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1 Introduction

Risk measures are the basic tools for the determination of insurance premiums. In actuarial
practice several risk measures are used, and there are different concepts of how to specify
a “good” risk measure. In the last decade the concept of monetary risk measures and
especially the concept of coherent risk measures received common credit (cf. [4, 5, 9, 11, 12]
and others). This article is concerned with the nonparametric estimation of a certain class
of monetary risk measures. More precisely, we are going to investigate nonparametric
estimates for so called distortion risk measures.

Suppose X is a random variable on a probability space (Ω,F ,P), which should be
seen as the outcome of a financial position. For instance, X may model the claim of an
insurance contract from the point of view of an insurer. To some extent the negative mean

ρI(X) := −
∫

R
x dFX(x) (1)

provides the simplest distribution invariant monetary risk measure, where FX denotes
the distribution function (df) of X. A P-integrable position X will be accepted by ρI
if and only if E[X] ≥ 0. For many purposes, in particular for the determination of
premiums of insurance policies, this rule is “too indulgent” insofar as it accepts “too
many” positions. For instance, it is well known that the “net risk premium” E[−X]
entails technical ruin of an insurer in finite time with probability one. One can overcome
this problem by manipulating FX by a risk-adverse distortion function (cf. [24]). A càdlàg
function g : [0, 1] → [0, 1] is called distortion function if it is nondecreasing and satisfies
g(0) = 0 and g(1) = 1. A distortion function is called risk-adverse if it is concave. The
basic idea is to replace in (1) the df FX by the distorted df g(FX(·)). This leads to the
risk measure

ρg(X) := −
∫

R
x dg(FX(x)) (2)

on the set of all random variables X for which the integral in (2) exists. It is called
distortion risk measure with distortion function g and has been studied several times in the
literature, cf. [1, 13, 14, 15, 16, 24, 25, 26] and references cited therein. We emphasize that
most of the popular risk measures in practice can be represented as in (2), cf. the Appendix
B. It is known that ρg provides a positively homogeneous monetary risk measure, which
is subadditive (hence coherent) if and only if g is concave, cf. [26]. Moreover it was shown
in [13] that ρg ≥ ρI if and only if g(x) ≥ x for all x ∈ (0, 1). That is, ρg is indeed more
conservative than ρI if g is a risk-adverse distortion function.

The monetary risk measure ρg is obviously distribution invariant, i.e. ρg(X) = ρg(Y )
if X and Y coincide in law. Therefore we may and do write without ambiguity ρg(FX) in
place of ρg(X). In particular we regard ρg as a mapping from Fg to R,

F 7→ ρg(F ) := −
∫

R
x dg(F (x))
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=
∫

(−∞,0)
g(F (t))dt−

∫

[0,∞)
(1− g(F (t)))dt, (3)

where Fg is the class of all df F satisfying
∫
R |x| dg(F (x)) < ∞.

In actuarial practice the df F of a certain claim is typically unknown and has to be
estimated. If one can observe (possibly censored) i.i.d. replications X̃1, . . . , X̃n correspond-
ing to F then one can at first determine a suitable empirical estimate Fn of F based on
X̃1, . . . , X̃n. The estimate Fn can then be plugged in ρg in order to obtain an estimate
ρg(Fn) of ρg(F ). In the case where Fn is the classical empirical df based on uncensored data
and where g is continuous, strong consistency and the asymptotic distribution of ρg(Fn)
were established in [15, 16]. The results there rely on the facts that in this case ρg(Fn)
is an L-statistic (cf. the representation (17) in the Appendix B) and that L-statistics are
well studied (see, e.g., [20, 22, 23]). If however Fn differs from the classical empirical df,
e.g., if Fn is a smooth empirical df (see, e.g., [28]), or if Fn is based on censored data, then
the arguments of [15, 16] do not apply anymore.

In this article, we will extend the consistency results in [15, 16] to more general esti-
mates Fn of F , and to discontinuous distortion functions g. Moreover we will establish
satisfactory statements on the rates of almost sure convergence under fairly transparent
conditions on g and F . A partial generalization of the consistency results of [15, 16] in
a different direction has been recently considered in [27]. There, strong consistency of
the empirical estimators of distribution-invariant monetary risk measures having a certain
robust representation (cf. (18) in the Appendix B) is established. Under mild assump-
tions, each distribution invariant coherent risk measure – in particular each distortion risk
measure with concave (and therefore continuous) distortion function – admits such a rep-
resentation. An extension of the results on the asymptotic distribution of ρg(Fn) in [15, 16]
to more general estimates Fn of F can be found in [6]. The analysis there requires a sort
of functional delta method based on a generalized notion of Hadamard differentiability,
which is also introduced in [6].

The rest of this article is organized as follows. In Section 2, we show that ρg(F ) depends
continuously on F with respect to a certain distance between distribution functions on R.
In Section 3, we demonstrate that both a smoothed empirical df and an estimate of F

based on multiplicatively censored data converge almost surely to the true underlying df
F with respect to the mentioned distance. Along with the results of Section 2 this implies
strong consistency of ρg(Fn) for ρg(F ) as well as satisfactory statements on the rates of
almost sure convergence of ρg(Fn) to ρg(F ). In Section 4, we study the small sample
behavior of the plug-in estimates by means of simulations. Section 5 provides the proofs
of the main results. The Appendix A provides a generalized Glivenko-Cantelli theorem
which will be the crux of our analysis, and the Appendix B calls to mind some popular
examples for distortion risk measures.
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2 Regularity of ρg

In this section, we give two regularity results concerning ρg (Theorems 2.1 and 2.2) which
immediately provide tools for establishing strong consistency and the rates of almost sure
convergence of plug-in estimates for ρg(F ) (cf. Remarks 2.4 and 2.5 below). For any λ > 0,
set φλ(x) := (1 + |x|)λ for all x ∈ R. Notice that the reciprocal function φ−1

λ is Lebesgue
integrable on R if λ > 1. Let D be the space of all càdlàg functions on R, and Dλ be
the subspace of all functions ψ ∈ D with ‖ψ‖λ := ‖ψφλ‖∞ < ∞. Notice that ‖ · ‖λ

provides a norm on Dλ. For any function f on (a subset of) R taking values in [0, 1], we
set f̄ := 1− f . For a df F , we define the left-continuous and the right-continuous inverse
by F←(x) := inf{t ∈ R : F (t) ≥ x} and F→(x) := inf{t ∈ R : F (t) > x}, x ∈ (0, 1),
respectively. Also notice that g has at most countably many discontinuities since it is a
bounded càdlàg function, and that Fg was introduced subsequent to (3).

Theorem 2.1 Suppose that

(i) there are constants β, C > 0 such that g(x) ≤ Cxβ and ḡ(1− x) ≤ Cxβ, x ∈ [0, 1],

(ii) F, F1, F2, . . . ∈ Fg,

(iii) F←(d) = F→(d) for every discontinuity d of g,

(iv) Fn(t) → F (t) for dt-almost every t ∈ R,

(v) supn∈N(‖Fn1(−∞,0)‖λ + ‖F̄n1[0,∞)‖λ) < ∞ for some λ > 1/β.

Then ρg(Fn) → ρg(F ).

The proof of Theorem 2.1 is relegated to Section 5.1. The next result shows that if g and
F are sufficiently regular then the distance of ρg(Fn) and ρg(F ) can be bounded above by
a suitable distance of Fn and F .

Theorem 2.2 Suppose that

(i) there are some constants β,C > 0, k ∈ N0, and 0 = d0 < d1 < . . . < dk+1 = 1,
such that g is Hölder-β-continuous with Hölder constant C on each of the intervals
(di, di+1), i = 0, . . . , k,

(ii) F, F1, F2, . . . ∈ Fg,

(iii) F is differentiable at F←(di), and F ′(F←(di)) > 0, for i = 1, . . . , k,

(iv) ‖Fn − F‖∞ → 0.
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Then for every λ ≥ 1 satisfying λβ > 1 there is a finite constant K = Kk,F,C,λβ > 0, and
some n0 ∈ N (such that ‖Fn − F‖∞ is sufficiently small for all n ≥ n0), such that

|ρg(Fn)− ρg(F )| ≤ K‖Fn − F‖β∧1
λ , n ≥ n0. (4)

If g is Hölder-β-continuous on all of [0, 1], i.e. if k = 0, then condition (iv) can be skipped,
the assumption λ ≥ 1 can be replaced by λ > 0, in (4) the exponent β ∧ 1 can be replaced
by β, and inequality (4) holds for all n ∈ N.

The proof of Theorem 2.2 is relegated to Section 5.2. Notice that on the right-hand side of
(4) the expression ‖Fn−F‖λ might be infinite, and that ‖Fn−F‖λ → 0 implies condition
(iv) whenever λ ≥ 1. Also notice that condition (iii) implies in particular F←(di) = F→(di)
for all i = 1, . . . , k. Therefore we may and do also write F−1(di) in place of F←(di).

Example 2.3 Notice that the condition on g in Theorem 2.1 is fulfilled for, e.g., g(x) =
1[α,1](x), g(x) = (x/α) ∧ 1 and g(x) = Φ(Φ−1(x) − θ), which correspond to the Value-
at-Risk at level α ∈ (0, 1), the Average Value-at-Risk at level α ∈ (0, 1) and the Wang
transform WTθ with parameter θ ∈ R, respectively. See the Appendix B for the definitions
of these risk measures. These examples also satisfy the condition on g in Theorem 2.2
with any β > 0, β = 1 and β ∈ (0, 1), respectively. 3

Remark 2.4 As an immediate consequence of Theorem 2.2 we obtain that if ‖Fn − F‖λ

converges to 0 at rate r, with λ ≥ 1 (resp. λ > 0) satisfying λβ > 1, then |ρg(Fn)− ρg(F )|
converges to 0 at least at rate (β ∧ 1)r (resp. βr). 3

Remark 2.5 Let D be the σ-algebra on D generated by the usual coordinate projections
πt : D→ R. Further, let F ∈ Fg, (Ω,F ,P) be a probability space, and (Fn) be a sequence
of Fg-valued estimates Fn : (Ω,F) → (D,D) for F . If the conditions of Theorem 2.1
are fulfilled P-almost surely, then we obtain strong consistency of ρg(Fn) for ρg(F ), i.e.
ρg(Fn) → ρg(F ) P-almost surely. If the conditions of Theorem 2.2 are fulfilled P-almost
surely, then we obtain that (4) holds P-almost surely. 3

3 Plug-in estimation of ρg(F )

In this section, we are going to illustrate the benefit of Theorems 2.1 and 2.2 for the plug-in
estimation of ρg(F ) by means of two examples. First, we let Fn be a smoothed version of
the empirical df corresponding to F (setting εn = 0, we get back the empirical df itself).
Second, we let Fn be an estimate of F based on multiplicatively censored data.
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3.1 Uncensored data, smoothed empirical df

Suppose X1, X2, . . . are i.i.d. random variables on some probability space (Ω,F ,P) with
df F . We denote by F̂n := 1

n

∑n
i=1 1[Xi,∞) the corresponding empirical df at stage n. For

some purposes it might be gainful to consider a smoothed version PεF̂n of F̂n, where ε is
a certain smoothing parameter. Here, we consider a smoothing by the heat kernel (also
called Gaussian kernel). We set pε(y) := (2πε)−1/2 exp(−y2/(2ε)) (ε > 0, y ∈ R), and we
denote by (Pε)ε≥0 the corresponding (heat) semigroup, i.e., Pεψ(·) :=

∫
R ψ(y)pε(. − y)dy

for ε > 0, and P0 := I. We focus on the following estimate of F

Fn(t) := PεnF̂n(t) =
1
n

n∑

i=1

Pεn1[Xi,∞)(t), t ∈ R. (5)

For εn = 0 we obviously have Fn = F̂n.
A smoothing of F̂n may be also beneficial (in terms of the mean square error) for

the plug-in estimation of risk measures. For particular distortion risk measures, namely
the Value-at-Risk (quantile) and the Average Value-at-Risk, the benefit of a smoothing is
studied in, for instance, [8, 19]. Here we intend to establish strong consistency of ρg(Fn)
for ρg(F ), provided εn ↓ 0. To this end we will assume that for some suitable γ > 0,

lim sup
t→−∞

F (t)|t|γ < ∞ and lim sup
t→∞

F̄ (t)tγ < ∞. (6)

The key for our consistency results (Theorems 3.4 and 3.5) will be Lemma 3.2 which is a
sort of Glivenko-Cantelli theorem. Its proof relies on the following lemma, where we use
the notation φ−λ(t) := (1 + |t|)−λ.

Lemma 3.1 For every λ ≥ 0 there are some constants C1(λ), C2(λ) > 0 such that for
every t, x ∈ R and ε ∈ (0, 1]

∫

R
|x− y|λpε(x− y)dy ≤ C1(λ)ελ/2, (7)

∫

R
φ−λ(y)pε(t− y)dy ≤ C2(λ)φ−λ(t). (8)

Proof Inequality (7) is a standard estimate for the heat kernel, see, e.g., [7]. Inequality
(8) follows from

∫

R
φ−λ(y)pε(t− y)dy =

∫

R

φλ(t)
φλ(y)

e−
(t−y)2

4ε

√
2 p2ε(t− y)dy φ−λ(t)

and the fact that the mapping (t, y) 7→ φλ(t)
φλ(y) e−

(t−y)2

4 is bounded above. 2
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Lemma 3.2 Let λ ≥ 0. Suppose that F is Lipschitz continuous and satisfies (6) for some
γ > λ. Then there is some constant Kλ,γ > 0 such that for every n ∈ N and ε ∈ (0, 1]

‖PεF̂n − F‖λ ≤ Kλ,γ

(
‖F̂n − F‖λ + ε(γ−λ)/(2γ)

)
. (9)

Proof We clearly have

|PεF̂n(t)− F (t)|φλ(t) ≤ |Pε(F̂n − F )(t)|φλ(t) + |PεF (t)− F (t)|φλ(t) =: S1(t) + S2(t).

On the one hand we obtain by the use of (8)

S1(t) ≤
∫

R
‖F̂n − F‖λφ−λ(y)pε(t− y)dy φλ(t)

≤ ‖F̂n − F‖λ

∫

R
φ−λ(y)pε(t− y)dy φλ(t)

= ‖F̂n − F‖λ C2(λ).

On the other hand, for t ≥ 0 we obtain with the help of the Lipschitz continuity of F (we
denote the Lipschitz constant by L), condition (6), and the inequalities (7) and (8),

S2(t) ≤
∫

R
|F (y)− F (t)|pε(t− y)dy φλ(t)

≤
( ∫

(0,∞)
(F̄ (y) + F̄ (t))pε(t− y)dy

)δ(∫

(0,∞)
L|y − t|pε(t− y)dy

)1−δ
φλ(t)

+
∫

[−1,0]
|y − t|pε(t− y)dy φλ(1)

+
∫

(−∞,−1)

√
3 p3ε(t− y)dy

(
e−t2/6φλ(t)

)
e−1/(6ε)

≤
( ∫

R
(CF φ−γ(y) + CF φ−γ(t))pε(t− y)dy

)δ
C1(1)1−δε(1−δ)/2 φλ(t)

+2λC1(1)ε1/2 +
√

3Cλ e−1/(6ε)

≤ Cδ
F C1(λ)1−δ

(∫

R
φ−γ(y)pε(t− y)dy + φ−γ(t)

)δ
ε(1−δ)/2 φλ(t)

+C̃λε(γ−λ)/(2γ) + C̃λ ε(γ−λ)/(2γ)

≤ Cδ
F C1(λ)1−δ

(
C2(γ)φ−γ(t) + φ−γ(t)

)δ
ε(1−δ)/2 φλ(t) + 2C̃λε(γ−λ)/(2γ)

≤ Cδ
F C1(λ)1−δ(C2(γ) + 1)δ φ−γδ(t)φλ(t) ε(1−δ)/2 + 2C̃λε(γ−λ)/(2γ)

≤
(
C

λ/γ
F C1(λ)(γ−δ)/γ(C2(γ) + 1)λ/γ + 2C̃λ

)
ε(γ−λ)/(2γ)

=: Kλ,γε(γ−λ)/(2γ)

for δ := λ/γ and some suitable constants CF , Cλ, C̃λ > 0. In the same way we also obtain
S2(t) ≤ Kλ,γε(γ−λ)/(2γ) for t < 0. This proves (9). 2
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Lemma 3.3 Suppose that g satisfies assumption (i) of Theorem 2.1 or assumption (i) of
Theorem 2.2. Then we have PεF̂n ∈ Fg P-almost surely for all n ∈ N and ε ∈ (0, 1].

Proof We may and do assume without loss of generality β ∈ (0, 1]. By assumption (i)
of Theorem 2.1 or (i) of Theorem 2.2 we can find some constant C̃ > 0 (in the setting
of Theorem 2.1 we may choose C̃ := C) such that g(x) ≤ C̃xβ. Further, since F̂n has
compact support, there is some constant CF̂n

> 0 such that F̂n(t) ≤ CF̂n
φ−λ(t), t < 0, for

some λ > 1/β. Therefore,

∫ 0

−∞
g(PεF̂n(t)) dt ≤

∫ 0

−∞
C̃(PεF̂n(t))β dt

=
∫ 0

−∞
C̃

(∫

R
F̂n(y)pε(t− y)dy

)β
dt

≤
∫ 0

−∞
C̃

(∫

R
CF̂n

φ−λ(y)pε(t− y)dy
)β

dt

≤
∫ 0

−∞
C̃Cβ

F̂n
(C2(λ)φ−λ(t))β dt

≤ C̃Cβ

F̂n
C2(λ)β

∫ 0

−∞
φ−λβ(t) dt,

where we used (8). The latter bound is finite since λβ > 1. In the same way one shows
that

∫∞
0 (1− g(PεF̂n(t)))dt < ∞. Therefore we obtain PεF̂n ∈ Fg. 2

Theorem 3.4 (Strong consistency) Suppose that

(a) g satisfies assumption (i) of Theorem 2.1 for some β > 0,

(b) F ∈ Fg satisfies assumption (iii) of Theorem 2.1, and (6) for some γ > 1/β,

(c) F is Lipschitz continuous.

Then, if εn ↓ 0, we have ρg(Fn) → ρg(F ) P-almost surely. In the case εn = 0, n ∈ N, the
assumption (c) is superfluous.

Proof According to Remark 2.5, it suffices to verify that the assumptions (i)–(v) of
Theorem 2.1 hold (P-almost surely). Conditions (i) and (iii) hold by assumption, and
condition (ii) is ensured by Lemma 3.3. If we choose λ ∈ (1/β, γ) then conditions (iv)–(v)
of Theorem 2.1 follow from Lemma 3.2 and Corollary A.2. In the case εn = 0, n ∈ N, we
do not need Lemma 3.2. 2

Theorem 3.5 (Rate of convergence) Suppose that

(a) g satisfies assumption (i) of Theorem 2.2 for some β > 0,
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(b) F ∈ Fg satisfies assumption (iii) of Theorem 2.2, and (6) for some γ > max{1; 1/β},

(c) F is Lipschitz continuous.

Then, for every r ∈ (0, min{1/2; 1−max{1; 1/β}/γ)}) and q ∈ (0, 1/2−max{1; 1/β}/(2γ)),
we can find some R+-valued random variable Kr,γ and some finite constant Kq,γ > 0 such
that P-almost surely

|ρg(Fn)− ρg(F )| ≤ Kr,γ n−(β∧1)r + Kq,γ ε(β∧1)q
n , n ∈ N (10)

(provided the sequence (εn) ⊂ (0,∞) is bounded). If g is Hölder-β-continuous on all of
[0, 1], then in the exponents on the right-hand side of (10) the expression β ∧ 1 can be
replaced by β, we may everywhere replace max{1; 1/β} by 1/β, and Kr,γ can be chosen to
be deterministic. In the case εn = 0, n ∈ N, the assumption (c) is superfluous.

Proof As in the proof of Theorem 3.4, one can verify that the assumptions (i)–(iii) of
Theorem 2.2 and ‖Fn − F‖λ → 0 hold (P-almost surely) for any λ ∈ [1, γ) (respectively
λ ∈ (0, γ) in the case where g is Hölder continuous on all of [0, 1]) satisfying λβ > 1.
Condition (6) ensures that the assumptions of Lemma 3.2 are fulfilled. Thus, Theorem 2.2
(along with Remark 2.5), Lemma 3.2 and Corollary A.2 imply (10) for r ∈ (0, min{1/2, 1−
λ/γ}) and q = (γ − λ)/(2γ). (In the case εn = 0, n ∈ N, we do not need Lemma
3.2.) Since λ can be chosen arbitrarily close to max{1; 1/β}, we obtain (10) for every
r ∈ (0,min{1/2; 1−max{1; 1/β}/γ)}) and q ∈ (0, (γ−max{1; 1/β})/(2γ)). If g is Hölder-
β-continuous on all of [0, 1], then the same arguments apply if we replace max{1; 1/β} by
1/β. 2

Examples for a distortion function g satisfying the assumptions of Theorems 3.4 and
3.5 can be found in Example 2.3. Notice that the assumption F←(d) = F→(d), for every
discontinuity d of g, seems to be necessary. For instance, in the case g(x) = 1[α,1](x), i.e. in
the case of the Value-at-Risk at level α ∈ (0, 1), it was shown in [10] that F←(α) < F→(α)
implies that ρg(F̂n) is divergent P-almost surely.

Remark 3.6 If γ ≥ 2max{1; 1/β} in the setting of Theorem 3.5 then (10) holds for any
r ∈ (0, 1/2). For all distortion functions g presented in Example 2.3 we may choose β = 1.
Thus, for these g we have |ρg(Fn) − ρg(F )| ≤ Kr,γn−r for every r ∈ (0, 1/2), provided
the tails of F decay at least at rate 2 and εn tends to 0 at least at rate (2γr)/(γ − 1).
On the other hand, if εn tends to 0 at a rate being strictly larger than γ/(γ − 1) and g

is “regular”, we have a related CLT (cf. [6]). So in this case the rate of convergence of
ρg(Fn) to ρg(F ) cannot be improved to r = 1/2. We emphasize that the mentioned CLT
relies on the assumption β = 1. A related CLT for the case β ∈ (0, 1) seems to be an
open problem, so that in this case it is not immediately obvious whether or not the rate
of almost sure convergence specified in Theorem 3.5 can be improved. 3
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3.2 Censored data

In insurance practice one often encounters the problem that the data is censored. For
instance, one might have the following relation between the actual (but unobservable)
claim X and the observable fraction X̃:

X =
X̃

C
(11)

with C some random variable taking values in the interval (0, 1]. Here X and X̃ are
nonpositive random variables (a negative value of X corresponds to a payout to the client),
and X̃ and C are assumed to be independent. We denote by F , F̃ and H the df of X, X̃

and C (respectively), and we assume that H is known.
The goal is the estimation of

ρg(F ) = −
∫

R
x dg(F (x)) =

∫

(−∞,0)
g(F (t))dt

based on i.i.d. copies X̃1, . . . , X̃n of X̃. From (11) we have the following representation for
the df F

F (t) =
∫ 1

0
F̃ (tz)dH(z), t ≤ 0.

Thus a natural estimator Fn for F based on the censored observations X̃1, . . . , X̃n is

Fn(t) =
∫ 1

0
F̃n(tz)dH(z) =

1
n

n∑

i=1

H((X̃i/t) ∧ 1), t < 0, (12)

with F̃n := 1
n

∑n
i=1 1[X̃i,0] the empirical df of X̃1, . . . , X̃n. Theorems 3.9 and 3.10 below

show that, under some conditions on g, F and H, the plug-in estimate ρg(Fn) for ρg(F )
is strongly consistent. For their proofs we need two lemmas.

Lemma 3.7 Let λ > 0, and suppose that F ∈ Fg satisfies (6) for some γ > λ. Suppose
further that H has a Lebesgue density h, and there are some constants K > 0 and δ ∈ (0, λ)
such that h(x) ≤ Kxδ−1 for all x ∈ (0, 1]. Then there is some constant Kλ,δ > 0 such that

‖Fn − F‖λ ≤ Kλ,δ‖F̃n − F̃‖λ, n ∈ N. (13)

Moreover the right-hand side of (13) converges to 0 P-almost surely as n →∞.

Proof For every t < 0 we have

|Fn(t)− F (t)|φλ(t) ≤
∫ 1

0
|F̃n(tz)− F̃ (tz)|φλ(t)dH(z)

=
∫ 1

0
|F̃n(tz)− F̃ (tz)|φλ(tz)

φλ(t)
φλ(tz)

h(z)dz

≤ ‖F̃n − F̃‖λ

∫ 1

0

(1 + |t|)λ

(1 + |tz|)λ
h(z)dz

10



≤ ‖F̃n − F̃‖λ (1 + |t|)λ

∫ 1

0

1
(1 + |tz|)λ

Kzδ−1dz

= ‖F̃n − F̃‖λ Kδ
(1 + |t|)λ

|t|δ
∫ |t|

0

uδ−1

(1 + u)λ
du

=: ‖F̃n − F̃‖λ Kλ,δ,

where we substituted u := |tz|. The assumption δ < λ implies Kλ,δ < ∞, so that (13)
holds true. The second statement is a consequence of Corollary A.2 applied to F̃n and F̃ ;
notice that if F satisfies (6) for some γ > λ then the same is true for F̃ with the same γ.

2

Lemma 3.8 Suppose that g satisfies assumption (i) of Theorem 2.1 or assumption (i)
of Theorem 2.2 with β > 0. Suppose further that there are some constants K > 0 and
δ > 1/β such that H(x) ≤ Kxδ for all x ∈ (0, 1]. Then we have Fn ∈ Fg P-almost surely
for all n ∈ N.

Proof By assumption (i) of Theorem 2.1 or (i) of Theorem 2.2 we can find some constant
C̃ > 0 (in the setting of Theorem 2.1 we may choose C̃ := C) such that g(x) ≤ C̃xβ.
Further, it is well known that |∑n

i=1 bi|β ≤ n(β−1)∨0
∑n

i=1 |bi|β for every b1, . . . , bn ∈ R
and n ∈ N. With the help of this inequality we obtain by (12)

∫ 0

−∞
g(Fn(t))dt ≤

∫ 0

−∞
C̃Fn(t)βdt

=
∫ 0

−∞
C̃

( 1
n

n∑

i=1

H((X̃i/t) ∧ 1)
)β

dt

≤
∫ 0

−∞
C̃

n∑

i=1

H((X̃i/t) ∧ 1)βdt

≤ C̃
n∑

i=1

∫ 0

−∞
K((X̃i/t) ∧ 1)δβdt

= C̃K
n∑

i=1

(∫ 0

X̃i

1 dt +
∫ X̃i

−∞
(X̃i/t)δβdt

)

= C̃K
n∑

i=1

(
(−X̃i) +

∫ 1

0
uδβ−2(−X̃i)du

)

= C̃K
(
1 +

∫ 1

0
uδβ−2du

) n∑

i=1

(−X̃i),

where we substituted u := X̃i/t. Since we assumed βδ > 1, this term is finite. Hence,
Fn ∈ Fg P-almost surely for all n ∈ N. 2

Theorem 3.9 (Strong consistency) Suppose that

11



(a) g satisfies condition (i) of Theorem 2.1 for some β > 0,

(b) H has a Lebesgue density h, and there are some constants K > 0 and δ > 1/β such
that h(x) ≤ Kxδ−1, x ∈ (0, 1],

(c) F ∈ Fg satisfies condition (iii) of Theorem 2.1, and (6) for some γ > δ.

Then ρg(Fn) → ρg(F ) P-almost surely.

Proof According to Remark 2.5, it suffices to verify that the assumptions (i)–(v) of
Theorem 2.1 hold (P-almost surely). Conditions (i) and (iii) hold by assumption, and
condition (ii) is a consequence of Lemma 3.8. Conditions (iv)–(v) finally follow from
Lemma 3.7 with any λ ∈ (δ, γ). 2

Theorem 3.10 (Rate of convergence) Suppose that

(a) g satisfies condition (i) of Theorem 2.2 for some β > 0,

(b) H has a Lebesgue density h, and there are some constants K > 0 and δ > 1/β such
that h(x) ≤ Kxδ−1, x ∈ (0, 1],

(c) F ∈ Fg satisfies condition (iii) of Theorem 2.2, and (6) for some γ > max{1; δ}.

Then we can find for every r ∈ (0, min{1/2; 1 −max{1; δ}/γ)}) some R+-valued random
variable Kr,γ such that P-almost surely

|ρg(Fn(ω))− ρg(F )| ≤ Kr,γ n−(β∧1)r, n ∈ N. (14)

If g is Hölder-β-continuous on all of [0, 1], then on the right-hand side of (14) the exponent
−(β ∧ 1)r can be replaced by −βr, we may everywhere replace max{1; δ} by δ, and Kr,γ

can be chosen to be deterministic.

Proof As in the proof of Theorem 3.9, one can verify that the assumptions (i)–(iii) of
Theorem 2.2 and ‖Fn − F‖λ → 0 hold (P-almost surely) for any λ ∈ [1, γ) (respectively
λ ∈ (0, γ) in the case where g is Hölder continuous on all of [0, 1]) satisfying λ > δ.
Condition (6) ensures that the assumptions of Lemma 3.7 are fulfilled. Thus, Theorem
2.2 (along with Remark 2.5), Lemma 3.7 and Corollary A.2 (applied to F̃n and F̃ ; notice
that if F satisfies (6) for some γ > λ then the same is true for F̃ with the same γ) imply
(14) for r ∈ (0,min{1/2, 1− λ/γ}). Since λ can be chosen arbitrarily close to max{1; δ},
we obtain (14) for every r ∈ (0, min{1/2; 1−max{1; δ}/γ)}). If g is Hölder-β-continuous
on all of [0, 1], then the same arguments apply if we replace max{1; δ} by δ. 2

Examples for a distortion function g and a df H satisfying the assumptions of Theorems
3.9 and 3.10 can be found in Example 2.3 and Example 3.11, respectively. Notice that
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if γ ≥ 2max{1; δ} in the setting of Theorem 3.10 then (14) holds for any r ∈ (0, 1/2).
Moreover notice that in [6] a related CLT for ρg(Fn) is given. Therefore the essence of
Remark 3.6 applies also to the present setting.

Example 3.11 Let H be the df of the beta distribution on (0, 1] with parameters a, b > 0,
whose Lebesgue density is given by

h(x) =
xa−1(1− x)b−1

B(a, b)
, x ∈ (0, 1), (15)

where B(a, b) is the beta function. If a > 1/β, then H satisfies the assumptions (b) of
Theorems 3.9 and 3.10 for δ := a. 3

4 Simulations

Theorem 3.5 specifies the precision of the estimator ρg(Fn) for “large” sample sizes n.
For “small” sample sizes the goodness of the estimator ρg(Fn) is hard to determine. For
this reason we are going to study the estimation error for smaller sample sizes by means
of simulations. Each single Monte Carlo simulation will be based on N = 5′000 i.i.d.
replications X1, . . . , XN with df F θ(t) = e−θt1(−∞,0)(t) + 1[0,∞)(t) for θ = 0.1. That is,
−X1 is exponentially distributed with respect to the parameter θ. In particular, E[−X1] =
mθ := 1/θ.

Theorem 3.5 indicates that the Hölder exponent β of g plays an essential role for
the goodness of the estimate ρg(Fn) for ρg(F ). One would expect that a larger Hölder
exponent β entails a better approximation of ρg(F ) by ρg(Fn). This guess is backed by
our simulation results, cf. Figure 1. We let Fn be the classical empirical df of X1, . . . , Xn.
Moreover we set g1(x) = 1[α,1](x), g2(x) = (x/α)∧1 and g3(x) = (xβ/αβ)∧1 with α = 0.25
and β = 0.5. Figure 1 displays the path n 7→ (ρgi(Fn)− ρgi(F

θ))/mθ for i = 1, 2, 3 (solid,
dashed, dotted). The plotted paths show indeed that in the case i = 3, where the Hölder
exponent is smallest, the approximation of ρg(F ) by ρg(Fn) is worst.

5 Proof of main theorems

5.1 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the following lemma.

Lemma 5.1 Let F, F1, F2, . . . ∈ Fg, and suppose that

(a) limK→∞ supn∈N
∫
(−K,K)c |x| dg(Fn(x)) = 0,

(b) limn→∞ g(Fn(t)) = g(F (t)) for Lebesgue almost every t ∈ R.
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Then ρg(Fn) → ρg(F ).

Proof Using the triangle inequality we obtain for every K > 0,

|ρg(Fn)− ρg(F )| ≤
∫

(−K,K)c
|x| dg(Fn(x)) +

∫

(−K,K)c
|x| dg(F (x))

+
∣∣∣
∫

(−K,0)
x dg(Fn(x))−

∫

(−K,0)
x dg(F (x))

∣∣∣

+
∣∣∣
∫

[0,K)
x dg(Fn(x))−

∫

[0,K)
x dg(F (x))

∣∣∣

=: S1(n,K) + . . . + S4(n,K).

Now, let ε > 0. Because of F ∈ Fg and assumption (a), we may and do pick Kε > 0 such
that Si(n,Kε) < ε/4 for i = 1, 2 and all n ∈ N. For every df H on the real line we have∫ K
0 xdH(x) =

∫ K
0 (H(K)−H(t))dt. For the fourth summand we thus obtain

S4(n,Kε) =
∣∣∣
∫

[0,Kε)

(
g(Fn(Kε))− g(Fn(t))

)
dt−

∫

[0,Kε)

(
g(F (Kε))− g(F (t))

)
dt

∣∣∣

≤
∫

[0,Kε)
|g(Fn(Kε))− g(F (Kε))| dt +

∫

[0,Kε)
|g(F (t))− g(Fn(t))| dt.

If we assume without loss of generality that Kε is not an exceptional t in condition (b),
then the latter bound converges to 0 as n → ∞ by assumption (b). Analogously we
obtain S3(n, Kε) → 0 as n → ∞. That is, we may and do pick some nε ∈ N such that
Si(n,Kε) < ε/4 for i = 3, 4 and all n ≥ nε. By all account, we can find for every ε > 0
some nε ∈ N such that |ρg(Fn)− ρg(F )| < ε for all n ≥ nε. 2

Remark 5.2 It is well known that Lp-boundedness for some p > 1 is sufficient for uniform
integrability. That is, conditions (a) of Lemma 5.1 is implied by

(a)’ ∃ p > 1: supn∈N
∫
R |x|p dg(Fn(x)) < ∞.

Also, since the nondecreasing g is dt-almost everywhere continuous, one easily verifies that
condition (b) of Lemma 5.1 is satisfied if

(b)’ Fn(t) → F (t) for dt-a.e. t ∈ R, and F←(d) = F→(d) for every discontinuity d of g,

where F← and F→ refer to the left- and the right-continuous inverse of F , respectively. 3

In view of Lemma 5.1 and Remark 5.2, the claim of Theorem 2.1 holds if we can show
that the conditions (a)’–(b)’ of Remark 5.2 hold. By assumption (i) of Theorem 2.1 we
obtain for any p ∈ (1, λβ)

∫ ∞

0
xp dg(Fn(x)) =

∫ ∞

0
(1− g(Fn(t1/p)))dt
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≤
∫ ∞

0
CF̄n(t1/p)βdt

≤ C
(
1 +

∫ ∞

1
F̄n(s)βpsp−1dt

)

≤ C
(
1 + p (‖F̄n1[0,∞)‖λ)β

∫ ∞

1
(1 + |s|)−λβsp−1dt

)
,

where we substituted s := t1/p. Since −λβ + p− 1 < −1 and supn∈N ‖F̄n1[0,∞)‖λ < ∞ by
assumption (v), the latter expression is bounded above uniformly in n ∈ N. Completely
analogously we can show supn∈N

∫ 0
−∞ |x|p dg(Fn(x) < ∞. Thus, assertion (a)’ holds true.

Assertion (b)’ is ensured by assumptions (iii)–(iv). This finishes the proof of Theorem 2.1.

5.2 Proof of Theorem 2.2

At first we assume k ≥ 1. By assumption (iii) we have m := mini=1,...,k F ′(F−1(di)) > 0.
We set εn := ‖Fn − F‖∞, δn := 2εn/m, and we define the intervals

I0,n := (−∞, F−1(d1)− δn) J0,n := [0, d1 − εn)
Ii,n := (F−1(di) + δn, F−1(di+1)− δn) Ji,n := (di + εn, di+1 − εn)
Ik,n := (F−1(dk) + δn,∞) Jk,n := (dk + εn, 1]

(i = 1, . . . , k − 1). For δn = 2εn/m sufficiently small, i.e. for n sufficiently large (notice
that assumption (iv) is εn → 0), we obtain F (Ii,n) ⊂ Ji,n for every i = 0, . . . , k. In this
case, t ∈ Ii,n implies F (t) ∈ Ji,n. By the definitions of εn and Ji,n, we conclude that Fn(t)
lies in (di, di+1). That is, for n sufficiently large, we have for all t ∈ Ii,n that F (t), Fn(t) ∈
(di, di+1). Thus, for n sufficiently large, we have for all t ∈ In := I0,n ∪ . . . ∪ Ik,n that
|g(Fn(t))− g(F (t))| ≤ C|Fn(t)−F (t)|β by assumption (i). With the representation (3) in
mind, we thus obtain for n sufficiently large

|ρg(Fn)− ρg(F )| ≤
∫

Ic
n

(g(Fn(t)) + g(F (t)))dt +
∫

In

|g(Fn(t))− g(F (t))|dt

≤ k4δn +
∫

In

C|Fn(t)− F (t)|βdt

≤ 8k

m
‖Fn − F‖∞ +

∫

R
C|(Fn(t)− F (t))φλ(t)|βφλβ(t)−1dt

≤ 8k

m
‖Fn − F‖∞ +

(
C

∫

R
φλβ(t)−1dt

)
‖Fn − F‖β

λ.

Since we assumed λ ≥ 1, this yields (4) with K := (8k/m) + (C
∫
R φλβ(t)−1dt).

If g is Hölder-β-continuous on all of [0, 1], i.e. if k = 0, then we easily obtain

|ρg(Fn)− ρg(F )| ≤
(
C

∫

R
φλβ(t)−1dt

)
‖Fn − F‖β

λ

without assuming λ ≥ 1. This yields (4) with β∧1 replaced by β and K := C
∫
R φλβ(t)−1dt.
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A Glivenko-Cantelli theorem for weighted errors

Suppose F is a df on the real line. Further suppose X1, X2, . . . are i.i.d. random variables
with df F on some probability space (Ω,F ,P), and let Fn := 1

n

∑n
i=1 1[Xi,∞) denote the

corresponding empirical df at stage n. The classical Glivenko-Cantelli theorem states that
‖Fn−F‖∞ → 0 P-almost surely. For our purposes we need a stronger convergence result.
In fact we need the convergence with respect to the more stringent norm ‖ · ‖λ defined at
the beginning of Section 2. Corollary A.2 below provides a respective result. It relies on
the following theorem, which is an immediate consequence of [3, Theorem 7.3 (3)].

Theorem A.1 Let Gn be the empirical df at stage n of a sequence of independent and
identically U [0, 1]-distributed random variables on some probability space (Ω̄, F̄ , P̄). If
r ∈ [0, 1/2) and θ ∈ [0, 1− r), then P̄-almost surely

lim
n→∞nr sup

x∈(0,1)

|Gn(x)− x|
xθ(1− x)θ

= 0.

Corollary A.2 Let λ > 0, and suppose there is some constant γ > λ such that

lim sup
t→−∞

F (t)|t|γ < ∞ and lim sup
t→∞

F̄ (t)tγ < ∞. (16)

Then we have for every r ∈ [0,min{1/2, 1− λ/γ}) P-almost surely

lim
n→∞nr‖Fn − F‖λ = 0.

Proof We may and do choose a sequence of independent and identically U [0, 1]-distributed
random variables, possibly on an extension of the original probability space (Ω,F ,P), such
that the corresponding empirical df Gn satisfies Fn = Gn(F ) P-almost surely (cf. [21] or
[20, p.103]). Further, assumption (16) implies the existence of some constant C > 0 such
that |F←(x)| ≤ Cx−1/γ for all x ∈ (0, x0), and F→(x) ≤ C(1− x)−1/γ for all x ∈ (x0, 1),
where x0 is chosen such that F←(x0) ≤ 0 ≤ F→(x0). Thus

nr‖Fn − F‖λ = nr‖Gn(F (·))− F‖λ

= nr sup
t∈R

|Gn(F (t))− F (t)| (1 + |t|)λ

≤ nr sup
x∈(0,1)

|Gn(x)− x|
(
1 +

C

x1/γ(1− x)1/γ

)λ
.

Theorem A.1 with θ = λ/γ implies that the latter expression converges to 0 as n →∞. 2
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B Examples for distribution-invariant risk measures

The possibly most popular risk measure in practice, the Value-at-Risk VaRα at level
α ∈ (0, 1), is defined by

VaRPα(X) := VaRα(FX) := −F→
X (α) = F←

−X(1− α)

for any random variable X on some probability space (Ω,F ,P). It is a distortion risk
measure with respect to g(x) = 1[α,1](x). The drawback of VaRα is the well-known fact
that it is not subadditive and therefore not coherent (note that g is not concave). The
most popular coherent risk measure dominating VaRα is the Average Value-at-Risk (also
called Expected Shortfall) at level α ∈ (0, 1):

AVaRPα(X) := AVaRα(FX) :=
1
α

∫ α

0
VaRa(FX) da

for X ∈ L1(Ω,F ,P). It provides a distortion risk measure with respect to g(x) = (x/α)∧1.
Note that if FX(F→

X (α)) = α then AVaRPα(X) = E[−X|−X ≥ VaRα(FX)], cf. [2]. Another
common distortion risk measure is the Wang transform WTθ with parameter θ ∈ R which
is defined by

WTPθ (X) := WTθ(FX) :=
∫ 1

0
VaRa(FX) ψθ(a) da

for all random variables X for which the integral exists, where ψθ(a) := eθΦ−1(a)−θ2/2 and
Φ−1 denotes the inverse of the standard normal df Φ. It corresponds to the distortion
function g(x) = Φ(Φ−1(x)−θ). The Wang transform WTθ is coherent if and only if θ ≤ 0.

Notice that the Value-at-Risks are not only distortion risk measures for themselves
but they even are the building blocks of every distortion risk measure. Indeed, it can
straightforwardly be shown with the help of standard arguments of integration theory
that

ρg(X) =
∫ 1

0
VaRa(X) dg(a) (17)

for every random variable X for which the integral in (2) exists. If g is concave then
ρg(X) can also be represented as ρg(X) =

∫ 1
0 AVaRa(X) dg̃(a), where g and g̃ correspond

one-to-one via g′+(x) =
∫ 1
x s−1dg̃(s), cf. Lemma 4.63 and Corollary 4.71 in [12]. Moreover,

it was shown in [17, 18] that, under some mild assumptions, every distribution-invariant
coherent risk measure ρ can be represented as

ρ(X) = inf
h∈G

∫ 1

0
AVaRa(F ) dh(a) (18)

for some set G of distortion functions. For details and examples the reader is kindly
referred to [18, 27]. Notice that the distortion risk measure ρg has the representation (18)
with G = {g̃}.
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Figure 1: Top left: distortion functions g1, g2, g3 (solid, dashed, dotted) defined in Section
4. From the top right to the bottom right: Paths of n 7→ (ρgi(Fn) − ρgi(F

θ))/mθ for
i = 1, 2, 3 (solid, dashed, dotted), where Fn is the empirical df at stage n based on i.i.d.
replications X1, X2, . . . with X1 ∼ Expθ, θ := 0.1, mθ := E[−X1] = 1/θ, and F θ is the
common df of the Xi.
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