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Abstract

The problem of constructing a semi-pullback in a category is intimately connected to the
problem of establishing the transitivity of bisimulations. Edalat shows that a semi-pullback
can be constructed in the category of Markov processes on Polish spaces, when the underlying
transition probability functions are universally measurable, and the morphisms are measure
preserving continuous maps. We show that one needs not to resort to universal measurability,
provided the Polish space is locally compact. This paper shows that Borel measurability is
sufficient, since the corresponding category is closed under taking semi-pullbacks. This is in
fact a special case: we consider the category of stochastic relations over Standard Borel spaces
with locally compact target spaces, and establish the result there.

This gives a partial answer to Panangaden’s question regarding the transitivity of the bisim-
ulation relation in categories of Markov processes.

Keywords: Bisimulation, semi-pullback, stochastic relations, category of Markov pro-
cesses.
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1 Introduction

The existence of semi-pullbacks in a category makes sure that the bisimulation relation is
transitive, provided bisimulation between objects is defined as a span of morphisms [JNW96].
Edalat investigates this question for categories of Markov processes and shows that semi-
pullbacks exist [Eda99]. The category he focusses on has as objects universally measurable
transition probability functions on Polish spaces, the morphisms are continuous, surjective,
and probability preserving maps. His proof is constructive and makes essentially use of
techniques of analytic spaces (which are continuous images of Polish spaces). The result
implies that the semi-pullback of those transition probabilities which are measurable with
respect to the Borel sets of the Polish spaces under consideration may in fact be univer-
sally measurable rather than simply Borel measurable. This then demands some unpleasant
technical machinery when logically characterizing bisimulation for labelled Markov processes,
cf. [DEP99]. Quite apart from that, it is somewhat annoying that forming the semi-pullback
for Borel Markov processes seems to require a change of categories. This is so because this
Borel measurability comes naturally with the Borel sets of a Polish space, whereas universal
measurability requires a somewhat elaborate completion process.

This short note shows among others that the semi-pullback of Borel Markov processes exists
within the category of these processes, when the underlying space is Polish and locally compact
(like the real line). Edalat considers transition probability functions from one Polish space
into itself, this paper considers the slightly more general notion of a stochastic relation,
cf. [Pan98, ABP99, Dob02a, Dob80] i.e., transition probability functions from one Polish
space to another one, where the target space is locally compact. Rather than constructing
the function explicitly, as Edalat does, we rely on a selection argument: we show that the
problem can be formulated in terms of measurable set-valued maps for which a measurable
selector exists.

The paper’s contributions are twofold. First it is shown that one can in fact construct semi-
pullbacks in a category of stochastic relations between Polish spaces under a compactness
assumption without using the somewhat heavy machinery of universal measurability and
analytic spaces. Hence the trade-off presents itself as to work either in a general Polish space
and then to construct universal measurable semi-pullbacks, or to accept the compactness
assumptions and to be able to construct the semi-pullback in the category itself. The second
contribution is the reduction of an existential argument to a selection argument, a technique
borrowed from dynamic optimization.

This note is organized as follows: Sect. 2 collects some basic facts from topology, and from
measure theory. It is shown that assigning a Polish space its set of subprobability measures
is an endofunctor on this category, opening the road to discuss applications through monads,
cf.[Gir81, Dob02b]. Sect. 3 defines the category of stochastic relations, shows how to formulate
the problem in terms of a set-valued function, and proves that a selector for that function
exists. This implies the existence of semi-pullbacks for some related categories, too. Finally,
we show in Sect. 4 that the bisimulation relation is transitive for the category of stochastic
relations. Sect. 5 wraps it all up by summarizing the results and indicating areas of further
work. It is clear that the topological assumptions should be weakened further.

Acknowledgements The author wants to thank Georgios Lajios for his helpful and con-
structive comments. Conversations with J. Elstrodt, D. Plachky and S. Pumpliin are grate-
fully acknowledged. The paper was typeset using Paul Taylor’s diagrams package.
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2 Preliminaries

This Section collects some basic facts from topology and measure theory for the reader’s
convenience and for later reference.

A Polish space (X, T) is a topological space which has a countable dense subset, and which
is metrizable through a complete metric. The Borel sets B(X,T) for the topology 7 is the
smallest o-algebra on X which contains 7. A Standard Borel space (X,.A) is a measurable
space such that the o-algebra A equals B (X, T) for some Polish topology 7 on X. Although
the Borel sets are determined uniquely through the topology, the converse does not hold, as
we will see in a short while. Given two measurable spaces (X, .A) and (Y, B),amap f : X - Y
is A — B-measurable whenever

fBICA

holds, where
Bl ={f""[Bl|B € B}

is the set of inverse images

§7UB] = {o € X|f(z) € B}

of elements of B. Note that f~![B] is in any case an o-algebra. If the o-algebras are the Borel
sets of some topologies on X and Y, resp., then a measurable map is called Borel measurable
or simply a Borel map. The real numbers R carry always the Borel structure induced by the
usual topology which will not be mentioned explicitly when talking about Borel maps.

A map f : X — Y between the topological spaces (X,7) and (Y,S) is continuous iff the
inverse image of an open set from S is an open set in 7. Thus a continuous map is also
measurable with respect to the Borel sets generated by the respective topologies.

When the context is clear, we will write down Polish spaces without their topologies, and the
Borel sets are always understood with respect to the topology. Measurable maps with respect
to the Borel sets of a Polish topology will simply be called Borel maps.

It will turn out to be helpful to make more precise statements of the measurability of a Borel
map:

Proposition 1 Let XY be Polish spaces, and assume that g : X — Y is continuous and
onto. If f : X =Y is Borel measurable such that f is constant on the atoms of g~ [B(Y)],
then f is g+ [B(Y)] — B(Z) — measurable.

Proof Recall that an atom A € g ! [B(Y)] has the property that ) # A, and each subset
B of A is either empty or equals A. The atoms of g=! [B(Y)] are just the inverse images
g '[{y}] of the points y € Y, because these sets are clearly atomic in that o-algebra, and
since they form a partition of X. Now let B € B(Y) be a Borel set, then by assumption
f1[B] is a Borel set in X which is the union of atoms of g ! [B(Y)]. Thus the assertion
follows from the Blackwell-Mackey-Theorem [Sri98, Thm. 4.5.7]. O

The following surprising statement will be of use in the sequel. It states that, given a mea-
surable map between Polish spaces, we can find a finer Polish topology on the domain, which
has the same Borel sets, and which renders the map continuous; formally:

Proposition 2 Let (X,T) and (Y,S) be Polish spaces, and let f : X — Y be a Borel
measurable map. Then there exists a Polish topology T' on X with these properties:

1. T is finer than T (hence T CT'), and o(T) = o(T"),
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2. fisT'— 8 continuous.

Proof [Sri98, Cor.3.2.6] O

Given two Polish spaces X and Y, a stochastic relation K : X ~ Y is a Borel map from
X to the set S (Y), the latter denoting the set of all subprobability measures on (the Borel
sets) of Y. This set carries the weak topology, i.e., the smallest topology which makes the
map p — [y f dp for all continuous functions f : ¥ — R continuous. It is well known that
the weak topology on S (Y') is a Polish space [Par67, Theorem I1.6.5], and that its Borel sets
are the smallest o-algebra on S (Y') for which for any Borel set B C Y the map u — u(B) is
measurable ([Kec94, Thm. 17.24]; this o-algebra is sometimes called the weak-*-o-algebra in
stochastic dynamic optimization). Hence K : X ~ Y is a stochastic relation iff

1. K(z) is a subprobability measure on (the Borel sets of) Y for all z € X,
2. z — K(z)(B) is a measurable map for each Borel set B C Y.

A Borel map f : X — Y between the Polish spaces X and Y induces a Borel map
S(f):S(X)—>8S(Y)
upon setting (1 € S(X),B CY Borel)

S (f) (u)(B) := pu(f7'[B)

It is easy to see that a continuous map f induces a continuous map S (f), and we will see in
a moment that S(f) : S(X) — S(Y) is onto, provided f : X — Y is. Denote by P (X) the
subspace of all probability measures on X.

Let F(X) be the set of all closed and non-empty subsets of the Polish space X, and call for
Polish Y a relation, i.e., a set-valued map F : X — F(Y') C-measurable iff the weak inverse

JF(C) :={z € X|F(z)NC # 0}

for a compact set C C Y is measurable. A selector s for such a relation F is a single-valued
map s : X — Y such that Vx € X : s(z) € F(x) holds. C-measurable relations have Borel
selectors:

Proposition 3 Let X and Y be Polish spaces. Then each C-measurable relation F has a
measurable selector.

Proof Since closed subsets of Polish spaces are complete, the assertion follows from [HV69,
Theorem 3]. O

Postulating measurability for 3F(C) for open or for closed sets C leads to the general notion
of a measurable relation. These relations are a valuable tool in such diverse fields as stochastic
dynamic programming [Wag77] and descriptive set theory [Kec94]. Overviews are provided
in [Sri98, Chapter 5] and [Him75, Wag77].

As a first application it is shown that S actually constitutes an endofunctor on the category
of Standard Borel spaces with surjective measurable map as morphisms. This implies that S
is the functorial part of a monad (S, 7, ) very similar to the one studied by Giry, cf. [Gir81].
The crucial part is evidently to show that S(f) : S(X) — S(Y) is a surjection whenever
f: X — Y is one. This is done through a measurable selection argument using Prop. 3.
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Lemma 1 S is an endofunctor on the category &8 of Standard Borel spaces with surjective
Borel maps as morphisms.

Proof 1. Let X and Y be Standard Borel spaces, and endow these spaces with a Polish
topology the Borel sets of which form the respective o-algebras. Since S (X) is a Polish space
under the topology of weak convergence, and since a Borel map f : X — Y induces a Borel
map S (f): S(X) — S(Y) with all the compositional properties a functor should have, only
surjectivity of the induced map has to be shown.

2. In view of Prop. 2 it is no loss of generality to assume that f is continuous (otherwise
consider a finer Polish topology with the same Borel sets rendering f continuous). Continuity
and surjectivity together imply that y — f~![{y}] has closed and non-empty values in X,
and constitutes a C-measurable relation, which has a measurable selector g : ¥ — X by
Prop. 3, so that f(g(y)) =y always holds. Let » € S(Y'), and define p € S (X) upon setting
p(A) == v(g7'[A]) for A C X Borel. Since g~' [f7'[B]] = B for B C Y, it is now easy to
establish that S (f) () = v holds. O

We will need finally to observe the interplay between linear functionals and measures. Let for
a topological space C(X) denote the linear space of continuous real-valued functions on X.

Proposition 4 Let Cy be a linear subspace of C(X), where X is a locally compact Polish
space, and assume that Cy contains all the constants. If

A():C()—)R

is a positive linear functional on Cy with Ag(1) = 1, then there exists u € P (X) such that p
represents A, i.e.,

Mo(h) = [ £ dn
holds for each f € Cy.

Proof 1. Since Ag(1) = 1, and since Ay is positive, we know that

Ao(f) <|[flloo := sup | f(z)]
T€X
holds for each f € Cy. By the ordered version of the Hahn-Banach Theorem [Jac78, Lemma
IX.1.4], there exists a positive linear operator A : C(X) — R extending Ay to all of C(X),
such that

A(f) < I flloo

holds for all 0 < f € C(X). Since X is locally compact and o-compact (by the existence of
a countable base), the Riesz Representation Theorem [Els99, Satz 2.19 (b)] gives a (unique)
measure u on the Borel sets of X such that

Auwiéme

Since A extends Ag, the assertion follows. O

The topological assumption is crucial for the application of the Riesz Representation Theorem,
and it is this limitation which determines the generality of the existence of semi-pullbacks to
be proven below.
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3 Semi-Pullbacks

The category GRel of stochastic relations has as objects triplets (X,Y, K), where X is a
Standard Borel space, and Y is a locally compact Polish space, and K : X ~» Y is a stochastic
relation. A morphism

(0, 9) (X, Y, K) = (XY, K')

is a pair of surjective Borel maps ¢ : X — X' and 9 : Y — Y’ with 1 continuous such that
K'op=8(@) oK

holds, hence such that the diagram

X X'
K K'
SO) g5 8 ()

is commutative. Thus we have for z € X, B’ C Y’ Borel the equality
K'(p(z))(B") = K(z)('[B),

so that morphisms are in particular measure preserving. Morphisms compose componentwise.
The category MMProc of Markov processes is a subcategory of GRel: MMProc has as objects
pairs (X, K), where X is a locally compact Polish space, and K : X ~ X is a stochastic
relation, i.e., a Borel measurable transition probability function. Thus we assume in contrast
to [Eda99] that K is Borel measurable. This is a stronger notion than universal measurability,
since each Borel map is universally measurable by [HJ70, Prop.I.B.6]. Morphisms in 9tBroc
are surjective and continuous maps which are measure preserving.

Assume that (p;, ;) : (X;,Y;, K;) = (X,Y,K) (i = 1,2) are morphisms in GRel, then a
semi-pullback for this pair of morphisms is an object (A, B, N) together with morphisms
(i, Bi) : (A, B,N) — (X;,Y;, K;) (i =1,2) so that this diagram is commutative in GRel:

(A,B,N) M (X1,Y1,Kq)
(012, ﬁ2) (4,01, ¢1)
(X2, Y2, K2) (oo tn) (X,Y,K)

This means in particular that

Kioa; = S(Bi1)oN,
Kyoay = S(f2)oN

should hold, so that a bisimulation is to be constructed (cf. Def. 1). The condition that
(A, B, N) is the object underlying a semi-pullback may be formulated in terms of measurable
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maps as follows: N is a map from the Standard Borel space A to the Standard Borel space
S (B) so that N is also a measurable selector for the set-valued function

b= {n €S (B)|(Kioal)(b) =S (B) (n), (K2 0 az)(b) = S (B2) (1)}-

This translates the problem of finding the object (A, B, N) of a semi-pullback to a selection
problem for set-valued maps, provided the spaces A and B together with the morphisms are
identified.

It should be noted that the notion of a semi-pullback depends only on the measurable structure
of the Standard Borel spaces involved. The topological structure enters only through Borel
sets, and Borel measurability. From Prop. 2 we see that there are certain degrees of freedom
for selecting a Polish topology that generate the Borel sets. They will be capitalized upon in
the sequel.

We want to establish:

Theorem 1 GfRel has semi-pullbacks for each pair of morphisms

(p1,91) : (X1, Y1, K1) — (XY, K)
(p2,12) : (X2, Yo, Ko) — (X,Y,K)

with a common range.

We begin with a measure-theoretic and rather technical observation: in terms of probability
theory, it states that there under certain conditions a common distribution for two random
variables with values in a Polish space exists with preassigned marginal distributions.

Proposition 5 Let Z1, Zy, Z be Polish spaces which are locally compact,
Ci:Zi—>Z (i=1,2)
continuous and surjective maps, define
S = {{z1,22) € Z1 x Z|((x1) = Ca(z2) },
and let v € P (Z1),v2 € P(Z3),v € P(S) such that
VE; € (1 B(2)]: P (m) (v)(B:) = vi(Bi) (i =1,2)

holds, where w1 : S — Z1,m9 : S — Za are the projections; S carries the trace of the product
topology. Then there exists p € P (S) such that

VE; € B(Z;) : P (m)(p)(E;) = vi(E;) (i =1,2)
holds.

Proof 0. By standard arguments from measure theory the assumption is tantamount to
saying that

fi dv; :/fz'oﬂ'i dv
7 s
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holds for every f; : Z; — R which is {;' [B(Z)] — measurable (i = 1,2). By the same token
it will be sufficient to show that there exists u € P (.S) such that

i de'=/fi°7Tz' dp
Zi s

holds for every f; € C(Z;).

1. If {; : Z; — Z is injective, then each singleton of Z; is a member of ¢;! [B (Z)]. Hence the
latter o-algebra equals B (Z;) by [Sri98, Cor. 4.5.10], since it is countably generated. Thus
we assume that neither (; nor (s is injective: if both of them are, there will be nothing to
demonstrate, if one of them is, and the other is not, the demonstration below will show how
to handle this situation.

2. Since Z; and Zj are Polish, and since the maps involved are continuous, S is closed, hence
Polish; in a similar way, local compactness is established for S. Define for ¢ = 1,2 the sets

D; := {fioml|fi € C(Z;)},
then D; C C(S). Let g € D1 N Dy, thus there exist f; € C(Z;) such that
g=fiom = faom

holds. For z1 # z9 with (1 (z1) = (1(z2) we can find y € Zs such that (z1,y) € S, (z2,y) € S,
thus

9(z1,y) = fi(z1) = f2(y) and g(z2,y) = fi(x2) = fa(y),

consequently, f; is constant on the atoms of ¢; ! [B(Z)], hence f; is ¢; ' [B (Z)]-measurable
by Prop. 1. A similar argument shows that fs is ¢; ' [B (Z)]-measurable. We have accordingly

/gdu
S
/gdl/ = /f207T2dV
S S

[l
o

~
=

(o]

3
o

Y

<

Il
)
—

Q
N
-

I
o
U
N

3. Define for f € D :=D; UD,

Sz fodn, f=foom €D
folf) == {f22 fodva, [=foom €Dy,

then Ay : D — R is well-defined because of part 2, it is monotone with Ag(1) = 1. Extend Ay
linearly to the linear space generated by D, then Prop. 4 implies that there exists p € P (5)
representing Ag. In particular we have for f; € C(Z;) (i = 1,2) that

/fioﬂidll:/ fi dv;
s Zi

holds. But this implies the assertion. O

July 21, 2002



Page 8 Semi-Pullbacks

Now we have all tools for establishing that G%iel has semi-pullbacks.

Proof of Theorem 1

1. In view of Prop. 2 we may assume that the respective o-algebras on X; and X5 are obtained
from Polish topologies which make ¢; and K; as well as @9 and K5 continuous. Put

A = {{z1,22) € X1 x Xo|p1(z1) = pa(z2)},
B = {{y1,y2) € Y1 x Ya|th1(y1) = 2(y2)},

then both A and B are closed, hence Polish, and B is locally compact. «; : A — X; and
B; : B — Y; are the projections, ¢ = 1,2. The diagrams

®Y1 ©2

X1 X < X2

K1 K KQ

SM) g3 T SY) 5o ) S (¥2)

are commutative by assumption, thus we know that for z; € X;

K(pi(z1)) = S (1) (Ki(z1))
K(p2(z2)) = S (1) (Ka(z2))

both hold. The construction implies that

(1 0 B1)(y1,y2) = (2 0 B2)(y1,y2)

is true for (y1,y2) € B, and 91 0 8, : B = Y is surjective.
2. Fix (z1,%2) € A. Lemma 1 shows that S is an endofunctor on &8, in particular that the
image of a surjective map under S is onto again, so that there exists y € S (S) with

S (1 0 B1) (1) = K(ip1(21)),

consequently,
S (i 0 Bi) (1) = S (i) (Ki(z:)) (i = 1,2).

But this means

VE; € ;' [B(Y)]: S (Bi) () (Ei) = Ki(z:)(E) (i =1,2).

Put

L(z1,22) := {u € S(B)[8 (b1) (k) = K1(z1) A8 (B2) () = Ka(z2)},
then Prop 5 shows that I'(z1,z2) # 0.
3. Since K; and Ky are continuous, I' : A — F(S (B)) is easily established. The set 3I'(C)
is closed in A for compact C C S (B). In fact, let ((x&"),xgn)))neN be a sequence in this set
Z(n) — T, as n — oo for ¢ = 1,2, thus (x1,29) € A. There exists yu, € C such that

S (Bi) (un) = KZ(.’IIZ(H)) Because C' is compact, there exists a converging subsequence p(y)

with z
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and p € C' with g = limp,_,00 f4s(n) in the topology of weak convergence. Continuity of Kj
implies that

S (8i) (1) = Ki(z:),

consequently (z1,z9) € 3T'(C), thus this set is closed, hence measurable. From Prop. 3 it can
now be inferred that there exists a measurable map N : A — S (B) such that

N(.’I)l, LEQ) € F(xl,zg)
holds for every (z1,z9) € A. Thus N : A ~» B is a stochastic relation with

Kioa; = S(Bi)oN,
KQOOAQ = S(ﬂz)ON

Hence (A, B, N) is the desired semi-pullback. O
The proof shows that in 9TBroc the semi-pullback is in 9 Proc again, so that we have estab-
lished:

Corollary 1 9Broc has semi-pullbacks. O

4 Bisimulation

This very short section demonstrates that the bisimulation relation on objects of GRel is
transitive, and serves as an application for the result that semi-pullbacks exist in this category.
We define a bisimulation for two objects in G9Rel through a span of morphisms in that
category. This is similar to the notion of 1-bisimulation investigated in [Dob02a] for the
comma, category 1L | S, were M is the category of all measurable spaces with measurable
maps as morphisms.

Definition 1 An object P in SRel together with morphisms (o1,71) : P — Q1 and (o2, 72) :
P — Q9 is called a bisimulation of objects (1 and Q5.

Let P:=(X,Y,K) and Q; := (X;,Y;, K;), then we get the familiar commutative diagram

X, x|y
K, K K,
S(Yi) ~—— S(Y) — S (Y.
() 57 SO g7 SO

Thus we have effectively established Theorem 1 by constructing a bisimulation for the objects
serving as domains for the morphisms investigated in the semi-pullback.

We want to apply the semi-pullback for establishing the fact that the bisimulation relation is
transitive in GRel.

Proposition 6 The bisimulation relation between objects in the category GRel of stochastic
relations is transitive. The same is true for the subcategory MProc of Markov processes.
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<A3,B35L3>
<<—17§1'>.‘.' <C27§2)
» A
AlaBlaLl A27B27L2
017 Tl 027 TZ 0'4, T4
03aT3
XI;YIaKl X2aY§aK2 X37Y37K3

Figure 1: Transitivity of Bisimulation Diagrams

Proof Consider as e.g. in the proof for [Rut00, Theorem 5.4] the diagram in Fig. 1.
The lower triangles are given bisimulations, and the upper diamond with its dotted lines is
the semi-pullback for the pair

(02, m2) : (A1, B, L)
(03,73) : (A2, B2, Lo)

(X2,Ys, K9)

_)
= (X2,Ys, K)

which exists by Thm. 1 for GRel, and by Cor. 1 for the subcategories. Then

(0do0Cy,T0&y):(A3,Bs,L3) — (X1,Y1,Ky)
(C2004,8014) : (A3,B3,L3) — (X3,Y3,K3)

is the desired bisimulation. O

5 Conclusion

We show that one can construct a semi-pullback in the category of Markov processes with
continuous and measure preserving maps as morphisms, provided the processes work on a
Polish space which is locally compact (like the reals R in the natural topology). This is
actually a special case of a more general result which deals with stochastic relations over
Standard Borel spaces in which the class of Polish spaces mentioned above serve as targets
for transition probability functions. It is shown that in the latter category the bisimulation
relation is transitive. This renders the proofs and constructions in [DEP99] easier, and it
is to be expected that the results on characterizing bisimilarity of states will hold in the
category LMP of Markov processes rather than in LMP* of generalized Markov processes
of that paper, provided the requirement of working in Polish spaces is strengthened to locally
compact Polish.

Rather than constructing the object underlying a semi-pullback explicitly, we rely on selection
arguments from the theory of set-valued relations. This gives probably less technical insight
into the nature of the object one looks for, but is easier to apply, and it permits drawing from
the rich well of topology, in particular the weak topology on the space of all subprobability
measures. Selection arguments may be a helpful way of constructing objects; we illustrate
this by showing that the map which assigns each Polish space its subprobabilities and each
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surjective Borel measurable map the corresponding measure transform is actually a functor
which may be difficult to establish otherwise.

The compactness assumptions should be removed for obtaining a more general and easier ap-
plicable result. This will be addressed. Applications of the technique of measurable selectors
to stochastic relations will also be investigated further; [Dob02a] provides some examples of
the interplay between set-valued and stochastic relations.
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