Fachbereich Informatik

Lehrstuhl fiir Software-Technologie

MEMO Nr.129

An Approach to Algebraic Semantics of Object-Oriented Languages

Internes Memorandum des
Lehrstuhls fiir Software-Technologie
Prof. Dr. Ernst-Erich Doberkat
Fachbereich Informatik

Universitat Dortmund

Baroper Strafie 301

D-44227 Dortmund

Alexander Fronk

Oktober 2002

ISSN 0933-7725

An Approach to Algebraic Semantics of
Object-Oriented Languages

Alexander Fronk
Software-Technology, University of Dortmund
44221 Dortmund, Germany

fronk@LS10.de

October 17, 2002

Abstract

Studying the semantics of programming languages has a long tradition in computer science.
Various approaches use various formalisms with various objectives. In the last two decades,
algebraic specifications have frequently been used to study functional as well as imperative lan-
guages, and, in particular, object-orientated ones, thereby often focusing on specific aspects and
concepts of this programming paradigm. In this paper, we follow this tradition and develop
an algebraic semantics of a sample object-oriented language. We thereby distinguish between
the object-oriented concepts of the language to structure code, and the imperative ones to im-
plement functionality and thus the algorithmic parts of the language. Therefore, our approach
encompasses two steps: first, we develop an algebraic semantics of basic object-oriented princi-
ples, into which, secondly, the semantics of the language’s imperative parts is embedded. Static
semantic aspects are captured by structured algebraic specifications, whereas dynamic ones are
reflected by many-sorted algebras. These aspects are treated as "second order" concepts and are
thus interpreted within a model class of the underlying specification. The approach elaborated
here can be employed to formalize the semantics of "standard" object-oriented languages such
as Eiffel, Java, or C++.

1 Introduction

In [22], an object-oriented language for constructively describing hyperdocuments, DoDL [14, 15]
for short, was given an algebraic semantics. In this thesis, a hyperdocument is understood as
a collection of media objects such as texts and graphics connected to each other in a non-linear
fashion, i.e. they are hyperlinked. It was shown in the thesis that the semantics of DoDL can easily
be formalized without considering hypermedial aspects. Nonetheless, it is important to remark
that the language was especially tailored for the aforementioned application domain. Hence, the
language only contains those syntactic constructs necessary for the object-oriented construction
of hyperdocuments. Vice versa, concepts such as pointers, threads, or exception handling are not
considered in DoDL if they do not contribute to describing and implementing hyperdocuments
on a conceptual level. This decision keeps the language and its usage simple and comprehensi-
ble. Of course, those and other techniques can be put to work within the mentioned domain if
technically richer languages such as Java or C++ are used.

Even without considering hypermedial aspects, DoDL is rich enough to thereupon develop an
approach to formalizing an algebraic semantics of object-oriented languages in general. We use
DoDL as a sample language to comprehensibly focus on this approach which can be employed
to formalize the semantics of any other object-oriented language, and which thus works without
loss of generality.

The approach works in two steps. First, we formalize classes, attributes and methods as well
as class relations such as aggregation, locality, inheritance and genericity through suitable al-
gebraic specifications. Transformation rules establish semantic functions [29] for each syntactic
concept offered by DoDL. The integration of simple algebraic specifications, hierarchical specifi-
cations, specifications with hidden symbols, and parameterized specifications allows formalizing
these concepts as close as possible to the object-oriented paradigm. Thereby, our approach differs
from flat specification approaches as usually used in the literature. For example, subclasses with
local classes are understood as an integration of hierarchical specifications with hidden symbols.
Notions such as object and type, but also redefinition, late binding and polymorphism can be repre-
sented by many-sorted algebras. They serve as a loose semantics. Hence, algebraic specifications
can be understood as an intermediate language between a DoDL-program and its semantics.

In the second step, we show how the algebraic formalization of imperative features such
as method invocation and control structures can be integrated. Since the algebraic definition of
imperative languages and control structures has already been studied (c.f. [7, 13]), we concentrate
on object-oriented aspects here. That is, we focus on concepts like this and super, as well as on
object-oriented message invocation and polymorphism, extending the usual concepts found in
imperative languages.

The semantics presented here has been encoded within a compiler system [23] where the
transformation rules directly determine code generation. The compiler construction, however, is
not subject to this paper.

This paper is organized as follows: Section 2 discusses related work; the language under con-
sideration is introduced in Section 3, its semantics is given in Section 4; the paper concludes in
Section 5 and suggests further work.

Acknowledgements. We gratefully thank Prof. Dr. E.-E. Doberkat for supervising the author’s
PhD thesis. He established working conditions under which teaching and research could
fruitfully take place. These conditions together with his constructive guidance and detailed
remarks were the basis for successfully accomplishing the thesis the present paper is based
on. The discussions with Prof. Dr. P. Padawitz as well as his helpful remarks are very much
appreciated. They both gave important hints on some subtle points.

2 Related Work

Studying the semantics of languages has a long tradition in computer science. Various ap-
proaches use various formalisms with various objectives. On a sheer syntactical level, opera-
tional semantics are based on an abstract machine describing the execution of programs by state
transitions; denotational semantics assign each instance of a syntactic construct a mathematical
object; axiomatic calculi allow to compute assertions on programs formalized through pre- and
postconditions, and inference rules are defined on individual syntactic units [53].

In the last two decades, algebraic specification has frequently been used to study denotational
semantics of functional [6, 55] and imperative [7] languages. Algebraic specification languages
inherently provide algebraic semantics and thus mathematical objects denoting syntactical con-
structs (c.f. [8, 27, 21, 12, 5, 57, 25]). Algebraic semantics are also used in the field of abstract
state machines to formalize the machine model underlying an operational semantics [31]. Based
on this approach, Gurevich shows such a semantics for the C programming language [32]. In
the context of algebraic specification languages, a variety of object-oriented aspects and concepts
have been studied, and many results carry over to object-oriented programming languages as
well. We briefly sum up some interesting points to discuss objects, their states, classes, and in-
heritance to give a short overview on the appealing possibilities algebraic specifications offer for
object-oriented issues.

2.1 Objects

In [30], algebraic specifications model instances, that is each specification corresponds to a class
instance in a specific state. For each instance obj of a class ¢ a sort of interest [12], ¢, together
with a constant of the form obj :— c¢ is introduced. An axiom of the form obj = ¢ describes the
state of obj by the term ¢. Changing the object’s state as well as creating or deleting objects is
reflected by generating new axioms or exchanging existing ones, introducing new constants, or
deleting existing ones, respectively. Hence, the algebraic specification and thus the presentation
semantics [49] of an object is changed syntactically. This approach aims at modelling declaration
and manipulation of objects.

Ehrich follows a similar approach [17]. Objects are modelled by parameterized specifica-
tions, where the class designator is used as parameter. These specifications contain operations
describing object creation and deletion as well as state change in the context of open, reactive,
and distributed systems.

Modelling state changes is discussed in [46] as well. This approach is based on category the-
ory. Object configurations are described by communities of objects related to each other. These
communities are formalized through configuration specifications allowing for suitably represent-
ing objects through pairs of attributes and values. State change is modelled through non-homo-
morphic transformations on the respective algebras. This approach touches issues like persis-
tence and equality of objects.

Objects may trivially be modelled by specifications of the following kind:

OBJSPEC =
sorts ObjVar, Sy,..., 8,
opns ap : ObjVar — Sy,

an : ObjVar — Sy,

vy == Sy,

VU i — Sh,

makeObj : S1 X ... x S, — ObjVar
axms ay(makeObj(vy,...,v,)) = v1,

an (makeObj(v1,...,v,)) = v,

Here, objects with n attributes are defined. Object identifiers are taken from an arbitrary set
of object names, ObjVar. Each attribute, a;, @ = 1...n, is formalized as an operation of the
form a; : ObjVar — S;, where each S; represents the set of values for attribute a;. The oper-
ation makeObj is used to create objects. It is described semantically by axioms of the form
a;(makeObj(vy, ..., v,)) = v;. Constants v, :— S, fix the object’s state. A model-class semantics
is provided in this approach such that each model represents an object’s state.

In [26], object states are modelled through specifications with hidden symbols (c.f. [56], Chap.
5). A hidden sort corresponds to a type identifier, and is interpreted through a carrier set reflect-
ing the object’s possible states. The current state of the object under consideration can only we
observed through suitable methods. This approach aims at checking properties of concurrent
systems.

2.2 Classes

In [4], a formal foundation for a framework is provided in which algebraic specifications and
object-oriented programming are integrated to work hand in hand. Classes are represented by
flat specifications, attributes and methods are both represented by operations. Their semantics

are described by axioms. Model classes represent class instances. This approach is also used in
[22].

In [44], classes are elaborated in more detailed and defined by five algebraic specifications.
They cover a parameter part, an instance interface, a class interface, an import interface, and an
implementation part. This definition allows to distinguish between different kinds of inheritance
as discussed next.

2.3 Inheritance

Inheritance, in contrast to subtyping, is used as a code structuring mechanism in [4]. The seman-
tics of subtyping is based on partial order-sorted algebras (c.f. [51], Sect. 2.10.4) and fixed through
model-class inclusion.

In [45], subclassing is called reuse inheritance. It contrasts from specialization inheritance in
such a way that the former allows omission or redefinition of class methods, and that in the latter
a subclass obeys the semantics of its superclass. Again, the semantics is fixed through properties
laid on model-classes. This process can be found in many approaches, for example in [11], where
the specification language Glider is discussed.

2.4 Result

However, these approaches depict certain aspects of object-orientation thereby using individual
strategies for their description. In our work, we elaborate a mechanism to uniformly cover basic
object-oriented concepts in one formal approach based on the integration of differently structured
algebraic specifications.

3 The Language DoDL

The aim of this section is to introduce an object-oriented language, DoDL, simple yet rich enough
to discuss an algebraic semantics. In contrast to [22], slight modifications were made to enhance
readability. The language design of DoDL regards simple and complex classes, aggregation and
use-relation, local classes, a form of inheritance with overloading, redefinition and polymor-
phism, and generic classes. Classes encompass attributes and methods. Assignment of values
to attributes is done by bindings. Finally, scoping rules are mentioned.

3.1 Simple and Complex Classes

A class is given through a class frame as shown in Listing 1.

LISTING 1 The frame of a DoDL-class

class anyClass is
declare class localClass is

end localClass;

attributes attrID: attrType;
anOtherAttrID: list of anOtherAttrType;

construct methType methiD(parType parlD, ... }{ body }

end anyClass;

The frame defines the name of the class which can be generic (see Sect. 3.4), or may inherit
from another class (see Sect. 3.3). The rule declaration before use always has to be obeyed. A class
provides three optional sections:

the declare -section defines a list of local classes (see Sect. 3.2);

the attributes -section declares attributes in the form
attrib 4, ..., attriD ,: [list of] attrType whereattrlD ;,¢=1,...,n,isan
attribute of type attrType or a list of this type. The expression attrID ;[j] allows to
address the j-th element of the list. DoDL provides the types nat , bool and string
defined as usual. Further types can be self-defined using classes;

the construct -section defines a list of methods of the form
methType methID(parType parlD, ...){ body } . The empty type void may be
used both as method type and parameter type. The method bodies use a JAVA-like syntax
allowing for variable declaration and assignment, method invocation and the usual control
structures such as sequences, alternatives, and for - as well as while -loops. The identifier
main is reserved to designate the main method, i.e. the first method invoked at runtime.
The class containing this method is called main class.

A class without any section is called empty class. Simple classes are not generic, do not inherit
from any class, and do not define local classes. A class is called complex if it has at least one
of these properties. A DoDL-program is understood as a collection of either simple or complex
classes with exactly one main class.

Aggregation is understood as a part-of relation between an aggregate and its elements. Ele-
ments are classes used in attribute declaration. In contrast, a use-relation is deduced by classes
used as parameter or method type in method definition. DoDL does not provide references.
Hence, the notion of association is restricted to aggregation, and both aggregation and use-
relations are acyclic.

3.2 Local Classes

Local classes are defined in the declare -section and may be simple or complex. DoDL imple-
ments the concept of composition here: using local classes in attribute declaration is only allowed
within its embedding class, i.e. the class the local class is declared in. The difference between aggre-
gation and composition is illustrated in Listing 2. A declaration of the form encloseLocallD:
encloselD.local is not allowed in DoDL.

LISTING 2 Local class definition with composition and aggregation

class enclosing is

declare class local is

end local;
attributes locallD: local; // Composition
construct

end enclosing;

class referToLocal is
attributes encloselD: enclosing; /] Aggregation
construct

end referTolLocal;

3.3 Inheritance

A subclass is defined using an is-with tag. Listing 3 shows its form.

LISTING 3 A subclass in DoDL

class father s
end father;
class son is father with

end son;

Each subclass has a unique superclass, that is, multiple inheritance is not allowed. We assume
that attributes, methods and local classes of a superclass are replicated within the subclass. New
attributes, methods and local classes can be added. If a method occurring in a subclass has the
same signature as in its superclass, the method is redefined. Different parameter types or a
different number of parameters lead to overloading. We use late binding in case the type of an
instance (or object) calling a method cannot be determined during compilation.

We distinguish between subclass relations and subtype relations. We understand a subclass
relation as a partial order on classes induced by subclass declaration, called class inheritance. A
subtype relation, however, regards class instances. A type is thereby understood as the set of all
instances of a class, such that each instance of a subclass is an instance of its superclass (c.f. [54]).
This property is called substitution and characterizes type inheritance (c.f. [1, 9]). Polymorphism is
characterized by different kinds of substitution (c.f. [1, 54, 9]). In DoDL, class inheritance induces
type inheritance. Details will be discussed in Sect. 4.4.

In the context of inheritance, the qualifications this and super have to be discussed. Listing
4 shows abstractly how they are used and understood in DoDL.

LISTING 4 The qualifications this and super

class Root is
attributes
construct
void m(void) { ... this .nQ); ... }
void n(void) { ... }
end Root;

class Inherit is Root with
attributes
construct
void m(void) { ... super .m(); ... }
void n(void) { ... }
end Inherit;

Class Root defines two methods, mand n. Their signature is unimportant, we just have to
assume that they are redefined in class Inherit ~ which is declared as a subclass of Root . The
invocation super .m() in method mof class Inherit is responsible for calling method mof class
Root . Thereby, the qualification super casts the caller of a method into an object of the caller’s
superclass.

The invocation of this .n() in method mof class Root , however, must be interpreted differ-
ently. In case mis called by an instance r of class Root, this .n() refers to method n of class
Root . Hence, this correlates to r. In case mis called by an instance i of class Inherit via
super , this .n() refers to method n of class Inherit . Then, this correlates to i . Summing

up, this always correlates with the caller of a method, and this correlation is kept when super-
class methods are called. Accessing attributes is always safe, since attributes cannot be redefined
in subclasses. This approach is adapted from self in SMALLTALK (c.f. [28], or [1], Sect. 3.2).

3.4 Generic Classes

The syntax of generic classes is shown in Listing 5. The class designator is expanded by a formal
parameter.

LISTING 5 A generic class

generic class gen [formPar] is
attributes attrlD: formPar;
end gen;

Substituting each occurrence of the formal parameter by an actual parameter is called actu-
alization. DoDL provides different kinds of actualization. We show them in Listing 6. Actual
parameters can be used in attribute declarations, called direct actualization, or in subclass defi-
nition. We distinguish between hierarchical actualization, hierarchical actualization with expansion,
and generic actualization. It is easy to see that hierarchical actualization (without expansion) of
the formclass geninst is gen[actPar] with end geninst together with an attribute
declaration of the form attrlD: genlinst is mutually exchangeable with direct actualization
of the form attrID: gen[ActPar] . The advantage of hierarchical actualization, however, is
found in respecting the principle of locality and thereby supporting maintenance, since changing
an actual parameter is done at exactly one location.

LISTING 6 Forms of actualization

class any is

attributes attrID: gen[actPar]; // direct actualization
end any;
class geninst is gen[actPar] with // hierarchical actualization
end geninst;

class subGeninst is gen[actPar] with
// hierarchical actualization with expansion
end subGenlnst;

generic class genSubGenlnst[anOtherFormPar] is gen[actPar] with
// generic actualization with expansion
end genSubGenlnst;

3.5 Bindings

A binding assigns values to attributes during compilation. Hence, a binding is responsible for
creating instances (or objects) at compile-time. Further instances can be created at runtime using
a simple new-operator. Changing an attribute’s value means changing the belonging object’s
state and should only be done by suitable set -methods. Starting at the main class, the attributes
of this class as well as the attributes of its superclass have to be assigned values. Superclasses are
inspected recursively. The binding is structured and typed, i.e. attributes are assigned values of a

given type by simple assignments or by in-assignments (see Listing 7). Element classes define a new
scope. This protects from attribute name clashes. Lists use the same concept, since their type can
be a self-defined class in which further attributes have to be bound. List items are separated by a
vertical bar.

LISTING 7 A binding

binding mainclass s
attrID: attrType = value;

superClassAttrID: superClassAttrType = anOtherValue;

in element: elemtType assign
anOtherAttrID: anOtherAttrType = yetAnOtherValue;

end;
in listID: listType assign

listitemValue;

|
anOtherListlitemValue;

end;

end;

3.6 Scoping

DoDL defines a top-level scope, that is, each class if not local is placed on top-level. Top-level classes
can use each other regarding declaration before use. For the time being, forward-declaration is not
allowed, and mutual recursion is not possible. The local classes of an embedding class follow this
rule on their local level, and their visibility is restricted to this level. Since local classes are defined
in advance of attributes and methods, the latter cannot be used in local classes. Further, a class
cannot be instantiated within its local classes. This avoids infinite embedding. Scoping carries
over to inheritance: each class visible to a superclass is visible to its subclasses.
The scope of classes, attributes, and methods cannot be restricted by qualifiers like public

or private . Hence, an interface encompasses all attributes and methods defined in a class and
its superclass, recursively.

4 Algebraic Semantics of DoDL

This section follows the structure of Sect. 3. We develop formal mappings, i.e. transformation
rules for the syntactic units presented there.

Our semantic approach works as follows. We use transformation rules to convert classes and
their relations into structured algebraic specifications. Thereby, we define semantic functions. For
technical convenience, we assume that DoDL-classes are syntactically correct and free of name
clashes.

Interpretation rules thereupon establish model classes such that each algebra serves as a math-
ematical object denoting a syntactical construction (see Sect. 4.2 to 4.6). Algorithmic parts are
embedded into this semantics in a second step (see Sect. 4.7).

Both transformation and interpretation rules can be formulated as an inference system. This
leads, for example, to a formal type system for DoDL, or to the possibility to argue formally about

properties of transformation and interpretation (c.f. [47]). For the time being, we do not exploit
these advantages and prefer a natural language notation for simplicity.

For the readers convenience, we introduce some preliminaries first and fix the notation used
in this paper. The reader familiar with algebraic specification may proceed to Section 4.2. Further
details on algebraic specifications can be found, for example, in [56].

4.1 Algebraic Preliminaries

A signature is a tuple ¥ = (S,T') where S'is a set of sorts, S = sorts(X'), and I' is a set of operation
symbols, I' = opns(X). Variables are S-sorted. X = {X,}scs denotes a S-indexed family of sets
X of variables for each s € S. The set of S-sorted X-terms over s, 7 (X, X), for short, is defined
as usual.

An algebraic specification, SP, is a tuple (X, E') consisting of a signature, ¥ = sig(SP), and a
set of formulas over X, E = axms(SP), called axioms. A specification (3’, E’) is called subspec-
ification of (X, E), (X', E') C (X, E) for short, if ¥’ C ¥ and E’ C F hold. Terms and formulas
are defined as usual. We denote the set of all well-formed formulas by WFF ().

Convention: The collection of all specifications forms a class in set theory. In order not to conflict
both with the notions of class and object used in object-orientation, as well as with funda-
mental mathematical questions, we restrict ourselves to a fixed universe of specifications,
where the model classes defined in the sequel can be understood as sets.

A Y-algebra, A, is a pair ({As}ses, {f‘A}feF) consisting of a family {A;}scs of non-empty
carrier-sets, A,, for each s € S, and a set {fA}fel" of operations fA D Ay X o x A, — A
foreach f : s1 x ... x s, — s € I'. Ais a model of a specification, (X, E), if A satisfies each
formula e € E. The set of all models of (¥, E) is denoted by Alg(X, E). The loose semantics of
a specification SP = (X, E), Mod(SP) for short, is defined as the set Alg(X, E).

Let ¥ = (S,T) and X' = (5, I") be two signatures with ¥ C ¥’, and let A’ be a ¥'-algebra.
The X-algebra A’ |y, is called Y-reduct of A’, if for each s € S the carrier-set (A'|y;), is defined as
A’, and for each f € I the operation f Alx s defined as fA'.

Let ¥ = (S,T) and ¥/ = (5',I") be two signatures. A signature morphism, ¢ : ¥ — ¥/,
is a pair o0 = (0g,0r) of functions og : S — S" and or : I' — I, such that for each operation
fis1x...x8, = s€Tholdsthator(f): os(s1) X ... x 0s(s,) — og(s) is in I". The domain of
o, dom(o) for short, is defined as the set {x € ¥ | o(z) # z}. The set of all signature morphisms
is denoted by SIGMORPH.

Let SP be a specification, and let ¢ be a bijective signature morphism. The specification-
building operation rename _ by _ : SPEC x SIGMORPH — SPEC is called renaming and is
defined as follows:

sig(rename SP by o) := o(sig(SP))
Mod(rename SP by o) := {A € Alg(Zrename sP by o) | Ale€ Mod(SP)}

We write SP;, /y, ...« /y.] @S an abbreviation for rename SP by o, if x; is mapped to y; by o,
i=1,...,n; then, dom(c) = {z1,...,2,}.

Let SP and SP’ be two specifications, such that all pairwise equal operation symbols have
the same characteristics. The specification-building operation import _ into _: SPEC x SPEC —
SPEC is defined as follows:

sig(import SP into SP") := sig(SP) U sig(SP")
Mod(import SP into SP") := {A € Alg(Zimport sP into sp') | Al sy € Mod(SP)}

We write import SP;,...,SP, into SP as an abbreviation for

import SPy into (... (import SP,, into SP)...)

We further assume a specification NAT for data type integer with a sort nat, and a spec-
ification BOOL for data type bool with a sort bool together with the usual constants ¢rue and
false to be given in each specification. Similarly, we assume a ternary operation if _ then _else _ :
bool x s x s — s to be given for each sort s € S with the usual semantics:

if true then z elsey =, « if false then z else y =, y.

A standard definition for BOOL and NAT is for example given in [56], on page 699 and 700,
respectively.

4.2 Semantics of Simple Classes

Each DoDL-class is transformed into a (structured) algebraic specification. Since simple classes
are defined through a frame encompassing the class designator and optional sections declaring
attributes and defining methods, we can state the following transformation and interpretation
rules.

42,1 Transformation of Simple Classes

TRANSFORMATION RULE 1 A simple DoDL-class is transformed into a flat alge-
braic specification carrying the name of the class in capital letters.

In the sequel, let class be a simple DoDL-class and CLASS its transformation. Attributes
can be understood as methods with arity zero (c.f. [34]). Hence, we transform each attribute
declaration into a suitable operation within a flat specification:

TRANSFORMATION RULE 2 1. An attribute declaration in class of the form
attriD: attrType is transformed into an operation in opns(CLASS) of the
form attriD : class — attrType.

2. An attribute declaration in class of the form attriD: list of attrType
is transformed into an operation in opns(CLASS) of the form attrID : class —
list(attrType).

3. The identifiers class and attr Type are added to sorts(CLASS).

Remarks: 1. Equally, one could prefer an object-oriented style of notation and write _.attrID :
class This style produces terms of the form c.attr, whereas the one we prefer re-
quests to write attr(c) to refer to an attribute attr of an instance c.

2. We assume that a specification for lists is available as shown, for example, in [42].

Method signatures contained in the construct -section of a class are transformed as follows:

TRANSFORMATION RULE 3 1. An n-ary method declaration in class of the
form methType methlD(parType ; parlD 1, ..., parType , parlD ,) is
transformed into a (n + 1)-ary operation in opns(CLASS) of the form methID :
class x parType, % ... x parType, — methType.

2. A unary method declaration in class of the form methType methlD(void)
is transformed in to a unary operation in opns(CLASS) of the form methID :
class — methType.

3. The identifiers class, methType, parType;, i = 1,...,n and void are added to
sorts(CLASS).

10

Transformation rules for method bodies are discussed in Sect. 4.7. For the time being, axioms
are created which give meaning to operations.

In case of aggregation, an attribute has a self-defined type, say, t , that is, an instance of class
t is declared. Both aggregate and element classes can be transformed independently since cyclic
aggregation is not allowed. Nonetheless, transformed attributes and methods of the element
class have to be accessed in the transformed aggregate. We thus obtain a tree-structure over
classes modeling the aggregation relationship. The root of this tree is an aggregate, the inner
nodes are element classes which may themselves be aggregates. This yields the following order
of transformation:

TRANSFORMATION RULE 4 The tree-structure of the aggregation relationship is
transformed in post-order. The transformation of each element class is imported into
CLASS.

A simple example may illustrate how the transformation rules proposed so far work.

EXAMPLE 1 Listing 8 shows two classes, grower and sponger . The latter declares an instance,
grw, of class grower .

LISTING 8 Two simple classes in DoDL

class grower is

attributes num: nat ; // a natural number num
construct
nat get(void X
return num; // get value of num
}
grower set(nat val){
num = val; // set num to val
}
grower grow(void){
num = num + 1, // increase num by 1
}
end grower;

class sponger is

attributes grw: grower; // an agggregation
construct
nat sponge(nat val){
grw.set(val); // set num to val
grw.grow(); // invoke method of element class
return grw.get(); // return num
}

nat main (void){
print(this .sponge(7)); // print a value
}

end sponger;

The methods defined are easy to understand and need no further explanation. The main
method of class sponger calls method sponge by value, here 7. It is easy to see (an intuitive
semantics presupposed) that the resulting value is 8.

We apply the transformation rules on class grower first, since this class is an element of class
sponger (rule 4). By rule 1, we yield the flat specification shown in specification 1 on page 12.
Sort grower is introduced following rule 2. The same rule is responsible for transforming the
attribute declaration into an operation num : grower — nat. The signatures of methods grow,
set and get are transformed by rule 3. The axioms reflect the semantics of these operations. For
the time being, they are defined "by hand".

11

SPECIFICATION 1 An explanatory element specification

GROWER =
sorts grower
opns num : grower — nat,

get : grower — nat,
set : grower X nat — grower,
grow : grower — grower
vars g : grower,v : nat
axms num(g) = get(g),
get(set(g,v)) = v,
grow(g) = set(g,num(g) + 1)

Transforming class sponger results in specification 2. The import-clause is introduced by
rule 4. Thereby, sorts and operations of GROWER are made available in SPONGER.

SPECIFICATION 2 An explanatory aggregate specification

SPONGER = import GROWER into

sorts sponger

opns grw : sponger — grower,
sponge : sponger X nat — nat,
main : sponger — nat

vars s : sponger, v : nat
axms sponge(s,v) = get(grow(set(grw(s),v))),
main(s) = sponge(s,7)

4.2.2 Interpretation of Simple Classes

The specifications obtained by the above transformation rules are interpreted by algebras serving
as a mathematical model for DoDL-classes. We are not interested in initial or terminal models
and use a loose semantics approach. Moreover, a loose semantics allows to leave some carrier-
sets uninterpreted, especially those used for technical reasons only; in the above example, sorts
grower and sponger need no specific interpretation. We define the loose semantics for a simple
DoDL-class as follows:

DEFINITION 1 The loose semantics of a simple DoDL-class ¢, [c] for short, is
defined as the set of all models of its transformation, C. We write [c] := Mod(C') and
assume that [_] is a mapping from the set of all syntactically correct DoDL-classes into
the set of all model sets.

Two DoDL-classes can have the same semantics though they are syntactically different:

DEFINITION 2 Two DoDL-classes, class and class’ , are semantically equal,
[class | = [class’] for short, if their transformations, CLASS and CLASS’, have
the same model sets, i.e. if Mod(CLASS) = Mod(CLASS’) holds.

If classes are syntactically equal, they are identical and thus have the same semantics. None-
theless, renaming of identifiers must be respected:

12

DEFINITION 3 Letclass and class’ be two DoDL-classes, and let CLASS and
CLASS'’ be their transformations. class and class’ are equal, class = class’
for short, if there exists a bijective signature morphism, o, such that the following
properties hold:

1. sig(rename CLASS by o) = sig(CLASS’)
2. Mod(CLASS) = Mod(CLASS")

With each algebraic specification a set of models is associated. That is, we can obtain "stan-
dard" interpretations which satisfy each axiom given in a specification. To establish a loose se-
mantics reflecting the object-oriented paradigm, however, we define a set of interpretation rules
and obtain a specific set of models for structured specifications. As an invariant, we can usually
employ the axioms themselves to interpret operations. We show this in Example 2. Other inter-
pretation rules need to be defined explicitly. In the sequel, let class be a DoDL-class, CLASS its
transformation, and let C be a ¥ ¢4 55-algebra.

The sorts obtained by class name transformation are loosely interpreted:

INTERPRETATION RULE 1 Each sort s € sorts(CLASS) \ {nat, string, bool, void}
is interpreted arbitrarily in C.

The type void , however, requires a specific interpretation for all algebras. We use the value €
as a reserved value:

INTERPRETATION RULE 2 For each ¥ ¢4 gs-algebra C, let Cpiq = {€}.

The other predefined types, i.e. nat , string , and bool are interpreted in the usual way, that
is, for each X ¢ 455-algebra C we define Cy,qr = Ny, Croor = {true, false}, and Csiring as the free
semi-group over letters and digits with concatenation.

As long as bindings are not respected, we can freely interpret transformed attribute declara-
tions:

INTERPRETATION RULE 3 Each operation in opns(CLASS) of the form f : class —
s, where s is a sort in sorts(CLASS) and f: s is an attribute declaration in class, is
interpreted arbitrarily in C.

In case of aggregation, the aggregate class cannot change the semantics of element methods.
Hence, each aggregate algebra has to interpret each sort and operation of its elements as in the
respective element algebra. Let AGGR be a transformed class aggregating an element class the
transformation of which is denoted by ELEM . Due to transformation rule 4, ELEM is imported
into AGGR. We assume that £ is a ¥ g1 gy-algebra following the above interpretation rules. Let
Abe a ¥ ccr-algebra.

INTERPRETATION RULE 4 1. Each operation in opns(ELEM) is interpreted in
Aasin &:

Vfisy X...x 8, —s€ opns(AGGR) N opns(ELEM),a € Es; X ... x Es,, :
fA(a) = f(a)
2. Ttis required that E; C A, holds for each s € sorts(ELEM) N sorts(AGGR).

Remarks: Note that both opns(ELEM) C opns(AGGR) and sorts(ELEM) C sorts(AGGR) hold
due to the import of ELEM into AGGR.

Moreover, the interpretation rules have to ensure that the semantics of the import-clause (for
its definition, see Sect. 4.1) is preserved. This can be shown as follows.

13

OBSERVATION 1 Let AGGR and ELEM be the transformations of two DoDL-
classes, aggr and elem, where elem is an element class in aggr . Let both specifi-
cations be obtained by the above transformation rules such that ELEM is imported
into AGGR. Let A and € be a ¥ 4ggr-algebra and a ¥ g1 gar-algebra, resp., obtained
by the above interpretation rules. .4 and £ are thus models for AGGR and ELEM,
resp. Then, A|s,, .., is a model for ELEM.

Proof. We have to show that for each A € Mod(AGGR) it holds that A|gLgpym € Mod(ELEM).

1. Following transformation rule 2, part 3, sorts(ELEM) contains a sort elem. This sort
is interpreted arbitrarily in A |5, ,,, (interpretation rule 1). Since ELEM is imported
into AGGR, elem is also contained in sorts(AGGR) and is interpreted arbitrarily due
to the same interpretation rule.

2. With interpretation rule 4, part 1, each operation in opns(ELEM) is interpreted in A
as required for A|x,, ., . Part 2 provides the necessary values.

3. By assumption, A is a model for AGGR, and £ is a model for ELEM.

Thus, the X g1 gy -reduct of A is a model of ELEM . This is the observation. |

Concluding this subsection, we refer to Example 1 and show how algebras are obtained by
the above set of interpretation rules.

EXAMPLE 2 For better readability, we expand the import-clause of specification SPONGER (see
Spec. 2 on page 12), and obtain the following specification:

SPONGER_EXPANDED =

sorts sponger, grower

opns num : grower — nat,
get : grower — nat,
set : grower X nat — grower,
grow : grower — grower,
grw : sponger — grower,
sponge : sponger X nat — nat,
main : sponger — nat

vars g : grower, s : sponger, v : nat
axms num(g) = get(g)
get(set(g,v)) =

(9,
grow(g) = set(g,num()+ 1),
sponge(s, v) = get(grow(set(gru(s), v))),
main(s) = sponge(s,7)

Let G be a ¥ growrr-algebra. Due to interpretation rule 1, sort grower is interpreted arbitrar-
ily. Due to interpretation rule 3, the operations num, grow, get and set are interpreted as follows
forall g, 9" € Ggrower and for all n € Gy

numf(g) = get9(g) 1)
set9(g,n) = < n) @
get? (set(g,n)) = (3)
grow?(g) = setg(g, num9(g) + 1) 4)

It is easy to prove that G is a model for GROWER.

14

Let S be a ¥ sponcrr-algebra. Interpretation rule 1 is responsible for arbitrarily interpreting
sort sponger. With interpretation rule 3, grw can also be interpreted freely. Operations sponge and
main are interpreted as follows for all s € Sgponger and for all n € Sy,

sponge® (s,n) = get® (grow® (set® (grw®(s),n))) ")
main® (s) = sponge®(s,7) (6)
Following interpretation rule 4, operations imported from GROWER are interpreted as in

G. Further, carrier-sets of sorts in sorts(SPONGER) N sorts(GROWER) are joined. For all s €
Sspongers 9 € Sgrower, and n € Spqy holds:

Ggrower C Sgrower)
num®(g) = num®(g) ®)
get®(9) = get?(g) ©)
set®(g,n) = set9(g,n) (10)
grow®(g) = grow9(g) (11)

Again, it is easy to see that S is a model for SPONGER. By Observation 1 it holds that
S| Zonowsr i @ model for GROWER.
u

4.3 Semantics of Local Classes

Local classes allow to restrict the visibility of classes by introducing a new scope. To model this
property adequately, we use algebraic specifications with hidden symbols.

4.3.1 Transformation of Local Classes

DEFINITION 4 Let ¥ = (S,T') be a signature. A specification with hidden sym-
bols is a triplet SP, = (¥, HX, E) with

— a visible signature 3,
— an extended signature HY. = (H S, HI') with ¥ C HY, and
— aset of axioms £ C WFF(HY) over the set of all well-formed formulas over .

Let sig(SPy) = X. The elements in HS\S are called hidden sorts, the elements in
HT\T are called hidden functions. We write export ¥ from (HY, F) for (X, HY, E).
The loose semantics Mod(SP},) of SPy, is defined as the set of all 3-reducts of models
of (HX, E):

Mod(SPp) := {A|s€ Alg(X) | A € Mod((HX, E))}

Local classes cannot refer to features, i.e. attributes and methods of their embedding class,
and thus they can be transformed prior to this class. Again we obtain a tree-structure over classes
modeling the locality relationship. The root of this tree is an embedding class, the inner nodes
are local classes which may themselves contain local classes. The embedding class, however, can
make use of their local classes, but those are not visible outside this class. Transformation rules
have to ensure that the features of a local class are denoted by hidden operations. Operations of
the embedding class using locally defined classes or methods have to be hidden as well. This is
captured by the visible signature. Local classes can be complex as well. This is discussed in Sect.
4.4. Whatever local classes look like, we can assume them to be already properly transformed.

15

TRANSFORMATION RULE 5 1. The tree-structure of the locality relationship is
transformed in post-order.

2. A DoDL-class containing local classes is transformed into an algebraic specifica-
tion with hidden symbols.

In the sequel, let class be a DoDL-class containing local classes, and let CLASS = (¥, HX, E)
be its transformation.

TRANSFORMATION RULE 6 Transformation rules 2, 3, and 4 hold analogously re-
specting HY instead of CLASS. Thatis, this rule replaces sorts(CLASS) by sorts(HY),
and opns(CLASS) by opns(HX).

Remarks: Note that now attrType can be a local class designator, and that methType as well as
parType can be identifiers used in local classes. Only those operations in HX are in ¥ which
are accessible from outside the embedding class. Accessible are all those operations the
signatures of which do not contain identifiers defined in a local class. The treatment of
aggregation carries over to classes with local classes.

Each flat algebraic specification (X, E) can be denoted by a specification with hidden symbols
where HY = ¥. Hence, we have to consider which sorts and symbols of an embedding class
have to be hidden.

TRANSFORMATION RULE 7 In CLASS = (HY, %, E), ¥ is the smallest signature
with:
1. Each sort s € sorts(HY) is in sorts(X), if and only if s is not a local class desig-
nator in CLASS.

2. Each operation f : s1 x...Xx s, — s € opns(HY) is in opns(X), if and only if each
si,1=1,...,n,and s are in sorts(X).

Remarks: Note that local class designators are not contained in sorts(X) and are thus hidden.
Instances of local class as well as operations using at least one local class designator are
hidden. Other operations are visible.

Introducing public or private qualifiers in DoDL can easily be respected by changing the
above transformation rule: The private qualifier enforces an operation to occur in the hidden
signature.

We explain the transformation of classes with local classes.

EXAMPLE 3 With reference to Example 1, Listing 9 on page 17 shows classes grower and sponger
again, now with grower declared locally in sponger .

SPECIFICATION 3 An explanatory local class specification

SPONGER = export sponger, sponge, main from
import GROWER into
sorts sponger
opns grw : sponger — grower,
sponge : sponger X nat — nat,
main : sponger — nat
vars s : sponger, v : nat
axms sponge(s,v) = get(grow(set(grw(s),v))),
main(s) = sponge(s,7)

16

LISTING 9 A local class definition in DoDL

class sponger is

declare
class grower is // a local class definition
attributes num: nat ;
construct
nat get(void){ return num; }
grower set(nat val){ num = val; }
grower grow(void){ num = num + 1; }
end grower;
attributes grw: grower; // a composition
construct

nat sponge(nat val){
grw.set(val);
grw.grow();
return grw.get();
}
nat main (void){ print(this .sponge(7)); }
end sponger;

Following transformation rule 5, part 1, the local class has to be transformed first. Since
grower is a simple class, we follow transformation rule 1, and take over its formalization from
Example 1. Then, we follow transformation rule 5, part 2, and import GROWER into SPONGER
(see Spec. 3 on page 16). Transforming the attributes and methods of class sponger is accom-
plished by rule 6.

Now we have to consider which parts of this specification are visible using transformation
rule 7. Sort sponger is obviously not a local class designator and hence visible. Sort grower,
which is in sorts(SPONGER) due to the import-clause, is a local class designator and hence not
visible. The operation symbols in GROWER (see Spec. 1 on page 12) use the hidden sort grower
and are thus hidden. The transformed attribute declaration grw: grower is hidden for the
same reason; the operation symbols sponge and main are both visible for the opposite reason.
The result is denoted by the export-clause abbreviating the visible signature X. It formalizes an
interface to class sponger and allows to declare instances of class sponger as well as to invoke
the methods sponge and main .
|

4.3.2 Interpretation of Local Classes

The interpretation rules given in the previous section carry over to specifications with hidden
symbols, thereby respecting HX:

INTERPRETATION RULE 5 1. Interpretation rules 1 to 4 hold analogously re-
specting HY instead of CLASS. That is, this rule replaces sorts(CLASS) by
sorts(HX), and opns(CLASS) by opns(HY).

2. Aggregation and composition are treated equally. That is, interpretation rule
4 holds for using local classes in attribute declaration, thereby respecting HX.
instead of AGGR.

Remarks: The case of local classes contained in local or element classes is covered by this rules.
By Definition 4, the signature of a specification with hidden symbols is equal to its visible
signature. Hence, only sorts and symbols visible in local or element classes are imported
and thus need interpretation.

17

Corresponding to Observation 1, we have to show that the above interpretation rules respect
the semantics given for specifications with hidden symbols (see Def. 4).

OBSERVATION 2 Let EMBED = (X, HY, E) be a transformed DoDL-class con-
taining local classes, and let LOCAL be the transformation of such a local class. Let
both specifications be obtained by the above transformation rules. Let Abe a X gyprp-
algebra obtained by the above interpretation rules. Then, A |5, ,,, iS @ model for
LOCAL.

Proof. The proof follows immediately from observation 1, since local classes are imported into
their embedding class. n

44 Semantics of Inheritance

In the literature, two algebraic approaches to modelling inheritance can be found:

1. Inheritance is modelled by a relation between classes. It is understood as replicating all
superclass operations within a subclass. Sorts are restricted by subsorts. This approach
is studied, for example, in [11] and [45], and is called inheritance by restriction and reusing
inheritance, respectively.

2. Inheritance is modelled by model-inclusion on algebras. This approach is studied in [11]
and [45] as well, and is called inheritance by specialization and specialization inheritance, re-
spectively.

We use hierarchical specifications to express inheritance in DoDL. Inheritance by specializa-
tion is proposed for hierarchical specifications [58].

As we discussed in Section 3.3, the type of a caller ¢ of a method mdetermines the class mis
chosen from. In case the compiler cannot resolve the correct method in a method invocation of
the form c.m() , this is called late binding and requires a suitable lookup mechanism. Looking up
the correct method in a class hierarchy starts at the class C the caller is declared an instance of,
and follows the hierarchy via superclass definition. Lookup stops at a class D that defines m and
for which no other class D’ exists in the hierarchy that redefines mand is defined between D and
C. A very similar algorithm can be found, for example, in [35], covering local class hierarchies as
well.

Since the semantics of this depends on the caller’s type (see Sect. 3.3), this and super are
not directly transformed. Moreover, we define suitable axioms and simulate a lookup mechanism
on algebras.

4.4.1 Transformation of Subclasses

DEFINITION 5 Let SP4 = (X, E) be a specification, and let SPg be a subspecifi-
cation of SP4. The pair HS = (SP4, SPp) is called hierarchical specification. SP4
is called simple specification, SPp is called primitive part of HS. Let sig(HS) = X.
The loose semantics Mod(HS) of HS is defined as the set of all models of SP,4 the
Y sp,-reduct of which is a model of SPg:

Mod(HS) := {A € Mod(SPx) | A|s,,, € Mod(SPp)}

Remarks: The notions of simple specification and primitive part are somewhat awkward, since
what is called simple or primitive will turn out to be structured in our approach. Hence,
we prefer to call these parts subclass specification and superclass specification, respectively.

Similar to local classes, we provide a law of transformation for a class and its superclass.
The tree-structure over classes modeling the subclass relationship has a superclass as root and
subclasses as inner nodes which may themselves be superclasses. Since any class can be used as
superclass without being effected thereby, and due to the structure of hierarchical specifications,
we define the following rule:

18

TRANSFORMATION RULE 8 1. The tree-structure of the subclass relationship
is transformed in pre-order.

2. A DoDL-class that is subclass to any other class is transformed into a hierarchical
specification, where the superclass specification is given by the transformation
of its superclass.

It remains to consider how to obtain the subclass specification. A superclass may be complex
and therefore contain local classes. Then, the superclass is transformed into a specification with
hidden symbols. Local classes are inherited by a subclass. Thus, the subclass must be repre-
sented by a specification with hidden symbols as well. Even if a superclass does not declare local
classes, its subclasses may define them in their declare -sections. Then again, a subclass has to
be transformed into a specification with hidden symbols. Only in case both a subclass and its
superclass are simple (apart from inheritance), the transformation into a flat specification is suf-
ficient. Nonetheless, each flat specification (X, E) can be denoted as a specification with hidden
symbols of the form (X, ¥, E). We fix the following rule:

TRANSFORMATION RULE 9 The subclass specification of a hierarchical specifica-
tion is denoted as a specification with hidden symbols. Symbols and axioms of the
superclass specification are replicated and supplemented by the subclass under con-
sideration.

Remarks: The supplement is formed by those local classes, attributes and methods that are de-
fined in the subclass, called the increment of the superclass.

Replication is defined next. Moreover, we take care of the super -construct. Up to now,
transformed DoDL-classes occur in three different flavors: as flat specifications, as specifications
with hidden symbols, and as hierarchical specifications. The replication transforms any of these
structured specifications into a specification with hidden symbols. In the sequel, let class be
DoDL-class and CLASS its transformation.

DEFINITION 6 The replication of CLASS, p(CLASS) for short, is defined as fol-
lows:

(Xcrass, Xcrnass, E), if CLASS is a flat specification of the form

(Xcrass, E)
p(CLASS) := CLASS, if CLASS is a specification with hidden
symols
CLASS’, if CLASS is a hierarchical specification of

the form (CLASS’, C).

Remarks: The replication of a specification with hidden symbols is the identity, whereas the
replication of a hierarchical specification considers the subclass specification only: the repli-
cation of the superclass specification is already contained in this part.

Henceforth, it is sufficient to consider the increment of a class when a transformation is carried
out. This leads to transformation rules similar to those defined in the previous sections. For
clarity, however, we define some of them explicitly. In the sequel, let subclass be a subclass of
class ,subclass C class for short, and let SUBCLASS be its transformation. The replication
of CLASS is denoted by p(CLASS) = (¥, HX, E).

The increment of class , i.e. attribute declarations and methods defined in subclass , is
treated as usual:

TRANSFORMATION RULE 10 Transformation rules 2 and 3 hold analogously re-

specting HX in p(CLASS) instead of CLASS. That is, this rule replaces sorts(CLASS)
by sorts(HX), and opns(CLASS) by opns(HY).

19

The signatures of inherited methods have to be adapted to the subclass in order to make these
methods applicable to subclass instances. In particular, the method type is changed from class
to subclass

TRANSFORMATION RULE 11 1. A n-ary method declaration in class of the
form class methID(parType 1 parlD 1, ..., parType , parlD ,) istrans-
formed into a (n+1)-ary operation in opns(HZX) of the form methID : subClass x
parType; X ... x parType, — subclass.

2. Any other n-ary method declaration in class of the form
methType methlD(parType ; parlD ,, ..., parType , parlD ,) with
methType # class is transformed into a (n + 1)-ary operation in opns(HX) of
the form methID : subClass x parType, X ... x parType, — methType.

3. A unary method declaration in class of the form class methlD(void) or
methType methlD(void) is transformed into a unary operation in opns(HX)
of the form methID : subClass — subclass or methID : subClass — methType,
respectively.

4. The identifiers subClass, methType, parType;, i = 1,...,n and void are added to
sorts(HX).

We characterize polymorphism through substitution, and therefore each instance of a class
must be an instance of its superclass. This leads to two operations which are vital for algebraic
transformation (c.f. [10], Def. 3.83 on pages 94, 95): the usual injection in : subClass — class,
defining substitution, and the usual partial projection cast : class — subClass together with the
projection axiom cast(in(s)) = s for each s € subClass, defining the semantics of super :

TRANSFORMATION RULE 12 The operations
in : subClass — class and cast : class — subClass

are added to opns(HY). In E, an axiom of the form Vs : SubClass . cast(in(s)) = s is
required.

If a method is redefined, suitable axioms have to be given (see Sect. 4.7). If a non-redefined
method min subclass uses a method redefined in subclass , we call mindirectly redefined,
and hence suitable axioms have to be given here as well. If a method is inherited and not (in-
directly) redefined, its semantics carries over to the subclass. We distinguish between different
method types as in rule 11:

TRANSFORMATION RULE 13 1. For each non-redefined operation in opns(HX)
of the form methID : subClass x parType; X ... X parType, — subClass, which
does not use a method redefined in subClass, there is defined an axiom in E of
the form

Vs :subClass,py : parType,, ..., pn : parType,, .
methID(s,p1,...,pn) = cast(methID(in(s),p1,...,Pn))

2. For each non-redefined operation in opns(HZX) of the form methID : subClass x
parType; x ... x parType, — methType, which does not use a method redefined
in subClass, there is defined an axiom in FE of the form

Vs :subClass, p1 : parTypeq, ..., pn : parType,, .
methID(s,p1,...,pn) = methID(in(s),p1, ..., Pn)

Remarks: The term methID(s,p1, ..., py) refers to the operation methID : subClass x . .., whereas
methID(in(s),p1, - .., pn) refers to methID : class X

20

The visible signature ¥ can be defined in analogy to local class transformation:

TRANSFORMATION RULE 14 Transformation rule 7 holds for p(CLASS) and subClass
analogously.

In particular, this rule adds the operations in and cast to the visible signature. It is further-
more easy to see that these rules establish a well-defined hierarchical specification, where the
superclass specification is a subspecification of the subclass specification. Hence, the transforma-
tion of an inheriting class is anti-monotonous w.r.t. inclusion.

EXAMPLE 4 We refer to the previous example and introduce class sponger as a subclass of
grower , shown in Listing 10. The transformation of a class inheriting from a class with local
classes works analogously and is omitted here. Such an example can be found in [22].

LISTING 10 A subclass definition

class grower is
attributes num: nat ;
construct
nat get(void){ return num; }
grower set(nat val){ num = val; }
grower grow(void){ nhum = num + 1; }

end grower;
class sponger is grower with // a subclass definition
attributes value: nat; // an additional attribute
construct
nat getV(void) // a new method
return value;
}
sponger set(nat val 1, nat val 2){ //an overloaded method
super .set(val_1); // call super.set ()
value = val _2;
}
sponger grow(void){ // a redefined method
num = num + value;
}

nat sponge(nat val_1, nat val_2){
this .set(val_1, val_2);
super .grow(); // add 1 to num
this .grow(); // use redefinition
return this .get();

}

nat main (void){ print(this .sponge(7, 8)); }

end sponger;

Class sponger introduces an attribute value and a method getV . Method set is overloaded
since its signature has changed, and uses method set from class grower . Method grow is rede-
fined. Methods sponge and main are adapted to the new situation.

The transformation of sponger yields a hierarchical specification of the form SPONGER =
(SPONGER', GROWER). With transformation rule 8, part 2, the superclass specification is as
given in specification 1 on page 12. Transformation rule 9 prepares the subclass specification
for taking up the superclass replication. By Definition 6 and since GROWER is a flat specifica-
tion, this replication is a specification of the form (X crower, Zcrower, ecxms(GROWER)). The
subclass specification SPONGER' is shown in specification 4 on page 22 and explained in the
remainder of this example.

21

Transformation rule 11 rewrites the operations in GROWER for usage with sort sponger. Rule
10 takes care for the increment of class grower , i.e. the features defined in sponger , as usual.
The injection and projection together with the required axiom are added by rule 12. The attribute
declaration numand method get are not redefined, and thus rule 13.2 fixes the required axioms.
The method set in class grower has method type grower and was rewritten by rule 11. There-
fore, casting applies and is fixed by rule 13.1. The methods introduced in class sponger need
new axioms. Their forms correspond to those given in Example 1.

SPECIFICATION 4 An explanatory subclass specification

SPONGER' = (by replication with HY =)
export grower, num, get, set, grow, sponger, value, getV, sponge, main, in, cast from
sorts grower, Sponger (by rule 10)
opns num : grower — nat, (by replication)
get : grower — nat, (by replication)
set : grower X nat — grower, (by replication)
grow : grower — grower, (by replication)
num : sponger — nat, (by rule 11)
get : sponger — nat, (by rule 11)
set : sponger X nat — sponger, (by rule 11)
grow : sponger — sponger, (by rule 11)
value : sponger — nat, (by rule 10)
getV : sponger — nat, (by rule 10)
set : sponger X nat X nat — sponger, (by rule 10)
sponge : sponger X nat X nat — nat, (by rule 10)
main : sponger — nat, (by rule 10)
in : sponger — grower, (by rule 12)
cast : grower — sponger (by rule 12)
vars s : sponger, g : grower,n,n,ng : nat
axms get(g) = num(g), (by replication)
get(set(g,v)) = v, (by replication)
grow(g) = set(g,num(g) + 1), (by replication)
num(s) = num(in(s)), (by rule 13.2)
get(s) = get(in(s)), (by rule 13.2)
set(s,n) = cast(set(in(s),n)), (by rule 13.1)
value(s) = getV(s),
getV (set(s,ny1,ng)) = na,
grow(s) = set(s,num(s) + value(s), value(s)),
sponge(s,ny,ng) = get(grow(cast(grow(in(set(s,n1,n2)))))),
main(s) = sponge(s,7,8),
cast(in(s)) = s (by rule 12)

Method sponge needs explanation. The sequence of method invocations can be rewritten
as (((this .set(val_1, val_2)).super.grow()).grow()).get() . This expression is
rewritten as a term by writing it down vice versa: get(grow(grow(set(ns,ng)))). To achieve the
correct sorts and to reach the correct super-methods, we use injection and projection and yield
the given axiom.
|

22

Local classes may also use inheritance. Local class hierarchies are transformed as any other
hierarchies and hence need no further rules. Nonetheless, we discuss them briefly for complete-
ness. Scoping rules allow for three different kinds of using local classes:

1. Local classes may use other local classes regarding delcaration before use.
2. Local classes may inherit from classes defined in the scope of their embedding class.

3. Local classes may inherit from local classes defined in the superclass of their embedding
class.

With transformation rules 5 and 8, parts 1, it holds that local classes are to be transformed
prior to their embedding class, and that superclasses are to be transformed prior to a subclass.
The transformation of a class declaring a local class that inherits in one of the above mentioned
ways embraces the transformation of this "local" superclass which is done prior to the local class
transformation. This yields a hierarchical specification replicated as shown above. The embed-
ding class is transformed by the rules for local classes and imports the subclass specification of
its transformed local classes.

Moreover, the embedding class may itself inherit from another class. Following rules 5 and
8, parts 2, this class is transformed into a hierarchical specification and into a specification with
hidden symbols simultaneously. This conflict is solved regarding transformation rule 9 as fol-
lows. A subclass is transformed into a hierarchical specification the superclass specification of
which is the transformed superclass. The subclass specification, however, is a replication of this
specification, and in any case a specification with hidden symbols. The features of local classes
can be added to the replication without any problem. The transformation of a subclass is thus
prepared for local classes per definitionem, and can therefore be understood as the structurally
stronger transformation.

4.4.2 Interpretation of Subclasses

In the sequel, let inh be a DoDL-class inheriting from a class root . The transformations are
INH = (INH', ROOT) and ROOT, respectively. Further, let INH' be the replication (X, HX, E)
of ROOT supplemented with inh , and let A be a HX-algebra, R a ¥ zoor-algebra.

INTERPRETATION RULE 6 Interpretation rules 1 to 4 hold analogously respecting
HY instead of CLASS. That is, this rule replaces sorts(CLASS) by sorts(HX'), and
opns(CLASS) by opns(HX').

For clarity, we rewrite the interpretation of aggregated class methods:

INTERPRETATION RULE 7 Let elem be an element class in inh , ELEM its trans-
formation, and € a ¥ g; pa-algebra. Further, let M denote the set of all operations de-
fined in an element class of inh , i.e. M = (opns(HX) \ opns(ROOT)) N opns(ELEM).

1. Each operation f in opns(ELEM) is interpreted in A as in &:
VfisiX...xs, =>se€MacEs x...x Eg,:
fA(a) = f¥(a)
2. Ttis required that E; C A, holds for each s € sorts(ELEM).
Additionally, we need interpretation rules for injection and projection.
INTERPRETATION RULE 8 For the carrier-sets A;,;, and A,oot, Aink C Aroor holds.

Remarks: inh is interpreted as a subsort of root (see Sect. 4.4.3).

23

INTERPRETATION RULE 9 For the injection and projection operations we define:
1. Vi € Aijpp - in (i) =i

L ific Ay,
2. castA(i) = {1 112 nh
, else

Inherited methods have to be interpreted depending on whether they are (indirectly) rede-
fined or non-redefined:

INTERPRETATION RULE 10 1. Each operation in opns(HZX) of the form f : inhx
51 X ... X s, — inh that is (indirectly) redefined in INH is interpreted in A as
follows:

Vr € Aroot \ Ainh,a € Agy X ... X Agyy
fA(r, a) = castA(fR(r7 a))

2. Each operation in opns(HY) of the form f : inh x s1 x ... X s, — s thatis
(indirectly) redefined in INH is interpreted in A as follows:

Vr € Aroot \ Ainnya € Agp X ... X Ag
fA(r,a) = fR(r,a)

3. For values in Ay, f is interpreted following the respective axioms given.

4. Any non-redefined operation in opns(HY) of the same form, for which there
exists an axiom in E of the form f(i,a) = cast(f(in(i),a)), with i € A;p,a €
Asy X ... X Asg,, is interpreted in A as follows:

Vi € Ajpn,a € Agy X ... X Agy -
A3, a) = castA(fR(in(i), a))

5. Any non-redefined operation in opns(HY) of the same form, for which there
exists an axiom in E of the form f(i,a) = f(in(i),a), with i € Ajup,a € Agy X
... X Ag,, is interpreted in A as follows:

Vi € Ajpn,a € Agy X ... X Ag,,
fAGa) = fR(in (i), a)

Remarks: 1. This rule establishes a lookup method as follows: Inherited methods are over-
loaded in opns(HX'). Thus, two versions of f exist with different characteristics: f :
inh % ...and f : root x In case, f is not redefined, the interpretation of f : inh x ...
cascades, i.e. it is "forwarded" to the interpretation of f : root x ... by the second part
of the above rule. If it is redefined, new axioms are given in INH.

2. For multiple inheritance, these properties are formulated, for example, in [42], page
75.

In analogy to the previous sections, these interpretation rules have to maintain the semantics
for hierarchical specifications. The following observation is helpful to prove this proposition.

24

OBSERVATION 3 The semantics of a hierarchical specification, (SP4, SPg), is iden-
tical to the semantics of a specification established by means of the specification-
building function import SPg into SP4.

Proof. Since SPg C SP4, and with the definition of import (see Sect. 4.1), it follows:

sig(import SPg into SP4) = sig(SPp) U sig(SP4)
= sig(SPa)

The equivalence of the model sets follows immediately with definition 5 and import, such
that SP = SPg and SP’ = SPj,4. |

Remarks: A similar result is given in [56], page 746.

OBSERVATION 4 Let INH = ((¥,HX, E), ROOT) be the transformation of inh ,
and let A be a model for (¥, HY, E). Then, A|x,,,, is a model for ROOT.

Proof. With the assumption that A is a model for (¥, HX, E), the model set of (¥, HY, E) is the
set of all 3-reducts of A for which A is a model of (H, E') (by Def. 4). Let A |5 be such a
model.

The model set of inh is defined (by Def. 5) as the set of all models of (¥, HX, E) the Xroo7-
reduct of which is a model of ROOT. To prove the assumption, it is sufficient to show:

L (Al2)|s,,,, is amodel for ROOT
2. ‘A|2R00T: (A|2)

Ad 1: The transformation rules yield ROOT C (HY, E). By Observation 3 and the import-
operation, INH can be formulated equivalently as

[Sroor

INH := import ROOT into (¥, HY, E)

With Observation 1 on page 14 it follows immediately that (A|[x),, isa model for
ROOT.

Ad 2: The transformation rules yield X roor € X nm. Since vy = ¥, is follows immedi-
atel}’ that A |2R00T: (A |21NH)\2M)OT = ('A |2) u

IS roor*

We conclude this section by an example illustrating the interpretation rules.

EXAMPLE 5 Let S bea Xspongrr-algebra, and G a ¥ growrr-algebra. We interpret specification
SPONGER as given in Example 4. Specification GROWER follows Example 2. There, we had for
eaCh g € Ggrower» ne Gnat:

numf(g) = get?(g) 1)
set?(g,n) = (n))
getg(set(g, n)) = 3)
grow? (g) = setg(g, num9(g) + 1) 4)

For non-redefined methods, we follow rule 10, part 4 and part 5, yielding for each s €
Sspongem nec Snat:

num® (s) = num9 (in(s)) (12)
get®(s) = get? (in(s)) (13)
setS(s,n) = cast® (set9 (in®(s),n)) (14)

25

The redefined method grow is captured by rule 10, part 1, if s € Syrower \ Ssponger, and by part
3, else:

S g .
growS (s) = {cast (grow?(s)), if s € Sgrower \ Ssponger (15)

setS (s, num® (s) + value® (s), value® (s)), else

The increment of grower , i.e. the features of class sponger , is interpreted following the
axioms in SPONGER. For each s € Seponger and n,ni,ne € Spar we have:

value® (s) = getV‘S() (16)

getVS (set(s,nq,nz)) = 17)
setS(s,n1,ng) = (s,nl,ng) (18)
sponge® (s,n1,m2) = get® (grow® (grow® (in® (set® (s, n1,m2))))) (19)
main® (s): sponge®(s,7,8) (20)

The interpretations of the set operations determine the structure of the carrier-sets for Syrower
and Ssponger. The former contains terms of the form set(... (set(g, ns),...), n;), the latter terms
of the form set(...(set(s,ns,n}),...),n;, ny), i.e. they are term-generated. Note that each value
in Ssponger 18 also in Sgpower due to interpretation rule 8:

Ssponge’r‘ - Sgrower (21)

Interpretation rule 9 fixes injection and projection. With the above structure of Ssponger and
Sgrower, We can resolve the else-case in cast and obtain:

Vs € Ssponger, M1, N2 € Spat ms(set(s, ni,ng)) = set(s,nq) (22)
Vs € Ssponger casts(s) =35 (23)
Vs € Ssponger, M1, M2, M € Spay casts(set(m(set(s,nl,ng)), k)) = set(s, k,n2) (24)

It is again easy to prove that S is a model for SPONGER. Since G is a model for GROWER
and with Observation 4, A| s, ,ower is model for GROWER.
u

4.4.3 A Remark on Subsorts

We conclude Section 4.4 with a remark on subsorts. The transformation of a subclass, inh , yields
a specification of the form (INH', ROOT), where root is the superclass of inh , and INH' is
as given by transformation rules. In particular, inh and root are sorts in sorts(INH’), and the
interpretation of those sorts results in the subset relation given in rule 8. This expresses a rela-
tion on sorts alternatively used to model inheritance (c.f. [47, 33]). The language CASL [39], for
example, is equipped with a formal semantics using subsorts. If algebraic specifications allow
to express relations of the form S; < S5 over sorts S; and Sy, (c.f. [18], Sect. 11.2, or [38]), and if
they are respected in order-sorted algebras (c.f. [56], Sect. 3.3.4), unambiguous interpretations can
be given without the need to explicitly fix interpretation rules. Nonetheless, this approach only
works under certain restrictions (c.f. [33]), but with a subsort-property given by definition: for
each ¥ g, -algebra A, S; < S implies Ag, C Ag, (c.f. [49], p. 137, or [51], Sect. 2.10.4). We simu-
late this approach with our interpretation rules, and thereby overcome the drawback of technical
complexity (c.f. [10], Sect. 3.3.5) inevitably introduced into the structured specifications used here.

4.5 Semantics of Generic Classes

In [9], parametrization of classes is understood as parametric polymorphism. With polymorphism
characterized by substitution (see Sect. 3.3), generic classes may be used in different situations

26

uniformly by actualizing their formal parameter. In correspondence with horizontal and vertical
implementation [19], substitution may be called vertical in the context of inheritance, and horizon-
tal in the context of parametrization. Parametrical polymorphism allows for parallel develop-
ment of generic classes and their parameters, and is thus orthogonal to inheritance. A detailed
discussion can be found, for example, in [43].

For algebraic specifications, different approaches to parametrization exist. We refer to param-
eterized specifications as an extension of their parameter (c.f. [20], Sect. 7.1). An actual parameter
is provided by actualization (c.f. [40], p. 172), thereby replacing the formal one. This approach
sufficiently models the simple renaming mechanism required for generic DoDL-classes.

DEFINITION 7 Let SP and PAR be two algebraic specifications with PAR C SP.
A parameterized specification is a A-expression of the form

PSP =)X : PAR.SP

The specification PAR is called formal parameter, or parameter specification. Let
sig(PSP) = sig(SP).

Let ACT be a specification. An actualization of PSP through ACT, PSP(ACT)
for short, is defined as a specification of the form

PSP(ACT) := SPipar/acT)

The specification ACT is called actual parameter of PSP.
The loose semantics of PSP(ACT), Mod(PSP(ACT)) for short, is defined as the
set of all models of SP with PAR renamed by ACT:

Mod(PSP(ACT)) := Mod(SPpar)acT)

For technical simplicity, we do not allow parameter-passing morphisms and hence omit arbi-
trary actual parameters. Transforming a generic DoDL-class then requires the transformation of
a parameter specification first, since sorts and symbols introduced there are applied in a generic
class.

TRANSFORMATION RULE 15 1. The transformation of a generic DoDL-class pre-
sumes the transformation of a parameter specification.

2. A generic DoDL-class, G, is transformed into a parameterized specification of the
form AX : PAR.SP. Thereby, SP is a specification obtained by transforming of
the features of G

3. The transformation PAR of its parameter specification is imported into SP.
4. Sort par is added to sorts(SP).

Remarks: 1. The transformation of G refers to the transformation rules defined previously.
That is, if Gis a simple class (apart from genericity), it is transformed by simple class
transformation. Local classes and inheritance are respected analogously.

2. The import of PAR in SP ensures that PAR is a subspecification of SP, as required by
Definition 7.

In addition to being parameterized and thus allowing for exchangeable types used in attribute
declaration or method definition, a generic class is either simple, may contain local classes or is
defined as a subclass. These cases are respected when a generic class is transformed, thereby be-
ing reduced to one of the cases already discussed. Only actualizations of parameterized classes
are used in other classes. Those classes hence aggregate a parameterized class in attribute dec-
laration, or are a subclass of a parameterized class, or are themselves generic. In any case, actu-
alizations are transformed following those transformation rules that respect the actualizing class
structure.

27

TRANSFORMATION RULE 16 1. The transformation of an actualization, PSP(ACT),
presumes the transformation of ACT. In SP, the sort par is renamed with act.

2. An attribute declaration in a class class directly actualizing PSP of the form
attrID: attrType[actPar] is transformed into an operation in opns(CLASS)
of the form attrID : class — attrType.

Remarks: Hierarchical actualization is covered by subclass transformation. Generic actualiza-
tion establishes a parameterized specification with SP being established by subclass trans-
formation.

Due to this rule, the interpretation of generic classes totally reduces to the respective interpre-
tation rules given in the previous sections and need no further investigation.

EXAMPLE 6 We refer to Example 1 and show class sponger as a generic class in Listing 11. To
keep things simple, we use direct actualization in class useSponger which actualizes the formal
parameter beingSponged by class grower .

LISTING 11 A generic class in DoDL

class sponger [beingSponged] is
attributes spng: beingSponged; // using the parameter
construct

nat sponge(nat val){
spng.set(val);
spng.grow();
return spng.get();
}

end sponger;

class useSponger is
attributes sp: sponger[grower]; // a direct actualization
construct
nat main (void){

print(sp.sponge(7));

end useSponger;

Without an actualization, class sponger can only be properly transformed if a parameter
specification is given. Class beingSponged (see Listing 12) offers attributes and methods an
actual parameter may implement. That is, method bodies are empty here. For simplicity, this
class resumes class grower as given in Example 1 on page 11.

LISTING 12 An interface

class beingSponged is
attributes num: nat ;
construct
nat get(void){}
grower set(nat val){}
grower grow(void){}
end beingSponged;

Transforming class beingSponged by rule 15, part 1, results in a specification with an empty
set of axioms. Since this class is simple, we use simple class transformation and yield specifica-
tion 5. Such a parameter specification serves as a "template" for actual parameters which define
axioms and thus fix a semantics for the operations offered in the template. It is clear that each

28

Y peiNGgsPonGED-algebra is a model of this parameter specification. An actual parameter, how-
ever, restricts this set of models.

SPECIFICATION 5 A parameter specification

BEINGSPONGED =
sorts beingsponged
opns num : beingsponged — nat,

get : beingsponged — nat,
set : beingsponged X nat — beingsponged,
grow : beingsponged — beingsponged

Together with class beingSponged , class Sponger can then be transformed using transfor-
mation rule 15, part 2. Again, we use the rules defined for simple classes and import specification
BEINGSPONGED into SPONGER (see Spec. 6). Following Definition 7, the resulting parameter-
ized specification has the form AX : BEINGSPONGED . SPONGER. Interpreting specification
SPONGER follows the interpretation rules defined for simple classes with aggregation.

SPECIFICATION 6 A generic class transformation

SPONGER = import BEINGSPONGED into
sorts sponger
opns spng : sponger — beingsponged,
sponge : sponger X nat — nat
vars s : sponger, v : nat
axms sponge(s,v) = get(grow(set(spng(s),v)))

To transform class useSponger , we follow transformation rule 16 and presume the transfor-
mation of class grower as given in Example 1. Notice that class sponger is an element class in
useSponger , and its transformation has thus to be imported into USESPONGER. Thereby, we
rename sort beingsponged with grower and yield specification 7. The attribute declaration for sp
follows rule 16.2. Due to the import of GROWER via SPONGER, the axioms given there have to
be respected when USESPONGER is interpreted. This interpretation follows the rules given for
simple classes respecting aggregation.

SPECIFICATION 7 An actualization

USESPONGER = import SPONGER[BEINGPSPONGED/GROWER} into
sorts useSponger
opns sp : useSponger — sponger,
main : useSponger — nat
vars u : useSponger, v : nat
axms main(u) = sponge(sp(u),7)

In case of hierarchical actualization, we transform useSponger by the rules given for inher-
itance. Additionally in this case, useSponger may also be generic. Then, the result is a parame-
terized specification the body of which respects the transformation rules given for inheritance as
well. Generic classes containing local classes are a variation of the same theme and respect local
class transformation rules.

]

29

4.6 Semantics of Bindings

Bindings assign values to attributes. This allows to create instances (or objects) during compi-
lation. At run-time, further instances can be created using a new-operator. Both concepts are
given meaning in this section. The transformation of classes is not affected, but interpretations
of transformed attribute declarations have to be adapted such that the specific values given in a
binding are respected. This allows to precisely define the notions of type and object in the algebraic
context.

4.6.1 Transformation of Bindings

Transforming a binding means to define an assignment function. In the sequel, let BINDING
be the set of all syntactically correct bindings as given by the syntax rules, and let IDENT and
VALUE be the respective sets for identifiers and values.

DEFINITION 8 An assignment is defined as a partial function from the set of all
identifiers to the set of all values:

assign :== IDENT+ VALUE
The set of all assignments is denoted by ASSIGN.

TRANSFORMATION RULE 17 The transformation of a binding, B, yields a func-
tion [_] which maps bindings onto assignments as follows:

[] : BINDING — ASSIGN,
VB € BINDING,var € IDENT :

[B](var) = {

value, if var: type = value is a simple assignment in B
1, else

This transformation does not yet respect in-assignments. Therefore, we define a binary infix
operation _|_ on bindings extracting the simple assignments within an in-assignment. An in-
assignment refers to an identifier used in attribute declaration. This identifier is called qualifying
identifier the type of which is a self-defined class. The attributes in this class are also assigned
values. This happens recursively.

TRANSFORMATION RULE 18 Let B be a binding and qual a qualifying identifier
in B. The transformation of B is extended for in-assignments in the following way:

|: BINDING x IDENT — BINDING,
VB € BINDING, qual € IDENT ,var € IDENT :
value, if qual is a qualifying identifier of an in-

assignment, I, in B and var: type = value
is a simple assignment in /

, else

[[B|qual]] (UCLT) =
1

A binding must assign values to precisely those attributes given in the main class of a DoDL-
program (see Sect. 3.1), and in all its super- and element classes, recursively. Hence, not each
arbitrary binding is suitable for a given DoDL-class. Moreover, the values fixed in a binding have
to be typed correctly. Such bindings are called fitting. In the sequel, attrType refers to the pre-
defined types nat , bool , and string . Self-defined classes posses their own attributes which
are bound in in-assignments.

DEFINITION 9 Let Dbe a DoDL-program, and let Cbe the main class in D. A bind-
ing B fits to C, if and only if the following holds:

30

1. For each attribute declaration of the form attrID: attrType , either in Cor in
asubclass C' with CC C’, [B](attrlD) has to be defined.

2. For each attribute declaration of the form attrID: class , either in C or in
a subclass C' with C C C’, where class is self-defined, there exists an in-
assignment in B with attrID the qualifying identifier of type class’ and
class’ L class ,such that Blamp is a binding fitting to class’

3. No other assignments exist in B.

Remarks: A binding does not fitto class’ ,ifclass’ isnotasubclass of class . The definition
is recursive. Value assignment to element class attributes has to be done in a binding fitting
to this class. Assignments of attributes not belonging to any class in D are of no use in a
binding. Hence, they can be omitted.

EXAMPLE 7 Listing 13 shows a DoDL-program the classes of which are already known from Ex-
amples 4 and 6. We omit the construct -sections here, since they are not relevant for discussing
bindings. The main method in class useSponger , however, is shown to demonstrate the intro-
duction of an attribute num

LISTING 13 A DoDL-program

class grower is
attributes num: nat ;
construct

end grower;

class sponger is grower with
construct
end sponger;

class useSponger is
attributes Sp: sponger;
num: nat ;
construct
nat main (void){
print(sp.sponge(num));
}

end useSponger;

A binding B fitting to class useSponger has to assign values to both sp and num Notice
that sp is an instance of class sponger which does not introduce attributes, but is a subclass
of grower . There, an attribute numis declared which has also to be bound. Since sponger is
an element class in useSponger , this assignment is done within an in-assignment expression.
Listing 14 shows the situation.

LISTING 14 Binding attributes

binding useSponger is
in sp: sponger assign
num: nat = O;
end;
num: nat = 7,
end;

The transformation of B results in an assignment function given by the following mappings.
The simple assignment for numyields ([B] (num) —— 7), whereas the in-assignment for sp yields

31

([Blsp](num) — 0). The attribute num does not cause a name clash, since it occurs in different
scopes. This is respected by introducing Blsp.
]

4.6.2 Interpretation of Bindings

In the previous sections, the interpretation of transformed attribute declarations was left open.
Now we can fix these interpretations to the respective values given in a binding. Again, we
distinguish between simple assignments and in-assignments.

In the sequel, let class be a DoDL-class, CLASS its transformation, and C a ¥ ¢1,4ss-algebra.
Further, let elem be an element class in class, ELEM its transformation, and £ a ¥ gz zy-algebra,
let super be a DoDL-class with class C super , SUPER its transformation, and S a Y sypgr-
algebra. Let B be a binding fitting to class . Again, attrType refers to the pre-defined types
nat , bool , and string

INTERPRETATION RULE 11 For each attribute declaration in class of the form
attriD: attrType we define:
YattrID : class — attrType € opns(CLASS),c € Acjass
attrID*(c) = [B](attrlD)
INTERPRETATION RULE 12 For each attribute declaration in elem of the form
attrID: attrType we define:
YattrID : elem — attrType € opns(ELEM),e € Egjen, :
attrID® (e) = [Ble](attrID)
INTERPRETATION RULE 13 For each attribute declaration in super of the form
attrID: attrType we define:
VattrID : super — attrType € opns(SUPER), s € Ssuper
attrIDS (s) = [B](attrID)
The interpretation of attribute declarations in element classes as well as in superclasses is for-
warded to aggregates and subclasses by the respective interpretation rules given in the previous

sections. Therefore, a binding has to be respected in X g1 gy and Y gyprr-algebras.
These interpretation rules lead to models which we call bound:

DEFINITION 10 Each ¥ 1 ass-algebra following the above interpretation rules is
called bound model of CLASS. The set of all bound models of CLASS is denoted
by Bound(CLASS).

It is easy to prove that bound models are models:

OBSERVATION 5 Each Y ¢ ags-algebra in Bound(CLASS) is in Mod(CLASS).

Proof. Interpretation rules 11, 12 and 13 fix the interpretation of attribute declarations to certain
values of the respective carrier-sets. This interpretation has thus no effect on observations
1 and 2. Hence, the rules maintain model properties. |

EXAMPLE 8 Referring to Example 4, let U be a £ ysesponcer-algebra, S a Lsponcrr-algebra,
and G a ¥ growrr-algebra. We apply interpretation rules 11, 12, and 13 on binding B as given in
Example 7 and obtain the following interpretations:

1. With [B](num) = 7, we have num¥ (u) = 7 for each u € Uysesponger by rule 11.

32

2. With [B|,](num) = 0 and rule 12, together with B|,, is a binding fitting to class sponger ,
we have num9(g) = 0 for each g € G yrouer by rule 13.

3. The interpretation numS(s) = num9 (s) is obtained by rule 6.

With the notion of bound models we can formally define types and objects. For pre-defined
classes, their type is their respective model set given in the usual way. For self-defined classes,
we define:

DEFINITION 11 Let attrID: attrType be an attribute declaration in class
such that attrType is a self-defined class. The type of attrlD , type(attrlD) for
short, is defined as the loose semantics [ATTRTYPE] = Mod(ATTRTYPE) of the
transformation ATTRTYPE.

In correspondence with the usual characterization of objects found in the literature (c.f. [37],
Sect. 8.3), we define an object as an individually identifiable class instance. Moreover, we use the
designators given in attribute declarations to refer to an object. Each class hence describes a set
of individuals through attributes and methods. The state of an object is given by the set of at-
tribute/value pairs fixed in a binding (c.f. [50], Sect. 5.1). Methods are responsible to controllably
change this state, that is, methods allow to change values in attribute/value pairs. The behavior
of an object paraphrases the conditions under which an objects is allowed to change its state (c.f.
[17], Sect. 12.1.1). Initialization corresponds to the initial assignment of values to attributes (c.f.
[37], Sect. 8.3), in DoDL done by bindings or the new-operator.

Types are given through model sets. An instance of a DoDL-class class thus corresponds
to a model in Mod(CLASS). Without bindings, those models are of no pragmatic use, since we
cannot refer to the object’s state and hence cannot manipulate it. Therefore, we respect bindings:

DEFINITION 12 Each model in Bound(CLASS) is an object of class class .

To create objects at runtime, we use a simple new-operator. This operator is parameterized
with a binding fitting the class an instance of which is created. By this binding, we can establish
a bound model in the way discussed above. That is, the semantics of the new-operator is a bound
model. A concluding example may illustrate how instantiation works at runtime.

EXAMPLE 9 We refer to class useSponger as shown in Listing 13 in Example 7 on page 31.

LISTING 15 The new-operation

class useSponger is
attributes Sp: sponger;
num: nat ;
construct
nat main (void){ print(sp.sponge(num)); }
end useSponger;

class surround is
construct
void showCreate(){
useSP: useSponger;
useSP = new(sp(num = 0), num = 7);
}

end surround;

33

Let us assume, a class surround contains a method showCreate that declares a variable
useSP of type useSponger and thereby an instance of class useSponger (see Listing 15 on
page 33). Since this variable is not a class attribute, it is not respected by a binding as discussed
above and needs another form of initialization.

The new-operator expects a value for sp and a value for num With references, we could refer
to an instance of sponger already defined in a binding. But references do not exist in DoDL, and
we have to create a new instance of sponger . Moreover, it is easy to convert the parameters of
the new-operator into a binding fitting to useSponger . The simple assignment num = 7 corre-
sponds to a simple assignment in such a binding. The first parameter, the structured assignment
sp(num = 0) , corresponds to an in-assignment expression: the qualifying identifier sp here
prefixes a list of assignments written in brackets.

The transformation of new results in a term of the form useSP(s) = set(set(sp, 0), 7), where
5 € Ssourround and sp € Ssponger for a Xsovrrovnp-algebra S. Its interpretation affects the
interpretation of num : useSponger — nat and num : sponger — nat only.
|

Finally, we can define the semantics of a DoDL-program as the model set of its main class, and
show that class inheritance implies type inheritance:

DEFINITION 13 Let Dbe a DoDL-program, let class be the main class in D, and
CLASS its transformation. Further, let B be a binding fitting to class , and let Mg be
abound model for CLASS. Let [_] be a mapping from a DoDL-program and a binding
onto a model set. Then, the semantics of Dunder B, [D] 5 for short, is defined as the
smallest model M € Mod(CLASS) with M C Mp.

Remarks: Since fitting bindings do not affect the model property, it is easy to see that such a
model M p exists.

With the assumption of Observation 4, each model of a hierarchical specification reduced to
the signature of its superclass specification is a model of the superclass specification. For types,
we introduce a relation < similar to class inheritance, T, which respects Def. 5:

DEFINITION 14 Type inheritance is defined as a relation xC MOD x MOD on
model sets. It is defined for all transformed DoDL-classes, CLASS and CLASS’, as
follows:

Mod(CLASS) < Mod(CLASS') : «—= VA € Mod(CLASS) : Als,, ,..,€ Mod(CLASS’)

OBSERVATION 6 Letclass andclass’ betwo DoDL-classes, CLASS and CLASS’
their transformations. Then,

class Cclass’ = Mod(CLASS) < Mod(CLASS’)
holds.
Proof. The assumption immediately follows from the transformation rules and Definition 14. W

Remarks: A similar observation between classes and instances is made in [1], page 18, and is
there called subtype relation.

4.7 Embedding Imperative Parts

Primitive statements and control structures are used within method bodies. We allow declara-
tion of variables, value assignment, sequences, alternatives, as well as for - and while -loops.
Additionally, method invocation and lookup together with the concepts of this and super are

34

crucial and have already been discussed in Section 4.4. The method bodies are left to be trans-
formed into suitable axioms. Exactly there, the semantics discussed so far and the semantics of
the imperative parts are integrated. An approach to combine formal semantics of these different
aspects is, for example, proposed in [3]. We proceed as follows, thereby utilizing term evaluation
and denotational semantics of imperative languages.

The execution of a DoDL-program utilizes the mechanisms usually applied for imperative
languages (c.f. [52]): assignments and method invocation form the primitive statements, control
structures are responsible for the order of their execution. As soon as a DoDL-program is trans-
formed and an appropriate interpretation is given, program execution reduces to evaluation of
these interpretations. We show this by an example, after defining term evaluation, in the litera-
ture usually called term interpretation. In order not to collide with the notion of interpretation
used in the present paper, we refer to term interpretation as term evaluation.

DEFINITION 15 A mapping v : X — A is called valuation. It is defined through
an S-indexed family {vs}ses of mappings vs : Xy — A, for each s € S.
Let X = (S,T') be a signature, A a X-algebra, and v : X — A a valuation. For each
s € S, a S-sorted mapping v} : T(X,X); — A, is defined as follows:
1. for all variables z € X let v’ (z) := v(z)
2. for all constants f :— s € T'let v}(f) := f4

3. for all operations f : s; X ... x s, —» s€T'andallterms t; € 7(3,X)s;,...,t, €
T(2,X)s, let v (f(tr, .. tn) = FAI (1), -, 05 (L))
A mapping v* : 7(X,X) — Ais called term evaluation of terms in A with respect to
v, and is defined through an S-indexed family {v}};cs of mappings v?.

EXAMPLE 10 In Example 2, we gave interpretations for classes grower and sponger . Execut-
ing the main method in sponger means to evaluate the term main(s) following the respective
interpretations:

v*((main)(s)) = main® (v*(s)) (Def. v*)
= sponge®(v*(s),7) (eq. (6))
= get® (grow® (set® (grw® (v*(s)), 7)) (eq. (5))
= get?(grow? (set? (v* (gruw(s)), 7)) (egs. (9) - (11))
= get9 (set? (v* (set(gru(s), 7)), num? (v* (set(grw(s), 7)) + 1)) (eq. (4))
— et (v (set(set(gru(s), 7), 7+ 1)) (eqs.), 3)
= num9 (v*(set(set(grw(s), 7),8))) (eq. (1))
=38 (Def. v*)

A Ygrowrr-algebra G with num9(g) = 8 is a model of GROWER and hence an instance of
class grower ; analogously, a X spongrr-algebra S with the interpretations as given is a model
of SPONGER and hence an instance of class sponger . Intuitively spoken, the semantics of the
main method corresponds to the evaluation of its transformation.

|

Following Definition 13 on page 34, the transformation of a DoDL-program starts at its main
class. Thereby, we follow the transformation rules given in the previous sections. We can there-
upon define semantic functions, [_], which denote a mathematical object to each syntactic con-
struct. For example, the declare -section is given meaning through a function [_] that maps a
declare -section, declsec, onto a mapping from local classes, loc;, to their transformations, LOC;,
i.e. [declsec](loc;) = LOC;. Analogously, the attribute - and construct -section can be given
a meaning.

35

Method bodies represent the lowest level of such recursive class transformation, and hence
semantic functions for imperative constructs have to be formalized algebraically. We can respect
denotational semantics for imperative languages. For example, the denotational semantics of an
if -statement of the form if b then s; else s3is given as follows (c.f. [2], chap. 7):

[if b then s, else so] = [s1], if [o] = true
[s2], else

To interpret this statement algebraically, we have to evaluate the semantics of sy, if the inter-
pretation of b in a ¥ ppor-algebra B yields true. Otherwise, we evaluate sa:

B
if b then s; else s] :=v*(if b then s; else s;)= {[[51]]’ i 67 = true
[s2], else

This shows exactly how an if -statement is transformed into an axiom. Axioms for s; and
so are established through transformation, and the semantic functions [s;] and [s2] are given
by evaluating suitable axioms, thereby reducing the mapping [_] stepwise to the evaluation v*.
For example, a method invocation of the form expresseion.methodID(p 1y---5Py) is trans-
formed into a term m(expression,pi,...,p,). With slight syntactic variations, a sequence of
the form shown in method sponge of class sponger is transformed into a term of the form
m(t,p1,...,pn) Where t is such a transformed expression. The semantics of method invocation
corresponds to the evaluation of its transformation. Since interpretations of operations satisfy
the axioms given, we simply have

[exprm(p 1., pn)] = v (m([expr], [pa]. .- - [Pa]))
= mC(w*(expr),v*(p1),...,v* (pn))),
where expr is an expression denoting an instance of class class , and C is a ¥ ¢, 4 s5-algebra.
For variable declaration and assignment, sequences, and loops we can proceed analogously.

Together with the evaluations given above, the semantics of a program is deduced by recursive
transformation and evaluation. Hence, our algebraic semantics is denotational.

EXAMPLE 11 As a last example, we refer to Example 5 and show the semantics of the main
method. It is given by the following evaluation. Let S be a ¥ spon¢gr-algebra as in Example 5.
Numbers over the equivalence sign denote interpretations in Example 5.

def
]] =

[main() v*(main(s))

v main®(s)

@ sponge® (v*(s),7,8)

5 gets(grows(gTows(inS(Sets(U*(5)7 7,8))))

8 get® (grow® (grow® (in® (set(v*(s),7,8)))))

LT S (growS (castS [grow® (in® (set(v*(s),7,8)))]))

@ get® (growS (cast® [setg [ins(set(v*(s), 7,8)), num? (z’ns(set(v*(s), 7,8))) +1]]))

@ get® (grow® (cast® [setg [ins (set(v*(s),7,8)), num? (set(v*(s),7)) + 1]1]))

1) get® (grow® (cast® [5€tg [z’ns(set(v*(s), 7.8)),T+1]]))

= getS (grows (set(v*(5),7+1,8)))
set(v*(s),8,8),
U915¢ getS (setS | mumS(set(v*(s), 8,8)) + value® (set(v*(s), 8,8)), |)

value® (set(v*(s), 8, 8))

36

set(v*(s),8,8),
(200 0o1S (setS | num9(inS (set(v*(s),8,8))) + get VS (set(v*(s),8,8)), |)
get VS (set(v*(s),8,8))

@07 get® (set® (set(v*(s),8,8), get? (set(v*(s),8)) + 8,8))

(20 get9 (in® (set® (set(v*(s), 8,8),8 4 8,8)))
@ get9 (set(set(v*(s),8,8),8 + 8))
=16

This value corresponds to an intuitive expectation of calling sponge(7, 8) . Moreover, with
the interpretation of the set operations, we establish terms that reflect the state changes of an
object of class sponger. Each carrier-set of a sort of interest (see Sect. 2), e.g. grower and sponger,
represents a set of all states of an object of class grower and sponger , respectively.

|

5 Conclusion and Further Work

5.1 Conclusion

In this paper, we studied the algebraic semantics of a simple object-oriented language, DoDL.
The approach is based on structured algebraic specifications used to denote the object-oriented
concepts of DoDL.

First, we defined transformation rules to yield an adequate algebraic specification for each
class definable in DoDL. Using interpretation rules, we established a mathematical model re-
flecting the classes semantics. In a second step, algorithmic parts were embedded into the se-
mantics by using the usual denotational approach to imperative languages. Our approach thus
exploits the fact that an object-oriented language introduces code structuring mechanisms not
found in imperative languages but extending them. Semantical aspects such as polymorphism
and late binding not expressible on the specification level were simulated on the respective alge-
bras. Those concepts were also given a precise semantics by interpretation rules.

Depending on the specific concepts the language under consideration offers, transformation
and interpretation rules must be adapted to them. For example, multiple inheritance as provided
in C++ is not found in DoDL and hence not modelled in this paper; a different inheritance mech-
anism as e.g. Beta [36, 16] is equipped with also requires a different formalization. Nonetheless,
the goal of this paper was to develop an approach to formally defining a semantics for object-
oriented languages, here elaborated for a sample language, DoDL.

Moreover, we have discussed how algebraic specification can be put to use for complex appli-
cations such as formalizing a language’s semantics. In contrast to the usual task of specifications,
we formalize an implementation instead of developing it from a specification.

These rules allow the generation of mathematical models. A compiled program has to fulfill
the properties of such a model. Hence, a model can be used as a test-base (c.f. [24]) for the
correctness of a compiled program.

The algebraic models are modular, i.e. they are extensible and exchangeable: the interpreta-
tion of a class, say, ¢, is changed from Mod(C) to Bound(C) without the need to change anything
else than the interpretation of transformed attribute declarations.

5.2 Further Work

The concept of references can be introduced as follows. First, the notion of types is extended to
pairs of an infinite set of identifiers and a model set, (IDENT, MOD) for short. Identifiers corre-
spond exactly to object names. Referencing is then defined as a partial function ref : IDENT+-

37

MOD. If a model, m, is changed for example due to assignments at runtime, the values of ref
are changed for all instances ¢ with ref (i) = m. This behavior corresponds to object references
discussed in [37], Sect. 8.6. Deletion of an object, ¢, yields undefined references simulated by an
undefined value for ref (i). Changing a reference corresponds to changing a value in ref. A new-
operation creating an object obj of type t corresponds to adding a pair (obj — M) to ref where
M has to be a model in Mod(T) (where T is the transformation of ¢), and obj is in IDENT.

A technically more complicated yet more detailed approach is discussed in [48] and [59]. So-
called entity algebras are used to represent dynamic structures and thereby allow for references.
Another approach is captured by evolving algebras [31].

What follows from references are mutually associated classes. The use-relation then defines
a (cyclic) collection of classes. This collection has to be transformed into one single algebraic
specification to overcome the problem of sorts used recursively (c.f. [41]).

Some concepts need further investigation: polymorphic object constructors, explicit destruc-
tors, abstract classes, virtual methods, interfaces and multiple inheritance are worth a formal-
ization. We are confident that our approach is strong enough to capture these aspects to widen
the range of the semantic issues discussed here. Our approach shows that algebraic specification
and its model sets can be used to give an algebraic semantics to object-orientation in a uniform
manner.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

[2] L. Allison. A practical introduction to denotational semantics. Cambridge University Press,
1986.

[3] E. Astesiano, M. Cerioli, and G. Reggio. Plugging data constructs into paradigm-specific
languages: Towards an application to uml. In T. Rus, editor, Algebraic Methodology and Soft-
ware Technology (AMAST 2000), volume 1816 of Lecture Notes in Computer Science (LNCS),
pages 271 — 292, 2000.

[4] R. Breu. Algebraic Specification Techniques in Object Oriented Programming Environments, vol-
ume 562 of Lecture Notes in Computer Science (LNCS). Springer, 1991.

[5] T. L. Briggs and J. Werth. A specification language for object-oriented analysis and design.
In M. Tokoro and R. Pareschi, editors, ECOOP 94, volume 821 of Lecture Notes in Computer
Science (LNCS), pages 365-385. Springer, 1994.

[6] M. Broy and M. Wirsing. Algebraic definition of a functional programming language. IEEE
Transactions on Information Theory, 17(2):137-161, 1982.

[7] M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming languages.
ACM Transactions on Programming Languages and Systems, 9(1):54 — 99, January 1987.

[8] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification language. In
Proceedings of the 1979 Copenhagen Winter School on Abstract Software Specification, number 86
in Lecture Notes in Computer Science (LNCS). Springer, 1980.

[9] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471-522, December 1985.

[10] M. Cerioli, T. Mossakowski, and H. Reichel. From total equational to partial first-order
logic. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner, editors, Algebraic Foundations
of Systems Specification, IFIP State-of-the-Art Reports, pages 31 — 104. Springer, 1999.

38

[11] S. Clerici, R. Jimenez, and F. Orejas. Semantic constructions in the specification language
Glider. In H.-D. Ehrich and F. Orejas, editors, Recent Trends in Data Type Specification, volume
785 of Lecture Notes in Computer Science (LNCS), pages 144 — 157. Springer, 1994.

[12] S. Clerici and F. Orejas. The specification language GSBL. In H. Ehrig, K. P. Jantke, F. Orejas,
and H. Reichel, editors, Recent Trends in Data Type Specification, volume 534 of Lecture Notes
in Computer Science (LNCS), pages 31 — 51. Springer, 1991.

[13] G. Cousineau. An algebraic definition for control structures. Theoretical Computer Science,
12(2):175-198, 1980.

[14] E.-E. Doberkat. A language for specifying hyperdocuments. Software - Concepts and Tools,
17:163-172, April 1996.

[15] E.-E. Doberkat. Using logic for the specification of hypermedia documents. In J. Balderjahn,
R. Mathar, and M. Schader, editors, Classification, Data Analysis and Data Highways, pages
205-212. Springer, 1998.

[16] E.-E. Doberkat and S. Dissmann. Einf"uhrung in die objektorientierte Programmierung in BETA.
Addison-Wesley, 1996.

[17] H.-D. Ehrich. Object specification. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner,
editors, Algebraic Foundations of Systems Specification, IFIP State-of-the-Art Reports, pages 435
—465. Springer, 1999.

[18] H.-D. Ehrich, M. Gogolla, and U. W. Lipeck. Algebraische Spezifikation abstrakter Datentypen.
Teubner, 1989.

[19] H. Ehrig and H.-J. Kreowski. Refinement and implementation. In E. Astesiano, H.-J. Kre-
owski, and B. Krieg-Briickner, editors, Algebraic Foundations of Systems Specification, IFIP
State-of-the-Art Reports, pages 201 — 242. Springer, 1999.

[20] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6 of EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1985.

[21] W. Fey. Pragmatics, Concepts, Syntax, Semantics, and Correctness Notions of ACT TWO: An Al-
gebraic Module Specification and Interconnection Language. PhD thesis, Technische Universitét
Berlin, Fachbereich Informatik, 1988.

[22] A.Fronk. Algebraische Semantik einer objektorientierten Sprache zur Spezifikation von Hyperdoku-
menten. PhD thesis, Lehrstuhl Software-Technologie, Fachbereich Informatik, Universitat
Dortmund, Shaker Verlag, 2002, 2001.

[23] A.Fronk and]. Pleumann. Der DoDL-Compiler. Memorandum 100, Universitdt Dortmund,
Fachbereich Informatik, Lehrstuhl fiir Software-Technologie, June 1999. ISSN 0933-7725.

[24] M.-C. Gaudel and G. Bernot. The role of formal specifications. In E. Astesiano, H.-J. Kre-
owski, and B. Krieg-Briickner, editors, Algebraic Foundations of Systems Specification, IFIP
State-of-the-Art Report, pages 1 — 12. Springer, 1999.

[25] M. Gogolla and R. Herzig. An algebraic semantics for the object specification language
TROLL light. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends in Data
Type Specification, volume 906 of Lecture Notes in Computer Science (LNCS), pages 290 — 306.
Springer, 1995.

[26]]J. A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm. In
H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specification, volume 785 of Lecture
Notes in Computer Science (LNCS), pages 1 —29. Springer, 1992.

39

[27] J.A. Goguen, K. Futatsugi,].-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Principles
of Programming Languages, ACM SIGPLAN Notices, pages 52 — 66, 1985.

[28] A. Goldberg and D. Robson. Smalltalk-80, The Language. Addison-Wesley, 1989.
[29] M. Gordon. The Denotational Description of Programming Languages. Springer, Berlin, 1979.

[30] M. Grosse-Rhode. Towards object-oriented algebraic specifications. In H. Ehrig, K. P. Jantke,
E. Orejas, and H. Reichel, editors, Recent Trends in Data Type Specifications, volume 534 of
Lecture Notes in Computer Science (LNCS), pages 98 — 116. Springer, 1991.

[31] Y. Gurevich. Evolving algebras: An attempt to discover semantics. EATCS Bulletin, 43:264 —
284, February 1991.

[32] Y. Gurevich and J. K. Huggins. The semantics of the C programming language. In E. Borger,
G. Jager, H. Kleine-Biining, S. Martini, and M.M. Richter, editors, Computer Science Logic,
volume 702 of Lecture Notes in Computer Science (LNCS), pages 274 — 308. Springer, 1992.

[33] C. Hintermeier, C. Kirchner, and H. Kirchner. Sort inheritance for order-sorted equational
presentations. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends in Data
Type Specification, volume 906 of Lecture Notes in Computer Science (LNCS), pages 319 — 335.
Springer, 1995.

[34] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4):741-843, July 1995.

[35] O. L. Madsen. Semantic analysis of virtual classes and nested classes. ACM SIGPLAN No-
tices, 34(10):114 — 131, 1999.

[36] O. L. Madsen, B. Moeller-Redersen, and K. Nygaard. Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley, 1993.

[37] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2. edition, 1997.

[38] P. D. Mosses. The use of sorts in algebraic specifications. In M. Bidoit and C. Choppy,
editors, Recent Trends in Data Type Specifications, volume 655 of Lecture Notes in Computer
Science (LNCS), pages 66 — 91. Springer, 1993.

[39] P. D. Mosses. Cofi: The common framework initiative for algebraic specification and de-
velopment. In M. Bidoit and M. Dauchet, editors, Recent Trends in Data Type Specification,
volume 1214 of Lecture Notes in Computer Science (LNCS), pages 115 — 137. Springer, 1997.

[40] F. Orejas. Structuring and modularity. In E. Astesiano, H.-J. Kreowski, and B. Krieg-
Briickner, editors, Algebraic Foundations of Systems Specification, IFIP State-of-the-Art Reports,
pages 159 — 200. Springer, 1999.

[41] P. Padawitz. Swinging UML: How to make class diagrams and state machines amenable to
constraint solving and proving. In A. Evans, S. Kent, and B. Selic, editors, UML 2000 - The
Unified Modeling Language, volume 1939 of Lecture Notes in Computer Science (LNCS), pages
162 - 177. Springer, 2000.

[42] P. Padawitz. Sample swinging types. http://Is5.cs.uni-dortmund.de/~peter ,
June 2001. Manuskript.

[43]]. Palsberg and M. 1. Schwartzbach. Type substitution for object-oriented programming. In
N. Meyrowitz, editor, ACM SIGPLAN Notices, volume 25, pages 151 — 160, October 1990.

[44] F. Parisi-Presicce and A. Pierantonio. An algebraic theory of class specification. ACM Trans-
actions on Software Engineering and Methodology, 3(2):166-199, April 1994.

40

[45] F. Parisi-Presicce and A. Pierantonio. Structured inheritance for algebraic class specifica-
tions. In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specifications, volume 785
of Lecture Notes in Computer Science (LNCS), pages 295 — 309. Springer, 1994.

[46] F. Parisi-Presicce and A. Pierantonio. Dynamical behavior of object systems. In E. Astesiano,
G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specifications, volume 906 of
Lecture Notes in Computer Science (LNCS), pages 406 —419. Springer, 1995.

[47] A. Poigne. Identity and existence, and types in algebra - a survey of sorts. In H. Ehrig
and E Orejas, editors, Recent Trends in Data Type Specification, volume 785 of Lecture Notes in
Computer Science (LNCS), pages 53 — 78. Springer, 1994.

[48] G. Reggio. Entities: An institution for dynamic systems. In H. Ehrig, K. P. Jantke, E. Orejas,
and H. Reichel, editors, Recent Trends in Data Type Specifications, volume 534 of Lecture Notes
in Computer Science (LNCS), pages 246 — 265. Springer, 1991.

[49] H. Reichel. Specification semantics. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner,
editors, Algebraic Foundations of Systems Specification, IFIP State-of-the-Art Report, pages 131
—158. Springer, 1999.

[50] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Objektorientiertes Model-
lieren und Entwerfen. Prentice Hall, 1993.

[51] D. Sanella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano, H.-J. Kreowski, and
B. Krieg-Briickner, editors, Algebraic Foundations of Systems Specification, IFIP State-of-the-Art
Report, pages 13 — 30. Springer, 1999.

[52] D. A. Schmidt. Denotational Semantics - A Methodology for Language Development. Wm. C.
Brown Publishers, 1988.

[53] R. W. Sebesta. Concepts of programming languages. Benjamin/Cummings, 1989.

[54] E. G. Wagner. Overloading and inheritance. In H. Ehrig and F. Orejas, editors, Recent Trends
in Data Type Specifications, volume 785 of Lecture Notes in Computer Science (LNCS), pages 79
—97. Springer, 1994.

[55] J. H. Williams. On the development of the algebra of funtcional programs. ACM Transactions
on Programming Languages and Systems, 4(4):733 — 757, October 1982.

[56] M. Wirsing. Algebraic specifications. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Methods and Semantics, pages 675 — 788. Elsevier, 1990.

[57] M. Wirsing. Algebraic specification languages: An overview. In E. Astesiano, G. Reggio,
and A. Tarlecki, editors, Recent Trends in Data Type Specifications, volume 906 of Lecture Notes
in Computer Science (LNCS), pages 81 — 115. Springer, 1995.

[58] M. Wirsing, P. Pepper, H. Partsch, W. Dosch, and M. Broy. On hierarchies of abstract data
types. Acta Informatica, 20:1-33, 1983.

[59] E. Zucca. Implementation of data structures in an imperative framework. In E. Astesiano,
G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specifications, volume 906 of
Lecture Notes in Computer Science (LNCS), pages 483 — 498. Springer, 1995.

41

Interne Berichte des Lehrstuhls Software-Technologie (ISSN 0933-7725)

199/

/100/

/101/

/102/

/103/

104/

105/

/106/

/107/

/108/

109/

/110/

[111/

T. Biihren, M. Cakir, E. Can, A. Dombrowski, G. Geist, V. Gruhn, M. Giirgrn, S. Handschumacher, M. Heller,
C. Luer, D. Peters, G. Vollmer, U. Wellen, J. von Werne

Endbericht der Projektgruppe eCCo (PG 315)

Electronic Commerce in der Versicherungsbranche

Beispielhafte Unterstiitzung verteilter Geschéftsprozesse

Februar 1999

A. Fronk, J. Pleumann,
Der DoDL-Compiler
August 1999

K. Alfert, E.-E. Doberkat, C. Kopka
Towards Constructing a Flexible Multimedia Environment for Teaching the History of Art
September 1999

E.-E. Doberkat
An Note on a Categorial Semantics for ER-Models
November 1999

Christoph Begall, Matthias Dorka, Adil Kassabi, Wilhelm Leibel, Sebastian Linz, Sascha Liidecke, Andreas Schréder,
Jens Schroder, Sebastian Schiitte, Thomas Sparenberg, Christian Stiicke, Martin Uebing, Klaus Alfert, Alexander
Fronk, Ernst-Erich Doberkat

Abschlubericht der Projektgruppe PG-HEU (326)

Oktober 1999

Corina Kopka

Ein Vorgehensmodell fiir die Entwicklung multimedialer Lernsysteme

Mérz 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan

Gobel, Chris Haase, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schope,
Ursula Wellen

Zwischenbericht der Projektgruppe IPSI

April 2000

Ernst-Erich Doberkat
Die Hofzwerge — Ein kurzes Tutorium zur objektorientierten Modellierung
September 2000

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel
Link, Holger Liimkemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

November 2000

Stefan Austen, Wahid Bashirazad, Matthais Book, Traugott Dittmann, Bernhard Flechtker, Hassan Ghane, Stefan
Gobel, Chris Haase, Christian Leifkes, Martin Mocker, Stefan Puls, Carsten Seidel, Volker Gruhn, Lothar Schope,
Ursula Wellen

Endbericht der Projektgruppe IPSI

Februar 2001

Leonid Abelev, Carsten Brockmann, Pedro Calado, Michael Damatow, Michael Heinrichs, Oliver Kowalke, Daniel
Link, Holger Liimkemann, Thorsten Niedzwetzki, Martin Otten, Michael Rittinghaus, Gerrit Rothmaier

Volker Gruhn, Ursula Wellen

Zwischenbericht der Projektgruppe Palermo

Februar 2001

Eugenio G. Omodeo, Ernst-Erich Doberkat

Algebraic semantics of ER-models from the standpoint of map calculus.
Part I: Static view

Mérz 2001

Ernst-Erich Doberkat
An Architecture for a System of Mobile Agents
Mérz 2001

/112/ Corina Kopka, Ursula Wellen
Development of a Software Production Process Model for Multimedia CAL Systems by Applying Process Landsca-
ping
April 2001
/113/ Ernst-Erich Doberkat
The Converse of a Probabilistic Relation
Juni 2001

/114/ Ernst-Erich Doberkat, Eugenio G. Omodeo
Algebraic semantics of ER-models in the context of the calculus of relations.
Part II: Dynamic view
Juli 2001

/115/ Volker Gruhn, Lothar Schépe (Eds.)
Unterstiitzung von verteilten Softwareentwicklungsprozessen durch integrierte Planungs-, Workflow- und Groupware-
Ansdtze
September 2001

/116/ Ernst-Erich Doberkat
The Demonic Product of Probabilistic Relations
September 2001

/117/ Klaus Alfert, Alexander Fronk, Frank Engelen
Experiences in 3-Dimensional Visualization of Java Class Relations
September 2001

/118/ Ernst-Erich Doberkat
The Hierarchical Refinement of Probabilistic Relations
November 2001

/119/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer, Ingo Ropling,
Clemens Schéfer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Intermediate Report
November 2001

/120/ Volker Gruhn, Ursula Wellen
Autonomies in a Software Process Landscape
Januar 2002

/121/ Ernst-Erich Doberkat, Gregor Engels (Hrsg.)
Ergebnisbericht des Jahres 2001
des Projektes “MuSofT — Multimedia in der SoftwareTechnik”
Februrar 2002

/122/ Ernst-Erich Doberkat, Gregor Engels, Jan Hendrik Hausmann, Mark Lohmann, Christof Veltmann
Anforderungen an eine eLearning-Plattform — Innovation und Integration —
April 2002

/123/ Ernst-Erich Doberkat
Pipes and Filters: Modelling a Software Architecture Through Relations
Juni 2002

/124/ Volker Gruhn, Lothar Schope
Integration von Legacy-Systemen mit Eletronic Commerce Anwendungen
Juni 2002

/125/ Ernst-Erich Doberkat
A Remark on A. Edalat’s Paper Semi-Pullbacks and Bisimulations in Categories of Markov-Processes
Juli 2002

/126/ Alexander Fronk
Towards the algebraic analysis of hyperlink structures
August 2002

/127/ Markus Alvermann, Martin Ernst, Tamara Flatt, Urs Helmig, Thorsten Langer
Ingo Ropling, Clemens Schafer, Nikolai Schreier, Olga Shtern
Ursula Wellen, Dirk Peters, Volker Gruhn
Project Group Chairware Final Report
August 2002

/128/ Timo Albert, Zahir Amiri, Dino Hasanbegovic, Narcisse Kemogne Kamdem,
Christian Kotthoff, Dennis Miiller, Matthias Niggemeier, Andre Pavlenko, Stefan Pinschke,
Alireza Salemi, Bastian Schlich, Alexander Schmitz
Volker Gruhn, Lothar Schope, Ursula Wellen
Zwischenbericht der Projektgruppe Coms2Bill (PG 411)
September 2002

/129/ Alexander Fronk
An Approach to Algebraic Semantics of Object-Oriented Languages
Oktober 2002

