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Abstract

We develop a generalized functional delta method, where the considered random function

is not multiplied by a scalar, but by another function. It bases on a generalized Hadamard

differentiability between special function spaces. For a certain class of functions, we

calculate the Hadamard differential explicitely. We give an example, where the method

allows for calculations that are not possible with previous methods.
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1 Introduction

This paper presents a generalized functional delta method that bases on a generalized Hadamard

differentiability between function spaces. The delta method is used in the proof of the asymp-

totic null distribution of the fluctuation test for constant correlation proposed by Wied and

Arnold (2009) and can also be used for other CUSUM-type tests.

Wied and Arnold (2009) examine, somewhat simplified, the limit behavior of

sn · (f(Mn)− f(θ)),

where sn is a function sequence from D[ε, 1], Mn : Ω → D[ε, 1]k, f : D[ε, 1]k → D[ε, 1]l and

θ ∈ D[ε, 1]k, basing on the known limit behavior of

sn · (Mn − θ),
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which is given by a functional central limit theorem. More concretely, the function f maps the

properly standardized partial sums of the 5-dimensional random vector (X2
i , Y

2
i , Xi, Yi, XiYi)

′

on the Bravais-Pearson correlation coefficient based on the first observations.

In an easier setting, the delta method is known for a long time, see e.g. Oehlert (1992): If Xn

is a sequence of real random variables, θ ∈ R, sn =
√
n and it holds

sn · (Xn − θ)→d N(0, σ2),

then, for a continuous differentiable function g with g′(θ) 6= 0,

sn · (g(Xn)− g(θ))→d N(0, σ2(g′(θ))2).

This concept can be extended to other sequences sn or to the multivariate case. The delta

method is also known in the context of function spaces, see van der Vaart (1998) or van der

Vaart (1991). It bases on the usual definition of Hadamard differentiability. Other forms of

differentiability are Fréchet and Gateaux differentiability.

In all these definitions, however, the factor sn in front of the considered random function is a

scalar. We do not know any application in which the function is not multiplied by a scalar,

but by another function. In this paper, we present a new form of delta method and Hadamard

differentiability in which the latter holds.

We present the new definitions and main results in Section 2, while Section 3 shows, how the

result can be used in applications, where previous methods are not applicable. Section 4 gives

proofs to the results.

2 Definitions and main results

We consider different function spaces, either D[ε, 1] for ε ≥ 0, the space of càdlàg-functions,

or a product space in which each component is either D[ε, 1] or D+[ε, 1], the space of càdlàg-

functions whose values are bounded away from zero. This is a more general setting than in the

introduction. We show in the end of Section 3, why this is useful.

We always use the supremum norm together with the σ-field generated by the open balls, see

Davidson (1994, p. 435), Gill (1989) or Pollard (1984, chapter 4).

We introduce the spaces

G1 := H1 × . . .×Hk (k times, k ≥ 1,Hi ∈ {D[ε, 1], D+[ε, 1], ε ≥ 0}), (1)

G2 := H1 × . . .×Hl (l times, l ≥ 1,Hi ∈ {D[ε, 1], D+[ε, 1], ε ≥ 0}). (2)
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The space G∗1 is another function space with the same structure as G1. The difference is that

some of the D+[ε, 1] (if existing) are replaced by D[ε, 1] so that G∗1 is a subset of G1.

The special case is

G1 = D[ε, 1]k := D[ε, 1]× . . .×D[ε, 1] (k times).

Definition 2.1 (Generalized Hadamard differentiability). Let G∗1 ⊆ G1, G2 from (1) and (2),

θ ∈ G∗1 and ε ≥ 0. A function f : G∗1 → G2 is generalized Hadamard differentiable in θ, if there

is a continuous, linear map f ′θ : G1 → G2 (the generalized Hadamard differential), such that

lim
n→∞

∥∥∥f(θ+rnhn)−f(θ)
rn

− f ′θ(h)

∥∥∥
G2

= 0

for all rn ∈ D[ε, 1] with rn(z) 6= 0 ∀z ∈ [ε, 1]∀n, hn, h ∈ G1 with ||rn||D[ε,1] → 0 and ||hn −

h||G1 → 0, such that θ + rnhn ∈ G∗1 for all n.

The main difference to the common Hadamard differentiability, as explained e.g. in van der

Vaart (1998), is that here, rn is an element of D[ε, 1] and not just a sequence of real numbers.

Hence, we need the stronger assumption that rn goes to 0 in the supremum norm on D[ε, 1].

Another difference is that the spaces between which f operates are not arbitrary normed spaces,

but special function spaces. Note that a function being generalized Hadamard differentiable is

also normal Hadamard differentiable with respect to the function spaces.

Theorem 2.2 (Generalized delta method). Let the assumptions of Definition 2.1 be fulfilled

such that f : G∗1 → G2 is generalized Hadamard differentiable in θ. Let Mn : Ω→ G∗1 be random

functions such that

sn · (Mn − θ)→d M

as n → ∞ for a sequence sn ∈ D[ε, 1] with || 1
sn
||D[ε,1] → 0, sn(z) 6= 0 ∀z,∀n, and a random

function M in G1. Then,

sn · (f(Mn)− f(θ))→d f
′
θ(M)

where f ′θ is the generalized Hadamard differential of f at θ.

The main difference to the delta method, as explained e.g. in van der Vaart (1998, p. 297),

is that here, sn is an element of D[ε, 1] and not just a sequence of real numbers. Hence, we need

the stronger assumption that 1
sn

goes to 0 in the supremum norm on D[ε, 1]. In Definition 2.1,

ε may also take the value 0, while in the applications in Section 3, it must be larger than 0.

A corollary of Theorem 2.2 is furthermore needed in some situations.
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Corollary 2.3. If in Theorem 2.2 Mn even converges P-almost surely against θ, the condition

Mn : Ω→ G1 is sufficient.

We now consider a special type of functions, i.e.

f(θ)(·) = ψ(θ(·)) (3)

for a function ψ ∈ C2 from an open subset of Rk to Rl. Thus, the function f maps θ(z) and θ

is not integrated or mapped in other forms. In this case, the generalized Hadamard differential

has a general form.

Theorem 2.4. Let f from (3) such that ψ =
(
ψ1 . . . ψl

)′
and θ from 2.1. For each i ∈

{1, . . . , l} the Hessian matrix of ψi is continuous and bounded in an open neighborhood of the

set {θ(z), z ∈ [ε, 1]}. Then f is generalized Hadamard differentiable in θ and the Hadamard

differential has the same form as the usual derivative of ψ, i.e.

f ′θ(h)(·) = Dψθ(·)(h(·)).

3 Applications

In this section, we present two applications of the theory in the context of CUSUM-type tests.

First, we give an example, where the generalized delta method allows for calculating a special

limit function, while the normal delta method is not applicable. Second, we underline the

importance of Corollary 2.3. Let for both examples (Xi)i∈N be a sequence of random variables

on (Ω,A,P).

First, suppose that (Xi)i∈N is an independent sequence with the property

Xi =

µ P− a.s., 22k ≤ i < 22k+1, k = 0, 1, 2, 3, . . .

Yi, otherwise,

where Yi ∼ N(µ, σ2), see also Davidson (1994, p.489) in a slightly different form. Thus,

X1 = µ,X4 = X5 = X6 = X7 = µ,X16 = X17 = . . . = X31 = µ, and so forth.

Suppose that g ∈ C2 is a real function with g′(µ) 6= 0, e.g. g(x) = exp(x), and we want to

calculate the limit of the random function

An(z) =
sn(z)√
n

(
g(Xsn(z))− g(µ)

)
,

where

Xsn(z) =
1

sn(z)

sn(z)∑
i=1

Xi.
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The idea is to consider the random function

Bn(z) =
sn(z)√
n

(
Xsn(z) − µ

)
=

1√
n

[zn]∑
i=1

(Xi − µ)

at first and apply the delta method. But this function has no limit for sn(z) = [nz], the natural

choice in the context of functional central limit theorems, because, for z ∈ (1
2
, 1],

Bn(z) = Bn

(
1

2

)
with probability 1, when n = 2k − 1 for k odd, and

Var

(
Bn(z)−Bn

(
1

2

))
→
(
z − 1

2

)
σ2 > 0

when n = 2k − 1 for k even and k → ∞. However, the functional central limit theorem from

Wooldridge and White (1988) is applicable on

B∗n(z) =
s∗n(z)√
n

(
Xsn(z) − µ

)
,

where s∗n(z) is the minimal integer that satisfies

s∗n(z)∑
i=2

1(22k−1 ≤ i < 22k, k ∈ N) = [nz].

With this arrangement, n counts the actual number of increments in the sum, while s∗n(1)

counts the nominal number, including the zeros. It holds s∗n(z) ≥ [nz]. We have

B∗n(·)→d W1(·),

where W1(z) is a one-dimensional Brownian motion on D[ε, 1] with covariance structure de-

pending on (Xi)i∈N.

Introducing the function

f : D[ε, 1]→ D[ε, 1],

f(x1)(·) = g(x1(·))

and applying Theorem 2.2, we now get for

A∗n(z) =
s∗n(z)√
n

(
g(Xs∗n(z))− g(µ)

)
,

that

A∗n(·)→d f
′
µ(W1)(·),
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making use of the fact that∣∣∣∣∣∣∣∣ √ns∗n(z)

∣∣∣∣∣∣∣∣
[ε,1]

→ 0. (4)

We use the constant function θ(z) = µ in D[ε, 1]. The Hadamard differential f ′µ can be easily

calculated with Theorem 2.4, because f is of the form in (3) with

ψ : R→ R,

ψ(x1) = g(x1).

It holds

f ′µ(W1)(·) = g′(µ)W1(·).

It is not possible to achieve the limit result for A∗n(·) with the common functional delta method,

because there is no appropriately explicite formula for s∗n(z) that would allow for separating n

and z and applying the delta method. If it were, we could find a function a(z) and a function

b(n) such that

s∗n(z)√
n
− a(z)b(n)→ 0 (5)

uniformly in z. Let for the moment be z = 1 and consider the case s∗n(1) = 22k+1 which

corresponds to n = 20 + 21 + 23 + . . .+ 22k−1. Then, it holds, for k →∞,

n

s∗n(1)
→ 1

3
,

so that s∗n(1)√
n

is asymptotically equivalent to 3
√
n. This means that b(n) is asymptotically

equivalent to
√
n, so that a necessary condition for (5) is that

√
n

(
s∗n(z)

n
− a(z)

)
→ 0,

uniformly in z. Yet, we cannot find such a function a: For n = 20 + 21 + 23 + . . . + 22k−1 and

s∗n(1) = 22k+1, it holds

lim
z→1−

s∗n(z) = 22k

and thus,

lim
n→∞

(
lim
z→1−

s∗n(z)

n
− s∗n(1)

n

)
= −3

2
.

But, for s∗n(1) = 22k − 1 and n = 21 + 23 + . . .+ 22k−1, it holds

lim
z→1−

s∗n(z) = 22k − 2
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and thus,

lim
n→∞

(
lim
z→1−

s∗n(z)

n
− s∗n(1)

n

)
= 0.

It is not possible to find a single function a, not depending on n, which fulfills these two char-

acteristics.

Note that we cannot show convergence on [0, 1] with this method, because (4) does not hold

then.

Second, suppose that (Xi)i∈N is a sequence with E(Xi) = µ for all i ∈ N. The goal is to

calculate the limit of the random function

Cn(z) =
[zn]√
n

 1√
(X2)[zn] −

(
X [zn]

)2
−( 1√

m2 − µ2

) (6)

on D[ε, 1] for ε > 0. The term
√

(X2)[zn] −
(
X [zn]

)2
is part of the successively estimated

correlation coefficient. For the calculation, we become somewhat more general. Suppose that

h ∈ C2 is a real function with E(h(Xi)) =: hx < ∞ for all i ∈ N and hx − h(µ) > 0. Suppose

that we want to calculate the limit of the random function

Dn(z) =
[zn]√
n

((
(h(X))[zn] − h(X [zn])

)
− (hx − h(µ))

)
.

For h(x) = x2, this is the standardized empirical variance, based on the first observations, on

D[ε, 1] for ε > 0. This is later needed for (6). Under suitable conditions on (Xi)i∈N, it holds

with a functional central limit theorem for the random function

En(z) =
[zn]√
n

(h(X))[zn] − hx

X [zn] − µ


that

En(·)→d W2(·),

where W2(z) is a two-dimensional Brownian motion on D[ε, 1]2 with covariance structure de-

pending on (Xi)i∈N. Introducing the function

s : D[ε, 1]2 → D[ε, 1],

s(x1, x2)(·) = x1(·)− h(x2(·))

and applying Theorem 2.2, we now get analoguesly to the first example

Dn(·)→d f
′
gx,µ(W )(·)
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with

f ′m2,µ
(W2)(·) = (1,−g′(µ))T W2(·).

We suppose that this result can also be achieved with the common functional delta method

because [zn] has a rather simple form, but we believe that our method is more elegant and

more intuitive.

Now, we want to apply the delta method on the function D(z) with g(x) = x2 from the first

example. However, we cannot immediately apply Theorem 2.2 with the function

t : D[ε, 1]→ D[ε, 1],

t(x1)(·) =
1√
x1(·)

,

because t is not properly defined (x1 must not become 0). One possibility is to define the

function on D+[ε, 1], i.e.

t : D+[ε, 1]→ D[ε, 1].

The problem is, that

Fn(z) :=
(

(X2)[zn] −
(
X [zn]

)2)
does not lie in D+[ε, 1]. If a strong of law numbers is applicable on Fn, however, we can apply

Corollary 2.3, because, uniformly in z, Fn converges to a constant function which is bounded

away from 0. Then, we can make comparable calculations as in the first example.

4 Proofs

Proof of Theorem 2.2

For each n, we define a function

gn(h) = sn ·
(
f

(
θ +

1

sn
h

)
− f(θ)

)
on Gn := {h : θ + 1

sn
h ∈ G∗1}. Since f is generalized Hadamard differentiable, it holds

lim
n→∞

||gn(hn)− f ′θ(h)||G2 = 0

for each sequence hn with ||hn − h||G1 → 0 and h ∈ G1. With the CMT, it follows

sn · (f(Mn)− f(θ)) = gn(sn · (Mn − θ))→d f
′
θ(M).

8



Proof of Corollary 2.3

By Egoroff’s Theorem, for each η > 0 there is a n(η) and a set Ωη ⊂ Ω with P(Ωη) ≥ 1 − η,

such that Mn(ω) ∈ G∗1 for all ω ∈ Ωη. With the characterization of convergence in distribution

from Billingsley (1968, Theorem 2.1.iii) and Theorem 2.2 it holds for a closed set A ∈ G2 for

n ≥ n(η)

P(ω ∈ Ω|(rn · (f(Mn)− f(θ)))(ω) ∈ A)

= P(ω ∈ Ωη|(rn · (f(Mn)− f(θ)))(ω) ∈ A)

+ P(ω ∈ Ω/Ωη|(rn · (f(Mn)− f(θ)))(ω) ∈ A)

≤ P(ω ∈ Ωη|(rn · (f(Mn)− f(θ)))(ω) ∈ A) + η

and hence

lim sup
n→∞

P(ω ∈ Ω|(rn · (f(Mn)− f(θ)))(ω) ∈ A) ≤ P(ω ∈ Ωη|(f ′θ(M))(ω) ∈ A) + η

≤ P(ω ∈ Ω|(f ′θ(M))(ω) ∈ A) + η.

Since η is arbitrary, the corollary follows.

Proof of Theorem 2.4

First, we consider just one component from ψ, w.l.o.g. ψ1 and keep z ∈ [ε, 1] fixed. With

Taylor’s Theorem, see Kaballo (1997, S. 128), and the expressions from Definition 2.1 it holds

ψ1(θ(z) + rn(z)hn(z)) =ψ1(θ(z)) +Dψ1
θ(z)(rn(z)hn(z)) +

1

2

< rn(z)hn(z), Hψ1
θ(z)+τ(rn(z)hn(z))rn(z)hn(z)(rn(z)hn(z)) >

=ψ1(θ(z)) + rn(z)Dψ1
θ(z)(hn(z)) +

1

2
(rn(z))2

< hn(z), Hψ1
θ(z)+τ(rn(z)hn(z))rn(z)hn(z)(hn(z)) >

with suitable τ(rn(z)hn(z)) ∈ [0, 1] where Dψ1
θ(z) and Hψ1

θ(z)+τ(rn(z)hn(z))rn(z)hn(z)(hn(z)) are

continuous linear maps. For sufficiently large n,

∣∣∣∣< hn(z), Hψ1
θ(z)+τ(rn(z)hn(z))rn(z)hn(z)(hn(z)) >

∣∣∣∣
D[ε,1]

<∞,

because ||rn(z)||D[ε,1] → 0 and ||hn − h||G1 → 0. After subtracting ψ1(θ(z)), dividing by rn(z)

and taking the supremum (z ∈ [ε, 1]) the claim follows for ψ1 directly with the definition of the

generalized Hadamard differentiability and the continuity of Dψ1
θ(z).

Analogously, the same follows for the other components and the claim for the whole function
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then follows with the choice of

Dψθ(h) =
(
Dψ1

θ(h) . . . Dψlθ(h)
)′

and the definition of the multidimensional supremum norm.
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