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Abstract

Pipes and filters is a popular architecture which connects computational components (filters)
through connectors (pipes) so that computations are performed in a stream like fashion.
The data are transported through the pipes between filters, gradually transforming inputs to
outputs. This kind of stream processing has been made popular through UNIX pipes that
serially connect independent components for performing a sequence of tasks. We show in
this paper how to formalize this architecture in terms of monads, hereby including relational
specifications as special cases. The system is given through a directed acyclic graph the
nodes of which carry the computational structure by being labelled with morphisms from the
monad, and the edges provide the data for these operations. It is shown how fundamental
compositional operations like combining pipes and filters, and refining a system by replacing
simple parts through more elaborate ones, are supported through this construction. A notion
of bisimilar pipes and filters is introduced, it is shown that bisimilarity of components carries
over to bisimilarity of entire systems.

Keywords: Software architectures, pipes and filters, refinement, relational specifications,
stochastic relations, monads, bisimulation.
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1 Introduction and Motivation

Pipes and filters is a popular architecture which connects computational components (filters)
through connectors (pipes) so that computations are performed in a stream like fashion.
The data are transported through the pipes between filters, gradually transforming inputs
to outputs. This kind of stream processing has been made popular through UNIX pipes
that serially connect independent components for performing a sequence of tasks. Because
of its simplicity and its easy to grasp functionality it is a pet architecture for demonstrating
ideas about formalizing the architectural design space (not unlike the data type Stack for
algebraic specifications or abstract data types). We will show in this paper how to formalize
this architecture in terms of monads, hereby including specifications through set theoretic or
probabilistic relations as special cases.

Software Architectures The structural aspects of a large programming system are cap-
tured through its (software) architecture. Initially, this term was used rather loosely, work
being done during the 1990s in particular by M. Shaw and her associates (see e.g. [28, 25, 1])
have established a body of knowledge in the software engineering community about methods
for structuring large systems. This translates into practical tools like architectural design
languages.

An architecture for a system separates computation from control on the system’s level; while
the former is represented by algorithms formulated in a programming language, the latter
is formulated in terms of components (which carry out the computations) and connectors
(which transport data from one component to another one). Connectors are elevated to first
class rank making it possible to reason explicitly about connecting components. Considering
an architecture then means identifying connectors and components and describing the inter-
play between them. Since the emphasis is on structure, formalizing an architecture helps in
investigating its salient features; formalizations can be done on different levels. Closest to im-
plementations are formulations through an architectural description language ([27] discusses
and assesses a number of them), but other formalisms are used, too:

e the paper by [19] investigates the suitability of the Unified Modelling Language for
architectural descriptions (and discusses some desiderata for the language to be usable
for architectural descriptions),

e the work reported on through [1, 28] discuss a formulation of pipes and filters through
a denotational framework for developing formal models of architectural styles based on
the specification language Z,

e category theory is used in formalizations e.g. of architectures for mobile programs based
on UNITY [30, 13].

The formalization of an architecture permits reasoning about it since it provides precise and
abstract models that usually come with analytical techniques. This is in marked contrast to
architectural techniques where the shape of an architecture and its architectural parameters
are determined experimentally ([12] provides an example for constructing a substantial real
life system). Shaw and Garlan [28, Sec.6] discuss architectural formalisms, they distinguish
three levels of formalization:
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e The architecture of a specific system. This permits a precise characterization of the
system-level functions that determine the overall product functionality.

e The formalization of an architectural style. Through the description of architectural
abstractions it becomes possible to analyze various static or dynamic properties of
common architectural patterns or reference architectures which are used informally e.g.
as reference architectures. Essential ingredients in such a formalization are provided by
connectors and by components.

e A theory of software architecture. By classifying architectures and representing them
with a mathematical machinery a deductive basis for analyzing systems is provided.

We will focus in the present paper on the intermediate level and investigate an architecture
where the computational elements are represented through relations.

Relations Computations may be modelled through relations, relating e.g. an input to an
output or to a state. This gives rise to a whole calculus of relations (for which the contributions
to [5] provides a reference), it draws heavily on ideas from Mathematical Logic in its classic
version as embodied by E. Schroder or A. Tarski. This has been outlined in [6].

We will not follow this trail but rather capitalize on a common abstract description of non-
deterministic and stochastic relations through monads. A non-deterministic relation R be-
tween sets X and Y, thus R C X XY assigns to each z € X a subset {y|(z,y) € R} of possible
outcomes. Thus nondeterministic systems may be modelled with these relations. Relation R
may be represented as a map from X to the power set P (Y) of Y. While nondeterministic
relations may be interpreted as assigning equal weight to each possible outcome, a probabilis-
tic relation assigns to each input z € X a probability distribution K(x) on the output, so
that K(z)(B) yields the probability that on input z the output is an element of B C Y. If
K(z)(Y) =1, it is guaranteed that there will be some output, non-terminating computations
may be taken into account by assuming that K(z)(Y) < 1, so that 1 — K (z)(Y) may be inter-
preted as the probability for no output at all. Hence K can be interpreted as a map from X
to the set S (Y) of a subprobabilities on Y. For this to permit sensible models, X and Y have
to be endowed with measurable and sometimes topological structures. Both constructions
share a common structure in representing the Kleisli construction for a monad. The case of
non-deterministic relations is covered through the power set functor on the category of sets,
and for the stochastic case through the functor which assigns each measurable set the space
of all subprobability measures. Thus monads (and their associated Kleisli categories) form
the common abstraction for both cases, bringing us into the realm of Moggi’s argumentation
[21, 20] that monads form a suitable basis for modelling computations. Consequently, our
architectural modelling will be done on the basis of a monad.

Categories vs. Architectures Categories with their emphasis on structure are a suitable
formal tool for modelling software architectures. Focussing on structure implies the indepen-
dence on any representation in a specification or programming language; technically this is
achieved through the use of morphisms and functors. Synthesizing a design sometimes means
formulating the components and amalgamating them through a suitable colimit (cf. [13]).
Wermelinger and Fiadeiro [30] discuss some salient features of an architectural modelling
through categories in the context of their modelling mobile programs:
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e Programs may be represented as objects, morphisms show how programs can be com-
posed; explicit use of connectors facilitates the separation of computation and coordi-
nation.

e The mechanisms for interconnecting components yielding complex systems are formal-
ized using universal constructs, in this way providing a stage for arguing about these
mechanisms formally.

e Extralogical design principles are internalized through properties of universal constructs
(e.g., locality of names),

e Different levels of design can be related through functors.
e The evolution of architectures is supported.

When modelling an architecture, one has at least to take care of the computational com-
ponents and the connectors. Working in a category, the connectors may be represented as
objects while the computational components will be modelled as morphisms between the ob-
jects. Since computations will be represented as monads, the most natural way is representing
a component through the work of the corresponding functor T. Here the Kleisli construc-
tion enters the game: suppose for simplicity that the input and the output for a component
A are modelled respectively through the objects £ and y, then the computation performed
by A is represented through a Kleisli morphism  — Ty. These assignments are described
when modelling a particular architecture, and the work of an instance of this architecture is
described in terms of these assumptions. We will show how this can be done for a pipes and
filters architecture. This architectural style is simple enough to be studied without having
to discuss too many technical, architecture specific issues. It is rather general, hence not
tied to a particular domain or application, but it is semantically rich enough to illustrate the
constructions proposed and investigated here.

Pipes and Filters Shaw and Garlan describe a pipes and filters architecture [28, Sec. 6.3]:
Filters transform streams of data; each filter has input ports from which data are read, and
output ports, to which results are written. Computation is performed incrementally and
locally: a portion of the data available at the input ports is read, transformed, and written
to the output ports which in turn serve as input ports for other components (or as outputs
for the system). The filters may be thought of working concurrently, and it is characteristic
for this style that the data passing through a filter comes only through its input ports, and
leaves only through its output ports, global data are not available. A pipe links an input port
to an output port and transmits data from one component to another.

Fig. 1 shows an example for a simple pipes and filters system.

The system has two inputs w; and we and two outputs b; and be, it has four independent
components 1,...,4. The edges are labelled with the types of the inputs the components
accept, and produce, resp.: for example, component 1 accepts inputs of type X; and produces
outputs of types X3 and X4, the former serving as an input to component 2 together with
an input of type Xo, the latter serving as an input to component 3 together with an input of
type X5, which is produced by component 2. The entire system accepts two inputs of type
X1 and X5 and produces two outputs of type X7 and Xs.

We assume that the system forms a directed graph with filters as nodes and pipes as edges.
The graph is assumed to be acyclic, so that loops among filters are not permitted. This is
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3 b,
X5

4 b,
X6 X8

Figure 1: System of Pipes and Filters

a simplifying assumption which does not, however, seem to impose severe restrictions on the
use of such a system from a practical point of view.

Overview The rest of this paper is organized as follows: in Sect. 2 we make our assumptions
on the category we are working in explicit, we perform some basic constructions, and relate
them to Mac Lane’s monoidal categories, and to Moggi’s strong monads. Sect. 3 illustrates
these constructions for the two monoids representing relations, viz., the Manes, and the
Giry monad, resp. We will base our construction on directed acyclic graphs (dags), and we
perform the construction first on a special class of graphs that we call stratified; this is done in
Sect. 5. Bisimulations are introduced in Sect. 4, and we show that bisimilar pipes and filters
systems will lead to bisimilar results; this is done also in Sect. 5. Sect. 7 shows that assuming
stratified graphs is no loss of generality by constructing a stratified graph from a dag, and by
showing that the behavior of the entire system is invariant against stratification. This then
serves to demonstrate that this construction may be used for incrementally and hierarchically
constructing pipes and filters systems. Finally, Sect. 8 compares the formalization proposed
here to the one described by Abowd et al. [1] which is also discussed at length in the text
book [28], some conclusions are drawn, and suggestions for further work are given.

Acknowledgements The comments from Alexander Fronk and from Georgios Lajios are
appreciated: they helped clarifying some obscure points.
The diagrams in this paper have been typeset using Paul Taylor’s diagrams package.

2 First Steps

This section serves as a preparation for things to come: we remind the reader of the Kleisli
product of two morphisms, and we formulate a compatibility condition which relates the
product in the category under consideration to the monad which is used for modelling the
computations.

Let X be a category with finite products, (T, 7n,u) a monad in X. The Kleisli category X
has the same objects as X, an arrow between ¢ and b in X7 is an arrow in X between a and
Tb. Let f:a — band g : b — ¢ be arrows in X, thus f : a — Tb,g :— Tc in X, then the
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composition g * f is defined as p. o Tg of, with o as the composition in X, cf. [17, Thm.
VI.5.1].

The category ¥(™ has as objects n-tuples of objects of X, and n-tuples of morphisms, the
composition being defined componentwise. Define functors G,(Irf ),H,(I’f ) xt) 5 ox upon
setting (n > 1)

Ggl)(xl,...,xn) = T~T1><"'XTIIIn
HS;L)(M,---,%) = T (21 X X Tn),

and, if ¢; : £; — y; are morphisms in X, then

G Bryeybn) == Ty x - x T,
HY (g1, ,dn) = T(f1 % X ).

T models the computations performed in the components, and which are partially done in
parallel. This in turn will be modelled through finite products. Hence T should be naturally
related to the product in X; the present proposal assumes compatibility which mediates
between T (z) x T (y) x T (z) and T (z X y X z) using the natural transformation 1p : T > T

and introducing another one between G,(I%) and H,(I%). To be specific:

Definition 1 Monad T is compatible with the product in X iff there exists a natural trans-
formation 0 : G,(I%) > H,(I?) which makes this diagram commutative:

(A7 X 0)(5,2)

T (z) x T (y) x T (2) T (z) X T (y x 2)

(0 X 1T)(;c,y,z) = g(m,yxz)

T (z xy) X T(2) a ) » T (z Xy X2)
TXY,2

0 is called the mediating transformation.

A mediating transformation # spawns a sequence (O(n))nzl of natural transformations
PRIONLNE = (D)
o . Gy’ 5 Hy

in the following way:

05(51) = 1py
2) —
e(w,y) T 9(%?!)
(n+1) — (n)
9($1,---,$n+1) T 0<$1X'"an’z”+1)o (0 % 1T)(w1,...,wn+1)

Lemma 1 Suppose that T is compatible with the product in X, and let 0 be the mediating
transformation. Define 0™ as above, then this sequence has the following properties:

1. 0™ is a natural transformation,
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2. for all k,2 € N and for all objects x;,y; we have

H(xlx---xwk,mx---xw)o (O(k) X H(Z)) (1 yeems Tl Y1 oo Ve = Hg];j:f).,wk,yl,...,yg)
Proof: 1. The first part is established by induction on n, since the composition of natural
transformations is again a natural transformation.
2. The second part is proved by induction on £, the start of the induction representing just the
inductive definition from above. The induction step is established through the commutativity
of this diagram:

(Tay X --- X Tag) x (Thy x --- x Thy) x T (b)

T (a1 X ---xag) X T(by x---xbg) x T(b) — T(ag X -+ XagXxXby X---Xxby) xT(b)
K

g s

T(a1x---xak)xT(blx---xb@xb)

T(alx---xakxblx---xbexb)
with

= 9(k X 1T)
= (It x9) (@1 XX ap,b1 X---xbg xb)

(9(k+£ %1 )

e(al X Xag Xb1 X+ Xbg,b)

(@1 yeenyQ D1 4ensbg,b)

(@1 500050k 3b15000,bg,0)

= (0 x 1T)(a1 XX ;b1 X+ Xby,b)

> A o R ™ R

9(a1 XX Ag,b1 X -+ X by X b)

The upper triangle is commutative because of the induction hypothesis, the lower square is
just the condition on € from Def. 1. Then the assertion follows, since

AofBoa = dokoa
= do7,
and
= (k) x plt+1)
Boa ( % )(al,...,ak,bl,...,bg,b)
_ plk+e+1)
6 °T = <a15“'7ak5b15---7bl7b)
O

The product in X defines together with T an associative operation:

Definition 2 Let 7:a — Tb and 7' : a’ — TV be morphisms, then define

TXTT':axa'—>T(b><b')
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upon setting
T XD T = 0Opyy 0 T X T

Example 1 will show that X7 does not exhibit the universal properties which would be
necessary to form a product (thus the category X1 does not necessarily have finite products,
even if X has them).

We have, however:

Corollary 1 Let 7 :a — Tb,7:a' — TV, 7 :a" — Tb" be morphisms in X, then
(T X7 T') xp 7' =7 xp (T' X 7'”) .

Proof: Lemma 1 shows that both sides of this equation equal Gg’,)b,,b,,) o(rx7'x7"). O
Remark: 1. Mac Lane [17, Ch. XI.2] defines a monoidal functor between monoidal categories
which comes close to the compatibility definition proposed here for an endofunctor, where the
role of the tensor product there is played by the product here. The present definition does
not require any conditions on the terminal elements and its image under the functor, thus it
is weaker. Mac Lane formulates a transformation quite similar to the one given in Lemma 1.
The proof in [17] refers, however, to a coherence theorem and seems to be a bit inaccessible
by not making the construction transparent. Consequently, a direct proof is given here.

2. Moggi [21, Def. 3.2] defines a strong monad in a category which is closed under finite
products by postulating the existence of a natural transformation ¢,p : a x Tb — T (a x b)
having some properties which relate T to the product in the category (¢ called a tensorial
strength). In [20, 3.2.3] it is shown how the tensorial strength induces a natural transformation

G,(I%) > H,(I%) in the terminology used here.

3 Examples

This section discusses two examples, indicating how set theoretic and probabilistic relations
fit into the framework developed here. The first example derives from the well known monad
investigated by Manes, giving rise to set theoretic relations, the second one generalizes an
observation by Giry, yielding probabilistic relations. The respective relations are obtained
through the Kleisli construction.

We fix for the rest of this section a monoid H with 1 as an identity. Such a monoid could
be a group, the free semigroup over an alphabet, or a V-semilattice with a smallest element,
forming the supremum in H as multiplication. The functors under consideration will have
the general form X — F (H xY). While the component coming from Y will cater for the
system’s work, the component coming from H will be responsible for any output, which
will be concatenated through the respective steps. Consider the case that computations are
modelled through set-theoretic relations, then (h,y) € R(z) means that upon input z the
output piped to the next computation will be y, and that A is some control output (e.g., the
cost incurred for computing y or, as in UNIX pipes, some output to port stderr). Hence the
next computation is not affected by the value of h. The additional information generated
in this way are collected at the end of the computation proper; the outcome from the entire
computation consists of the computational output, and of additional information which are
accumulated through the semigroup multiplication.
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3.1 The Manes Monad

Let & be the category of sets with maps as morphisms. It is well known that (P, u’,n') forms
a monad, where P assigns to each set its powerset, 'y : P (P (X)) — P (X) maps A C P (X)
to [JA, and n'y assigns each element z € X the corresponding singleton {z}, cf.[17, Ex.
VI.2.1]. A slight generalization making use of monoid H works as follows: define the functor
M through

M(X):=P(Hx X),

and if f: X - Y isamap, A C H x X, then
M (f) (4) = {{h, f(z))|(h, z) € A}
defines the action of the functor on the morphisms of &. Now define
px : M(M (X)) - M (X)

upon setting
px(A) = |J {(hihe,2)|(hs,2) € b},

(h1,b)eA
then it is not difficult to see that
p:M?2 5 M
is a natural transformation. The natural transformation

T]:lgl)M

is defined by nx : z — {(1,z)}. Then it is shown by standard calculations that (M, n, u) is a
monad in &. It is also immediate that

M(X) X M(Y) = <A,B> — {<h1h2,x,y)|(h1,m) € A, <h2,y) € B} € M(X X Y)

defines a natural transformation that mediates between the functor and the product in &.
A Kleisli morphism between X and Y is a relation between X and H x Y. This is well
investigated for the case that the monoid H is trivial, cf. [4, 16.1.4]; this generalizes to
the present case. Let R : X — M(Y) and S : Y — M(Z) be Kleisli morphisms, thus
RCXx(HxY)and S CY x (H x Z) are relations. Then their product is stated in Prop. 1
which summarizes this example.

Proposition 1 (M, 7, u) is a monad in the category & of sets with maps as morphisms which
is compatible with the product in &. The Kleisli product for the relations R C X x (H xXY')
and S CY x (H x Z) is given through

(S * R)(z) = {(h1h2,2)[Fy € Y : (h1,y) € R(z) A (h2,2) € S(y)}.0

The composition of two relations will have the outputs from the single steps concatenated,
and will proceed via an intermediate state.

There is a topological variant of this monad: let X be a Polish space, and assume that H
is a Polish semigroup (this is the case e.g. when H is the free semigroup generated by some
Polish space Y endowed with the topological sum of (Y"),>0). Endow the set

K(X):={K CH x X|K # 0 is compact }

June 13, 2002



Page 9 Pipes and Filters

of all compact non-empty subsets of H X X with the Vietoris topology. This topology has
the sets
{KeKX) K CUy, KNU, #0,...,KNU # 0}

as a basis, where Uy, ..., Uy are open subsets of H x X. It is well known that £(X) is a
Polish space, see e.g. [16, Thm. 4.25].
Since H is a topological semigroup, it is not difficult to see that

KKX)o5We | {(hahe,z)|(h1, 1) € b} € K(X)
(h1,b)eW

constitutes a continuous map, cf. [16, Ex. 4.29]. The constructions are done exactly as for
monad (M, 7, ). This yields:

Corollary 2 (K,n,u) is a monad in the category of Polish spaces with continuous maps as
morphisms. The Kleisli product is given as in Prop. 1. O

The hyperspace construction addressed in Cor. 2 is, when the monoid is trivial, of practical
interest in medical image processing [18, 7].

Measurable set-valued maps (a.k.a. measurable relations [15], although the name is somewhat
misleading) are the straightforward generalization of compact valued maps that are used
in stochastic dynamic optimization. They may be represented as measurable maps from a
measurable space to the space of all closed non-empty subsets of a Polish space, measurability
on the latter being Borel measurability with respect to the Vietoris topology. It does not seem
possible, however, to apply to this case a similar monadic construction as the ones discussed
above. Under suitable topological assumptions, these relations may be represented through
the support function of a stochastic relation [9]. This representation, however, turns out
not to be always compositional: the composition of the set-valued relation does not always
correspond to the representation through the composed stochastic relation, cf. [10]. Capturing
this case requires then probably another approach.

3.2 The Giry Monad

Let 90t be the category of measurable spaces with measurable maps as morphisms. If X is a
measurable space (the o-algebra is usually omitted in notation, its members are referred to
as measurable subsets of X) we denote by S (X) the set of all sub-probability measures on
X which is made into an measurable space itself by endowing it with the *-o-algebra. The
latter is the smallest o-algebra which makes the evaluation m — m(A) measurable for each
measurable subset A of X . Let f : X — Y be a measurable map between the measurable
spaces X and Y, then f induces a map (again denoted by f) between S (X) and S (Y) upon
setting (m € S(X),B CY measurable):

f(m)(B) :== m({z € X|f(z) € B} =m (f~'[B)) .

f(m) is referred to as the image measure of m under f. Integration with respect to the image
measure may be captured through the change of variable formula which will be somewhat
helpful in the sequel: let 1 : Y — R be a bounded and measurable function, then

/ b(y) flm)(dy) = / (f () m(dz).
Y X
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The Giry monad (P,n',u') [14] assigns each measurable space X the set of all probability
measures P (X) on X. A measurable map f: X — Y is assigned the map Pf : P(X) —
P (Y) which sends m to f(m). Then f : P(X) — P (Y) is easily seen to be measurable
with the weak-*-o-algebras, and to yield a probability. Consequently, P is an endofunctor on
9. The unit ny : X — P (X) assigns to each z € X the Dirac measure J, on z, and the
multiplication y'y : P (P (X)) — P (X) is defined by

i (3)(A) = /P o, ) @)

The morphisms in the Kleisli category for this monad are just the transition probabilities,
i.e., the probabilistic relations (cf. [23, 2, 11]). Remember that K is a transition probability
between the measurable spaces X and Y iff K(z) is a probability for z € X, and if z —
K(z)(A) is a measurable function for each measurable set A C Y. This is written as K :
X ~Y. Let K: X ~Y and L :Y ~ Z be transition probabilities, then their product
L o K is defined through (z € X,C C Z is a measurable subset)

(L o K)(z)(C) := /YL(y)(C) K(z)(dy).

We endow the monoid H with a measurable structure which makes multiplication measurable,
when H x H carries the product o-algebra, i.e., the smallest o-algebra which makes the
projections measurable. It is then not difficult to see that for each measure m € S (H x X),
for each measurable map f : X — Y, and for each measurable subset C C H x Y the map

s = m({(t, z)|(st, f(z)) € C})

is measurable on H.

Examples for such measurable monoids are given by topological monoids; the Borel sets then
form the canonical measurable structure. Topological groups are probably the most prominent
examples. If H is a V-semilattice with a smallest element, then it is not difficult to see that
V is a continuous operation, when H is endowed with the interval topology (i.e. the topology
which has open intervals as subbase). Taking again the Borel sets for this topology, we see
that these semilattices yield measurable monoids, too.

Now define for the measurable space X, the element z € X, the measurem € S(H x S (H x X))
and the measurable subset A C H x X:

G(X) = S(HxX)
nX(fE) = 5(1,95)
px (m)(4) = /H i P (ghs2) € 43) midlg,p)

If f: X - Y is a measurable map, then we put

G (f)(m)B = m({(h,z)|{h, f(z)) € B})
= m((idu x f)7'[B])
= (idg x f)(m)(B).
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Consequently, G (f) : S(X) — S (Y) is measurable, and if ¢ : H XY — R is measurable, the
change of variable formula implies that

P(h,y) G (f) (m)(d(h,y)) = P(h, f(x)) m(d(h,z))

HXY HxX

holds.
We will show now that (G, 7, 1) is a monad in 9, adapting and extending Giry’s proofs [14]
to the situation at hand. It will also be shown that this monad is compatible with the product
on .

Lemma 2 G is an endofunctor in 9M; n: log — G and p : G > G are natural transforma-
tions.

Proof: 1. It is immediate that G : 91 — 91 is a functor, and that 7 is a natural transfor-
mation.

2. Let f : X = Y be a measurable map, then we have for m € G (Y') and for the measurable
subset BC G xY

(v © G2f) (m)(B) = / (G1)(@){(hy)|(gh,y) € BY) m(d(s,q))
HxS(HXY)
_ / a({{(h 2)|(gh, f (z)) € B}) m(d(s,q)).
HxS(HxX)

This coincides with (Gf o ux) (m)(B). Consequently, y: G2 3 G. O
Proposition 2 (G,n,u) is a monad in M.

Proof: 1. We need to demonstrate that the associative, and the unit laws hold. The change
of variable formula implies that

/ $dGrx) @) = [ (hnx(@) pld(h,))
GxG(X) HxX

holds, whenever p € G(X), and ¢ : H x G(X) — R is measurable and bounded. Conse-
quently,
(kx © Gnx)(p)(B) = /H an({<9,:v)|<hg,w) € B}) p(d(h,z))
X
= p(B)
= (px o ngx)) (p)(B).

holds for every p € G (X), and every measurable subset B of H x X. This establishes the
unit laws.

2. As far as the associative law is concerned, fix r € G3X, and a measurable subset E of
H x G (X). The change of variable formula implies that

(bx © na)) (N(E) = /HxG(X) a({(g,v)(hg, ) € E}) pe(x)(r)(d(h, q))

- / ( / ({1 l{ghd, v) € EY) p<d<h,q>>> r(d{g,p))
HxG2X \JHxG(X)
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On the other hand, expanding the definitions, and applying the change of variables formula
suitably, it is seen that these transformations hold:

(nx o Gux) (r)(E) = /HxG(X)p(Hh,y)I(gh,y) € E}) Gux(r)(d{g,p))

- / ux @By {gh,y) € EY) r(dlg,q))
HxG2X
= (ux o paen) (r)(B).

This shows that the associative law is valid. O

The monad is compatible with the product in 9. Recall that the product of two measurable
spaces X and Y lives on the Cartesian product of the underlying sets, and carries the smallest
o-algebra there which contains all the measurable rectangles A x B with A a measurable subset
of X, and B of Y, resp. Now let m; € G (X;) (i = 1,2), and define for the measurable subset
C of H x X1 x X9 the H-product of m1 and ma:

(m1 ®u m2)(C) := /HxX ma ({(ha, y)[{h1h2,z,y) € C}) mi(d{h1,z)),

then m1 ® g mg € G (X1 X X3). In fact, we can say more:

Lemma 3 The H-product is associative, it constitutes a natural transformation Gg) > Hg).

Proof: 1. Associativity of the H-product is an easy consequence of Fubini’s Theorem on
product integration.

2. Let f: X - X"and g : Y — Y’ be measurable maps, then we have for the measures
m1 € G(X),mg € G(Y) and for the measurable subset C’ of H x X' x Y’

(G (f) (m1) @ G (g) (m2)) (C) = /Hxxm2({<h2,y>|<h1hz,f($),g(y)) € C'}) my(d(hy, )

(m1 @ ma2) ({(h, z,9) (9, (), 9(y)) € C'})
= G(f xg) ((m1,m2) = mi ®m ma)(C").

But this means that the H-product is natural for Gg) and H(é). O

Let K: X - Y and L : Y — Z be morphisms in the Kleisli category Mg, thus K : X ~~
HxY and L :' Y ~» H x Z are probabilistic relations. With this in mind, proposition 3
summarizes this example and shows what the Kleisli product of K and L looks like.

Proposition 3 (G,n,u) forms a monad in the category of all measurable spaces with measur-
able maps as morphisms, the natural transformation assigning two measures their H-product
mediates between G and the product in I, and the Kleisli product for the probabilistic rela-
tions K : X ~ G@XY and L:Y ~ G X Z is given through

(L * K) (z)(C) = /HXyL(y)({(haw)\(gh,w) € C}) K(z)(d{g,y))-0

Concluding the discussion about the Giry monad, we show that 9l does not have finite
products; this has been hinted at just before Cor. 1.
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Example 1 Let, for simplicity, H be the trivial monoid {1}, so that we omit it from the
notation. Suppose that Xg is a product in MM, and fix two non-empty measurable spaces
X, and X5. There exists a measurable space X and the two projections p; : X — G (X;)
such that, whenever K; : S — G (X;) (¢ = 1,2) is a morphism, we can find a morphism
K : S — G (X) such that K; = p; * K holds for 4 = 1,2. This means that

Ki(s)(B) = [ mi(o)(By) K(9)(do)
X

always holds. Now let K; be a Markov kernel, hence K;(s)(X;) equals always 1. This implies

that p;(z)(X;) = 1 is true K (s)-almost everywhere for each s, and for each K which can be

so constructed. Note that pi,p2 do not depend on the specific choice of K1, Ky. But then we

have for any L; : S — G (X;) with product L:

Ly(s)(X)) /X p1(2)(X1) L(s)(dz)

/X pa(2)(X2) L(s)(da)
= La(s)(X2)

is implied. Since we cannot always maintain L;(s)(X1) = Lo(X3) it follows that Mg does
not have finite products.

4 Bisimulation

Roughly speaking, two systems are bisimilar if reactions in one system correspond to reactions
in the other one, and vice versa. This is being made precise through an intermediate system
from which the bisimilar systems can be derived by suitable morphisms. Bisimilarity will be
discussed now, it will be defined, and related to some other notions of bisimilarity found in
the literature. In particular, we indicate that the present definition is weaker than the one
used by Aczel and Mendler, and by Rutten. It is shown that the product x does preserve
bisimilarity, and so does the Kleisli product of morphisms (it is currently not clear whether
this is also true for the stronger notions of bisimilarity).

A Kleisli morphism 7 : a — Tb can be interpreted as an object (a, b, 7) in the comma category
1% | T; a morphism {a, b, 7) — (a’,b', 7’) in the comma category is a pair (f, g) of morphisms
f:a—bandg:a — b such that 7/ o f = Tg o 7 holds. A bisimulation between the objects
(a,b,7) and (a',b',7") is then an object {(a x a’,b x b', \) such that

<7Ta><a’,aa7rb><b',b) : <a X a',b X bla )\) — <aab>7->
<7Ta><a’,a’a 7rb><b’,b’> : <a X a,a b x bla )\) — <a'la b,a T,)

are morphisms. This yields:

Definition 3 7 : a — Tb and 7' : ' — TV are called bisimilar iff there exists a Kleisli
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morphism X\ :a X a' — T (b X b') such that the following diagram is commutative:

Taxa’,a Taxa',a

!
+—a Xa

T| A |7"
( T (v)

T (b T (b x b
) T (ot b) ( ) T (Mot )

X is called the mediating morphism; bisimilarity of T : a — Tb and 7" : o' — TV is abbreviated
through (a,b,7) ~ (a', V', 7").

The notion of bisimulation is inspired by the one proposed by Aczel and Mendler [3, p. 363],
and by Rutten [24, p. 11], resp., for coalgebras, and in [8, 11] for probabilistic relations. The
notion proposed here is weaker, however. Consider as an illustration the Manes monad M on
the category of sets. Put for the Kleisli morphisms R : X — M (Y') as an abbreviation

z Fg y & (a,y) € R(z),

(the suggestive notation x % & vy used by Rutten is not adequate since we are not dealing
with coalgebras, hence cannot talk about transitions); z F% v may be read as: = yields y
under a by R. It is not difficult to see that

<X7 Y, R) ~ <XI’ Yla RI)
is equivalent to the conditions

1. forallz € X,y € Y: ifz F§ y, and 2’ € X', then there exists y' € Y’ such that
iEl l_a’ yl’

2. for all 2’ € X',/ € Y': if 2’ F9, 4, and x € X, then there exists y € Y such that
z %y

which are assumed to hold for all a € H. In fact, Rutten’s proof [24, Ex. 2.1] carries over. But
this provides an adequate interpretation of bisimilar objects for the Manes monad: (X,Y, R)
is bisimilar to (X', Y’, R') iff whenever an input z yields a reaction y under a by R, and if z’
is an input to the bisimilar system, then z’ yields a reaction 3’ under a by R', and vice versa.
Adapting bisimilarity in the way it is defined in the context of coalgebras would require for
the Manes monad postulating relations Ry C X x X', and Sy C Y x Y’ and a Kleisli morphism
A: Ry — M (Sp) as a mediating morphism. This generalizes to the existence a subobject a”
of a x a', and of b” of b x I/, resp., with a mediating morphism \ : a” — b".

Alternatively, bisimulation could have been defined as a span of zigzag morphisms in the
comma category 1Ly | T as in [8]. But this would be difficult to interpret even for the Manes
monad.

We will see that bisimulation is preserved through forming the Kleisli product, and the Kleisli
composition now:

Proposition 4 Bisimilarity has the following properties:
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1. If <G,1,b1,7'1> ~ <allabll77—{> and <a‘27b277-2) ~ <a’l27 IQ’T5> then
(a1 X az,b1 X by, 71 X T2) ~ (@] X ay, by X by, 7] X7 T3).
2. {a,b,7) ~ {(a',b/,7") and (b,c,0) ~ (b',c,d') together imply
(a,c,0 x T) ~{d',d, 0" x 7).
Proof: 1. Suppose \; mediates between (a;, b;,7;) and (al,b,7/), then a straightforward
computation shows that
T <Qb1 X gby X qp, X qb;) 0 O(py b by xtl) © AL X Ag © (pa1 X Pa/, X Pas Xpag)
mediates between 7, X 75 and 7{ X 75, where we abbreviate
Pz = Taixazxal xal,2
9z = Ty xbyx bl xbl,2-
2. Let A; and A2 mediate between (a, b, 7) and (a’,b’,7'), and between (b, c,o) and (¥, ', o),
respectively. We claim that Ao * A\; mediates between (a,c,o x 7) and (a/,c’, o’ * 7'). In fact,
(0 * T) O Maxa’'\a — Mc© T(U) O T O Taxa',a
= Hc© T? (7Tc><c’,c) oT(A2) o\
= T (7Tc><c’,c) 0 (:u'c><c’ 0 T(AQ) ° A1)
= T (7Tc><c’,c) © ()\2 * )\1)
holds, because p : T2 % T is a natural transformation. The equation
(OJ * TI) O Taxa',a = T (7Tc><c’,c’) o (>\2 * )\1)

is established in the same way. O

5 The Basic Construction

We will show now how to associate to a pipes and filters system a computation by composing
computations done in its components. This construction will be carried out for technical
reasons for graphs that exhibit a certain regularity: the nodes are partitioned into layers so
that the information flows strictly from one layer to the next one. This restriction will be
removed in Sect. 7, after we have shown in Sect. 6 that each graph can be stratified.

Fix in this section a dag G = (V, E) with roots W and leaves B; for convenience we assume
the set V' of nodes to be somehow linearly ordered. Put for node n

on = {meV|m,n)€E}
ne = {m € V|(n,m)e€ E}
as the sets of nodes which have an edge into that node or out of it, resp. G is not supposed

to have any isolated nodes, i.e., nodes n with en Une = ().
We define sets (Sj)o<j<k through

Sy = W,
Siii = {neVienC s} (>0).
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Definition 4 The dag G = (V, E) is called stratified iff the sets (Sj)o<j<k form a partition
of V for some k. The mazimal index k such that Sy # 0 is denoted by A(G).

Let for the rest of this section G be a stratified graph.
Observation 1 The set of inputs
{{m,n)|(m,n) € E,n € 5;}

into the set S; of nodes equals the set of outputs

{(m,)[(m,£) € E,m € S;_1}
from the sets S;_1 for j > 1.
Proof: This follows directly from the fact that G is stratified. O
This observation shows that each node n is in some uniquely determined set S;. If n is an
inner node (thus if 7 > 0 and j < k), then (m,n) € E implies m € Sj_1, and (n,m) € E
implies m € S;y1. Depicting S, ..., Sk as blocks from left to right, information flows into n
only from nodes in S; 1, thus from nodes on the left, and flows from 7 only into nodes in
Sj+1, hence into nodes on the right.
We associate now objects from category X with edges, and nodes with morphisms in Xp. To
be specific, each edge (k,n) € E is assigned an object 7y ) in X. If T is the Manes functor,
this means that an edge (k,n) is assigned a set which represents the flow from node & to node
n. For T as the Giry functor, the edge is assigned a measurable space which also represents
the flow along this edge: if it is used as an input, then it is the sample space of all inputs for a
probabilistic relation, if it is used as an output, then it represents the space of all probability
measures over this space, cf. Example 2.

The input to node n and the output from this node are then reflected respectively through
the respective products

i(y,n) = [[{vemlk € on} (n g W)
o(v,n) == [[{rnrlk €ne} (n¢ B)
Each inner node n is labelled with a Kleisli morphism
a(y,n):i(y,n) = T(o(v,n)),
so that a (7,n) models the work being performed by node n.
Example 2 Suppose that en = {my,...,m,} and ne = {£1,...,4}.

1. For the Manes monad we assign sets X1,...,X, to the edges (mq,n),...,(m,,n) and
sets Y7,...,Y; to the edges (n,£1),...,(n,%;). The node n itself is assigned a relation

a(y,n) C(Xy X+ xX;) X (HXxYy x---xXYy).

Suppose that (z1,...,z,) € X3 X --- X X, is an input to node n which is related to
output (h,yi,...,ys). That tuple represents the node’s work, and we have two kinds
of results: the tuple (yi,...,ys) which in turn is being communicated to other nodes

in the pipeline, and h € H which may be interpreted as immediate result which could
be read off this processing element. Prop. 1 indicates that all these results, which will
not be communicated as input to other filters, will be accumulated as control percolates
through the system.
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2. For the Giry monad, X; and Y; are measurable spaces, and
a(fYan):Xl XeooXXp~»wHXY X XYy

is a stochastic relation. Thus for an input (z1,...,z,) € X7 X -+ x X,, and for a
measurable B C H X Y7 X --- X Y5 we get

a(y,n) (z1,...,z,) (B)

as the probability that the computation in node n terminates, and that (h,y1,...,¥ys)
will be a member of B; the interpretation of the components for this tuple is the same
as above.

This indicates that a relational environment for modelling the basic scenario for pipes and
filters is provided, capturing both the nondeterministic and the probabilistic case.

Definition 5 Call (G,7) a pipes and filters system (abbreviated as PF-system) over the
monad (T,n, u) iff the following conditions hold:

o G=(V,E) is a directed graph with W and B as the sets of roots, and leaves, resp.
o Y(n,m) € E: Y is an object in X,
e VneV\(WUB):a(y,n):i(y,n) = T (o(v,n)) is a morphism in X

The system (G,~y) is called stratified iff G is stratified.

Since the monad will be fixed in the sequel, we will not mention it explicitly when talking
about PF-systems; unless explicitly mentioned, PF-systems will be stratified in this Section.
Now define for 0 < j < k the object

8j) = [[{i(v.,n) In € 55},

then g (v, S;) indicates the kind of flow into S; (which is, because of Obs. 1, the flow out
of Sj_1); hence the component S; has the “input signature” g(v,S;—1) and the “output
signature” g (v, S;)-

The work being done in S; can be represented through the Kleisli morphism

Q[(’Ya SJ) ‘g ('75 ijl) - T (g (7’ SJ)) 5

with #5;)
A(7y,8;) = 9(n|n65) H{a v,n) |n € Sj},
where 6 is the natural transformation which mediates between T and the product in X, cf.

Def. 1. The linear order on V makes 0§n| e)S ) uniquely determined. The work of the entire

system is then represented through

B(G,y) :=A(y, Sk—1) * ... *A(v,S51).

The construction shows that

B(G,7):9(v,51) = T (g (7, Sk)
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is a Kleisli morphism between the inputs to the system and the outputs from it, thus represents
the systems’s work.

The example that follows discusses a particular pipes and filters system, stratifies the graph
and exercises the construction proposed here for our example monads, hence for set theoretic
and for probabilistic relations.

Example 3 Consider the system of pipes and filters represented through the graph in Fig. 1
again. It has the roots {wi,ws.}, the leaves {b1,b2} and the filters {1,2,3,4}. The edges
are decorated with the expected types of inputs, thus with the y-values. The graph is not
stratified, but the version in Fig. 2 is. Note that we have introduced two new artificial nodes
AQ and A4.

X X
X, 4 4 X,
w, 1 A, 3 b,
X3 Xs
X X
2 X2 XG 8
Figure 2: Stratified System of Pipes and Filters
Then we have these sets Sy, ..., S:

SO = {wlan}asl = {]—;AQ}aSQ = {A4;2};S3 = {374}754 = {blabQ}'

Let us first discuss the set valued case. The monoid is fixed, also for later use. Since the A;
are expected to have no functional effect, we will have

AQ = {(;E,l,.’l))‘l‘EXQ},
Ay = {{z,1,z)|z € X4}

We assume that node n is represented by a relation R, between the corresponding sets,
augmented by the information provided by the monoid, thus e.g.,

RQQ(XQXX?,) X(HXX5XX6).
The construction yields e.g. for component Ss:
A (’Ya SQ) = {(332, Z3,T4, h27 T4,T5, $6>|‘T4 € X4a <$27 x3, hZa Z5, xﬁ) € RZ}

The work of the entire pipes and filters system is then described through the following relation,
which is a subset of (X7 x X5) x (H x X7 X Xg), as expected:

{{x1, w2, hihohshy, 7, 28)| w3 € X3, 74 € Xy, x5 € X5,76 € X :
<.’L‘1,h1,.’L‘3,.’L‘4> (S Rl, <.’E2,.7,‘3,h2,$5,$6) (S RQ, <1‘4,$5,h3,$7> S R3, <£66, h4,.’L‘8> (S R4}.
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Note the accumulating effect which the filters exhibit through the elements of the monoid.
Turning to stochastic relations, we assume that the monoid carries a measurable structure
which makes multiplication measurable, cf. Sect. 3.2. The A; (i = 2,4) are Dirac kernels: we
put

AZ(.’L‘) = (5(17;6) € GX;.

Node n represented is this time through a stochastic relation K, between the appropriate
sets, e.g.,
KQZXQXX3WHXX5XX6.

The construction gives then e.g. for component Ss:
A (7, S2) (22, 23, 74) = Ka(22,73) @1 Aa(T4),

thus the probability that the computation in components Se will give an element of the
measurable set D C H x X4 x X5 x Xg after input of (z1, 22, z3) € X1 X X9 X X3 is computed
as

2 (75 SZ) (1'2, zs3, "E4) (D)
=/ Ay(zq) ({(ha, 2)|(hoha, &, 25, 76) € D}) Ko(g,23)(d{he, x5, 26))
HXX5><X6
= Ks(z2,73) ({(h2, x5, 76)|(h2, T4, 75, 6) € D})
Let f: H x X4 x X5 x X¢g = R be a bounded and measurable function, then a computation

of the Kleisli product according to Proposition 3 shows that (z1 € X1,z9 € X5)

/ £ A((@ (7, 5) A (7, 81) (w1, 22)
HXxX4xX5xXg

-/ / £(gh, @4, w5, 26) Ka(za,a5)(d{h, z5,26)) Ki(e1)(dlg, w5, 24))
HxX3xXq4 JHxX5xXg
We get in this way for (z1,z2) € X7 x X7 and the measurable subset F' C H x X7 x X3

m(g,’Y) ($1,$2)(F)
= / A (7, 83) (24, x5, 26) ({{h, 27, 28)|(9h, z7,28 € F}) X
HXxX4xX5%xXg
x d (A (y,S2) * A (7, 51)) (21, 22)(d(g, x4, 75, T6))

— / / / K4(z6) ({{h1, @s)| (g1 hgh1, @7, z5) € F}) x
HxX3xXq4 JHxX5xXeg JHXX7

x K3(z4,25)(d(g, 7)) K2 (72, 3)(d(h, T5,76)) K1(71)(d(g1, T3, T4))

as the work of the entire pipes and filters system.

We compare the work done by two assignments of objects and morphisms to the same pipes
and filters system. Call two PF-systems (G,v1) and (G,y2) over the same graph G, which
need not be stratified (cf. Prop.9), bisimilar iff the constituting parts are bisimilar. To be
specific:

June 13, 2002



Page 20 Pipes and Filters

Definition 6 Let (G,v1) and (G,y2) be PF-systems. We say that (G, ;) is bisimilar to (G, y2)
(abbreviated as (G,v1) ~ (G,7y2)) iff this condition holds:

Vn € V\ (WUB) : <i(")’1,n) 50(71,7")’0'(71:”)) ~ <i(725n) 50(72"”)’0'(725”))'

Hence (G,71) ~ (G,7y2) iff the respective functionalities associated with each inner node
in one system are bisimilar. This is a local definition, confining the attention to each node
individually. For the systems’ level, the question arises whether or not bisimilarity is preserved
through the pipes and filters system, i.e., if the resulting morphisms are bisimilar.

Tracing the construction, it can be established that bisimilarity is indeed preserved by a pipes
and filters system:

Proposition 5 If the stratified PF-systems (G1,7v1) and (Ga,72) are bisimilar, then

L (g (71,85-1),8(1,8;) , %A (71,8;)) and (g (v2,Sj-1),8(72,5;), A (72,5;)) are bisimilar
for0<j<k

2. (g (71,51),8 (71, 5%), P (G,m)) and (g (72,51),8 (v2,S%), B (G,72)) are bisimilar.

Proof: 1. The proof of Cor. 1 and an easy inductive argument shows that

S4
Ay, 85) = s o [[latv.n)In€ 85}

= a(’%nl) XT...XTCL(’)’,’I’I/@),

if S = {n1,...,ne}. Consequently, the first part follows from the first part of Prop. 4 with
the associativity of X.

2. The Kleisli product * is associative, thus the second part follows also from Prop. 4 by
induction. O

We will now prepare for removing the condition that a PF-system should be stratified.

6 Stratifying Graphs

The assumption in carrying out the basic construction in Sect. 5 has been that the graph
underlying the PF-system is stratified. But graphs rarely are, so it becomes necessary to
make provisions for generalizing the construction to general directed graphs. The strategy is
to devise a way of stratifying a graph, to perform the construction on the new graph, and
to make sure that all graphs that are stratified versions of the given one perform the same
work. The present section is auxiliary in character and provides an algorithm for stratifying,
Sect. 7 will do the generalization.

The algorithm in Fig. 3 produces from G = (V, E) a stratified graph G’ = (V', E') with
VCV'and E'N(V x V) C E. Tt assumes that G does not have any isolated nodes, and that
each node lies on a path from a root to a leaf. We assume that we have a source @ of fresh
nodes which is disjoint from V' U Ej; invoking the function newgq() will produce a fresh node.
The map « initially gives the in-degree of a node; we use some auxiliary values which will be
needed and discussed in the sequel.

Thus we iterate over all edges, removing roots as we go; for a node n we use H (n) for recording
which nodes have edges leading into n that will be removed. When we see that a node n has
no longer any edges having n as a target, this node will be promoted to a root (and removed
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Edges := E; Nodes:=V; zeta:= 0;
while Fdges # () do
forall n € range Edges do
H(n) := {a|(a,n) € Edges,a(a) = 0};

od;

forall a € domain H do
d(a) := zeta;

od;

Edges := Edges \ {(a,n)|(a,n) € Edges,a(a) = 0};
forall n € Nodes do

r:= #{k|(k,n) € Edges};

if 7 =0 then

a(n) :=0;
else
for j:=r+1 to a(n) do
choose m from H(n);
H(n) i= H(n) \ {m};
q == newq();
a(q) :==0; V=V U{q};
B = (B\ {(m,m)}) U{{m.q), (@)}
Edges := Edges U{(q,n)};
od; —- forall
fi;
od; —- forall
zeta := zeta + 1;
od; —-- while

Figure 3: Algorithm Stratify

in due course); promotion to a root means changing the in-degree a(n) to 0. If it turns out,
however, that there are still edges going into that node (note that in this case #H(n) =
equals a(n) — r), we replace each edge (m,n) by a pair of edges (m, q) and (g,n), where ¢ is
a fresh node which is put into the set V' of nodes.

Since each dag has roots, and since G is assumed to have no isolated nodes, it is not difficult to
see that the algorithm Stratify terminates. It is also evident that the new graph G’ = (V', E')
has the given one as a subgraph in the sense that V' C V' and E' N (V x V) C E both hold.

Observation 2 Let n € E' be a node in G', and assume that there exists a path from a root
of G’ to n. Then this path has length d(n).

Proof: 1. We proceed by induction on the value of zeta. The begin is trivial, since exactly
the roots of G are removed, and no new roots are introduced.

2. Now let zeta = k, and assume that d(n) equals k + 1. This means that a(n) is set to 0
when zeta has the value k. We distinguish the cases that n is a new node introduced in this
step from the case that a(n) is set to 0 because r = 0 holds.

e If n is a new node, we can find an edge (mq,n,) which gave rise to this creation, hence
that edge is replaced by the pair of edges (M1, n) and (n,n1). Edge (m1,n1) is a member
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of the set Edges before control enters the body of the actual loop, thus will be removed.
The induction hypothesis makes sure that each path from a root to m in the graph
constructed so far has length k, thus d(n) =k + 1.

e If n is no new node, the assumption that there is a path in the new graph to n implies
that, since there is no node m with (m,n) € Edges, there are edges (m,n) which have
been deleted in the step before. For all these m we have d(m) = k. In the new graph
have all these nodes m the property that each path from a root to them has length k.

This implies the assertion. O
An immediate consequence of Obs. 2 is

Proposition 6 Algorithm Stratify produces a stratified graph.

Proof: Put in the notation from above
S = {n € Vld(n) = j}.

Then Sy is the set of roots for G' as well as for G, and if node n is in Sj;1, then all its
predecessors (w. r. t. G’ are in S;. These sets are mutually disjoint, and Sy = () for all ¥’ > &
for some minimal index k. Since n € Sy, holds for each node n € V', we see that (S;)o<;<k
forms a partition of V'. O

Armed with this tool, we may now enter the discussion of the general case.

7 The General Case

We will show now that all the stratified PF-systems which can be constructed from a given
one will do the same work, so that this morphism is an invariant, and that it is sensible
to assign it as work to a non-stratified PF-system. This has as a remarkable consequence
that two constructions can be carried out that help in composing larger systems from smaller
ones: we show that two PF-systems can be glued together (as a horizontal extension), and
that hierarchical refinement is available as construction technique, permitting the expansion
of a node by an entire subsystem. This is a vertical extension.

Both the PF-system (G,~), and G = (V, E) as the graph underlying it are fixed. The sets W
and B denote the roots, and the leaves of G, resp. We fix also the set () which serves as a
reservoir of fresh nodes for stratification.

We begin with an adaptation of the algorithm in Fig. 3 to PF-systems by taking the labels for
edge and nodes coming with such a system into account. To be specific, suppose we replace
an edge (m,n) from the set of edges by the pair (m,q) and (g,n) with the fresh node ¢ € Q.
Then we put

Yim,g) = Vimm)>
Ygm) = Vmm)
a(7,9) = Ny

Thus if the edge (m,n) carries type a, where a is an object in X, then the new edges carry
this type, and the node inserted is assigned the Kleisli morphism 7),; note that the natural
transformation 7 provides the identities in the Kleisli category Xr. In terms of pipes and
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filters, by inserting 7, . we insert a no-op into the system, since the filter introduced in this
way evidently does not do any other work than transporting inputs unchanged to outputs.
In this way we obtain from (G,) a stratified PF-system (G;,y), reusing ~ for simplicity.
The graph constructed by algorithm Stratify is an extension of the given graph. This is
made precise now.

Definition 7 The graph G' = (V', E') is called a Q-extension to G iff
1. G' is stratified with E'N(V x V) C E, and G' has the same roots as G,
9. VCV, and V'\V CQ,

3. if (n,m) € E\ E', then there exists a unique path n = qq,...,qx = m from n to m in
G" with (¢;,qi+1) € E' for 0 <1 <k,

4- for all g € V'\'V, #(eq) = #(qe) = 1.
Thus a @Q-extension has new nodes from the fountain @ of nodes only, an edge in F is either
an edge in E’, or its endpoints are connected through a unique path that runs entirely through
@ (apart from the endpoints, of course). The new nodes in G’ do not have a rich social life
by being neighbor to only two other nodes, thus such a node receives inputs from exactly one
node and propagates it to a unique other node.

Observation 3 The graph constructed from algorithm Stratify is an Q-extension to G.

Proof: If G’ is the graph constructed from G, then G’ has been shown to be stratified in
Prop. 6. The construction makes sure that the other conditions from Def. 7 are satisfied. O
Any Q-extension can be decorated as indicated above: the nodes from () receive 7, as their
function, where z is an appropriate object which labels the edges leading into that node, and
out of it, resp. This leads to the notion of an Q-extension to a PF-system which will not be
formally defined since the definition is obvious (the reader is invited to formulate it).

We want to establish that the work of a PF-system is an invariant for all Q)-extensions to a
given PF-system. For this we should make sure that the composition of Kleisli morphisms and
the operation X1 which resembles a product so closely relate to each other like composition
and product:

Definition 8 The monad (T,n, u) satisfies the f-condition iff
1. Naxp = Na XT Mp for all objects a and b in X,

2. for the morphisms f; : a; — Tb;, g; : by — Tc¢; (i = 1,2) the equality

(91 X1 g2)*(f1 X1 f2) = (g1%f1) X1 (g2%f2)
holds.

Thus the identity on a x b in X7 is obtained from the respective identities on a and b by
performing the Xr-operation. In terms of computation, combining the identities on ¢ and on
b independently to a component yields the identity in a X b. The second condition explains
the name: viewing the Kleisli composition * as a horizontal operation along the flow of
information which indicates piping, and XT as a vertical operation modelling independent
composition, the equation is visualized in Fig. 4. Hence piping of composed computations is
tantamount to composing piped computations.

Let us investigate our reference categories:
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e _ e _ e _
i o | ! |
91 [T i fy , e} fi T
: | : | | |
I | . e — —_——— .. —
AR R I R - -
! : | —

| | : |
R ! L, !
| 9 [ | f, - 0 f,
. i . i | .= i

Figure 4: (g1 X1 g2)*(f1 X1 f2) vs (g1*f1) X (g2 f2)

Proposition 7 Both the Manes and the Giry category satisfy the §-condition, provided the
monoid H which comes with the respective monads is commutative.

Proof: 1. The first condition is readily established for both monads.
2. Let R; : A; > M(B;),S; : B; - M(C;) (: = 1,2) be morphisms with M as the functor
underlying the Manes monad. Then these equalities hold for (a1,as) € A; X As:

((Sl XM SQ)*(Rl XM RQ)) (al,CLQ) =
{<h1h2h3h4,61,62)|3b1,b2 : <h1,b1> S Rl(al), <h2,b2> (S RQ(GQ),
(h3,c1) € S1(by), (ha, c2) € Sa(b2)},

and
((Sl*Rl) XM (SQ*RQ)) (al,az) =

{{h1hohsha, c1,c2)|3b1,b2 : (h1,b1) € Ri(a1), (ho,c2) € S1(b1),
(h3,b2) € Ra(az), (ha,c2) € Sa(b)},

3. Let K; : A; - G(By),L; : Bi » G(C;) (i = 1,2) be morphisms with G as the functor
underlying the Manes monad. Here A;, B;, C; are measurable spaces, the monoid H is assumed
to be measurable as well. Since

((L1 Xa L2)*(K1 XaG Kg)) (al,ag)
is a finite measure on H x C7 x C5, and so is
((Ll*Kl) XM (LQ*KQ)) (al,aQ),

it is sufficient for establishing equality to show that the integrals for an arbitrary measurable
and bounded function ¥ : H x C; x Co — R coincide. A calculation using Fubini’s Theorem
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on product integration establishes that
[ wdl xe LK xa K2) (a0 =
HxCqyxC>

/ / / / B(hahahsha, er, 2) La(b2) (@(ha 2)) T (by)(dlhs, c1)) x
HxBy JHXxBy JHXxC1 J HxCo
X Kj(az)(d{ha,b2)) Ki(a1)(d(h1,b1))

and
/ W d((Iy %G Lo)+(Ky xa K»)) (a1, az) =
HxCyxCo

/ / / / W(hhohaha, c1,c2) Lo(ba)(dlha, c2)) Ko(az)(d(ha, b)) X
HxBy JHxC1 JHxBy J HxC>
X Ly(bg)(d(h2,c1)) Ki(a1)(d{hi,b1))

4. These equalities establish the claim. It is interesting to observe in which way in both
cases the roles of hg and h3 get interchanged, reflecting the way in which morphisms change
positions. O

An easy induction using the second assertion in Lemma 1 establishes that the Kleisli identity
on ai X - -+ X ap can be calculated through the identities on the components. The f-condition
makes also sure that we may shift computations between products (the easy inductive proof
is left to the reader):

Lemma 4 Assume that the §-condition holds. Then

1. The equality
Nay x---Xan, = Mag XT «-+ XT Na,

holds for all objects a1,...,a, in X,

2. If 0; : a; — Tb; and 7; : b; = Tc¢; are morphisms in X, then

(11 X ... X Tp) % (01 XT ... XD Oy) =
(T1 X7 ... X Tj—1 X7 (Tj*0j) XT Tj41 XT ... XT Tp) *
* (01 XT .. XT 0j_1 XT Tlg; XT Oj41 XT -.. XT 0p) =
(71 XT oo X Tj—1 X My XT Tjp1 XT -0 X ) *

*(01 XT...Xm0j—1 XT (Tj*O’j) XT Oj41 XT ... XT O'n)

O

The equations in part 2 of Lemma 4 are useful in our context: o1 Xm...Xm0o, and 71 X7... X717,
represent the computations in consecutive blocks of a PF-system. Then we may shift the
computation of a component out of a block into the next or the previous one without changing
the result; shifting means among others replacing the morphism by the appropriate identity.
We will use this observation in the proof of Prop. 8 for establishing the invariance result.
From now on we assume that the f#-condition is satisfied.
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In fact, we can say more about representing Xp-products of morphisms: they can be written
as Kleisli-products of a very special kind. The discerning reader will no doubt observe that
the kind of representation derived from the discussion that follows will not be needed for the
present constructions of PF-systems. It appears to be interesting, nevertheless.

Definition 9 Assume n > 1, let 7; : a; — Tb; morphisms for 1 < i1 < n, and let & be a
permutation of {1,...,n}. Then (o1,...,0,) is the &-expansion of (7(,...,7,) iff o; can be
written as (j1 Xt ... X1 (jpn such that

1. each (j; is either ne,,mp, or one of T1,..., Ty,
2. Gk €{m1,..., ) i () = F,
3. Zf Cj,k = T;, then

) MNa;» L>3
Coe = .
Moy £ <7

For example, the permutation (13)(2) of {1, 2,3} corresponds to

Cii G2 Cu3 Moy Moy T3

G211 Co2 (23 = My T2 Tag

G3,1 (32 (33 T Naz Tag
Thus if (01, ...,0,) is a &-expansion of (711,...,7,), then assuming £(j) = i, o; can be written
as

b, Xm... X Mb;_1 X T; X nai+1 Xm... X Nay,

indicating that 7; is doing its work, whereas 71,...,7;—1 did do their work already (thus the
identity on the range is incorporated) and that 7;11,...,7, will still have to do their work

(hence the identity of the respective domains are incorporated into the xp-product).

Lemma 5 Let under the assumptions of Def. 9 (o1,...,0,) be an &-expansion of (T1,...,Tn),
then
TL XT oo X Tp = 01%...%0p,

holds.

Proof: 1. The proof proceeds by induction on n. For n = 2 the only ¢-expansions of (71, 7o)
are (Mp, X T2, 7L XT Nay) and (71 X1 MpyNa; X1 T2). The f-conditions then permits directly
establishing the claim.
2. The inductive step considers the é-expansion (o1, ..., 0p41) of (T1,...,Th+1)- Then &(jp41) =
n + 1, and we can write
o; = {02 XT NMopyys & < Jntl
0-2 XT Napy19 1> jn—l—l

for some o}. It is easy to see that
! ! ! >
(Ol 305150141+ Ot

is an ¢’-expansion for (7y,...,7,), where &' is the permutation of {1,...,n} derived from &.
Now write 0, , = ¢, XT ... XT 1, Where ¢; € {a;,b;} is suitably chosen according to the
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definition of the expansion, then we have by the induction hypothesis, by the f-condition, and
by Lemma 4

_ ! !
g1%...*%0nt1 = (01 XT nbn+1) Kook (O-jn—%l*l XT 77bn+1> *
! !
% an+1* <O'jn+1+1 XT nan-{—l) k... % (0n+1 XT T’an+1)
! /
= (01*"'*0jn+1—1*(7701 X ... XT ncn)) XT Tp41%*
! ! %

* O'jn+1+1*...*0'n+1 T77an+1
. / ! / ’
= (O'l*... *Gjn+1_1* 'r]clx...ch *an+1+1* P 5 UTL+1) XT Tn+1

. / / ! /
= (01*"'*Jjn+171*0jn+1+1*'"Jn+1) XT Tp41

= T1 XT... XTTn+1.

This establishes the claim. O
Now assume that n is an inner node in G with

a (r,m) : [{vmlk € on} = T (T[{vnp |k € ne})

as its label, and assume that the edge (k,n) is replaced by the edges (k,q), (g,n) for some
g € Q- The new edges are labelled through the object (4 ), and the new node n carries the
label 7y, ... Other edges leading into node n are also replaced. The net effect of inserting a
node just in front of node n is replacing a (y,n) by

& (5 1) *N Ty g0y [ on}

which equals of course a(vy,n). Similarly, replacing an edge (n, k) by edges (n,q), (¢, k) and
introducing labels on edges and on g € @) accordingly has the effect of replacing a (y,n) by

MT{Y(n k) lENO}* O (7,1n),

equalling a (,n), too. This is a translation of the idea of inserting “neutral” nodes into the
graph in order to render it stratified. In fact, two QQ-extensions to G differ only by such neutral
nodes on paths between nodes taken from G.

Proposition 8 Suppose (G,~) is a PF-system with (G1,7) and (G2,7) as Q-extensions. Then

ZB (7a gl) = ‘B (7’ g2)

holds.
Proof: 1. The proof proceeds by induction on

N :=max{A(G1),A(G2))}.

The j* partition element of graph G; will denoted by SJ(-i).
2. The induction starts at N = 2. This step inspects each node n of G in turn. Suppose

n € (SP \ SP) N V, then, since graph Gs is an Q-extension to G, for each predecessor w
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of n in Gy there exists a node ¢, € @ such that (w,qy), (gw,n) are edges in Go which are
labelled by the object (y,n); node gy, itself carries the label 7, .. Lemma 4 implies that the
morphism a (7,n) which participates in defining B (-, G2) has a factor

n'Y(wl ,n) X"'X7(wr ,n)

to the right, where w1, ..., w, are in that order all predecessors of n in G;. A similar argument
applies to n € (S{Q) \ 59)) NV, so that B (v, G1) differs only by factors from B (v, G2) which
are identity Kleisli morphisms. Hence the assertion holds for N = 2.

3. Let max{A(G1),A(G2)} = N +1. We may and do assume w.l.g. that V'N (S?) U Sg)) # 0,

for, otherwise no node of V is directly connected to a root in either extension, so we may
construct new graphs by eliminating the respective sets S1 without changing the work of
either graph.

We construct from the PF-system (Gi,7y) a PF-system (Gs,7) which is an Q-extension to
(G,~y) such that

Sg?’):{nEV|EIwEW:w—%ningl}u{nEVEweW:w—)*QninQQ},

where —7, indicates that there exists a (unique) path of non-negative length that runs — with
the exception of the endpoints — entirely through (. Moreover,

B (77 gl) =P (’7’ g3)

will hold.
Initially, (Gs,) := (G1,7). Assume n € V N SF) such that n € S,SQ) for some ¢t > 1. Let
w1, ..., w, be all predecessors to n in Gy. Since Gy is an @Q-extension, there exist nodes

q91,2y---54q1,t—15---549r,25- - -y qrt—1 in Q such that

w=4q1,1 .-+ q1t="n

Wr =Qr1 -+ Grg=T"n

form paths that run with the exception of their endpoints entirely through (). The edges on
the i*! path are labelled with the object iy, ny, and a (7, ¢;;) = ;)

Let ki,...,k, be all successors to n in Go. Remove the nodes {g; ;|1 <i<r2<i<t—1}
and the edges, including (w;,qi2) and (g;¢—1,n) for 1 < 4 < r from G3, and add nodes

q’l’z, ... ,qi,t_l, - ,q;,Q, ... ,q"s,t_l as well as edges so that we have the paths
n = q{,l qll,t =k
n=qsy --- g5z = ks

Put ’7<q2’j,q2’j+1> = ’7<n,ki)? a‘nd set ’Y(q;,]) = n7(n,ki) (IL > ]"-7 < t)
Consequently, graph Gs remains an QQ-extension to G, and from Lemma 4, part 2, we see that
PB(v,G1) = P(v,Gs3) holds. Working in this way through V N (Sg) U SP) will eventually

produce the desired graph.
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In the same manner we construct a PF-system (Gy4,7) with S§4) = S§2) such that B (v,G2) =

B (7, Gs) holds. N
Remove the roots from Gs; this yields the graph G3 which is an Q-extension to

G:=(V\W,En(V\W xV\W)).
Similarly, remove the roots from G4 yielding 5;, which is also an Q-extension to G. Since
max{A(Gs), A(Ga)} < N,

the induction hypothesis applies, so that

B (75 gl) =

holds. O

This proposition shows that the work described by an QQ-extension of a PF-system does only
depend on the underlying PF-system, so that we are now in a position to define the work of
such a system — which need not be stratified — through its stratified step-twins.

Definition 10 We define the work B (v, G) being done by the PF-system (G,v) as the work
B (v,G1) of one of its Q-extensions (G1,7)-

Bisimilarity is investigated in Sect. 5 for stratified systems, and Prop. 5 shows that bisimilarity
is preserved: when the nodes of two systems are bisimilar, then the work being done by these
systems is bisimilar. This result is readily extended to general PF-systems, as will be shown
now:

Proposition 9 Let (G,v1) and (G,7y2) be bisimilar PF-systems, and let the overall work be
performed by the functor P (7|,g) :ij — o for j = 1,2. Then the work performed by both
systems is bisimilar:

<ila 015%(715 g) ~ <12’ 027(’13(’72’ g) .

Proof: Let (G',7;) be Q-extensions to (G,~;) for j = 1,2. The the construction implies that
(G',~v1) is bisimilar to G’,72), because by Lemma 4 (a, a,n,) ~ {(b,b,n) holds for objects a,b
in X. Thus the assertion follows from Prop. 5 in conjunction with Prop. 8. O

The usefulness of this construction is indicated by modelling two operations on PF-systems,
viz., concatenation and substitution. Concatenation takes two PF-systems and connects them,
substitution (a.k.a. refinement) takes a PF-system, and replaces a node in it by another PF-
system. Both operations are vital in composing systems from smaller ones, so that larger
systems can be built up through a suitable sequence of them.
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Concatenation Let (G1,v) and (Gs, x) be two PF-systems, G; = (V;, E;). The idea in
concatenating both is to pipe the output from the first system to the input of the second one,
hence

VinVo =B, =W,

should hold: the output nodes from the first system should coincide with the input nodes
for the second one; otherwise, these systems do not share nodes. Neither an input node nor
an output node carries any functionality in our model, but by lumping them together, we
may wish to perform some work (combining pipes often requires some transformation, e.g.,
of formats, between input and output). Hence we assume for each node n € B; = Wy the
existence of a Kleisli morphism

a(r,n) : [TEvwmltk,n) € B} = T (T]{xe|(n:5) € B2}
This permits defining the 7-concatenation (Gi,7v) +- (G2, x) as (H, k) with

H = <V'1UV2,E1UE2>,

o Y{k,n)> <kan> € Ey,
Klkn) = h .
X(k,n), Otherwise,

a(y,n), neVi\(WiUB),
a(k,n) = a(r,n), n€ By,
a(x,n), neVy\(WaUBy).

We get as a corollary from Prop. 8:

Corollary 3 Under the conditions above, (H, k) := (G1,7) ++ (G2, x) is a PF-system, and

;‘B(K/,H) = ;‘B(Xag2) * (Cl (Ta nl) X ... XT a(Ta ’I’I,k)) *‘B (75 gl)a
where By = Wy = {ny,...,ng}. O

Thus 7 provides the glue for composing the PF-systems, and the work being done exhibits
the work performed when combining both systems. The glue alluded at here is different from
but similar in function to the glue introduced in [30].

Substitution Systems are often built through successive stages of refinements, where a
part of a system is first represented as a node, and this node is then replaced in subsequent
steps by an entire subsystem. This is formalized in a graph-theoretic context through graph
grammars [22, Ch. 3]. We will focus on a special case.
Let G; = (V;, E;) be dags with respective roots W; and leaves B;, and let n € V; be a node
such that (dots taken in G;)

on = Wy, ne = Bsy.

Thus an incoming edge for n comes from a root in Gy, and an outgoing edge goes to a leaf in
Gs. For technically simplifying the representation, we assume that only the nodes in Wy U Bs
are common to V7 and V5. We assume further that we have a selection map

T/):WQUBQ—>‘/2\(W2UBQ)
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which will help constructing new edges when absorbing G- into G; by associating with each
root or leaf an inner node as source or target of an edge, as we will see. We require that
P[Ws] N[By] = 0, since otherwise cycles in the replacement graph would result. Define the
-replacement

G1(G2\yn]
of node n through graph Gs as the graph (U, D) by
U = (\{n}h UV,
D = (E1 N (V1 \ {n})2) UEs U

{{w, p(w))|w € Wa} U{{(b),b)[b € By}

Thus we build the new graph by combining all nodes with the exception of n, the node to be
replaced. All edges leading into n or out of it are removed, and replaced by edges into Go: if
(w,n) € Ey is an edge in Gy, the node w must be a root in Go, then this edge will be replaced
in the replacement graph by the edge (w,(w)), similarly for edges (n,b) € E;. Since the
graphs G1 and Gs do not have cycles, and since 1) assigns by assumption different nodes to
roots and to leaves, (U, D) does not have any cycles either.

We apply this construction to PF-systems now. Suppose that in addition to the assumptions
made so far (Ga,7) and (Gs, x) are PF-systems. For getting our machinery going, the new
edges need labels from X; these edges should not violate the typing constraints imposed on
node n. Call the selection map 1 viable iff

Vw € Wa 2 Ywmny = X(w,pw)) N0 € Ba: Yinb) = X(u(b).b)

holds. Hence the Kleisli morphisms a (7y,7n) and 9B (x, G2) have the same signatures.
We define the PF-system

(G1G2\ynl, v[x\ynl)

in the obvious way by taking the values -y, and x for edges in E; or in Fs, resp., depending
on where they come from, and by setting for the new edges

YN\ (w1 (w)) 7= Viw,n)s

similarly for y[x\y7](y)p)- The labels for the nodes are left unchanged, coming either from
v or from x. Then Prop. 8 implies that we may compute the work for the composed system
in these steps:

e compute P (x, G2), hence the work of the system which is to refine node n,

e substitute for a(y,n) the morphism B (x, G2), leaving the rest of v alone; technically:
form 7[;']3 (Xa G2) \n]a

e compute the work done by the PF-system based on graph G; with the modified value
for ~.

Formally:
Corollary 4 Let the selection map 1 be viable, then

B (vIx\ynl, G1[G2\yn]) = B (VB (x; G2) \nl, G1) -
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8 Comparison And Conclusion

We will briefly have a look at modelling PF-systems through the specification language Z,
and we will see what points architectural modelling for Mobile UNITY through categories are
stressed. Then we will give some hints at further work in this area.

The modelling of pipes and filters through the specification language Z summarized and
discussed e.g. in [28] is evidently much closer to an implementation than the approach pro-
posed in the present paper. Thus a person intending to implement a system with such an
architecture is probably better off looking at a Z-specification, using well-known refinement
techniques like the ones discussed by Spivey [29, Ch. 5] for coming even closer to a realization
as a running system.

The difference to the present approach, however, lies deeper: Shaw at al. emphasize in dis-
cussing software architectures the first class rank of architectural connectors [28, 1, 25, 26, 27].
This implies that filters and pipes are treated on the same eye-level. The scenario here marks
a contrast: connectors are represented through objects in a category, components through
morphisms of a rather special kind, putting these two kinds of entities on different levels. It
may much be said in favor of dealing uniformly with connectors and with components, but
it seems that an asymmetric treatment helps the intuition: computations are conceptually
different from data transport, however complex the latter may be. The present approach
reflects an approach like “Tell me, what your data are, then we will talk about computations
on them”, much like in object-oriented software construction.

The approach proposed by Fiadeiro et al, see e.g. [30, 13], using categories for modelling
architectures shows how different kinds of functors, in particular interface functors, may be
put to use for constructing systems. This is illustrated in [30] where e diagram is “compiled”
through computing its colimit, leading to the early version of a program. Moreover, fundamen-
tal kinds of interactions of program components are studied using the patterns constructed in
that paper. The focus lies on modelling just the interactions for a particular class of mobile
programs, emphasizing the importance of connectors: “Software Architecture has put forward
the concept of connector to express complex relationships between system components, thus
facilitating the separation of coordination from computation.” is the very first sentence in
the abstract. The computation proper, however, has not been addressed, and this is what
we propose in the present paper. Reflecting the mobile nature of the programs discussed
in [30], and taking into account that no fixed topology is available for the computing nodes in
such a scenario, another difference becomes visible: the topology of the communication and
the direction of data flow remains fixed here but may be subject to change dynamically in
a mobile context. But this is a completely different story, since PF-systems exhibit a fixed
structure by their very nature.

Program evolution is supported by concatenating, and by hierarchically composing PF-
systems. While the first operation is easily modelled in the Z-approach, only a hint at
supporting the hierarchical composition is given in [1], making it difficult to compare both
approaches in this respect.

Further Work The present paper excludes those PF-systems that are cyclic; further work
should remove this restriction. It is challenging to see how other architectural styles are
tackled, and how to model dynamically changing communication topologies. On the relational
side, we have narrowed down monads which represent the two major kinds of relations, albeit
a gap remains for measurable set-valued relations, as indicated at the end of Sect. 3. The
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natural transformations # and the §-condition seem to be ingredients to a monad which models
relations, and further work will address this common area of relational types.
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