 . . . nk−1 ∈ N
k the

compact set
Xα := Xn0

× · · · ×Xnk−1
,

and put
S := {α ∈ N

∗|T ∩Xα 6= ∅}.

Clearly, S is a tree over N. Now let σ ∈ [S], and set

Tσ := {v ∈ X∗|v ∈ T ∩Xσ||v|}.

From the construction it is clear that

T =
⋃

σ∈[S]

Tσ

holds, the bar denoting topological closure.
Since Tσ ∩Xn is compact for each n ∈ N, T ⊆ X∗ is closed, and T is a measurable tree over
X, the condition of Prop. 5 is satisfied. Thus there exist probabilistic relations (Kn,σ)n∈N

such that
Tσ = |(supp(Kn,σ))n∈N|

is true.
A representation of T will be obtained by pasting the relations (Kn,σ)n∈N along their index
σ. Since [S] may be uncountable, we have probably more than countably many of these
families of probabilistic relations, so gluing cannot be done through simply summing up all
members. The observation that the body [S] of tree S is a Polish space will come in helpful
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now: we construct a probability measures on the set of indices and integrate the (Kn,σ) with
this measure.
The following Lemma helps with the construction. Call a probability measure on a Polish
space thick iff it assigns positive probability to each non-empty open set. Construct for
example on the real line the probability measure

A 7→

∫

A

f(x) dx

with a strictly increasing and continuous density f : R → R+, then this constitutes a thick
measure. But it can be said more:

Lemma 3 Let P be a Polish space.

1. There exists a thick probability measure for P .

2. Assume that Q is a Polish space, and that φ : P → P (Q) is continuous, where P (Q)
is endowed with the topology of weak convergence. Define

µ•(A) :=

∫

P

φ(p)(A) µ`(dp).

Then

supp(µ•) =
⋃

p∈P

supp(φ(p))

holds.

Proof 1. Let (rn)n∈N be a countable dense sequence for P , and define

µ` :=
∑

n∈N

2−(n+1) · δrn
,

the infinite sum taken as the weak limit of the partial sums. This limit exists because for
each bounded and measurable map f : P → R we know that

∑

n∈N

2−(n+1) · |f(rn)| ≤ sup
p∈P

|f(p)| <∞

holds, thus we may take limits, as n→ ∞:

∫

P

f d

(

n
∑

k=0

2−(k+1) · δrk

)

=
n
∑

k=0

2−(k+1) · f(rk)

→
∞
∑

k=0

2−(k+1) · f(rk)

=

∫

P

f dµ`

Then µ` ∈ P (P ) , and the construction shows that µ` has the desired properties.
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2. Continuity implies that φ : P  Q is in particular a probabilistic relation, so that the
integral defining µ• exists. The familiar properties of the integral show that µ• is σ-additive,
thus µ• ∈ P (Q). Since

µ•





⋃

p∈P

supp(φ(p))



 ≥

∫

P

µp (supp(φ(p))) µ`(dp)

= 1,

and since the properties of µ` make sure that µ•(U) = 0 implies that φ(p)(U) = 0 holds for
all p ∈ P for a non-empty open set U , the desired equality follows. �

Note that the continuity condition imposed above for φ : P → P (Q) is satisfied whenever the
set {p ∈ P |φ(p)(U) > 0} is open for an open U ⊆ Q. It turns out that

[S] 3 σ 7→ Kn,σ ∈ P (X)

has this property for fixed n ∈ N, since it is a continuous map, when [S] has the topology
inherited from the Baire space N , and P (X) carries the weak topology.
Because the body of tree S is a Polish space by Lemma 1, we obtain the generalization of
Prop. 5.

Proposition 6 Let T be a measurable tree on the σ-compact Polish space X such that T ⊆ X ∗

is closed. Then there exists a sequence (Kn)n≥0 of probabilistic relations Kn : X  X such
that

T = Tree
(

(supp(Kn))n∈N

)

holds.

The proof takes a thick probability on [S] and pastes the (Kn,σ) along σ, making heavy use
of the construction in Lemma 3, because σ 7→ Kn,σ(x) is always continuous. This is so since
Tσ ∩Xn depends only on σ |n, hence only on a finite number of components of σ.
Proof 1. We use the notations from above. Let µ` ∈ P ([S]) be a thick probability. Assume
that ∅ 6= U ⊆ X is an open set, then

W := {σ ∈ [S]|Kn,σ(x)(U) > 0}

can be written for fixed n ∈ N, x ∈ X as



A(x) ×
∏

k≥n

N



 ∩ [S]

for a suitable subset A(x) ⊆ N
n. Thus W is open in [S], hence σ 7→ Kn,σ is weakly continuous.

2. Define for A ⊆ X measurable

Kn(x)(A) :=

∫

[S]
Kn,σ(x)(A) µ`(dσ),

as in Lemma 3. Standard arguments again show that for each n ∈ N the map x 7→ Kn(x)(A)
is measurable. Consequently, the construction yields the desired representation. �
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The proof relies on the existence of a thick probability on the Polish space [S]. In fact, such
a probability may be obtained from the following construction, which offers an alternative to
Lemma 3: Let ψ : S → [0, 1] be a map with ψ(ε) = 1 and ψ(v) =

∑

vi∈S ψ(vi) for all v ∈ S,
then there exists a unique µ ∈ P ([S]) with

∀v ∈ S : ψ(v) = µ
(

{σ ∈ [S]|σ ||v|= v}
)

by [11, Ex. 17.17]. If ψ is strictly positive, then the associated measure µ is clearly thick.
In the theory of convex cones, the integral over a probability measure is often interpreted as
the generalization of a convex combination, cf. [8, Chapter II]. We state as a generalization
of Example 4 and as a reformulation of Lemma 3 the following continuous version. It relates
convex combinations of probabilistic and set theoretic relations:

Proposition 7 Let P be a Polish space, and assume that for a family (Rp)p∈P of relations
Rp ⊆ X ×X indexed by P the stochastic representation Rp |= Kp holds. Let µ` ∈ P (P ) be a
thick probability measure on P. Assume that the family of probabilistic relations Kp : X  X

has the additional property that p 7→ Kp(x) is weakly continuous for each x ∈ X. Then

⋃

p∈P

Rp |= λxλA.

∫

P

Kp(x)(A) µ`(dp)

holds.

4 Conclusion

We have shown that there are some interesting similarities between non-deterministic and
probabilistic ways of describing a system in terms of computation trees. We first show that
the construction of traces for both kinds of relations exhibit the same principles of construction
(which could be described in terms of monads, but this does not happen here). Then we give
under some topological conditions representations of measurable trees in terms of probabilistic
relations.
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